51
|
Yang CX, Du ZQ, Wright EC, Rothschild MF, Prather RS, Ross JW. Small RNA profile of the cumulus-oocyte complex and early embryos in the pig. Biol Reprod 2012; 87:117. [PMID: 22933518 DOI: 10.1095/biolreprod.111.096669] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Small RNA represent several unique noncoding RNA classes that have important function in the development of germ cells and early embryonic development. Deep sequencing was performed on small RNA from cumulus cells (recovered from germinal vesicle [GV] and metaphase II-arrested [MII] oocytes), GV and MII oocytes, in vitro fertilization-derived embryos at 60 h postfertilization (4- to 8-cell stage), and Day 6 blastocysts. Additionally, a heterologous miRNA microarray method was also used to identify miRNA expressed in the oocyte during in vitro maturation. Similar to the results of expression analysis of other species, these data demonstrate dynamic expression regulation of multiple classes of noncoding RNA during oocyte maturation and development to the blastocyst stage. Mapping small RNA to the pig genome indicates dynamic distribution of small RNA organization across the genome. Additionally, a cluster of miRNA and Piwi-interacting RNA (piRNA) was discovered on chromosome 6. Many of the small RNA mapped to annotated repetitive elements in the pig genome, of which the SINE/tRNA-Glu and LINE/L1 elements represented a large proportion. Two piRNA (piR84651 and piR16993) and seven miRNA (MIR574, MIR24, LET7E, MIR23B, MIR30D, MIR320, and MIR30C) were further characterized using quantitative RT-PCR. Secretory carrier membrane protein 4 (SCAMP4) was predicted to be subject to posttranscriptional gene regulation mediated by small RNA, by annotating small RNA reads mapped to exonic regions in the pig genome. Consistent with the prediction results, SCAMP4 was further confirmed to be differentially expressed at both transcriptional and translational levels. These data establish a small RNA expression profile of the pig cumulus-oocyte complex and early embryos and demonstrate their potential capacity to be utilized for predictions of functional posttranscriptional regulatory events.
Collapse
Affiliation(s)
- Cai-Xia Yang
- Department of Animal Science and Center for Integrated Animal Genomics, Iowa State University, Ames, Iowa 50011, USA
| | | | | | | | | | | |
Collapse
|
52
|
Ye L, Su X, Wu Z, Zheng X, Wang J, Zi C, Zhu G, Wu S, Bao W. Analysis of differential miRNA expression in the duodenum of Escherichia coli F18-sensitive and -resistant weaned piglets. PLoS One 2012; 7:e43741. [PMID: 22937089 PMCID: PMC3427155 DOI: 10.1371/journal.pone.0043741] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2012] [Accepted: 07/23/2012] [Indexed: 01/07/2023] Open
Abstract
Small RNA duodenal libraries were constructed for Escherichia coli F18-sensitive and -resistant weaned piglets in full-sib pair groups and sequenced using Illumina Solexa high-throughput sequencing technology. The identification of differentially expressed miRNAs provides the basis for improved database information on pig miRNAs, understanding the genetic basics of differences in resistance to E. coli F18 between local Chinese and exotic pig breeds, and finding new resistance markers for E. coli F18 infection. The duodenum of all individuals contained more than 90% of known swine miRNAs. A total of 58 differentially expressing miRNAs were identified, of which 46 were increased and 12 were decreased in E. coli F18-sensitive pigs. Of miRNAs with increased expression, ssc-miR-143 was most highly expressed, followed by ssc-let-7f, ssc-miR-192, and ssc-miR-21. We identified a total of 2036 intersection target genes by comparing TargetScan data and previous gene expression profile results. Gene ontology and pathway analysis of intersection genes showed that differentially expressed miRNAs were mainly involved in the immune response and transcriptional regulation. Combining information on differential miRNA expression and their regulatory relationships with transcription factors, identified 12 candidate miRNA disease markers, including 11 miRNAs with increased expression, ssc-miR-143, ssc-let-7f, ssc-miR-30e, ssc-miR-148a, ssc-miR-148b, ssc-miR-181a, ssc-miR-192, ssc-miR-27b, ssc-miR-15b, ssc-miR-21, and ssc-miR-215, and one with decreased expression, ssc-miR-152. Quantitative real-time PCR analysis of candidate miRNA expression in a larger cohort of E coli F18-sensitive and -resistant animals confirmed the high-throughput sequencing results.
Collapse
Affiliation(s)
- Lan Ye
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu Province, China
| | - Xianmin Su
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu Province, China
| | - Zhengchang Wu
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu Province, China
| | - Xianrui Zheng
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu Province, China
| | - Jin Wang
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu Province, China
| | - Chen Zi
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu Province, China
| | - Guoqiang Zhu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu Province, China
| | - Shenglong Wu
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu Province, China
- * E-mail: (SW); (WB)
| | - Wenbin Bao
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu Province, China
- * E-mail: (SW); (WB)
| |
Collapse
|
53
|
Ma H, Hostuttler M, Wei H, Rexroad CE, Yao J. Characterization of the rainbow trout egg microRNA transcriptome. PLoS One 2012; 7:e39649. [PMID: 22761856 PMCID: PMC3382587 DOI: 10.1371/journal.pone.0039649] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2011] [Accepted: 05/24/2012] [Indexed: 12/22/2022] Open
Abstract
MicroRNAs (miRNAs) are a class of endogenous small non-coding RNA molecules that regulate post-transcriptional expression of target genes and play important roles in animal development. The objectives of this study were to characterize the egg miRNA transcriptome and identify novel egg-predominant miRNAs in rainbow trout. Small RNAs isolated from mature unfertilized rainbow trout eggs were subjected to deep sequencing using an Illumina Genome Analyzer. The massive sequencing produced 24,621,741 quality reads, among which, 266 known miRNAs were identified and 230 putatively novel miRNAs were predicted. The most abundantly known miRNAs are let-7 and miR-21, accounting for 24.06% and 18.71% of the known miRNAs, respectively. Other known miRNAs which are abundantly present in eggs include miR-24, miR-202, miR-148, miR-30, miR-10, miR-146, miR-25, and miR-143. Real time PCR analysis using cDNAs derived from 10 tissues validated 87 out of 90 selected putative miRNAs and identified three novel miRNAs predominantly expressed in rainbow trout eggs. Each of these novel egg-predominant miRNAs is predicted to target a significant number of genes, most of which are significantly down-regulated in naturally ovulated rainbow trout eggs based on analysis of publicly available microarray data sets. Quantitative real time PCR analysis also demonstrated low expression of a selected number of target genes in eggs relative to liver and muscle tissues. This study represents the first complete survey of miRNAs in fish eggs and provides a starting point for future studies aimed at understanding the roles of miRNAs in controlling egg quality and early embryogenesis in rainbow trout.
Collapse
Affiliation(s)
- Hao Ma
- Division of Animal and Nutritional Sciences, West Virginia University, Morgantown, West Virginia, United States of America
| | - Mark Hostuttler
- National Center for Cool and Cold Water Aquaculture, Kearneysville, West Virginia, United States of America
| | - Hairong Wei
- School of Forest Resources and Environmental Science, Michigan Technological University, Houghton, Michigan, United States of America
| | - Caird E. Rexroad
- National Center for Cool and Cold Water Aquaculture, Kearneysville, West Virginia, United States of America
| | - Jianbo Yao
- Division of Animal and Nutritional Sciences, West Virginia University, Morgantown, West Virginia, United States of America
| |
Collapse
|
54
|
Lin F, Li R, Pan ZX, Zhou B, Yu DB, Wang XG, Ma XS, Han J, Shen M, Liu HL. miR-26b promotes granulosa cell apoptosis by targeting ATM during follicular atresia in porcine ovary. PLoS One 2012; 7:e38640. [PMID: 22737216 PMCID: PMC3380909 DOI: 10.1371/journal.pone.0038640] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2012] [Accepted: 05/08/2012] [Indexed: 01/01/2023] Open
Abstract
More than 99% of ovarian follicles undergo atresia in mammals, but the mechanism of follicular atresia remains to be elucidated. In this study, we explored microRNA (miRNA) regulation of follicular atresia in porcine ovary. A miRNA expression profile was constructed for healthy, early atretic, and progressively atretic follicles, and the differentially expressed miRNAs were selected and analyzed. We found that miR-26b, which was upregulated during follicular atresia, increased the number of DNA breaks and promoted granulosa cell apoptosis by targeting the ataxia telangiectasia mutated gene directly in vitro.
Collapse
Affiliation(s)
- Fei Lin
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Ran Li
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Zeng xiang Pan
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Bo Zhou
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - De bing Yu
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Xu guang Wang
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Xue shan Ma
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Jing Han
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Ming Shen
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Hong lin Liu
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
- * E-mail:
| |
Collapse
|
55
|
Meng F, Hackenberg M, Li Z, Yan J, Chen T. Discovery of novel microRNAs in rat kidney using next generation sequencing and microarray validation. PLoS One 2012; 7:e34394. [PMID: 22470567 PMCID: PMC3314633 DOI: 10.1371/journal.pone.0034394] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2012] [Accepted: 02/27/2012] [Indexed: 01/12/2023] Open
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs that regulate a variety of biological processes. The latest version of the miRBase database (Release 18) includes 1,157 mouse and 680 rat mature miRNAs. Only one new rat mature miRNA was added to the rat miRNA database from version 16 to version 18 of miRBase, suggesting that many rat miRNAs remain to be discovered. Given the importance of rat as a model organism, discovery of the completed set of rat miRNAs is necessary for understanding rat miRNA regulation. In this study, next generation sequencing (NGS), microarray analysis and bioinformatics technologies were applied to discover novel miRNAs in rat kidneys. MiRanalyzer was utilized to analyze the sequences of the small RNAs generated from NGS analysis of rat kidney samples. Hundreds of novel miRNA candidates were examined according to the mappings of their reads to the rat genome, presence of sequences that can form a miRNA hairpin structure around the mapped locations, Dicer cleavage patterns, and the levels of their expression determined by both NGS and microarray analyses. Nine novel rat hairpin precursor miRNAs (pre-miRNA) were discovered with high confidence. Five of the novel pre-miRNAs are also reported in other species while four of them are rat specific. In summary, 9 novel pre-miRNAs (14 novel mature miRNAs) were identified via combination of NGS, microarray and bioinformatics high-throughput technologies.
Collapse
Affiliation(s)
- Fanxue Meng
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, Food and Drug Administration, Jefferson, Arkansas, United States of America
| | - Michael Hackenberg
- Dpto. de Genética, Facultad de Ciencias, Universidad de Granada, Granada, Spain
| | - Zhiguang Li
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, Food and Drug Administration, Jefferson, Arkansas, United States of America
| | - Jian Yan
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, Food and Drug Administration, Jefferson, Arkansas, United States of America
| | - Tao Chen
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, Food and Drug Administration, Jefferson, Arkansas, United States of America
- * E-mail:
| |
Collapse
|
56
|
Zhao S, Zhang J, Hou X, Zan L, Wang N, Tang Z, Li K. OLFML3 expression is decreased during prenatal muscle development and regulated by microRNA-155 in pigs. Int J Biol Sci 2012; 8:459-69. [PMID: 22419891 PMCID: PMC3303172 DOI: 10.7150/ijbs.3821] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2011] [Accepted: 12/30/2011] [Indexed: 11/25/2022] Open
Abstract
The Olfactomedin-like 3 (OLFML3) gene has matrix-related function involved in embryonic development. MicroRNA-155 (miR-155), 21- to 23-nucleotides (nt) noncoding RNA, regulated myogenesis by target mRNA. Our LongSAGE analysis suggested that OLFML3 gene was differently expressed during muscle development in pig. In this study, we cloned the porcine OLFML3 gene and detected its tissues distribution in adult Tongcheng pigs and dynamical expression in developmental skeletal muscle (12 prenatal and 10 postnatal stages) from Landrace (lean-type) and Tongcheng (obese-type) pigs. Subsequently, we analyzed the interaction between OLFML3 and miR-155. The OLFML3 was abundantly expressed in liver and pancreas, moderately in lung, small intestine and placenta, and weakly in other tissues and postnatal muscle. There were different dynamical expression patterns between Landrace and Tongcheng pigs during prenatal skeletal muscle development. The OLFML3 was down-regulated (33-50 days post coitus, dpc), subsequently up-regulated (50-70 dpc), and then down-regulated (70-100 dpc) in Landrace pigs, while in Tongcheng pigs, it was down-regulated (33-50 dpc), subsequently up-regulated (50-55 dpc) and then down-regulated (55-100 dpc). There was higher expression in Tongcheng than Landrace in prenatal muscle from 33 to 60 dpc, and opposite situation from 65 to 100 dpc. Dual luciferase assay and real time PCR documented that OLFML3 expression was regulated by miR-155 at mRNA level. Our research indicated that OLFML3 gene may affect prenatal skeletal muscle development and was regulated by miR-155. These finding will help understanding biological function and expression regulation of OLFML3 gene in mammal animals.
Collapse
Affiliation(s)
- Shuanping Zhao
- State Key Laboratory for Animal Nutrition, Beijing, P R China
| | | | | | | | | | | | | |
Collapse
|
57
|
Lian C, Sun B, Niu S, Yang R, Liu B, Lu C, Meng J, Qiu Z, Zhang L, Zhao Z. A comparative profile of the microRNA transcriptome in immature and mature porcine testes using Solexa deep sequencing. FEBS J 2012; 279:964-75. [PMID: 22240065 DOI: 10.1111/j.1742-4658.2012.08480.x] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
MicroRNAs (miRNAs) are small noncoding regulatory RNAs that play key roles in many diverse biological processes such as spermatogenesis. However, no study has been performed on the miRNA transcriptome of developing porcine testes. Here, we employed Solexa deep sequencing technology to extend the repertoire of porcine testis miRNAs and extensively compare the expression patterns of sexually immature and mature porcine testes. Solexa sequencing of two small RNA libraries derived from immature (30 days) and mature (180 days) pig testis samples yielded over 25 million high-quality reads. Overall, the two developmental stages had significantly different small RNA compositions. A custom data analysis pipeline identified 398 known and/or homologous conserved porcine miRNAs, 15 novel pig-specific miRNAs and 56 novel candidate miRNAs. We further observed multiple mature miRNA variants and identified a new bidirectional transcribed miRNA locus, ssc-mir-181a. A total of 122 miRNAs were differentially expressed in the immature and mature testes, and 10 were validated using quantitative RT-PCR. Furthermore, GO and KEGG pathway analyses of the predicted miRNA targets further illustrate the likely roles for these differentially expressed miRNAs in spermatogenesis. This study is the first comparative profile of the miRNA transcriptome in immature and mature porcine testes using a deep sequencing approach, and it provides a useful resource for future studies on the role of miRNAs in spermatogenesis and male infertility treatment.
Collapse
Affiliation(s)
- Chuanjiang Lian
- College of Animal Science and Veterinary Medicine, Jilin Provincial Key Laboratory of Animal Embryo Engineering, Jilin University, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
58
|
Sharbati S, Sharbati J, Hoeke L, Bohmer M, Einspanier R. Quantification and accurate normalisation of small RNAs through new custom RT-qPCR arrays demonstrates Salmonella-induced microRNAs in human monocytes. BMC Genomics 2012; 13:23. [PMID: 22248082 PMCID: PMC3268085 DOI: 10.1186/1471-2164-13-23] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2011] [Accepted: 01/16/2012] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND Small interfering and non-coding RNAs regulate gene expression across all kingdoms of life. MicroRNAs constitute an important group of metazoan small RNAs regulating development but also disease. Accordingly, in functional genomics microRNA expression analysis sheds more and more light on the dynamic regulation of gene expression in various cellular processes. RESULTS We have developed custom RT-qPCR arrays allowing for accurate quantification of 31 small RNAs in triplicate using a 96 well format. In parallel, we provide accurate normalisation of microRNA expression data based on the quantification of 5 reference snRNAs. We have successfully employed such arrays to study microRNA regulation during human monocyte differentiation as well as Salmonella infection. Besides well-known protagonists such as miR-146 or miR-155, we identified the up-regulation of miR-21, miR-222, miR-23b, miR-24, miR-27a as well as miR-29 upon monocyte differentiation or infection, respectively. CONCLUSIONS The provided protocol for RT-qPCR arrays enables straight-forward microRNA expression analysis. It is fully automatable, compliant with the MIQE guidelines and can be completed in only 1 day. The application of these arrays revealed microRNAs that may mediate monocyte host defence mechanisms by regulating the TGF-β signalling upon Salmonella infection. The introduced arrays are furthermore suited for customised quantification of any class of small non-coding RNAs as exemplified by snRNAs and thus provide a versatile tool for ubiquitous applications.
Collapse
Affiliation(s)
- Soroush Sharbati
- Institute of Veterinary Biochemistry, Freie Universitaet Berlin, Berlin, Germany.
| | | | | | | | | |
Collapse
|
59
|
Shah AA, Leidinger P, Keller A, Wendschlag A, Meese E, Blin N. Altered miRNA expression patterns in Tff2 knock-out mice correlate with cellular pathways of neoplastic development and caloric metabolism. Int J Mol Med 2012; 29:637-43. [PMID: 22245972 PMCID: PMC3573770 DOI: 10.3892/ijmm.2012.881] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2011] [Accepted: 10/03/2011] [Indexed: 12/30/2022] Open
Abstract
The trefoil peptide family, consisting in mammals of three members namely TFF1, 2 and 3, plays a cytoprotective role in epithelial cells of various tissues, mainly in the digestive tract. Tff1, Tff2 or Tff3 knock-out mouse models developed various kinds of gastrointestinal impairment. microRNAs are known to be novel gene regulators. We aimed to investigate the physiological role of such miRNAs in Tff2 knock-out mice. Whole miRNome profiling and in silico analysis were performed for Tff2-KO and WT mice. Our latest data explored the role of miRNAs in the regulatory cascades and molecular processes of Tff2−/− mice. As much as 6% of the Tff2-KO mice miRNome was significantly dys-regulated. Further in silico analysis suggests that the respective dys-regulated part of the miRNome is involved in human pathological processes, including pancreatic, colorectal and basal cell cancer. Additionally, the dys-regulated miRNome targets pathways involved in carbohydrate metabolism and adipocytokine signaling. The latter links deficient caloric maintenance in Tff2 and previous observation in Tff3-KO mice with miRNAs. In summary, our proof-of-concept study indicates that miRNAs may play an important role in the regulatory processes of the trefoil peptide family, especially in the regulation of cancer-related cascades.
Collapse
Affiliation(s)
- Aftab Ali Shah
- Division of Molecular Genetics, Institute of Human Genetics, University of Tübingen, Wilhelmstr. 27, D-72074 Tübingen, Germany.
| | | | | | | | | | | |
Collapse
|
60
|
Singh N, Shirdel EA, Waldron L, Zhang RH, Jurisica I, Comelli EM. The murine caecal microRNA signature depends on the presence of the endogenous microbiota. Int J Biol Sci 2011; 8:171-86. [PMID: 22211115 PMCID: PMC3248702 DOI: 10.7150/ijbs.8.171] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2011] [Accepted: 12/04/2011] [Indexed: 12/14/2022] Open
Abstract
The intestinal messenger RNA expression signature is affected by the presence and composition of the endogenous microbiota, with effects on host physiology. The intestine is also characterized by a distinctive micronome. However, it is not known if microbes also impact intestinal gene expression epigenetically. We investigated if the murine caecal microRNA expression signature depends on the presence of the microbiota, and the potential implications of this interaction on intestinal barrier function. Three hundred and thirty four microRNAs were detectable in the caecum of germ-free and conventional male mice and 16 were differentially expressed, with samples from the two groups clustering separately based on their expression patterns. Through a combination of computational and gene expression analyses, including the use of our curated list of 527 genes involved in intestinal barrier regulation, 2,755 putative targets of modulated microRNAs were identified, including 34 intestinal barrier-related genes encoding for junctional and mucus layer proteins and involved in immune regulation. This study shows that the endogenous microbiota influences the caecal microRNA expression signature, suggesting that microRNA modulation is another mechanism through which commensal bacteria impact the regulation of the barrier function and intestinal homeostasis. Through microRNAs, the gut microbiota may impinge a much larger number of genes than expected, particularly in diseases where its composition is altered. In this perspective, abnormally expressed microRNAs could be considered as novel therapeutic targets.
Collapse
Affiliation(s)
- Natasha Singh
- 1. Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Ontario, Canada
| | - Elize A. Shirdel
- 2. Ontario Cancer Institute, Princess Margaret Hospital, University Health Network and the Campbell Family Institute for Cancer Research, Toronto, Ontario, Canada
- 3. Department of Medical Biophysics, University of Toronto, Ontario, Canada
| | - Levi Waldron
- 2. Ontario Cancer Institute, Princess Margaret Hospital, University Health Network and the Campbell Family Institute for Cancer Research, Toronto, Ontario, Canada
| | - Regan-Heng Zhang
- 1. Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Ontario, Canada
| | - Igor Jurisica
- 2. Ontario Cancer Institute, Princess Margaret Hospital, University Health Network and the Campbell Family Institute for Cancer Research, Toronto, Ontario, Canada
- 3. Department of Medical Biophysics, University of Toronto, Ontario, Canada
- 4. Department of Computer Science, University of Toronto, Ontario, Canada
| | - Elena M. Comelli
- 1. Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Ontario, Canada
| |
Collapse
|
61
|
Chen C, Ai H, Ren J, Li W, Li P, Qiao R, Ouyang J, Yang M, Ma J, Huang L. A global view of porcine transcriptome in three tissues from a full-sib pair with extreme phenotypes in growth and fat deposition by paired-end RNA sequencing. BMC Genomics 2011; 12:448. [PMID: 21906321 PMCID: PMC3188532 DOI: 10.1186/1471-2164-12-448] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2011] [Accepted: 09/10/2011] [Indexed: 01/07/2023] Open
Abstract
Background Elucidation of the pig transcriptome is essential for interpreting functional elements of the genome and understanding the genetic architecture of complex traits such as fat deposition, metabolism and growth. Results Here we used massive parallel high-throughput RNA sequencing to generate a high-resolution map of the porcine mRNA and miRNA transcriptome in liver, longissimus dorsi and abdominal fat from two full-sib F2 hybrid pigs with segregated phenotypes on growth, blood physiological and biochemical parameters, and fat deposition. We obtained 8,508,418-10,219,332 uniquely mapped reads that covered 78.0% of the current annotated transcripts and identified 48,045-122,931 novel transcript fragments, which constituted 17,085-29,499 novel transcriptional active regions in six tested samples. We found that about 18.8% of the annotated genes showed alternative splicing patterns, and alternative 3' splicing is the most common type of alternative splicing events in pigs. Cross-tissue comparison revealed that many transcriptional events are tissue-differential and related to important biological functions in their corresponding tissues. We also detected a total of 164 potential novel miRNAs, most of which were tissue-specifically identified. Integrated analysis of genome-wide association study and differential gene expression revealed interesting candidate genes for complex traits, such as IGF2, CYP1A1, CKM and CES1 for heart weight, hemoglobin, pork pH value and serum cholesterol, respectively. Conclusions This study provides a global view of the complexity of the pig transcriptome, and gives an extensive new knowledge about alternative splicing, gene boundaries and miRNAs in pigs. Integrated analysis of genome wide association study and differential gene expression allows us to find important candidate genes for porcine complex traits.
Collapse
Affiliation(s)
- Congying Chen
- Key Laboratory for Animal Biotechnology of Jiangxi Province and the Ministry of Agriculture of China, Jiangxi Agricultural University, 330045, Nanchang, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
62
|
Sharbati J, Lewin A, Kutz-Lohroff B, Kamal E, Einspanier R, Sharbati S. Integrated microRNA-mRNA-analysis of human monocyte derived macrophages upon Mycobacterium avium subsp. hominissuis infection. PLoS One 2011; 6:e20258. [PMID: 21629653 PMCID: PMC3101234 DOI: 10.1371/journal.pone.0020258] [Citation(s) in RCA: 135] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2011] [Accepted: 04/22/2011] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Many efforts have been made to understand basal mechanisms of mycobacterial infections. Macrophages are the first line of host immune defence to encounter and eradicate mycobacteria. Pathogenic species have evolved different mechanisms to evade host response, e.g. by influencing macrophage apoptotic pathways. However, the underlying molecular regulation is not fully understood. A new layer of eukaryotic regulation of gene expression is constituted by microRNAs. Therefore, we present a comprehensive study for identification of these key regulators and their targets in the context of host macrophage response to mycobacterial infections. METHODOLOGY/PRINCIPAL FINDINGS We performed microRNA as well as mRNA expression analysis of human monocyte derived macrophages infected with several Mycobacterium avium hominissuis strains by means of microarrays as well as quantitative reverse transcription PCR (qRT-PCR). The data revealed the ability of all strains to inhibit apoptosis by transcriptional regulation of BCL2 family members. Accordingly, at 48 h after infection macrophages infected with all M. avium strains showed significantly decreased caspase 3 and 7 activities compared to the controls. Expression of let-7e, miR-29a and miR-886-5p were increased in response to mycobacterial infection at 48 h. The integrated analysis of microRNA and mRNA expression as well as target prediction pointed out regulative networks identifying caspase 3 and 7 as potential targets of let-7e and miR-29a, respectively. Consecutive reporter assays verified the regulation of caspase 3 and 7 by these microRNAs. CONCLUSIONS/SIGNIFICANCE We show for the first time that mycobacterial infection of human macrophages causes a specific microRNA response. We furthermore outlined a regulatory network of potential interactions between microRNAs and mRNAs. This study provides a theoretical concept for unveiling how distinct mycobacteria could manipulate host cell response. In addition, functional relevance was confirmed by uncovering the control of major caspases 3 and 7 by let-7e and miR-29a, respectively.
Collapse
Affiliation(s)
- Jutta Sharbati
- Institute of Veterinary Biochemistry, Freie Universitaet Berlin, Berlin, Germany.
| | | | | | | | | | | |
Collapse
|
63
|
Xie SS, Li XY, Liu T, Cao JH, Zhong Q, Zhao SH. Discovery of porcine microRNAs in multiple tissues by a Solexa deep sequencing approach. PLoS One 2011; 6:e16235. [PMID: 21283541 PMCID: PMC3026822 DOI: 10.1371/journal.pone.0016235] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2010] [Accepted: 12/17/2010] [Indexed: 12/19/2022] Open
Abstract
The domestic pig (Sus scrofa) is an important economic animal for meat production and as a suitable model organism for comparative genomics and biomedical studies. In an effort to gain further identification of miRNAs in the pig, we have applied the Illumina Solexa sequencing technology to carry out an in-depth analysis of the miRNA transcriptome in a pool of equal amounts of RNA from 16 different porcine tissues. From this data set, we identified 437 conserved and 86 candidate novel miRNA/miRNA* in the pig, corresponding to 329 miRNA genes. Compared with all the reported porcine miRNAs, the result showed that 112 conserved and 61 candidate novel porcine miRNA were first reported in this study. Further analysis revealed extensive sequence variations (isomiRs) of porcine miRNAs, including terminal isomiRs at both the 5' and 3' ends and nucleotide variants. Read counts of individual porcine miRNA spanned from a few reads to approximately 405541 reads, confirming the different level of expression of porcine miRNAs. Subsequently, the tissue expression patterns of 8 miRNAs were characterized by Northern blotting. The results showed that miR-145, miR-423-5p, miR-320, miR-26a, and miR-191 are ubiquitously expressed in diverse tissues, while miR-92, miR-200a, and miR-375 were selectively enriched and expressed in special tissues. Meanwhile, the expression of 8 novel porcine-specific miRNAs was validated by stem-loop RT-PCR, and one of these was detected by Northern blotting. Using the porcine miRNA array designed according to our Solexa results, 123 miRNAs were detected expression in porcine liver tissues. A total of 58 miRNAs showed differential expression between the Tongcheng (a Chinese indigenous fatty breed) and Large White pig breeds (a lean type pig). Taken together, our results add new information to existing data on porcine miRNAs and should be useful for investigating the biological functions of miRNAs in pig and other species.
Collapse
Affiliation(s)
- Sheng-Song Xie
- Key Lab of Agricultural Animal Genetics, Breeding, and Reproduction of Ministry of Education & Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Xin-Yun Li
- Key Lab of Agricultural Animal Genetics, Breeding, and Reproduction of Ministry of Education & Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Teng Liu
- Key Lab of Agricultural Animal Genetics, Breeding, and Reproduction of Ministry of Education & Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Jian-Hua Cao
- Key Lab of Agricultural Animal Genetics, Breeding, and Reproduction of Ministry of Education & Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Qiang Zhong
- Key Lab of Agricultural Animal Genetics, Breeding, and Reproduction of Ministry of Education & Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Shu-Hong Zhao
- Key Lab of Agricultural Animal Genetics, Breeding, and Reproduction of Ministry of Education & Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture, Huazhong Agricultural University, Wuhan, People's Republic of China
- * E-mail:
| |
Collapse
|
64
|
Podolska A, Kaczkowski B, Kamp Busk P, Søkilde R, Litman T, Fredholm M, Cirera S. MicroRNA expression profiling of the porcine developing brain. PLoS One 2011; 6:e14494. [PMID: 21253018 PMCID: PMC3017054 DOI: 10.1371/journal.pone.0014494] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2010] [Accepted: 12/09/2010] [Indexed: 01/30/2023] Open
Abstract
BACKGROUND MicroRNAs are small, non-coding RNA molecules that regulate gene expression at the post-transcriptional level and play an important role in the control of developmental and physiological processes. In particular, the developing brain contains an impressive diversity of microRNAs. Most microRNA expression profiling studies have been performed in human or rodents and relatively limited knowledge exists in other mammalian species. The domestic pig is considered to be an excellent, alternate, large mammal model for human-related neurological studies, due to its similarity in both brain development and the growth curve when compared to humans. Considering these similarities, studies examining microRNA expression during porcine brain development could potentially be used to predict the expression profile and role of microRNAs in the human brain. METHODOLOGY/PRINCIPAL FINDINGS MicroRNA expression profiling by use of microRNA microarrays and qPCR was performed on the porcine developing brain. Our results show that microRNA expression is regulated in a developmentally stage-specific, as well as a tissue-specific manner. Numerous developmental stage or tissue-specific microRNAs including, miR-17, miR-18a, miR-29c, miR-106a, miR-135a and b, miR-221 and miR-222 were found by microarray analysis. Expression profiles of selected candidates were confirmed by qPCR. CONCLUSIONS/SIGNIFICANCE The differential expression of specific microRNAs in fetal versus postnatal samples suggests that they likely play an important role in the regulation of developmental and physiological processes during brain development. The data presented here supports the notion that microRNAs act as post-transcriptional switches which may regulate gene expression when required.
Collapse
Affiliation(s)
- Agnieszka Podolska
- Department of Basic Animal and Veterinary Sciences, Section of Genetics and Bioinformatics, Faculty of Life Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Bogumil Kaczkowski
- Department of Biology and Biotech Research and Innovation Centre, Bioinformatics Centre, University of Copenhagen, Copenhagen, Denmark
| | | | - Rolf Søkilde
- Biomarker Discovery, Exiqon A/S, Vedbæk, Denmark
| | | | - Merete Fredholm
- Department of Basic Animal and Veterinary Sciences, Section of Genetics and Bioinformatics, Faculty of Life Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Susanna Cirera
- Department of Basic Animal and Veterinary Sciences, Section of Genetics and Bioinformatics, Faculty of Life Sciences, University of Copenhagen, Copenhagen, Denmark
- * E-mail:
| |
Collapse
|
65
|
Shah AA, Meese E, Blin N. Profiling of regulatory microRNA transcriptomes in various biological processes: a review. J Appl Genet 2010; 51:501-7. [DOI: 10.1007/bf03208880] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
66
|
Tuggle CK, Bearson SMD, Uthe JJ, Huang TH, Couture OP, Wang YF, Kuhar D, Lunney JK, Honavar V. Methods for transcriptomic analyses of the porcine host immune response: application to Salmonella infection using microarrays. Vet Immunol Immunopathol 2010; 138:280-91. [PMID: 21036404 DOI: 10.1016/j.vetimm.2010.10.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Technological developments in both the collection and analysis of molecular genetic data over the past few years have provided new opportunities for an improved understanding of the global response to pathogen exposure. Such developments are particularly dramatic for scientists studying the pig, where tools to measure the expression of tens of thousands of transcripts, as well as unprecedented data on the porcine genome sequence, have combined to expand our abilities to elucidate the porcine immune system. In this review, we describe these recent developments in the context of our work using primarily microarrays to explore gene expression changes during infection of pigs by Salmonella. Thus while the focus is not a comprehensive review of all possible approaches, we provide links and information on both the tools we use as well as alternatives commonly available for transcriptomic data collection and analysis of porcine immune responses. Through this review, we expect readers will gain an appreciation for the necessary steps to plan, conduct, analyze and interpret the data from transcriptomic analyses directly applicable to their research interests.
Collapse
Affiliation(s)
- C K Tuggle
- Department of Animal Science, and Center for Integrated Animal Genomics, 2255 Kildee Hall, Iowa State University, Ames, IA 50010, United States.
| | | | | | | | | | | | | | | | | |
Collapse
|