51
|
Tacchi L, Bron JE, Taggart JB, Secombes CJ, Bickerdike R, Adler MA, Takle H, Martin SAM. Multiple tissue transcriptomic responses toPiscirickettsia salmonisin Atlantic salmon (Salmo salar). Physiol Genomics 2011; 43:1241-54. [DOI: 10.1152/physiolgenomics.00086.2011] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The bacterium Piscirickettsia salmonis is the etiological agent of salmonid rickettsial septicemia (SRS), a severe disease that causes major economic losses to the Atlantic salmon aquaculture industry every year. Little is known about the infective strategy of P. salmonis, which is able to infect, survive within, and replicate inside salmonid macrophages as an intracellular parasite. Similarly there is little knowledge concerning the fish host's response to invasion by this pathogen. We have examined the transcriptional response of postsmolt Atlantic salmon ( Salmo salar) to P. salmonis at 48 h following infection in three tissues, liver, head kidney, and muscle, using an Atlantic salmon oligonucleotide microarray (Salar_2, Agilent 4x44K). The infection led to a large alteration of transcriptional activity in all the tissues studied. In infected salmon 886, 207, and 153 transcripts were differentially expressed in liver, head kidney, and muscle, respectively. Assessment of enrichment for particular biological pathways by gene ontology analysis showed an upregulation of genes involved in oxidative and inflammatory responses in infected fish, indicative of the activation of the innate immune response. The downregulation of genes involved in the adaptive immune response, G protein signaling pathway, and apoptotic process in infected fish may be reflective of mechanisms used by P. salmonis to survive, replicate, and escape host defenses. There was also evidence of differential responses between studied tissues, with protein metabolism being decreased in muscle of infected fish and with a concomitant increase being shown in liver.
Collapse
Affiliation(s)
- Luca Tacchi
- Institute of Biological and Environmental Sciences, University of Aberdeen, Tillydrone Avenue, Aberdeen
| | - James E. Bron
- Institute of Aquaculture, University of Stirling, Stirling
| | | | - Christopher J. Secombes
- Institute of Biological and Environmental Sciences, University of Aberdeen, Tillydrone Avenue, Aberdeen
| | | | | | - Harald Takle
- Nofima, Aas, Norway; and
- AVS Chile, Puerto Varas, Chile
| | - Samuel A. M. Martin
- Institute of Biological and Environmental Sciences, University of Aberdeen, Tillydrone Avenue, Aberdeen
| |
Collapse
|
52
|
Monte MM, Zou J, Wang T, Carrington A, Secombes CJ. Cloning, expression analysis and bioactivity studies of rainbow trout (Oncorhynchus mykiss) interleukin-22. Cytokine 2011; 55:62-73. [PMID: 21514178 DOI: 10.1016/j.cyto.2011.03.015] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2010] [Revised: 03/15/2011] [Accepted: 03/15/2011] [Indexed: 01/25/2023]
Abstract
This report describes the cloning and characterisation of rainbow trout (Oncorhynchus mykiss) interleukin (IL)-22, and presents studies of the functional activity of its recombinant protein for the first time in a non-mammalian species. The predicted IL-22 coding region consists of 522 nucleotides which translates into a 173 amino acid protein, that contains an IL-10 family signature which is reasonably well conserved with other vertebrate IL-22 molecules. Expression analysis in tissues from healthy fish revealed a higher constitutive expression of IL-22 in mucosal tissues, suggesting a potentially important role in mucosal immunity. In vitro studies demonstrated that IL-22 expression was induced significantly by PHA and PMA in splenocyte primary cultures 4h post-stimulation. Expression was also induced in the spleen upon infection of fish with the Gram-negative bacterium Yersinia ruckeri, suggesting a potential role of IL-22 in vivo in defence against bacterial diseases. The Escherichia coli produced recombinant IL-22 enhanced the expression of a number of antimicrobial peptides, promoting host innate immunity against microbes and revealing a biological similarity with its mammalian counterpart.
Collapse
Affiliation(s)
- Milena M Monte
- Scottish Fish Immunology Research Centre, University of Aberdeen, Zoology Building, Tillydrone Avenue, Aberdeen AB24 2TZ, Scotland, UK.
| | | | | | | | | |
Collapse
|
53
|
Tacchi L, Bickerdike R, Secombes CJ, Pooley NJ, Urquhart KL, Collet B, Martin SA. Ubiquitin E3 ligase atrogin-1 (Fbox-32) in Atlantic salmon (Salmo salar): Sequence analysis, genomic structure and modulation of expression. Comp Biochem Physiol B Biochem Mol Biol 2010; 157:364-73. [DOI: 10.1016/j.cbpb.2010.08.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2010] [Revised: 08/05/2010] [Accepted: 08/15/2010] [Indexed: 12/11/2022]
|
54
|
Encinas P, Rodriguez-Milla MA, Novoa B, Estepa A, Figueras A, Coll J. Zebrafish fin immune responses during high mortality infections with viral haemorrhagic septicemia rhabdovirus. A proteomic and transcriptomic approach. BMC Genomics 2010; 11:518. [PMID: 20875106 PMCID: PMC2997011 DOI: 10.1186/1471-2164-11-518] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2010] [Accepted: 09/27/2010] [Indexed: 01/05/2023] Open
Abstract
Background Despite rhabdoviral infections being one of the best known fish diseases, the gene expression changes induced at the surface tissues after the natural route of infection (infection-by-immersion) have not been described yet. This work describes the differential infected versus non-infected expression of proteins and immune-related transcripts in fins and organs of zebrafish Danio rerio shortly after infection-by-immersion with viral haemorrhagic septicemia virus (VHSV). Results Two-dimensional differential gel electrophoresis detected variations on the protein levels of the enzymes of the glycolytic pathway and cytoskeleton components but it detected very few immune-related proteins. Differential expression of immune-related gene transcripts estimated by quantitative polymerase chain reaction arrays and hybridization to oligo microarrays showed that while more transcripts increased in fins than in organs (spleen, head kidney and liver), more transcripts decreased in organs than in fins. Increased differential transcript levels in fins detected by both arrays corresponded to previously described infection-related genes such as complement components (c3b, c8 and c9) or class I histocompatibility antigens (mhc1) and to newly described genes such as secreted immunoglobulin domain (sid4), macrophage stimulating factor (mst1) and a cluster differentiation antigen (cd36). Conclusions The genes described would contribute to the knowledge of the earliest molecular events occurring in the fish surfaces at the beginning of natural rhabdoviral infections and/or might be new candidates to be tested as adjuvants for fish vaccines.
Collapse
Affiliation(s)
- Paloma Encinas
- Instituto Nacional Investigaciones Agrarias, Biotecnología, Madrid, Spain
| | | | | | | | | | | |
Collapse
|
55
|
Palstra AP, Crespo D, van den Thillart GEEJM, Planas JV. Saving energy to fuel exercise: swimming suppresses oocyte development and downregulates ovarian transcriptomic response of rainbow trout Oncorhynchus mykiss. Am J Physiol Regul Integr Comp Physiol 2010; 299:R486-99. [PMID: 20445157 DOI: 10.1152/ajpregu.00109.2010] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Metabolic processes and sexual maturation closely interact during the long-distance reproductive migration of many fish species to their spawning grounds. In the present study, we have used exercise experimentally to investigate the effects on sexual maturation in rainbow trout. Pubertal autumn-spawning seawater-raised female rainbow trout Oncorhynchus mykiss (n = 26; 50 cm, 1.5 kg) were rested or swum at a near optimal speed of 0.75 body lengths per second in a 6,000-liter swim flume under natural reproductive conditions (16 degrees C fresh-water, starvation, 8:16-h light-dark photoperiod). Fish were sampled after arrival and subsequently after 10 days (resting or swimming 307 km) and 20 days (resting or swimming 636 km). Ovarian development was significantly reduced in the swimmers. Analysis of the expression of key factors in the reproductive axis included pituitary kiss1-receptor, lh, and fsh and ovarian lh-receptor, fsh-receptor, aromatase, and vitellogenin-receptor (vtgr). Swimmers had lower pituitary lh and ovarian vtgr expression than resters. Furthermore, the number of late vitellogenic oocytes was lower in swimmers than in resters, probably resulting from the lower vtgr expression, and vitellogenin plasma levels were higher. Therefore, swimming exercise suppresses oocyte development possibly by inhibiting vitellogenin uptake. Transcriptomic changes that occurred in the ovary of exercised fish were investigated using a salmonid cDNA microarray platform. Protein biosynthesis and energy provision were among the 16 functional categories that were all downregulated in the ovary. Downregulation of the transcriptomic response in the ovary illustrates the priority of energy reallocation and will save energy to fuel exercise. A swimming-induced ovarian developmental suppression at the start of vitellogenesis during long-term reproductive migration may be a strategy to avoid precocious muscle atrophy.
Collapse
Affiliation(s)
- Arjan P Palstra
- Dept. de Fisiologia, Facultat de Biologia, Universitat de Barcelona and Institut de Biomedicina de la Universitat de Barcelona, Barcelona 08028, Spain.
| | | | | | | |
Collapse
|
56
|
Chaves-Pozo E, Zou J, Secombes CJ, Cuesta A, Tafalla C. The rainbow trout (Oncorhynchus mykiss) interferon response in the ovary. Mol Immunol 2010; 47:1757-64. [PMID: 20356627 DOI: 10.1016/j.molimm.2010.02.030] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2009] [Revised: 02/22/2010] [Accepted: 02/24/2010] [Indexed: 02/02/2023]
Abstract
Immune responses in the ovary are tightly regulated to provide protection for the developing germ cells, which are very sensitive to inflammatory responses. This characteristic immune response is often used by viral pathogens to evade the immune system, replicate and be transmitted to other specimens through the ovary. Taking into account that in teleost fish, the innate immune system is considered crucial to the outcome of viral infections and the interferon (IFN) system is considered as the first line of defence against viruses, we have studied the IFN response in rainbow trout (Oncorhynchus mykiss) ovary using two viruses with different replicative capacity in this organ, namely viral haemorrhagic septicaemia virus (VHSV) and infectious pancreatic necrosis virus (IPNV). Both VHSV and IPNV are shed from the ovary, but while VHSV actively replicates at this site, IPNV remains silent. In this context, we have determined the levels of expression of IFNs and the IFN-induced Mx genes in the ovary upon in vivo and in vitro infections with VHSV and IPNV, and compared to the effects provoked by the viral mimic poly I:C in vivo. We have demonstrated that while VHSV strongly up-regulates all the IFN genes studied, IPNV in vivo exposure either has no effect or even provokes strong suppression of IFN gene expression. These differences are not observed in vitro, even though IPNV does not replicate actively in this case either. Finally, to better understand the role that the production of type I IFN plays in the ovary, we have studied the effects of two type I recombinant rainbow trout IFNs (rtIFN1 and rtIFN2) to modulate both the expression of immune genes and to establish an antiviral state in the ovary. Interestingly, the ovary was able to respond to both rtIFN1 and 2, despite the fact that the IFN1 gene was not expressed here. Moreover, rtIFN1 and rtIFN2 not only modulated the expression of genes related to the IFN response, but also modulated inflammatory genes and significantly suppressed VHSV replication.
Collapse
Affiliation(s)
- Elena Chaves-Pozo
- Centro de Investigación en Sanidad Animal (CISA-INIA), Carretera de Algete a El Casar km. 8.1, Valdeolmos 28130, Madrid, Spain
| | | | | | | | | |
Collapse
|
57
|
Tonteri A, Vasemägi A, Lumme J, Primmer CR. Beyond MHC: signals of elevated selection pressure on Atlantic salmon (Salmo salar) immune-relevant loci. Mol Ecol 2010; 19:1273-82. [PMID: 20196809 DOI: 10.1111/j.1365-294x.2010.04573.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Using Atlantic salmon (Salmo salar) as a model system, we investigated whether 18 microsatellites tightly linked to immune-relevant genes have experienced different selection pressures than 76 loci with no obvious association with immune function. Immune-relevant loci were identified as outliers by two outlier tests significantly more often than nonimmune linked loci (22% vs. 1.6%). In addition, the allele frequencies of immune relevant markers were more often correlated with latitude and temperature. Combined, these results support the hypothesis that immune-relevant loci more frequently exhibit footprints of selection than other loci. They also indicate that the correlation between immune-relevant loci and latitude may be due to temperature-induced differences in pathogen-driven selection or some other environmental factor correlated with latitude.
Collapse
Affiliation(s)
- A Tonteri
- Division of Genetics and Physiology, Department of Biology, University of Turku, FIN-20014 Turku, Finland
| | | | | | | |
Collapse
|
58
|
Castro R, Martin SAM, Zou J, Secombes CJ. Establishment of an IFN-gamma specific reporter cell line in fish. FISH & SHELLFISH IMMUNOLOGY 2010; 28:312-319. [PMID: 19922801 DOI: 10.1016/j.fsi.2009.11.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2009] [Revised: 11/08/2009] [Accepted: 11/09/2009] [Indexed: 05/28/2023]
Abstract
An interferon (IFN)-gamma responsive stable cell line RTG-3F7 has been developed for rainbow trout by modifying the RTG-2 cell line through transfection with a plasmid construct (pGL4.14[luc2/hygro]-PrTAP2) containing a promoter element from the IFN-gamma responsive gene TAP2 linked to a luciferase reporter gene and a hygromycin resistance gene. Following transfection single clones were selected in 96 well plates using hygromycin B, and those showing specific activation after rIFN-gamma stimulation were maintained. Five clones that showed the highest reporter activity to rIFN-gamma were incubated with different stimuli to examine specificity. No significant induction of luciferase was observed following exposure to recombinant type I IFN, LPS, PHA or poly I:C. The cell line was responsive to rIFN-gamma at concentrations between 150 pg and 20 ng ml(-1). Supernatants of primary cultures of head kidney leucocytes stimulated with PHA, known to induce IFN-gamma gene expression, were also used to assess the reporter activity of the stable cell line. A dose-dependent induction of the promoter activity was observed with these supernatants indicating the presence of IFN-gamma. These results indicate that the stable cell line RTG-3F7 is an excellent tool for monitoring the presence of trout IFN-gamma in biological samples, and in addition, enables the study of intracellular signalling pathways of IFNs, their receptor interactions, and other closely related signalling networks.
Collapse
Affiliation(s)
- Rosario Castro
- Scottish Fish Immunology Research Centre, Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, AB24 2TZ Scotland, UK.
| | | | | | | |
Collapse
|
59
|
Hong S, Secombes CJ. Two peptides derived from trout IL-1β have different stimulatory effects on immune gene expression after intraperitoneal administration. Comp Biochem Physiol B Biochem Mol Biol 2009; 153:275-80. [DOI: 10.1016/j.cbpb.2009.03.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2009] [Revised: 03/23/2009] [Accepted: 03/24/2009] [Indexed: 10/21/2022]
|
60
|
Wang T, Bird S, Koussounadis A, Holland JW, Carrington A, Zou J, Secombes CJ. Identification of a Novel IL-1 Cytokine Family Member in Teleost Fish. THE JOURNAL OF IMMUNOLOGY 2009; 183:962-74. [DOI: 10.4049/jimmunol.0802953] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
61
|
Specificity of the zebrafish host transcriptome response to acute and chronic mycobacterial infection and the role of innate and adaptive immune components. Mol Immunol 2009; 46:2317-32. [PMID: 19409617 DOI: 10.1016/j.molimm.2009.03.024] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2009] [Accepted: 03/28/2009] [Indexed: 12/16/2022]
Abstract
Pathogenic mycobacteria have the ability to survive within macrophages and persist inside granulomas. The complex host-pathogen interactions that determine the outcome of a mycobacterial infection process result in marked alterations of the host gene expression profile. Here we used the zebrafish model to investigate the specificity of the host response to infections with two mycobacterium strains that give distinct disease outcomes: an acute disease with early lethality or a chronic disease with granuloma formation, caused by Mycobacterium marinum strains Mma20 and E11, respectively. We performed a microarray study of different stages of disease progression in adult zebrafish and found that the acute and the chronic strains evoked partially overlapping host transcriptome signatures, despite that they induce profoundly different disease phenotypes. Both strains affected many signaling cascades, including WNT and TLR pathways. Interestingly, the strongest differences were observed at the initial stage of the disease. The immediate response to the acute strain was characterized by higher expression of genes encoding MHC class I proteins, matrix metalloproteinases, transcription factors, cytokines and other common immune response proteins. In contrast, small GTPase and histone gene groups showed higher expression in response to the chronic strain. We also found that nearly 1000 mycobacterium-responsive genes overlapped between the expression signatures of infected zebrafish adults and embryos at different stages of granuloma formation. Since adult zebrafish possess an adaptive immune system similar to mammals and zebrafish embryos rely solely on innate immunity, this overlap indicates a major contribution of the innate component of the immune system in the response to mycobacterial infection. Taken together, our comparison of the transcriptome responses involved in acute versus chronic infections and in the embryonic versus adult situation provides important new leads for investigating the mechanism of mycobacterial pathogenesis.
Collapse
|
62
|
Feng CY, Johnson SC, Hori TS, Rise M, Hall JR, Gamperl AK, Hubert S, Kimball J, Bowman S, Rise ML. Identification and analysis of differentially expressed genes in immune tissues of Atlantic cod stimulated with formalin-killed, atypical Aeromonas salmonicida. Physiol Genomics 2009; 37:149-63. [PMID: 19240301 DOI: 10.1152/physiolgenomics.90373.2008] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Physiological changes, elicited in animal immune tissues by exposure to pathogens, may be studied using functional genomics approaches. We created and characterized reciprocal suppression subtractive hybridization (SSH) cDNA libraries to identify differentially expressed genes in spleen and head kidney tissues of Atlantic cod (Gadus morhua) challenged with intraperitoneal injections of formalin-killed, atypical Aeromonas salmonicida. Of 4,154 ESTs from four cDNA libraries, 10 genes with immune-relevant functional annotations were selected for QPCR studies using individual fish templates to assess biological variability. Genes confirmed by QPCR as upregulated by A. salmonicida included interleukin-1 beta, interleukin-8, a small inducible cytokine, interferon regulatory factor 1 (IRF1), ferritin heavy subunit, cathelicidin, and hepcidin. This study is the first large-scale discovery of bacteria-responsive genes in cod and the first to demonstrate upregulation of IRF1 in fish immune tissues as a result of bacterial antigen stimulation. Given the importance of IRF1 in vertebrate immune responses to viral and bacterial pathogens, the full-length cDNA sequence of Atlantic cod IRF1 was obtained and compared with putative orthologous sequences from other organisms. Functional annotations of assembled SSH library ESTs showed that bacterial antigen stimulation caused changes in many biological processes including chemotaxis, regulation of apoptosis, antimicrobial peptide production, and iron homeostasis. Moreover, differences in spleen and head kidney gene expression responses to the bacterial antigens pointed to a potential role for the cod spleen in blood-borne pathogen clearance. Our data show that Atlantic cod immune tissue responses to bacterial antigens are similar to those seen in other fish species and higher vertebrates.
Collapse
Affiliation(s)
- Charles Y Feng
- Ocean Sciences Centre, Memorial University of Newfoundland, St. John's, Newfoundland
| | | | | | | | | | | | | | | | | | | |
Collapse
|
63
|
Molecular characterisation and structural analysis of an interferon homologue in sea bass (Dicentrarchus labrax L.). Mol Immunol 2009; 46:943-52. [DOI: 10.1016/j.molimm.2008.09.016] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2008] [Revised: 09/08/2008] [Accepted: 09/11/2008] [Indexed: 11/23/2022]
|
64
|
Raida MK, Buchmann K. Innate immune response in rainbow trout (Oncorhynchus mykiss) against primary and secondary infections with Yersinia ruckeri O1. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2009; 33:35-45. [PMID: 18760303 DOI: 10.1016/j.dci.2008.07.001] [Citation(s) in RCA: 112] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2008] [Revised: 06/27/2008] [Accepted: 07/08/2008] [Indexed: 05/26/2023]
Abstract
Response mechanisms in teleosts against bacterial pathogens have been widely studied following injection procedures applying preparations of killed bacteria. In contrast, investigations on immune reactions in fish which have survived a primary infection and subsequently have been challenged are few or lacking. However, knowledge on these factors during infection and re-infection could provide the basis for development of improved vaccines. The innate immune response in rainbow trout (Oncorhynchus mykiss) against Yersinia ruckeri O1 has been studied following a primary intra-peritoneal injection with 5 x 10(5) CFU Y. ruckeri, and after bacterial clearance a secondary infection 35 days later. The number of pathogens in the liver was measured with a Y. ruckeri specific 16S ribosomal RNA quantitative real-time RT-PCR (q-PCR) during the course of infection. The bacterial counts peaked on day 3 during the primary infection and were significantly lower during the re-infection. Re-challenged fish showed a highly increased survival when compared to the naïve fish receiving a primary infection indicating development of adaptive immunity in the fish against this bacterial pathogen. We investigated the gene expression of innate immune factors in the liver during infections in order to elucidate molecules involved in survival of hosts before adaptive immunity was mounted. Transcription of mRNA was measured in liver samples taken 8 h, 1, 3, 7, 14 and 28 d post-infection using q-PCR. The investigation focused on genes encoding toll-like receptor 5 (TLR5), the pro-inflammatory cytokines IL-1beta, IL-6 and TNF-alpha, the acute phase proteins (APPs) serum amyloid protein a (SAA), trout C polysaccharide binding protein, a CRP/SAP like pentraxin, precerebellin, transferrin, hepcidin and finally the complement factors C3, C5 and factor B. Infection elicited significantly increased gene expression of all the cytokines (IL-6 > 1000-fold), some acute phase proteins (SAA > 3000-fold) and down-regulation of complement factors (C3, C5 and factor B). SAA expression was significantly earlier activated during the re-infection when compared to the primary infection. The pattern of gene activation suggested that the innate response was based on pathogen binding to toll-like receptors, production of cytokines and subsequent release of APPs. In general, both the innate immune response and the amount of Y. ruckeri measured in the liver during the re-infection was much lower compared to the first infection, probably reflecting development of adaptive immunity.
Collapse
Affiliation(s)
- Martin Kristian Raida
- Department of Veterinary Pathobiology, Faculty of Life Sciences, University of Copenhagen, Stigbøjlen 7, 1870 Frederiksberg C, Denmark.
| | | |
Collapse
|
65
|
Verburg‐Van Kemenade BL, Stolte EH, Metz JR, Chadzinska M. Chapter 7 Neuroendocrine–Immune Interactions in Teleost Fish. FISH PHYSIOLOGY 2009. [DOI: 10.1016/s1546-5098(09)28007-1] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
66
|
Martin SAM, Collet B, Mackenzie S, Evensen O, Secombes CJ. Genomic Tools for Examining Immune Gene Function in Salmonid Fish. ACTA ACUST UNITED AC 2008. [DOI: 10.1080/10641260802325476] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
67
|
Secombes C. Will advances in fish immunology change vaccination strategies? FISH & SHELLFISH IMMUNOLOGY 2008; 25:409-416. [PMID: 18562212 DOI: 10.1016/j.fsi.2008.05.001] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2008] [Revised: 05/01/2008] [Accepted: 05/07/2008] [Indexed: 05/26/2023]
Abstract
This review will discuss some of the recent advances in discovering immune genes in fish, in terms of their relevance to vaccine design and development. Particular emphasis will be placed on the many cytokine and costimulatory molecules now known, with examples drawn from the mammalian literature as to their potential value for fish vaccinology. A new area of vaccine research will also be touched upon, where efficacious responses are elicited by inhibiting the natural negative regulators of immune responses, such as Treg cell products and SOCS proteins.
Collapse
Affiliation(s)
- Chris Secombes
- Scottish Fish Immunology Research Centre, University of Aberdeen, Tillydrone Avenue, Aberdeen AB24 2TZ, United Kingdom.
| |
Collapse
|
68
|
Wynne JW, O'Sullivan MG, Cook MT, Stone G, Nowak BF, Lovell DR, Elliott NG. Transcriptome analyses of amoebic gill disease-affected Atlantic salmon (Salmo salar) tissues reveal localized host gene suppression. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2008; 10:388-403. [PMID: 18219527 DOI: 10.1007/s10126-007-9075-4] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2007] [Revised: 12/04/2007] [Accepted: 12/07/2007] [Indexed: 05/25/2023]
Abstract
The transcriptome response of Atlantic salmon (Salmo salar) displaying advanced stages of amoebic gill disease (AGD) was investigated. Naïve smolt were challenged with AGD for 19 days, at which time all fish were euthanized and their severity of infection quantified through histopathological scoring. Gene expression profiles were compared between heavily infected and naïve individuals using a 17 K Atlantic salmon cDNA microarray with real-time quantitative RT-PCR (qPCR) verification. Expression profiles were examined in the gill, anterior kidney, and liver. Twenty-seven transcripts were significantly differentially expressed within the gill; 20 of these transcripts were down-regulated in the AGD-affected individuals compared with naïve individuals. In contrast, only nine transcripts were significantly differentially expressed within the anterior kidney and five within the liver. Again the majority of these transcripts were down-regulated within the diseased individuals. A down-regulation of transcripts involved in apoptosis (procathepsin L, cathepsin H precursor, and cystatin B) was observed in AGD-affected Atlantic salmon. Four transcripts encoding genes with antioxidant properties also were down-regulated in AGD-affected gill tissue according to qPCR analysis. The most up-regulated transcript within the gill was an unknown expressed sequence tag (EST) whose expression was 218-fold (+/- SE 66) higher within the AGD affected gill tissue. Our results suggest that Atlantic salmon experiencing advanced stages of AGD demonstrate general down-regulation of gene expression, which is most pronounced within the gill. We propose that this general gene suppression is parasite-mediated, thus allowing the parasite to withstand or ameliorate the host response.
Collapse
Affiliation(s)
- James W Wynne
- CSIRO National Food Futures Flagship, CSIRO Marine and Atmospheric Research, Hobart, Tasmania, Australia.
| | | | | | | | | | | | | |
Collapse
|
69
|
Characterisation of γ-interferon responsive promoters in fish. Mol Immunol 2008; 45:3454-62. [DOI: 10.1016/j.molimm.2008.03.015] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2008] [Accepted: 03/26/2008] [Indexed: 12/27/2022]
|
70
|
Wynne JW, O'Sullivan MG, Stone G, Cook MT, Nowak BF, Lovell DR, Taylor RS, Elliott NG. Resistance to amoebic gill disease (AGD) is characterised by the transcriptional dysregulation of immune and cell cycle pathways. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2008; 32:1539-1560. [PMID: 18621418 DOI: 10.1016/j.dci.2008.05.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2008] [Revised: 05/03/2008] [Accepted: 05/21/2008] [Indexed: 05/26/2023]
Abstract
Amoebic gill disease (AGD) is a parasite-mediated proliferative gill disease capable of affecting a range of teleost hosts. While a moderate heritability for AGD resistance in Atlantic salmon has been reported previously, the mechanisms by which individuals resist the proliferative effects remain poorly understood. To gain more knowledge of this commercially important trait, we compared gill transcriptomes of two groups of Atlantic salmon, one designated putatively resistant, and one designated putatively susceptible to AGD. Utilising a 17k Atlantic salmon cDNA microarray we identified 196 transcripts that were differentially expressed between the two groups. Expression of 11 transcripts were further examined with real-time quantitative RT-PCR (qPCR) in the AGD-resistant and AGD-susceptible animals, as well as non-infected naïve fish. Gene expression determined by qPCR was in strong agreement with the microarray analysis. A large number of differentially expressed genes were involved in immune and cell cycle responses. Resistant individuals displayed significantly higher expression of genes involved in adaptive immunity and negative regulation of the cell cycle. In contrast, AGD-susceptible individuals showed higher expression of acute phase proteins and positive regulators of the cell cycle. Combined with the gill histopathology, our results suggest AGD resistance is acquired rather than innately present, and that this resistance is for the most part associated with the dysregulation of immune and cell cycle pathways.
Collapse
Affiliation(s)
- James W Wynne
- CSIRO National Food Futures Flagship, CSIRO Marine and Atmospheric Research Hobart, GPO Box 1538, Hobart, Tasmania 7001, Australia.
| | | | | | | | | | | | | | | |
Collapse
|
71
|
Jørgensen SM, Afanasyev S, Krasnov A. Gene expression analyses in Atlantic salmon challenged with infectious salmon anemia virus reveal differences between individuals with early, intermediate and late mortality. BMC Genomics 2008; 9:179. [PMID: 18423000 PMCID: PMC2387173 DOI: 10.1186/1471-2164-9-179] [Citation(s) in RCA: 105] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2007] [Accepted: 04/18/2008] [Indexed: 02/13/2023] Open
Abstract
BACKGROUND Infectious salmon anemia virus (ISAV) causes a multisystemic disease responsible for severe losses in salmon aquaculture. Better understanding of factors that explain variations in resistance between individuals and families is essential for development of strategies for disease control. To approach this, we compared global gene expression using microarrays in fish dying early and late in the time course following infection from a highly pathogenic ISAV. RESULTS Tissues (gill, heart, liver and spleen) from infected Atlantic salmon (cohabitation, ISAV Glesvaer 2/90 isolate) were collected from three stages over the time course of the experiment; early (EM, 0-10% cumulative mortality (CM), 21-25 days post-infection (DPI)), intermediate (IM, 35-55% CM, 28-31 DPI) and late (LM, 75-85% CM, 37-48 DPI) mortality. Viral loads were equal in EM and IM but dropped markedly in LM fish. Gene expression analyses using a 1.8 K salmonid fish cDNA microarray (SFA2.0) and real-time qPCR revealed a large group of genes highly up-regulated across tissues in EM, which were mainly implicated in innate antiviral responses and cellular stress. Despite equal levels of MHC class I in EM and LM, increase of splenic and cardiac expression of immunoglobulin-like genes was found only in LM while a suite of adaptive immunity markers were activated already in IM. The hepatic responses to ISAV were characterized by difference between EM and LM in expression of chaperones and genes involved in eicosanoid metabolism. To develop classification of high and low resistance phenotypes based on a small number of genes, we processed results from qPCR analyses of liver using a linear discriminant analysis. Four genes (5-lipoxygenase activating protein, cytochrome P450 2K4-1, galectin-9 and annexin A1) were sufficient for correct assignment of individuals to EM, LM and uninfected groups, while IM was inseparable from EM. Three of four prognostic markers are involved in metabolism of inflammatory regulators. CONCLUSION This study adds to the understanding of molecular determinants for resistance to acute ISAV infection. The most susceptible individuals were characterized by high viral replication and dramatic activation of innate immune responses, which did not provide protection. The ability to endure high levels of infection for sustained periods could be associated with lower inflammatory responses while subsequent protection and viral clearance was most likely conferred by activation of adaptive immunity.
Collapse
|
72
|
Martin SAM, Taggart JB, Seear P, Bron JE, Talbot R, Teale AJ, Sweeney GE, Høyheim B, Houlihan DF, Tocher DR, Zou J, Secombes CJ. Interferon type I and type II responses in an Atlantic salmon (Salmo salar) SHK-1 cell line by the salmon TRAITS/SGP microarray. Physiol Genomics 2007; 32:33-44. [PMID: 17804604 DOI: 10.1152/physiolgenomics.00064.2007] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Interferons (IFNs) are cytokines that have proinflammatory, antiviral, and immunomodulatory effects and play a central role during a host response to pathogens. The IFN family contains both type I and type II molecules. While there are a number of type I IFNs, there is only one type II IFN. Recently both type I and type II IFN genes have been cloned in salmonid fish and recombinant proteins produced showing IFN activity. We have stimulated an Atlantic salmon cell line (SHK-1) with both type I and type II recombinant salmonid IFNs and analyzed the transcriptional response by microarray analysis. Cells were exposed to recombinant IFNs for 6 or 24 h or left unexposed as controls. RNA was hybridized to an Atlantic salmon cDNA microarray (salmon 17K feature TRAITS/SGP array) in order to assess differential gene expression in response to IFN exposure. For IFN I and II, 47 and 72 genes were stimulated, respectively; most genes were stimulated by a single IFN type, but some were affected by both IFNs, indicating coregulation of the IFN response in fish. Real-time PCR analysis was employed to confirm the microarray results for selected differentially expressed genes in both a cell line and primary leukocyte cultures.
Collapse
Affiliation(s)
- S A M Martin
- Scottish Fish Immunology Research Centre, School of Biological Sciences, University of Aberdeen, Aberdeen, UK
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|