51
|
Sircar R, Greenswag AR, Bilwes AM, Gonzalez-Bonet G, Crane BR. Structure and activity of the flagellar rotor protein FliY: a member of the CheC phosphatase family. J Biol Chem 2013; 288:13493-502. [PMID: 23532838 PMCID: PMC3650386 DOI: 10.1074/jbc.m112.445171] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND FliY is a flagellar rotor protein of the CheC phosphatase family. RESULTS The FliY structure resembles that of the rotor protein FliM but contains two active centers for CheY dephosphorylation. CONCLUSION FliY incorporates properties of the FliM/FliN rotor proteins and the CheC/CheX phosphatases to serve multiple functions in the flagellar switch. SIGNIFICANCE FliY distinguishes flagellar architecture and function in different types of bacteria. Rotating flagella propel bacteria toward favorable environments. Sense of rotation is determined by the intracellular response regulator CheY, which when phosphorylated (CheY-P) interacts directly with the flagellar motor. In many different types of bacteria, the CheC/CheX/FliY (CXY) family of phosphatases terminates the CheY-P signal. Unlike CheC and CheX, FliY is localized in the flagellar switch complex, which also contains the stator-coupling protein FliG and the target of CheY-P, FliM. The 2.5 Å resolution crystal structure of the FliY catalytic domain from Thermotoga maritima bears strong resemblance to the middle domain of FliM. Regions of FliM that mediate contacts within the rotor compose the phosphatase active sites in FliY. Despite the similarity between FliY and FliM, FliY does not bind FliG and thus is unlikely to be a substitute for FliM in the center of the switch complex. Solution studies indicate that FliY dimerizes through its C-terminal domains, which resemble the Escherichia coli switch complex component FliN. FliY differs topologically from the E. coli chemotaxis phosphatase CheZ but appears to utilize similar structural motifs for CheY dephosphorylation in close analogy to CheX. Recognition properties and phosphatase activities of site-directed mutants identify two pseudosymmetric active sites in FliY (Glu(35)/Asn(38) and Glu(132)/Asn(135)), with the second site (Glu(132)/Asn(135)) being more active. A putative N-terminal CheY binding domain conserved with FliM is not required for binding CheY-P or phosphatase activity.
Collapse
Affiliation(s)
- Ria Sircar
- From the Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14850
| | - Anna R. Greenswag
- From the Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14850
| | - Alexandrine M. Bilwes
- From the Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14850
| | - Gabriela Gonzalez-Bonet
- From the Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14850
| | - Brian R. Crane
- From the Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14850, To whom correspondence should be addressed: Dept. of Chemistry and Chemical Biology Cornell University, Ithaca, NY 14850. Tel.: 607-254-8634; E-mail:
| |
Collapse
|
52
|
Abstract
The Lyme disease spirochete, Borrelia burgdorferi, exists in a zoonotic cycle involving an arthropod tick and mammalian host. Dissemination of the organism within and between these hosts depends upon the spirochete's ability to traverse through complex tissues. Additionally, the spirochete outruns the host immune cells while migrating through the dermis, suggesting the importance of B. burgdorferi motility in evading host clearance. B. burgdorferi's periplasmic flagellar filaments are composed primarily of a major protein, FlaB, and minor protein, FlaA. By constructing a flaB mutant that is nonmotile, we investigated for the first time the absolute requirement for motility in the mouse-tick life cycle of B. burgdorferi. We found that whereas wild-type cells are motile and have a flat-wave morphology, mutant cells were nonmotile and rod shaped. These mutants were unable to establish infection in C3H/HeN mice via either needle injection or tick bite. In addition, these mutants had decreased viability in fed ticks. Our studies provide substantial evidence that the periplasmic flagella, and consequently motility, are critical not only for optimal survival in ticks but also for infection of the mammalian host by the arthropod tick vector.
Collapse
|
53
|
|
54
|
Leptospira interrogans catalase is required for resistance to H2O2 and for virulence. Infect Immun 2012; 80:3892-9. [PMID: 22927050 DOI: 10.1128/iai.00466-12] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pathogenic Leptospira spp. are likely to encounter higher concentrations of reactive oxygen species induced by the host innate immune response. In this study, we characterized Leptospira interrogans catalase (KatE), the only annotated catalase found within pathogenic Leptospira species, by assessing its role in resistance to H(2)O(2)-induced oxidative stress and during infection in hamsters. Pathogenic L. interrogans bacteria had a 50-fold-higher survival rate under H(2)O(2)-induced oxidative stress than did saprophytic L. biflexa bacteria, and this was predominantly catalase dependent. We also characterized KatE, the only annotated catalase found within pathogenic Leptospira species. Catalase assays performed with recombinant KatE confirmed specific catalase activity, while protein fractionation experiments localized KatE to the bacterial periplasmic space. The insertional inactivation of katE in pathogenic Leptospira bacteria drastically diminished leptospiral viability in the presence of extracellular H(2)O(2) and reduced virulence in an acute-infection model. Combined, these results suggest that L. interrogans KatE confers in vivo resistance to reactive oxygen species induced by the host innate immune response.
Collapse
|
55
|
Wang H, Wu Y, Ojcius DM, Yang XF, Zhang C, Ding S, Lin X, Yan J. Leptospiral hemolysins induce proinflammatory cytokines through Toll-like receptor 2-and 4-mediated JNK and NF-κB signaling pathways. PLoS One 2012; 7:e42266. [PMID: 22870312 PMCID: PMC3411626 DOI: 10.1371/journal.pone.0042266] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2012] [Accepted: 07/02/2012] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Infection with pathogenic Leptospira species causes serious systemic inflammation in patients. Although a few leptospiral proinflammatory molecules have been identified, Leptospira likely encodes other unidentified strong inflammation stimulators. The pathogenic L. interrogans genome encodes numerous putative hemolysin genes. Since hemolysins from other bacteria can cause inflammatory reactions, we hypothesized that leptospiral hemolysins may function as proinflammatory stimulators that contribute to the strong inflammation associated with Leptospira infection. METHODOLOGY/PRINCIPAL FINDINGS We first used cytokine protein microarrays for systematic analysis of serum cytokine profiles in leptospirosis patients and leptospire-infected mice. We found that IL-1β, IL-6 and TNF-α were the main proinflammatory cytokines in the sera of both the patients and the mice. We then analyzed eight putative hemolysins in L. interrogans strain Lai. The results showed that five of them, Sph1, Sph2, Sph3, HlpA and TlyA were secreted and had hemolytic activity. More importantly, these five hemolysins induced the strong production of IL-1β, IL-6 and TNF-α in human and mouse macrophages (although a bit lower in the latter). Furthermore, blockade of TLR2 or TLR4 with either antibodies or inhibitors of the NF-κB or JNK signaling pathways significantly reduced the production of hemolysin-induced IL-1β, IL-6 and TNF-α. Macrophages isolated from TLR2-, TLR4-or double TLR2-and 4-deficient mice also confirmed that the leptospiral hemolysins that induce proinflammatory cytokines are both TLR2-and TLR4-dependent. CONCLUSIONS/SIGNIFICANCE Our findings demonstrate that L. interrogans secretes many hemolysins that function as powerful inducers of proinflammatory cytokines through both TLR2-and TLR4-dependent JNK and NF-κB pathways.
Collapse
Affiliation(s)
- Huan Wang
- Department of Medical Microbiology and Parasitology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Division of Basic Medical Microbiology, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yifei Wu
- Department of Medical Microbiology and Parasitology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - David M. Ojcius
- Health Sciences Research Institute and Molecular Cell Biology, University of California, Merced, California, United States of America
| | - X. Frank Yang
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Chenglin Zhang
- Department of Medical Microbiology and Parasitology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Shibiao Ding
- Department of Medical Microbiology and Parasitology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Xu’ai Lin
- Department of Medical Microbiology and Parasitology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- * E-mail: (JY); (XL)
| | - Jie Yan
- Department of Medical Microbiology and Parasitology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Division of Basic Medical Microbiology, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- * E-mail: (JY); (XL)
| |
Collapse
|
56
|
Positive regulation of Leptospira interrogans kdp expression by KdpE as Demonstrated with a novel β-galactosidase reporter in Leptospira biflexa. Appl Environ Microbiol 2012; 78:5699-707. [PMID: 22685146 DOI: 10.1128/aem.00713-12] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Leptospirosis is a potentially deadly zoonotic disease that afflicts humans and animals. Leptospira interrogans, the predominant agent of leptospirosis, encounters diverse conditions as it proceeds through its life cycle, which includes stages inside and outside the host. Unfortunately, the number of genetic tools available for examining the regulation of gene expression in L. interrogans is limited. Consequently, little is known about the genetic circuits that control gene expression in Leptospira. To better understand the regulation of leptospiral gene expression, the L. interrogans kdp locus, encoding homologs of the P-type ATPase KdpABC potassium transporter with their KdpD sensors and KdpE response regulators, was selected for analysis. We showed that a kdpE mutation in L. interrogans prevented the increase in kdpABC mRNA levels observed in the wild-type L. interrogans strain when external potassium levels were low. To confirm that KdpE was a positive regulator of kdpABC transcription, we developed a novel approach for constructing chromosomal genetic fusions to the endogenous bgaL (β-galactosidase) gene of the nonpathogen Leptospira biflexa. We demonstrated positive regulation of a kdpA'-bgaL fusion in L. biflexa by the L. interrogans KdpE response regulator. A control lipL32'-bgaL fusion was not regulated by KdpE. These results demonstrate the utility of genetic fusions to the bgaL gene of L. biflexa for examining leptospiral gene regulation.
Collapse
|
57
|
FlaA proteins in Leptospira interrogans are essential for motility and virulence but are not required for formation of the flagellum sheath. Infect Immun 2012; 80:2019-25. [PMID: 22451522 DOI: 10.1128/iai.00131-12] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Spirochetes have periplasmic flagella composed of a core surrounded by a sheath. The pathogen Leptospira interrogans has four flaB (proposed core subunit) and two flaA (proposed sheath subunit) genes. The flaA genes are organized in a locus with flaA2 immediately upstream of flaA1. In this study, flaA1 and flaA2 mutants were constructed by transposon mutagenesis. Both mutants still produced periplasmic flagella. The flaA1 mutant did not produce FlaA1 but continued to produce FlaA2 and retained normal morphology and virulence in a hamster model of infection but had reduced motility. The flaA2 mutant did not produce either the FlaA1 or the FlaA2 protein. Cells of the flaA2 mutant lacked the distinctive hook-shaped ends associated with L. interrogans and lacked translational motility in liquid and semisolid media. These observations were confirmed with a second, independent flaA2 mutant. The flaA2 mutant failed to cause disease in animal models of acute infection. Despite lacking FlaA proteins, the flagella of the flaA2 mutant were of the same thickness as wild-type flagella, as measured by electron microscopy, and exhibited a normal flagellum sheath, indicating that FlaA proteins are not essential for the synthesis of the flagellum sheath, as observed for other spirochetes. This study shows that FlaA subunits contribute to leptospiral translational motility, cellular shape, and virulence.
Collapse
|
58
|
Eshghi A, Pinne M, Haake DA, Zuerner RL, Frank A, Cameron CE. Methylation and in vivo expression of the surface-exposed Leptospira interrogans outer-membrane protein OmpL32. MICROBIOLOGY-SGM 2011; 158:622-635. [PMID: 22174381 DOI: 10.1099/mic.0.054767-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Recent studies have revealed that bacterial protein methylation is a widespread post-translational modification that is required for virulence in selected pathogenic bacteria. In particular, altered methylation of outer-membrane proteins has been shown to modulate the effectiveness of the host immune response. In this study, 2D gel electrophoresis combined with MALDI-TOF MS identified a Leptospira interrogans serovar Copenhageni strain Fiocruz L1-130 protein, corresponding to ORF LIC11848, which undergoes extensive and differential methylation of glutamic acid residues. Immunofluorescence microscopy implicated LIC11848 as a surface-exposed outer-membrane protein, prompting the designation OmpL32. Indirect immunofluorescence microscopy of golden Syrian hamster liver and kidney sections revealed expression of OmpL32 during colonization of these organs. Identification of methylated surface-exposed outer-membrane proteins, such as OmpL32, provides a foundation for delineating the role of this post-translational modification in leptospiral virulence.
Collapse
Affiliation(s)
- Azad Eshghi
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, Canada
| | - Marija Pinne
- Department of Medicine, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA, USA.,Research Service, 151, Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, CA, USA
| | - David A Haake
- Division of Infectious Diseases, 111F, Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, CA, USA.,Department of Medicine, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA, USA
| | - Richard L Zuerner
- Infectious Bacterial Diseases Research Unit, National Animal Disease Center (NADC), Agricultural Research Service (ARS), United States Department of Agriculture (USDA), Ames, IA, USA
| | - Ami Frank
- Infectious Bacterial Diseases Research Unit, National Animal Disease Center (NADC), Agricultural Research Service (ARS), United States Department of Agriculture (USDA), Ames, IA, USA
| | - Caroline E Cameron
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, Canada
| |
Collapse
|
59
|
Inactivation of clpB in the pathogen Leptospira interrogans reduces virulence and resistance to stress conditions. Infect Immun 2011; 79:3711-7. [PMID: 21730091 DOI: 10.1128/iai.05168-11] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Leptospira interrogans is the causative agent of leptospirosis, which is an emerging zoonotic disease. Resistance to stress conditions is largely uncharacterized for this bacterium. We therefore decided to analyze a clpB mutant that we obtained by random transposon mutagenesis. The mutant did not produce any of the two isoforms of ClpB. The clpB mutant exhibited growth defects at 30° and 37°C and in poor nutrient medium and showed increased susceptibility to oxidative stress, whereas the genetically complemented strain was restored in ClpB expression and in vitro wild-type growth. We also showed that the clpB mutant was attenuated in virulence in an animal model of acute leptospirosis. Our findings demonstrate that ClpB is involved in the general stress response. The chaperone is also necessary, either directly or indirectly, for the virulence of the pathogen L. interrogans.
Collapse
|
60
|
Fraga TR, Barbosa AS, Isaac L. Leptospirosis: aspects of innate immunity, immunopathogenesis and immune evasion from the complement system. Scand J Immunol 2011; 73:408-19. [PMID: 21204903 DOI: 10.1111/j.1365-3083.2010.02505.x] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Leptospirosis is a neglected infectious disease caused by spirochetes from the genus Leptospira. It constitutes a major public health problem in developing countries, with outcomes ranging from subclinical infections to fatal pulmonary haemorrhage and Weil's syndrome. To successfully establish an infection, leptospires bind to extracellular matrix compounds and host cells. The interaction of leptospires with pathogen recognition receptors is a fundamental issue in leptospiral immunity as well as in immunophatology. Pathogenic but not saprophytic leptospires are able to evade the host complement system, circulate in the blood and spread into tissues. The target organs in human leptospirosis include the kidneys and the lungs. The association of an autoimmune process with these pathologies has been explored and diverse mechanisms that permit leptospires to survive in the kidneys of reservoir animals have been proposed. However, despite the intense research aimed at the development of a leptospirosis vaccine supported by the genome sequencing of Leptospira strains, there have been relatively few studies focused on leptospiral immunity. The knowledge of evasion strategies employed by pathogenic leptospires to subvert the immune system is of extreme importance as they may represent targets for the development of new treatments and prophylactic approaches in leptospirosis.
Collapse
Affiliation(s)
- T R Fraga
- Departamento de Imunologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, SP, Brazil
| | | | | |
Collapse
|
61
|
Abstract
UNLABELLED Burkholderia glumae causes bacterial panicle blight of rice, which is an increasingly important disease problem in global rice production. Toxoflavin and lipase are known to be major virulence factors of this pathogen, and their production is dependent on the TofI/TofR quorum-sensing system, which is mediated by N-octanoyl homoserine lactone. Flagellar biogenesis and a type III secretion system are also required for full virulence of B. glumae. Bacterial panicle blight is thought to be caused by seed-borne B. glumae; however, its disease cycle is not fully understood. In spite of its economic importance, neither effective control measures for bacterial panicle blight nor rice varieties showing complete resistance to the disease are currently available. A better understanding of the molecular mechanisms underlying B. glumae virulence and of the rice defence mechanisms against the pathogen would lead to the development of better methods of disease control for bacterial panicle blight. TAXONOMY Bacteria; Proteobacteria; Betaproteobacteria; Burkholderiales; Burkholderiaceae; Burkholderia. MICROBIOLOGICAL PROPERTIES Gram-negative, capsulated, motile, lophotrichous flagella, pectolytic. DISEASE SYMPTOMS Aborted seed, empty grains as a result of failure of grain filling, brown spots on panicles, seedling rot. DISEASE CONTROL Seed sterilization, planting partially resistant lines (no completely resistant line is available). KNOWN VIRULENCE FACTORS: Toxoflavin, lipase, type III effectors.
Collapse
Affiliation(s)
- Jong Hyun Ham
- Department of Plant Pathology and Crop Physiology, Louisiana State University Agricultural Center, Baton Rouge, LA 70803, USA.
| | | | | |
Collapse
|
62
|
Adler B, Lo M, Seemann T, Murray GL. Pathogenesis of leptospirosis: the influence of genomics. Vet Microbiol 2011; 153:73-81. [PMID: 21440384 DOI: 10.1016/j.vetmic.2011.02.055] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2011] [Revised: 02/23/2011] [Accepted: 02/28/2011] [Indexed: 01/08/2023]
Abstract
Leptospirosis is the most widespread zoonosis worldwide and is caused by serovars of pathogenic Leptospira species. The understanding of leptospiral pathogenesis lags far behind that of many other bacterial pathogens. Current research is thus directed at identification of leptospiral virulence factors. Saprophytic Leptospira species are environmental organisms that never cause disease. Comparative genomics of pathogens and saprophytes has allowed the identification of more than 900 genes unique to either Leptospira interrogans or Leptospira borgpetersenii; these genes potentially encode virulence-associated proteins. However, genes of unknown function are over-represented in this subset of pathogen-specific genes, accounting for 80% and 60% of open reading frames, respectively. This finding, together with the absence of virulence factor homologues among the proteins of known function, suggests that Leptospira possesses unique virulence mechanisms. Whole genome microarray studies have identified genes whose expression is differentially regulated under a range of simulated in vivo conditions, such as physiological temperature and osmolarity, low iron levels, and the presence of serum. The subset of genes identified by these studies is likely to include virulence factors. However, most such genes encode proteins of unknown function, consistent with the hypothesis that leptospiral virulence genes do not have homologues in other bacterial species. The recent development of mutagenesis systems for pathogenic Leptospira spp. has allowed the screening of defined mutants for attenuation of virulence in animal infection models and has identified definitively for the first time a range of virulence factors, including lipopolysaccharide, flagella, heme oxygenase, and the OmpA-family protein, Loa22. Interestingly, inactivation of a number of genes hypothesised to encode virulence factors based on in vitro virulence-associated properties did not result in attenuation of virulence, suggesting a degree of functional redundancy in leptospiral pathogenic mechanisms.
Collapse
Affiliation(s)
- Ben Adler
- Australian Research Council Centre of Excellence in Structural and Functional Microbial Genomics, Monash University, Clayton, Australia.
| | | | | | | |
Collapse
|
63
|
Evangelista KV, Coburn J. Leptospira as an emerging pathogen: a review of its biology, pathogenesis and host immune responses. Future Microbiol 2011; 5:1413-25. [PMID: 20860485 DOI: 10.2217/fmb.10.102] [Citation(s) in RCA: 208] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Leptospirosis, the most widespread zoonosis in the world, is an emerging public health problem, particularly in large urban centers of developing countries. Several pathogenic species of the genus Leptospira can cause a wide range of clinical manifestations, from a mild, flu-like illness to a severe disease form characterized by multiorgan system complications leading to death. However, the mechanisms of pathogenesis of Leptospira are largely unknown. This article will address the animal models of acute and chronic leptospire infections, and the recent developments in the genetic manipulation of the bacteria, which facilitate the identification of virulence factors involved in pathogenesis and the assessment of their potential values in the control and prevention of leptospirosis.
Collapse
Affiliation(s)
- Karen V Evangelista
- Department of Microbiology & Molecular Genetics, Medical College of Wisconsin, Milwaukee, USA
| | | |
Collapse
|
64
|
Murray GL, Srikram A, Henry R, Hartskeerl RA, Sermswan RW, Adler B. Mutations affecting Leptospira interrogans lipopolysaccharide attenuate virulence. Mol Microbiol 2010; 78:701-9. [PMID: 20807198 DOI: 10.1111/j.1365-2958.2010.07360.x] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Leptospira interrogans is the causative agent of leptospirosis. Lipopolysaccharide (LPS) is the major outer membrane component of L. interrogans. It is the dominant antigen recognized during infection and the basis for serological classification. The structure of LPS and its role in pathogenesis are unknown. We describe two defined mutants of L. interrogans serovar Manilae with transposon insertions in the LPS locus. Mutant M895 was disrupted in gene la1641 encoding a protein with no known homologues. M1352 was disrupted in a gene unique to serovar Manilae also encoding a protein of unknown function. M895 produced truncated LPS while M1352 showed little or no change in LPS molecular mass. Both mutants showed altered agglutination titres against rabbit antiserum and against a panel of LPS-specific monoclonal antibodies. The mutants were severely attenuated in virulence via the intraperitoneal route of infection, and were cleared from the host animal by 3 days after infection. M895 was also highly attenuated via the mucosal infection route. Resistance to complement in human serum was unaltered for both mutants. While complementation of mutants was not possible, the attenuation of two independently derived LPS mutants demonstrates for the first time that LPS plays an essential role leptospiral virulence.
Collapse
Affiliation(s)
- Gerald L Murray
- Department of Microbiology, Monash University, Clayton, Victoria, Australia
| | | | | | | | | | | |
Collapse
|
65
|
Transcriptional response of Leptospira interrogans to iron limitation and characterization of a PerR homolog. Infect Immun 2010; 78:4850-9. [PMID: 20805337 DOI: 10.1128/iai.00435-10] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Leptospirosis is a globally significant zoonosis caused by Leptospira spp. Iron is essential for growth of most bacterial species. Since iron availability is low in the host, pathogens have evolved complex iron acquisition mechanisms to survive and establish infection. In many bacteria, expression of iron uptake and storage proteins is regulated by Fur. L. interrogans encodes four predicted Fur homologs; we have constructed a mutation in one of these, la1857. We conducted microarray analysis to identify iron-responsive genes and to study the effects of la1857 mutation on gene expression. Under iron-limiting conditions, 43 genes were upregulated and 49 genes were downregulated in the wild type. Genes encoding proteins with predicted involvement in inorganic ion transport and metabolism (including TonB-dependent proteins and outer membrane transport proteins) were overrepresented in the upregulated list, while 54% of differentially expressed genes had no known function. There were 16 upregulated genes of unknown function which are absent from the saprophyte L. biflexa and which therefore may encode virulence-associated factors. Expression of iron-responsive genes was not significantly affected by mutagenesis of la1857, indicating that LA1857 is not a global regulator of iron homeostasis. Upregulation of heme biosynthetic genes and a putative catalase in the mutant suggested that LA1857 is more similar to PerR, a regulator of the oxidative stress response. Indeed, the la1857 mutant was more resistant to peroxide stress than the wild type. Our results provide insights into the role of iron in leptospiral metabolism and regulation of the oxidative stress response, including genes likely to be important for virulence.
Collapse
|