51
|
Zavan B, Michelotto L, Lancerotto L, Della Puppa A, D'Avella D, Abatangelo G, Vindigni V, Cortivo R. Neural potential of a stem cell population in the adipose and cutaneous tissues. Neurol Res 2013; 32:47-54. [DOI: 10.1179/174313209x385743] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
52
|
MicroRNA regulation of adipose derived stem cells in aging rats. PLoS One 2013; 8:e59238. [PMID: 23516615 PMCID: PMC3597632 DOI: 10.1371/journal.pone.0059238] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2012] [Accepted: 02/14/2013] [Indexed: 12/11/2022] Open
Abstract
Background Perturbations in abdominal fat secreted adipokines play a key role in metabolic syndrome. This process is further altered during the aging process, probably due to alterations in the preadipocytes (aka. stromal vascular fraction cells-SVF cells or adipose derived stem cells-ASCs) composition and/or function. Since microRNAs regulate genes involved both in development and aging processes, we hypothesized that the impaired adipose function with aging is due to altered microRNA regulation of adipogenic pathways in SVF cells. Methodology and Principal Findings Alterations in mRNA and proteins associated with adipogenic differentiation (ERK5 and PPARg) but not osteogenic (RUNX2) pathways were observed in SVF cells isolated from visceral adipose tissue with aging (6 to 30 mo) in female Fischer 344 x Brown Norway Hybrid (FBN) rats. The impaired differentiation capacity with aging correlated with altered levels of miRNAs involved in adipocyte differentiation (miRNA-143) and osteogenic pathways (miRNA-204). Gain and loss of function studies using premir or antagomir-143 validated the age associated adipocyte dysfunction. Conclusions and Significance Our studies for the first time indicate a role for miRNA mediated regulation of SVF cells with aging. This discovery is important in the light of the findings that dysfunctional adipose derived stem cells contribute to age related chronic diseases.
Collapse
|
53
|
Razavi S, Mardani M, Kazemi M, Esfandiari E, Narimani M, Esmaeili A, Ahmadi N. Effect of leukemia inhibitory factor on the myelinogenic ability of Schwann-like cells induced from human adipose-derived stem cells. Cell Mol Neurobiol 2013; 33:283-9. [PMID: 23212292 PMCID: PMC11498022 DOI: 10.1007/s10571-012-9895-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2012] [Accepted: 11/16/2012] [Indexed: 12/21/2022]
Abstract
The Schwann cells (SCs) may be obtain from nerve biopsies for autologous transplantation. However, it is difficult to obtain sufficient amount of SCs for clinical applications. Human adipose-derived stem cells (ADSCs) can be induced to differentiate into Schwann-like cells (S-like cells) and used for autologous transplantation. However, effect of leukemia inhibitory factor (LIF) on the myelinogenic ability of SC-like cells induced from human ADSC is not investigated yet. The aim of this study was to evaluate of the effect of exogenous LIF on myelinogenic potential of differentiated cells in vitro. ADSCs were harvested from human fat tissue and characterized using flow cytometry. Human ADSCs were treated for sphere formation and LIF was added to terminal differentiation medium. GFAP/S100β and MBP markers were used to confirm differentiation of human ADSCs, and myelinogenic ability of SC-like cells, respectively, using both immunostaining and real-time RT-PCR analysis. The analysis for GFAP(+)/S100β(+) revealed that LIF can increase both differentiated cells rates and the percentage of myelinating SC-like cells (p < 0.05). Our data showed that SC-like cells induced from human ADSCs were able to generate myelin when exposed to LIF and these cells could be a potential source for the treatment of peripheral and central axonal injuries.
Collapse
Affiliation(s)
- Shahnaz Razavi
- Department of Anatomical Sciences and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.
| | | | | | | | | | | | | |
Collapse
|
54
|
Abstract
In 2001, researchers at the University of California, Los Angeles, described the isolation of a new population of adult stem cells from liposuctioned adipose tissue. These stem cells, now known as adipose-derived stem cells or ADSCs, have gone on to become one of the most popular adult stem cells populations in the fields of stem cell research and regenerative medicine. As of today, thousands of research and clinical articles have been published using ASCs, describing their possible pluripotency in vitro, their uses in regenerative animal models, and their application to the clinic. This paper outlines the progress made in the ASC field since their initial description in 2001, describing their mesodermal, ectodermal, and endodermal potentials both in vitro and in vivo, their use in mediating inflammation and vascularization during tissue regeneration, and their potential for reprogramming into induced pluripotent cells.
Collapse
|
55
|
Li J, Lepski G. Cell transplantation for spinal cord injury: a systematic review. BIOMED RESEARCH INTERNATIONAL 2013; 2013:786475. [PMID: 23484157 PMCID: PMC3581246 DOI: 10.1155/2013/786475] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/10/2012] [Revised: 11/16/2012] [Accepted: 12/11/2012] [Indexed: 02/07/2023]
Abstract
Cell transplantation, as a therapeutic intervention for spinal cord injury (SCI), has been extensively studied by researchers in recent years. A number of different kinds of stem cells, neural progenitors, and glial cells have been tested in basic research, and most have been excluded from clinical studies because of a variety of reasons, including safety and efficacy. The signaling pathways, protein interactions, cellular behavior, and the differentiated fates of experimental cells have been studied in vitro in detail. Furthermore, the survival, proliferation, differentiation, and effects on promoting functional recovery of transplanted cells have also been examined in different animal SCI models. However, despite significant progress, a "bench to bedside" gap still exists. In this paper, we comprehensively cover publications in the field from the last years. The most commonly utilized cell lineages were covered in this paper and specific areas covered include survival of grafted cells, axonal regeneration and remyelination, sensory and motor functional recovery, and electrophysiological improvements. Finally we also review the literature on the in vivo tracking techniques for transplanted cells.
Collapse
Affiliation(s)
- Jun Li
- Department of Neurosurgery, Eberhard Karls University, 72076 Tübingen, Germany
- Department of Spine Surgery, The Affiliated Hospital of Luzhou Medical College, 646000 Luzhou, China
| | - Guilherme Lepski
- Department of Neurosurgery, Eberhard Karls University, 72076 Tübingen, Germany
- Division of Neurosurgery, Department of Neurology, Faculdade de Medicina, Universidade de São Paulo, Avnida Dr. Enéas de Carvalho Aguiar 255, 05403-000 São Paulo, SP, Brazil
| |
Collapse
|
56
|
Dai LG, Huang GS, Hsu SH. Sciatic nerve regeneration by cocultured Schwann cells and stem cells on microporous nerve conduits. Cell Transplant 2012. [PMID: 23192007 DOI: 10.3727/096368912x658953] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Cell transplantation is a useful therapy for treating peripheral nerve injuries. The clinical use of Schwann cells (SCs), however, is limited because of their limited availability. An emerging solution to promote nerve regeneration is to apply injured nerves with stem cells derived from various tissues. In this study, different types of allogeneic cells including SCs, adipose-derived adult stem cells (ASCs), dental pulp stem cells (DPSCs), and the combination of SCs with ASCs or DPSCs were seeded on nerve conduits to test their efficacy in repairing a 15-mm-long critical gap defect of rat sciatic nerve. The regeneration capacity and functional recovery were evaluated by the histological staining, electrophysiology, walking track, and functional gait analysis after 8 weeks of implantation. An in vitro study was also performed to verify if the combination of cells led to synergistic neurotrophic effects (NGF, BDNF, and GDNF). Experimental rats receiving conduits seeded with a combination of SCs and ASCs had the greatest functional recovery, as evaluated by the walking track, functional gait, nerve conduction velocity (NCV), and histological analysis. Conduits seeded with cells were always superior to the blank conduits without cells. Regarding NCV and the number of blood vessels, conduits seeded with SCs and DPSCs exhibited better values than those seeded with DPSCs only. Results from the in vitro study confirmed the synergistic NGF production from the coculture of SCs and ASCs. It was concluded that coculture of SCs with ASCs or DPSCs in a conduit promoted peripheral nerve regeneration over a critical gap defect.
Collapse
Affiliation(s)
- Lien-Guo Dai
- Department of Chemical Engineering, National Chung Hsing University, Taichung, Taiwan
| | | | | |
Collapse
|
57
|
Than A, Cheng Y, Foh LC, Leow MKS, Lim SC, Chuah YJ, Kang Y, Chen P. Apelin inhibits adipogenesis and lipolysis through distinct molecular pathways. Mol Cell Endocrinol 2012; 362:227-41. [PMID: 22842084 DOI: 10.1016/j.mce.2012.07.002] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2012] [Revised: 06/19/2012] [Accepted: 07/06/2012] [Indexed: 12/30/2022]
Abstract
Apelin is an adipokine secreted by adipocytes. Co-expression of apelin and apelin receptor (APJ) in adipocytes implies the autocrine regulations of apelin on adipocyte functions through yet unknown molecular mechanisms. In the present study, we provide evidence that apelin, through its interaction with APJ receptor, inhibits adipogenesis of pre-adipocytes and lipolysis in mature adipocytes. The detailed molecular pathways underlying apelin signaling is proposed based on our experimental observations. Specifically, we show that apelin suppresses adipogenesis through MAPK kinase/ERK dependent pathways. And by preventing lipid droplet fragmentation, apelin inhibits basal lipolysis through AMP kinase dependent enhancement of perilipin expression and inhibits hormone-stimulated acute lipolysis through decreasing perilipin phosphorylation. Apelin induced decrease of free fatty acid release can be attributed to its dual inhibition on adipogenesis and lipolysis. This study suggests that the autocrine signaling of apelin may serve as a novel therapeutic target for obesity and other metabolic disorders.
Collapse
Affiliation(s)
- Aung Than
- Division of Bioengineering, Nanyang Technological University, Singapore 637457, Singapore
| | | | | | | | | | | | | | | |
Collapse
|
58
|
Razavi S, Ahmadi N, Kazemi M, Mardani M, Esfandiari E. Efficient transdifferentiation of human adipose-derived stem cells into Schwann-like cells: A promise for treatment of demyelinating diseases. Adv Biomed Res 2012; 1:12. [PMID: 23210071 PMCID: PMC3507009 DOI: 10.4103/2277-9175.96067] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2011] [Accepted: 02/23/2012] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND Schwann cells (SCs) can provide a suitable option for treatment not only diseases of peripheral nervous system (PNS), but also diseases of central nervous system (CNS). It is difficult to obtain sufficient large number of SCs for clinical purpose because of their restricted mitotic activity, and by sacrificing one or more functioning nerves with the consequence of loss of sensation. So, providing an alternative source for transplantation is desired. The aim of this study was isolation, characterization of human adipose derived stem cells (ADSCs), and transdifferentiation into Schwann-cells. MATERIALS AND METHODS After isolation of ADSCs by mechanical and enzymatic digestion of adipose samples, characterization human ADSCs using flow cytometry was carried out. Human ADSCs were sequentially treated with various factors for neurosphere formation and terminal differentiation into Schwann-like cells. We used Schwann cell markers, GFAP and S100 to confirm the effectiveness of the differentiation of human ADSCs using Immunostaining and real time RT-PCR techniques. RESULTS Flow cytometry analysis of ADSC showed isolated stem cells were positive for CD90 and CD44 markers of mesenchymal stem cells, but for CD45 and CD34 markers were negative. Dual immunofluorescence staining and real time RT-PCR analysis for GFAP and S100 markers were revealed that approximately 90% of differentiated cells expressed co-markers. CONCLUSION We indicated that human ADSCs have a suitable option to induce Schwann-like cells for autologous transplantation, offer promise for treatment in demyelinating diseases.
Collapse
Affiliation(s)
- Shanhaz Razavi
- Department of Anatomical Sciences and Molecular Biology, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Nafiseh Ahmadi
- Department of Biology, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Mohammad Kazemi
- Department of Anatomical Sciences and Molecular Biology, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammad Mardani
- Department of Anatomical Sciences and Molecular Biology, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Ebrahim Esfandiari
- Department of Anatomical Sciences and Molecular Biology, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
59
|
Liu BS, Yang YC, Shen CC. Regenerative effect of adipose tissue-derived stem cells transplantation using nerve conduit therapy on sciatic nerve injury in rats. J Tissue Eng Regen Med 2012; 8:337-50. [PMID: 22552954 DOI: 10.1002/term.1523] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2011] [Revised: 09/16/2011] [Accepted: 03/09/2012] [Indexed: 01/13/2023]
Affiliation(s)
- Bai-Shuan Liu
- Department of Medical Imaging and Radiological Sciences; Central Taiwan University of Science and Technology; Taichung Taiwan Republic of China
| | - Yi-Chin Yang
- Department of Neurosurgery; Taichung Veterans General Hospital; Taichung Taiwan Republic of China
| | - Chiung-Chyi Shen
- Department of Neurosurgery; Taichung Veterans General Hospital; Taichung Taiwan Republic of China
- Faculty of Medicine, School of Medicine; National Yang-Ming University; Taipei Taiwan Republic of China
| |
Collapse
|
60
|
Hsueh YY, Chiang YL, Wu CC, Lin SC. Spheroid formation and neural induction in human adipose-derived stem cells on a chitosan-coated surface. Cells Tissues Organs 2012; 196:117-28. [PMID: 22327282 DOI: 10.1159/000332045] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/22/2011] [Indexed: 12/17/2022] Open
Abstract
The application of stem cells appears to have great therapeutic potential to facilitate nerve regeneration in patients with neurodegenerative disease or spinal cord injury. Human adipose-derived stem cells (hADSCs), a subset of multipotent mesenchymal stem cells, possess the great advantages of an abundant amount of cells, less ethical conflict and minimal invasive surgical procedures to obtain the cells. Chitosan, a naturally derived polysaccharide from chitin, has been widely studied to facilitate and guide the direction of nerve regeneration as a biomaterial for the neural tube. Chitosan also serves as a three-dimensional culture substrate to facilitate cellular sphere formation among various cells but is as yet unexplored in hADSCs. In this study, the ability of hADSCs to transdifferentiate from the mesenchymal into the neural lineage by seeding hADSCs on a chitosan-coated surface to form therapeutic cell spheres was investigated. The optimal seeding density (2 × 10(4) cells/cm(2)) and harvesting time (72 h) to obtain sphere formation were determined by cell viability on a chitosan-coated surface. Expression of neural lineage markers was observed by immunofluorescent staining of nestin, neurofilament heavy chain and glial fibrillary acidic protein. The neural induction potentials were also provoked by replating spheres from primary to tertiary passages. The effect of neural induction in hADSCs on a chitosan-coated surface may help to provide cell sources for facilitating nerve regeneration in future clinical applications.
Collapse
Affiliation(s)
- Yuan-Yu Hsueh
- Division of Plastic Surgery, National Cheng Kung University, Tainan, Taiwan, ROC
| | | | | | | |
Collapse
|
61
|
Kwon EB, Lee JY, Piao S, Kim IG, Ra JC, Lee JY. Comparison of human muscle-derived stem cells and human adipose-derived stem cells in neurogenic trans-differentiation. Korean J Urol 2011; 52:852-7. [PMID: 22216399 PMCID: PMC3246519 DOI: 10.4111/kju.2011.52.12.852] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2011] [Accepted: 10/10/2011] [Indexed: 12/23/2022] Open
Abstract
PURPOSE Erectile dysfunction (ED) remains a major complication from cavernous nerve injury during radical prostatectomy. Recently, stem cell treatment for ED has been widely reported. This study was conducted to investigate the availability, differentiation into functional cells, and potential of human muscle-derived stem cells (hMDSCs) and human adipose-derived stem cells (hADSCs) for ED treatment. MATERIALS AND METHODS We compared the neural differentiation of hMDSCs and hADSCs. Human muscle and adipose tissues were digested with collagenase, followed by filtering and centrifugation. For neural induction, isolated hMDSCs and hADSCs were incubated in neurobasal media containing forskolin, laminin, basic-fibroblast growth factor, and epidermal growth factor for 5 days. Following neural induction, hMDSCs and hADSCs were differentiated into neural cells, including neurons and glia, in vitro. RESULTS In neural differentiated hMDSCs (d-hMDSCs) and differentiated hADSCs (d-hADSCs), neural stem cell marker (nestin) showed a significant decrease by immunocytochemistry, and neuronal marker (β-tubulin III) and glial marker (GFAP) showed a significant increase, compared with primary hMDSCs and hADSCs. Real-time chain reaction analysis and Western blotting demonstrated significantly elevated levels of mRNA and protein of β-tubulin III and GFAP in d-hADSCs compared with d-hMDSCs. CONCLUSIONS We demonstrated that hMDSCs and hADSCs can be induced to undergo phenotypic and molecular changes consistent with neurons. The neural differentiation capacity of hADSCs was better than that of hMDSCs.
Collapse
Affiliation(s)
- Eun Bi Kwon
- Department of Urology, College of Medicine, The Catholic University of Korea, Ltd. Seoul, Korea
| | | | | | | | | | | |
Collapse
|
62
|
Shen CC, Yang YC, Liu BS. Peripheral nerve repair of transplanted undifferentiated adipose tissue-derived stem cells in a biodegradable reinforced nerve conduit. J Biomed Mater Res A 2011; 100:48-63. [PMID: 21972223 DOI: 10.1002/jbm.a.33227] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2011] [Revised: 07/04/2011] [Accepted: 08/16/2011] [Indexed: 12/12/2022]
Abstract
This study proposes a biodegradable nerve conduit containing genipin-cross-linked gelatin annexed with tricalcium phosphate ceramic particles (genipin-gelatin-tricalcium phosphate, GGT) in peripheral nerve regeneration. Firstly, cytotoxicity tests revealed that the GGT-extracts were not toxic, and promoted the proliferation and neuronal differentiation of adipose tissue-derived stem cells (ADSCs). Secondly, the GGT composite film effectively supported ADSCs attachment and growth. Additionally, the GGT substrate was biocompatible with the neonatal rat sciatic nerve and produced a beneficial effect on peripheral nerve repair through in vitro tissue culture. Finally, the experiments in this study confirmed the effectiveness of a GGT/ADSCs nerve conduit as a guidance channel for repairing a 10-mm gap in a rat sciatic nerve. Eight weeks after implantation, the mean recovery index of compound muscle action potentials (CMAPs) was significantly different between the GGT/ADSCs and autografts groups (p < 0.05), both of which were significantly superior to the GGT group (p < 0.05). Furthermore, walking track analysis also showed a significantly higher sciatic function index (SFI) score (p < 0.05) and better toe spreading development in the GGT/ADSCs group than in the autograft group. Histological observations and immunohistochemistry revealed that the morphology and distribution patterns of nerve fibers in the GGT/ADSCs nerve conduits were similar to those of the autografts. The GGT nerve conduit offers a better scaffold for the incorporation of seeding undifferentiated ADSCs, and opens a new avenue to replace autologous nerve grafts for the rapid regeneration of damaged peripheral nerve tissues and an improved approach to patient care.
Collapse
Affiliation(s)
- Chiung-Chyi Shen
- Department of Neurosurgery, Taichung Veterans General Hospital, Taichung, Taiwan, Republic of China
| | | | | |
Collapse
|
63
|
Arboleda D, Forostyak S, Jendelova P, Marekova D, Amemori T, Pivonkova H, Masinova K, Sykova E. Transplantation of predifferentiated adipose-derived stromal cells for the treatment of spinal cord injury. Cell Mol Neurobiol 2011; 31:1113-22. [PMID: 21630007 PMCID: PMC11498601 DOI: 10.1007/s10571-011-9712-3] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2011] [Accepted: 05/13/2011] [Indexed: 01/15/2023]
Abstract
Adipose-derived stromal cells (ASCs) are an alternative source of stem cells for cell-based therapies of neurological disorders such as spinal cord injury (SCI). In the present study, we predifferentiated ASCs (pASCs) and compared their behavior with naïve ASCs in vitro and after transplantation into rats with a balloon-induced compression lesion. ASCs were predifferentiated into spheres before transplantation, then pASCs or ASCs were injected intraspinally 1 week after SCI. The cells' fate and the rats' functional outcome were assessed using behavioral, histological, and electrophysiological methods. Immunohistological analysis of pASCs in vitro revealed the expression of NCAM, NG2, S100, and p75. Quantitative RT-PCR at different intervals after neural induction showed the up-regulated expression of the glial markers NG2 and p75 and the neural precursor markers NCAM and Nestin. Patch clamp analysis of pASCs revealed three different types of membrane currents; however, none were fast activating Na(+) currents indicating a mature neuronal phenotype. Significant improvement in both the pASC and ASC transplanted groups was observed in the BBB motor test. In vivo, pASCs survived better than ASCs did and interacted closely with the host tissue, wrapping host axons and oligodendrocytes. Some transplanted cells were NG2- or CD31-positive, but no neuronal markers were detected. The predifferentiation of ASCs plays a beneficial role in SCI repair by promoting the protection of denuded axons; however, functional improvements were comparable in both the groups, indicating that repair was induced mainly through paracrine mechanisms.
Collapse
Affiliation(s)
- David Arboleda
- Department of Neuroscience, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, v.v.i., Videnska 1083, 142 20 Prague 4, Czech Republic
- Department of Neuroscience, 2nd Medical Faculty, Charles University, Prague, Czech Republic
| | - Serhiy Forostyak
- Department of Neuroscience, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, v.v.i., Videnska 1083, 142 20 Prague 4, Czech Republic
- Department of Neuroscience, 2nd Medical Faculty, Charles University, Prague, Czech Republic
| | - Pavla Jendelova
- Department of Neuroscience, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, v.v.i., Videnska 1083, 142 20 Prague 4, Czech Republic
- Department of Neuroscience, 2nd Medical Faculty, Charles University, Prague, Czech Republic
| | - Dana Marekova
- Department of Neuroscience, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, v.v.i., Videnska 1083, 142 20 Prague 4, Czech Republic
- Department of Neuroscience, 2nd Medical Faculty, Charles University, Prague, Czech Republic
| | - Takashi Amemori
- Department of Neuroscience, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, v.v.i., Videnska 1083, 142 20 Prague 4, Czech Republic
| | - Helena Pivonkova
- Department of Neuroscience, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, v.v.i., Videnska 1083, 142 20 Prague 4, Czech Republic
| | - Katarina Masinova
- Department of Neuroscience, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, v.v.i., Videnska 1083, 142 20 Prague 4, Czech Republic
| | - Eva Sykova
- Department of Neuroscience, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, v.v.i., Videnska 1083, 142 20 Prague 4, Czech Republic
- Department of Neuroscience, 2nd Medical Faculty, Charles University, Prague, Czech Republic
| |
Collapse
|
64
|
Yang Z, Huang CYC, Candiotti KA, Zeng X, Yuan T, Li J, Yu H, Abdi S. Sox-9 facilitates differentiation of adipose tissue-derived stem cells into a chondrocyte-like phenotype in vitro. J Orthop Res 2011; 29:1291-7. [PMID: 21400575 DOI: 10.1002/jor.21336] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2010] [Accepted: 11/19/2010] [Indexed: 02/04/2023]
Abstract
The purpose of this study is to test whether ectopic expression of Sox-9 can induce adipose tissue-derived stem cells (ASCs) to function as real nucleus pulposus (NP) cells in vitro. Adenoviral vectors expressing Sox-9 were reported to infect the chondroblastic and human disc cells, which resulted in increased Sox-9 and type II collagen production. ASCs were isolated from rat inguinal adipose pad, characterized, and transduced in vitro with a retroviral vector encoding the Sox-9 gene. Sox-9-engineered ASCs (ASCs/Sox-9) were induced for the chondrocyte-like cell differentiation by 3D cultured in alginate beads and TGF-β3 for 2 weeks. Expression of exogenous Sox-9 protein was detected. Type II collagen and Aggrecan gene expressions of induced ASCs/Sox-9 were measured using real-time PCR; proteoglycans expressions were measured by checking the glycosaminoglycan content and type II collagen production by enzyme-linked immunosorbent assay. Isolated ASCs were CD 29(+) /CD44(+) /C-Kit(-) /Lin(-) /CD34(-) /CD45(-) . ASCs/Sox-9 expressed marked increase in exogenous Sox-9 protein. After induction, type II collagen gene expression was sevenfold higher in mRNA levels, with an approximately twofold increase in protein levels of ASCs/Sox-9 compared to ASCs. Type II collagen and proteoglycan productions were significantly increased in the ASCs/Sox-9 compared to the ASCs. In addition, co-culture of induced ASCs/Sox-9 with matured NP cells resulted in enhanced increase in proteoglycan and type II collagen production. Constitutive retroviral expression of Sox-9 could efficiently induce ASCs differentiation into chondrocyte-like cells. This novel approach may provide a practicable system for a simple and rapid differentiation of ASCs into chondrocyte-like cells which may be potentially used as a stem cell-based therapeutic tool for the treatment of degenerative disc diseases.
Collapse
Affiliation(s)
- Zhe Yang
- Department of Anesthesiology, University of Miami Miller School of Medicine, Miami, Florida 33136, USA
| | | | | | | | | | | | | | | |
Collapse
|
65
|
Huang WC, Liao JD, Lin CCK, Ju MS. Depth-sensing nano-indentation on a myelinated axon at various stages. NANOTECHNOLOGY 2011; 22:275101. [PMID: 21597149 DOI: 10.1088/0957-4484/22/27/275101] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
A nano-mechanical characterization of a multi-layered myelin sheath structure, which enfolds an axon and plays a critical role in the transmission of nerve impulses, is conducted. Schwann cells co-cultured in vitro with PC12 cells for various co-culture times are differentiated to form a myelinated axon, which is then observed using a transmission electron microscope. Three major myelination stages, with distinct structural characteristics and thicknesses around the axon, can be produced by varying the co-culture time. A dynamic contact module and continuous depth-sensing nano-indentation are used on the myelinated structure to obtain the load-on-sample versus measured displacement curve of a multi-layered myelin sheath, which is used to determine the work required for the nano-indentation tip to penetrate the myelin sheath. By analyzing the harmonic contact stiffness versus the measured displacement profile, the results can be used to estimate the three stages of the multi-layered structure on a myelinated axon. The method can also be used to evaluate the development stages of myelination or demyelination during nerve regeneration.
Collapse
Affiliation(s)
- Wei-Chin Huang
- Department of Materials Science and Engineering, National Cheng Kung University, 1 University Road, Tainan 70101, Taiwan
| | | | | | | |
Collapse
|
66
|
Gong X, Hou L, Bai C, Jin D, He X, Guan W, Ma Y. Isolation and biological characteristics of chicken adipose-derived progenitor cells. DNA Cell Biol 2011; 30:453-60. [PMID: 21651420 DOI: 10.1089/dna.2010.1154] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Adipose-derived stem cells/adipose-derived progenitor cells (ADPCs) are multipotent stem cells that can differentiate in vitro into many cell types. However, the vast majority of experimental materials were obtained from human, mouse, rabbit, and other mammals but rarely from poultry. In this study, ADPCs were isolated from 1-day-old chicks. Primary ADPCs were subcultured to passage 15. The surface markers of ADPCs, CD29, CD44, CD71, and CD73, were detected by immunofluorescence and RT-polymerase chain reaction assays. The growth curves of different passages were all typically sigmoidal. In addition, ADPCs of different passages were successfully induced to differentiate into osteoblasts, adipocytes, and myocardial cells. The results suggest that the ADPCs isolated from chicken possess similar biological characteristics with those derived from other species, and their multilineage differentiation provides many potential applications.
Collapse
Affiliation(s)
- Xuelian Gong
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | | | | | | | | | | | | |
Collapse
|
67
|
Huff NK, Spencer ND, Gimble JM, Bagby GJ, Nelson S, Lopez MJ. Impaired expansion and multipotentiality of adult stromal cells in a rat chronic alcohol abuse model. Alcohol 2011; 45:393-402. [PMID: 21376503 DOI: 10.1016/j.alcohol.2010.12.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2010] [Revised: 11/14/2010] [Accepted: 12/11/2010] [Indexed: 12/12/2022]
Abstract
It is well established that bone maintenance and healing is compromised in alcoholics. Adult bone marrow-derived stromal cells (BMSCs) and adipose tissue-derived stromal cells (ASCs) likely contribute to bone homeostasis and formation. Direct and indirect alcohol exposure inhibits osteoprogenitor cell function through a variety of proposed mechanisms. The goal of this study was to characterize the effects of chronic alcohol ingestion on the native number and in vitro growth characteristics and multipotentiality of adult BMSCs and ASCs in a rat model. Adult male Sprague-Dawley rats received a liquid diet containing 36% ethanol or an isocaloric substitution of dextramaltose (control). After 4, 8, or 12 weeks of the diet, ASCs were harvested from epididymal adipose tissue and BMSCs from femoral and tibial bone marrow. Cell doublings (CDs) per day and doubling times (DTs) were determined for primary cells (P0) and cell passages 1 through 6 (P1-P6). Fibroblastic (CFU-F), adipogenic (CFU-Ad), and osteogenic (CFU-Ob) colony-forming unit (CFU) frequencies were assessed for P0, P3, and P6. The CDs and DTs were lower and higher, respectively, for ASCs and BMSCs harvested from ethanol versus control rats at all time points. The CFU-F, CFU-Ad, and CFU-Ob were significantly higher in ASCs harvested from control versus ethanol rats for P0, P3, and P6 at all times. Both CFU-Ad and CFU-Ob were significantly higher in P0 BMSCs harvested from control versus ethanol rats after 12 weeks of the diet. The CFU-Ob for P3 BMSCs from control rats was significantly higher than those from ethanol rats after 8 and 12 weeks on the diet. All three CFU frequencies in ASCs from ethanol rats tended to decrease with increasing diet duration. The ASC cell and colony morphology was different between control and ethanol cohorts in culture. These results emphasize the significant detrimental effects of chronic alcohol ingestion on the in vitro expansion and multipotentiality of adult mesenchymal stromal cells (MSCs). Maintenance of the effects through multiple cell passages in vitro suggests cells may be permanently compromised.
Collapse
|
68
|
Neurogenesis of adipose-derived stem cells in hydrogel. ACTA ACUST UNITED AC 2011; 31:174-177. [PMID: 21505979 DOI: 10.1007/s11596-011-0246-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2010] [Indexed: 12/11/2022]
Abstract
Adipose tissue is a readily available source of adult stem cells with multipotent properties suitable for tissue engineering and regenerative medical applications. Peptide hydrogel is a novel biomaterial which provides three-dimensional microenvironments for a variety of cells for tissue grafting. In this study, adipose-derived stem cells (ADSCs) were isolated from rats, seeded into the peptide hydrogel polymer scaffolds and cultured in Neurobasal (NB) media supplemented with B27, basic fibroblast growth factor (bFGF) and epidermal growth factor (EGF). Ten days after the culture, some cells were expanded into clonal populations in which the expression of both Nestin and Brdu was detected but only Brdu expression was detected in the cells that were not expanded into clonal populations. Our results suggested that ADSCs in peptide hydrogel polymer scaffolds can be induced to differentiate into cells capable of expressing the neuron-associated markers, self-renewal and self-propagation.
Collapse
|
69
|
Carlson KB, Singh P, Feaster MM, Ramnarain A, Pavlides C, Chen ZL, Yu WM, Feltri ML, Strickland S. Mesenchymal stem cells facilitate axon sorting, myelination, and functional recovery in paralyzed mice deficient in Schwann cell-derived laminin. Glia 2011; 59:267-77. [PMID: 21125647 DOI: 10.1002/glia.21099] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Peripheral nerve function depends on a regulated process of axon and Schwann cell development. Schwann cells interact with peripheral neurons to sort and ensheath individual axons. Ablation of laminin γ1 in the peripheral nervous system (PNS) arrests Schwann cell development prior to radial sorting of axons. Peripheral nerves of laminin-deficient animals are disorganized and hypomyelinated. In this study, sciatic nerves of laminin-deficient mice were treated with syngenic murine adipose-derived stem cells (ADSCs). ADSCs expressed laminin in vitro and in vivo following transplant into mutant sciatic nerves. ADSC-treatment of mutant nerves caused endogenous Schwann cells to differentiate past the point of developmental arrest to sort and myelinate axons. This was shown by (1) functional, (2) ultrastructural, and (3) immunohistochemical analysis. Treatment of laminin-deficient nerves with either soluble laminin or the immortalized laminin-expressing cell line 3T3/L1 did not overcome endogenous Schwann cell developmental arrest. In summary, these results indicate that (1) laminin-deficient Schwann cells can be rescued, (2) a cell-based approach is beneficial in comparison with soluble protein treatment, and (3) mesenchymal stem cells modify sciatic nerve function via trophic effects rather than transdifferentiation in this system.
Collapse
Affiliation(s)
- Karen B Carlson
- Laboratory of Neurobiology and Genetics, The Rockefeller University, New York, New York 10065, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
70
|
Kalbermatten DF, Schaakxs D, Kingham PJ, Wiberg M. Neurotrophic activity of human adipose stem cells isolated from deep and superficial layers of abdominal fat. Cell Tissue Res 2011; 344:251-60. [PMID: 21400216 DOI: 10.1007/s00441-011-1142-5] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2010] [Accepted: 02/02/2011] [Indexed: 01/31/2023]
Abstract
New approaches to the clinical treatment of traumatic nerve injuries may one day utilize stem cells to enhance nerve regeneration. Adipose-derived stem cells (ASC) are found in abundant quantities and can be harvested by minimally invasive procedures that should facilitate their use in such regenerative applications. We have analyzed the properties of human ASC isolated from the deep and superficial layers of abdominal fat tissue obtained during abdominoplasty procedures. Cells from the superficial layer proliferate significantly faster than those from the deep layer. In both the deep and superficial layers, ASC express the pluripotent stem cell markers oct4 and nanog and also the stro-1 cell surface antigen. Superficial layer ASC induce the significantly enhanced outgrowth of neurite-like processes from neuronal cell lines when compared with that of deep layer cells. However, analysis by reverse transcription with the polymerase chain reaction and by enzyme-linked immunosorbent assay has revealed that ASC isolated from both layers express similar levels of the following neurotrophic factors: nerve growth factor, brain-derived neurotrophic factor and glial-derived neurotrophic factor. Thus, human ASC show promising potential for the treatment of traumatic nerve injuries. In particular, superficial layer ASC warrant further analysis of their neurotrophic molecules.
Collapse
Affiliation(s)
- Daniel F Kalbermatten
- Department of Integrative Medical Biology, Section of Anatomy, Umeå University, Umeå, Sweden
| | | | | | | |
Collapse
|
71
|
Wei Y, Gong K, Zheng Z, Liu L, Wang A, Zhang L, Ao Q, Gong Y, Zhang X. Schwann-like cell differentiation of rat adipose-derived stem cells by indirect co-culture with Schwann cells in vitro. Cell Prolif 2010; 43:606-16. [PMID: 21039999 DOI: 10.1111/j.1365-2184.2010.00710.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
OBJECTIVES Schwann cell (SC) transplantation is a promising therapy for peripheral nerve transaction, however, clinical use of SCs is limited due to their very limited availability. Adipose-derived stem cells (ADSCs) have been identified as an alternative source of adult stem cells in recent years. The aim of this study was to evaluate the feasibility of using ADSCs as a source of stem cells for differentiation into Schwann-like cells by an indirect co-culture approach, in vitro. MATERIALS AND METHODS Multilineage differentiation potential of the obtained ADSCs was assayed by testing their ability to differentiate into osteoblasts and adipocytes. The ADSCs were co-cultured with SCs to be induced into Schwann-like cells through proximity, using a Millicell system. Expression of typical SC markers S-100, GFAP and P75NTR of the treated ADSCs was determined by immunocytochemical staining, western blotting and RT-PCR. Myelination capacity of the differentiated ADSCs (dADSCs) was evaluated in dADSC/dorsal root ganglia neuron (DRGN) co-cultures. RESULTS The treated ADSCs adopted a spindle shaped-like morphology after co-cultured with SCs for 6 days. All results of immunocytochemical staining, western blotting and RT-PCR showed that the treated cells expressed S-100, GFAP and P75NTR, indications of differentiation. dADSCs could form Schwann-like cell myelin in co-culture with DRGNs. Undifferentiated ADSCs (uADSCs) did not form myelin compared to DRGNs cultured alone, but could produce neurite extension. CONCLUSIONS These results demonstrate that this indirect co-culture microenvironment could induce ADSCs to differentiate into Schwann-like cells in vitro, which may be beneficial for treatment of peripheral nerve injuries in the near future.
Collapse
Affiliation(s)
- Y Wei
- School of Life Sciences, State Key Laboratory of Biomembrane and Membrane Biotechnology, Tsinghua University, Beijing, China
| | | | | | | | | | | | | | | | | |
Collapse
|
72
|
Tong L, Ji L, Wang Z, Tong X, Zhang L, Sun X. Differentiation of neural stem cells into Schwann-like cells in vitro. Biochem Biophys Res Commun 2010; 401:592-7. [PMID: 20920478 DOI: 10.1016/j.bbrc.2010.09.107] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2010] [Accepted: 09/26/2010] [Indexed: 11/17/2022]
Abstract
Neural stem cells (NSCs) are multipotent stem cells that have the potential to differentiate into different cells of the neural lineage like neurons, astrocytes and oligodendrocytes. In the current work, we explored whether NSCs could be differentiated into functional Schwann-like cells, which has not been investigated up to date. NSCs were harvested from the hippocampus of rats and identified by single cell cloning and immunofluorescence staining. Then NSCs were treated with DMEM/F12 supplemented with forskolin, heregulin, bFGF, PDGF-AA and retinoic acid (RA). Differentiated NSCs (dNSCs) exhibited a spindle-like morphology similar to Schwann cells and expressed the glial markers p75 and S100. We also found that dNSCs could enhance neurite outgrowth when co-cultured with NG108-15 cells. These results indicated that NSCs, derived from hippocampus of rats, could differentiate into Schwann-like cells with morphological, phenotypic and functional similarities.
Collapse
Affiliation(s)
- Lei Tong
- Department of Anatomy, College of Basic Medical Sciences, China Medical University, Shenyang 110001, China
| | | | | | | | | | | |
Collapse
|
73
|
Jiang TM, Yang ZJ, Kong CZ, Zhang HT. Schwann-like cells can be induction from human nestin-positive amniotic fluid mesenchymal stem cells. In Vitro Cell Dev Biol Anim 2010; 46:793-800. [DOI: 10.1007/s11626-010-9335-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2010] [Accepted: 06/16/2010] [Indexed: 02/03/2023]
|
74
|
Borlongan CV. Remyelinating the transected peripheral nerve by fabricated Schwann cells derived from bone marrow. Exp Neurol 2010; 225:243-5. [PMID: 20643127 DOI: 10.1016/j.expneurol.2010.07.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2010] [Revised: 07/09/2010] [Accepted: 07/13/2010] [Indexed: 11/28/2022]
Affiliation(s)
- Cesar V Borlongan
- epartment of Neurosurgery and Brain Repair, University of South Florida, Tampa, FL 33612, USA
| |
Collapse
|
75
|
Shea GKH, Tsui AYP, Chan YS, Shum DKY. Bone marrow-derived Schwann cells achieve fate commitment--a prerequisite for remyelination therapy. Exp Neurol 2010; 224:448-58. [PMID: 20483356 DOI: 10.1016/j.expneurol.2010.05.005] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2009] [Revised: 05/06/2010] [Accepted: 05/12/2010] [Indexed: 01/08/2023]
Abstract
Schwann cell transplantation improves post-traumatic nerve regeneration in both PNS and CNS but sufficient numbers of immunocompatible cells are required for clinical application. Currently, Schwann cell-like cells derived from the bone marrow lack fate commitment and revert to a fibroblast-like phenotype upon withdrawal of differentiation-inducing factors. In recapitulation of embryonic events leading to Schwann cell maturation, we hypothesize that the Schwann cell-like cells acquire the switch to fate commitment through contact-dependent cues from incipient neurons of the developing dorsal root ganglia. To address this, Schwann cell-like cells derived from adult rat bone marrow were cocultured with neurons purified from embryonic dorsal root ganglia. A cell-intrinsic switch to the Schwann cell fate was achieved consistently and the cell progeny maintained expression of the markers S100 beta, p75(NTR) , GFAP, P0 and Sox 10 even without exogenous differentiation-inducing factors or neurons. In vitro formation of MBP-positive segments under myelinating conditions by the cell progeny was comparable to that by sciatic nerve-derived Schwann cells. Controls in which Schwann cell-like cells were barred from direct contact with neurons in coculture reverted to SMA/CD90-expressing myofibroblasts. We demonstrate therefore for the first time fate commitment among bone marrow-derived Schwann cells. The therapeutic potential of these cells may be tested in future transplantation studies. (206 words).
Collapse
Affiliation(s)
- Graham K H Shea
- Department of Biochemistry, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, PR China
| | | | | | | |
Collapse
|
76
|
Jang S, Cho HH, Cho YB, Park JS, Jeong HS. Functional neural differentiation of human adipose tissue-derived stem cells using bFGF and forskolin. BMC Cell Biol 2010; 11:25. [PMID: 20398362 PMCID: PMC2867791 DOI: 10.1186/1471-2121-11-25] [Citation(s) in RCA: 204] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2009] [Accepted: 04/16/2010] [Indexed: 02/08/2023] Open
Abstract
Background Adult mesenchymal stem cells (MSCs) derived from adipose tissue have the capacity to differentiate into mesenchymal as well as endodermal and ectodermal cell lineage in vitro. We characterized the multipotent ability of human adipose tissue-derived stem cells (hADSCs) as MSCs and investigated the neural differentiation potential of these cells. Results Human ADSCs from earlobe fat maintained self-renewing capacity and differentiated into adipocytes, osteoblasts, or chondrocytes under specific culture conditions. Following neural induction with bFGF and forskolin, hADSCs were differentiated into various types of neural cells including neurons and glia in vitro. In neural differentiated-hADSCs (NI-hADSCs), the immunoreactivities for neural stem cell marker (nestin), neuronal markers (Tuj1, MAP2, NFL, NFM, NFH, NSE, and NeuN), astrocyte marker (GFAP), and oligodendrocyte marker (CNPase) were significantly increased than in the primary hADSCs. RT-PCR analysis demonstrated that the mRNA levels encoding for ABCG2, nestin, Tuj1, MAP2, NFL, NFM, NSE, GAP43, SNAP25, GFAP, and CNPase were also highly increased in NI-hADSCs. Moreover, NI-hADSCs acquired neuron-like functions characterized by the display of voltage-dependent tetrodotoxin (TTX)-sensitive sodium currents, outward potassium currents, and prominent negative resting membrane potentials under whole-cell patch clamp recordings. Further examination by RT-PCR showed that NI-hADSCs expressed high level of ionic channel genes for sodium (SCN5A), potassium (MaxiK, Kv4.2, and EAG2), and calcium channels (CACNA1C and CACNA1G), which were expressed constitutively in the primary hADSCs. In addition, we demonstrated that Kv4.3 and Eag1, potassium channel genes, and NE-Na, a TTX-sensitive sodium channel gene, were highly induced following neural differentiation. Conclusions These combined results indicate that hADSCs have the same self-renewing capacity and multipotency as stem cells, and can be differentiated into functional neurons using bFGF and forskolin.
Collapse
Affiliation(s)
- Sujeong Jang
- Department of Physiology, Chonnam National University Medical School, Gwangju 501190, Republic of Korea
| | | | | | | | | |
Collapse
|
77
|
Chi GF, Kim MR, Kim DW, Jiang MH, Son Y. Schwann cells differentiated from spheroid-forming cells of rat subcutaneous fat tissue myelinate axons in the spinal cord injury. Exp Neurol 2010; 222:304-17. [DOI: 10.1016/j.expneurol.2010.01.008] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2009] [Revised: 01/07/2010] [Accepted: 01/08/2010] [Indexed: 02/07/2023]
|
78
|
Neurogenic differentiation of murine adipose derived stem cells transfected with EGFP in vitro. ACTA ACUST UNITED AC 2010; 30:75-80. [PMID: 20155459 DOI: 10.1007/s11596-010-0113-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2009] [Indexed: 01/08/2023]
Abstract
Some studies indicate that adipose derived stem cells (ADSCs) can differentiate into adipogenic, chondrogenic, myogenic, and osteogenic cells in vitro. However, whether ADSCs can be induced to differentiate into neural cells in vitro has not been clearly demonstrated. In this study, the ADSCs isolated from the murine adipose tissue were cultured and transfected with the EGFP gene, and then the cells were induced for neural differentiation. The morphology of those ADSCs began to change within two days which developed into characteristics of round cell bodies with several branching extensions, concomitantly expressing EGFP fluorescence. Approximately 60% of the total cell populations were bipolar or multipolar in shape. Some of them appeared to make contact with their neighboring cells. RT-PCR, Western blot and Immunocytochemistry revealed that the expression levels of the markers of neurons and oligodendrocytes such as MAP2, NF-70, Neu N and RIP upon neural induction were increased, but the expression of the special marker of astrocytes, GFAP, was undetectable until 96 h after induction when a small signal was observed. It was concluded that the ADSCs transfected with EGFP possessed the ability to undergo morphologic and phenotypic changes consistent with neural differentiation in vitro. It suggests that these cells might provide an ideal source for further stem cell research with possible therapeutic application for spinal cord injury.
Collapse
|
79
|
Wakao S, Hayashi T, Kitada M, Kohama M, Matsue D, Teramoto N, Ose T, Itokazu Y, Koshino K, Watabe H, Iida H, Takamoto T, Tabata Y, Dezawa M. Long-term observation of auto-cell transplantation in non-human primate reveals safety and efficiency of bone marrow stromal cell-derived Schwann cells in peripheral nerve regeneration. Exp Neurol 2010; 223:537-47. [PMID: 20153320 DOI: 10.1016/j.expneurol.2010.01.022] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2009] [Revised: 01/25/2010] [Accepted: 01/29/2010] [Indexed: 12/13/2022]
Abstract
Based on their differentiation ability, bone marrow stromal cells (MSCs) are a good source for cell therapy. Using a cynomolgus monkey peripheral nervous system injury model, we examined the safety and efficacy of Schwann cells induced from MSCs as a source for auto-cell transplantation therapy in nerve injury. Serial treatment of monkey MSCs with reducing agents and cytokines induced their differentiation into cells with Schwann cell properties at a very high ratio. Expression of Schwann cell markers was confirmed by both immunocytochemistry and reverse transcription-polymerase chain reaction. Induced Schwann cells were used for auto-cell transplantation into the median nerve and followed-up for 1year. No abnormalities were observed in general conditions. Ki67-immunostaining revealed no sign of massive proliferation inside the grafted tube. Furthermore, (18)F-fluorodeoxygluocose-positron emission tomography scanning demonstrated no abnormal accumulation of radioactivity except in regions with expected physiologic accumulation. Restoration of the transplanted nerve was corroborated by behavior analysis, electrophysiology and histological evaluation. Our results suggest that auto-cell transplantation therapy using MSC-derived Schwann cells is safe and effective for accelerating the regeneration of transected axons and for functional recovery of injured nerves. The practical advantages of MSCs are expected to make this system applicable for spinal cord injury and other neurotrauma or myelin disorders where the acceleration of regeneration is expected to enhance functional recovery.
Collapse
Affiliation(s)
- Shohei Wakao
- Department of Stem Cell Biology and Histology, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
80
|
Myelin-forming ability of Schwann cell-like cells induced from rat adipose-derived stem cells in vitro. Brain Res 2008; 1239:49-55. [PMID: 18804456 DOI: 10.1016/j.brainres.2008.08.088] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2008] [Revised: 08/27/2008] [Accepted: 08/28/2008] [Indexed: 12/23/2022]
Abstract
Although Schwann cell (SC) transplantation can enhance peripheral and central nerve repair experimentally, it is difficult to generate sufficient SC quickly for clinical application. So alternative cell systems for SC are desired. SC-like cells induced from adipose-derived stem cells (ADSC) may be one of the ideal alternative cell systems for SC. However, myelin-forming ability, which is the most important characteristics and function of SC, has not been investigated in SC-like cells from ADSC up to now. In this experiment, ADSC were harvested from rat inguinal fat pad. Rat ADSC were fibroblast-like in shape, almost all the cells expressed mesodermal marker fibronectin, and only few cells expressed neural stem cell marker nestin. A mixture of glial growth factors (Heregulin, bFGF, PDGF and forskolin) could induce rat ADSC into SC-like cells. SC-like cells were spindle-like in shape and expressed glial markers GFAP and S100, similar to genuine SC. When intracellular cAMP was increased, SC-like cells could express myelin protein p0. More importantly, when co-cultured with rat pheochromocytoma cell line (PC12 cells), SC-like cells could induce the differentiation of PC12 cells rapidly and form myelin structures with PC12 cells in vitro. Our data further demonstrated that SC-like cells from ADSC were able to form myelins and these cells may benefit the treatment of peripheral and central nerve injuries.
Collapse
|