51
|
Comino-Méndez I, Tejera ÁM, Currás-Freixes M, Remacha L, Gonzalvo P, Tonda R, Letón R, Blasco MA, Robledo M, Cascón A. ATRX driver mutation in a composite malignant pheochromocytoma. Cancer Genet 2016; 209:272-7. [PMID: 27209355 DOI: 10.1016/j.cancergen.2016.04.058] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Revised: 04/01/2016] [Accepted: 04/23/2016] [Indexed: 12/19/2022]
Abstract
Pheochromocytomas (PCCs) and paragangliomas (PGLs) are tumors arising from the adrenal medulla and sympathetic/parasympathetic paraganglia, respectively. Approximately 40% of PCCs/PGLs are due to germline mutations in one of 16 susceptibility genes, and a further 30% are due to somatic alterations in 5 main genes. Recently, somatic ATRX mutations have been found in succinate dehydrogenase (SDH)-associated hereditary PCCs/PGLs. In the present study we applied whole-exome sequencing to the germline and tumor DNA of a patient with metastatic composite PCC and no alterations in known PCC/PGL susceptibility genes. A somatic loss-of-function mutation affecting ATRX was identified in tumor DNA. Transcriptional profiling analysis classified the tumor within cluster 2 of PCCs/PGLs (without SDH gene mutations) and identified downregulation of genes involved in neuronal development and homeostasis (NLGN4, CD99 and CSF2RA) as well as upregulation of Drosha, an important gene involved in miRNA and rRNA processing. CpG island methylator phenotype typical of SDH gene-mutated tumors was ruled out, and SNP array data revealed a unique profile of gains and losses. Finally, we demonstrated the presence of alternative lengthening of telomeres in the tumor, probably associated with the failure of ATRX functions. In conclusion, somatic variants affecting ATRX may play a driver role in sporadic PCC/PGL.
Collapse
Affiliation(s)
- Iñaki Comino-Méndez
- Hereditary Endocrine Cancer Group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Águeda M Tejera
- Telomeres and Telomerase Group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - María Currás-Freixes
- Hereditary Endocrine Cancer Group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Laura Remacha
- Hereditary Endocrine Cancer Group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Pablo Gonzalvo
- Department of Anatomical Pathology, Cabueñes Hospital, Gijón, Spain
| | - Raúl Tonda
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Rocío Letón
- Hereditary Endocrine Cancer Group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - María A Blasco
- Telomeres and Telomerase Group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Mercedes Robledo
- Hereditary Endocrine Cancer Group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain
| | - Alberto Cascón
- Hereditary Endocrine Cancer Group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain.
| |
Collapse
|
52
|
Unzue A, Zhao H, Lolli G, Dong J, Zhu J, Zechner M, Dolbois A, Caflisch A, Nevado C. The “Gatekeeper” Residue Influences the Mode of Binding of Acetyl Indoles to Bromodomains. J Med Chem 2016; 59:3087-97. [DOI: 10.1021/acs.jmedchem.5b01757] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Andrea Unzue
- Department of Chemistry and ‡Department of
Biochemistry, University of Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| | - Hongtao Zhao
- Department of Chemistry and ‡Department of
Biochemistry, University of Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| | - Graziano Lolli
- Department of Chemistry and ‡Department of
Biochemistry, University of Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| | - Jing Dong
- Department of Chemistry and ‡Department of
Biochemistry, University of Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| | - Jian Zhu
- Department of Chemistry and ‡Department of
Biochemistry, University of Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| | - Melanie Zechner
- Department of Chemistry and ‡Department of
Biochemistry, University of Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| | - Aymeric Dolbois
- Department of Chemistry and ‡Department of
Biochemistry, University of Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| | - Amedeo Caflisch
- Department of Chemistry and ‡Department of
Biochemistry, University of Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| | - Cristina Nevado
- Department of Chemistry and ‡Department of
Biochemistry, University of Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| |
Collapse
|
53
|
Ferri E, Petosa C, McKenna CE. Bromodomains: Structure, function and pharmacology of inhibition. Biochem Pharmacol 2015; 106:1-18. [PMID: 26707800 DOI: 10.1016/j.bcp.2015.12.005] [Citation(s) in RCA: 159] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 12/08/2015] [Indexed: 12/22/2022]
Abstract
Bromodomains are epigenetic readers of histone acetylation involved in chromatin remodeling and transcriptional regulation. The human proteome comprises 46 bromodomain-containing proteins with a total of 61 bromodomains, which, despite highly conserved structural features, recognize a wide array of natural peptide ligands. Over the past five years, bromodomains have attracted great interest as promising new epigenetic targets for diverse human diseases, including inflammation, cancer, and cardiovascular disease. The demonstration in 2010 that two small molecule compounds, JQ1 and I-BET762, potently inhibit proteins of the bromodomain and extra-terminal (BET) family with translational potential for cancer and inflammatory disease sparked intense efforts in academia and pharmaceutical industry to develop novel bromodomain antagonists for therapeutic applications. Several BET inhibitors are already in clinical trials for hematological malignancies, solid tumors and cardiovascular disease. Currently, the field faces the challenge of single-target selectivity, especially within the BET family, and of overcoming problems related to the development of drug resistance. At the same time, new trends in bromodomain inhibitor research are emerging, including an increased interest in non-BET bromodomains and a focus on drug synergy with established antitumor agents to improve chemotherapeutic efficacy. This review presents an updated view of the structure and function of bromodomains, traces the development of bromodomain inhibitors and their potential therapeutic applications, and surveys the current challenges and future directions of this vibrant new field in drug discovery.
Collapse
Affiliation(s)
- Elena Ferri
- Department of Chemistry, Dana and David Dornsife College of Letters, Arts and Sciences, University of Southern California, University Park Campus, Los Angeles, CA 90089, United States
| | - Carlo Petosa
- Université Grenoble Alpes, Institut de Biologie Structurale (IBS), 71 Avenue des Martyrs, 38044 Grenoble, France; Centre National de la Recherche Scientifique, IBS, 38044 Grenoble, France; Commissariat à l'Energie Atomique et aux Energies Alternatives, IBS, 38044 Grenoble, France
| | - Charles E McKenna
- Department of Chemistry, Dana and David Dornsife College of Letters, Arts and Sciences, University of Southern California, University Park Campus, Los Angeles, CA 90089, United States.
| |
Collapse
|
54
|
Romero FA, Taylor AM, Crawford TD, Tsui V, Côté A, Magnuson S. Disrupting Acetyl-Lysine Recognition: Progress in the Development of Bromodomain Inhibitors. J Med Chem 2015; 59:1271-98. [PMID: 26572217 DOI: 10.1021/acs.jmedchem.5b01514] [Citation(s) in RCA: 150] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Bromodomains, small protein modules that recognize acetylated lysine on histones, play a significant role in the epigenome, where they function as "readers" that ultimately determine the functional outcome of the post-translational modification. Because the initial discovery of selective BET inhibitors have helped define the role of that protein family in oncology and inflammation, BET bromodomains have continued to garner the most attention of any other bromodomain. More recently, non-BET bromodomain inhibitors that are potent and selective have been disclosed for ATAD2, CBP, BRD7/9, BRPF, BRPF/TRIM24, CECR2, SMARCA4, and BAZ2A/B. Such novel inhibitors can be used to probe the physiological function of these non-BET bromodomains and further understanding of their role in certain disease states. Here, we provide an update to the progress in identifying selective bromodomain inhibitors and their use as biological tools, as well as our perspective on the field.
Collapse
Affiliation(s)
- F Anthony Romero
- Discovery Chemistry, Genentech, Inc. 1 DNA Way, South San Francisco, California 94080, United States
| | - Alexander M Taylor
- Constellation Pharmaceuticals, Inc. 215 First Street, Suite 200, Cambridge, Massachusetts 02142, United States
| | - Terry D Crawford
- Discovery Chemistry, Genentech, Inc. 1 DNA Way, South San Francisco, California 94080, United States
| | - Vickie Tsui
- Discovery Chemistry, Genentech, Inc. 1 DNA Way, South San Francisco, California 94080, United States
| | - Alexandre Côté
- Constellation Pharmaceuticals, Inc. 215 First Street, Suite 200, Cambridge, Massachusetts 02142, United States
| | - Steven Magnuson
- Discovery Chemistry, Genentech, Inc. 1 DNA Way, South San Francisco, California 94080, United States
| |
Collapse
|
55
|
Narayan G, Xie D, Ishdorj G, Scotto L, Mansukhani M, Pothuri B, Wright JD, Kaufmann AM, Schneider A, Arias-Pulido H, Murty VV. Epigenetic inactivation of TRAIL decoy receptors at 8p12-21.3 commonly deleted region confers sensitivity to Apo2L/trail-Cisplatin combination therapy in cervical cancer. Genes Chromosomes Cancer 2015; 55:177-89. [PMID: 26542757 DOI: 10.1002/gcc.22325] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 09/30/2015] [Accepted: 10/06/2015] [Indexed: 01/20/2023] Open
Abstract
Multiple chromosomal regions are affected by deletions in cervical cancer (CC) genomes, but their consequence and target gene involvement remains unknown. Our single nucleotide polymorphism (SNP) array identified 8p copy number losses localized to an 8.4 Mb minimal deleted region (MDR) in 36% of CC. The 8p MDR was associated with tumor size, treatment outcome, and with multiple HPV infections. Genetic, epigenetic, and expression analyses of candidate genes at MDR identified promoter hypermethylation and/or inactivation of decoy receptors TNFRSF10C and TNFRSF10D in the majority of CC patients. TNFRSF10C methylation was also detected in precancerous lesions suggesting that this change is an early event in cervical tumorigenesis. We further demonstrate here that CC cell lines exhibiting downregulated expression of TNFRSF10C and/or TNFRSF10D effectively respond to TRAIL-induced apoptosis and this affect was synergistic in combination with DNA damaging chemotherapeutic drugs. We show that the CC cell lines harboring epigenetic inactivation of TRAIL decoy receptors effectively activate downstream caspases suggesting a critical role of inactivation of these genes in efficient execution of extrinsic apoptotic pathway and therapy response. Therefore, these findings shed new light on the role of genetic/epigenetic defects in TRAIL decoy receptor genes in the pathogenesis of CC and provide an opportunity to explore strategies to test decoy receptor gene inactivation as a biomarker of response to Apo2L/TRAIL-combination therapy.
Collapse
Affiliation(s)
- Gopeshwar Narayan
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY
| | - Dongxu Xie
- Institute for Cancer Genetics, Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, NY
| | - Ganchimeg Ishdorj
- Institute for Cancer Genetics, Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, NY
| | - Luigi Scotto
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY.,Department of Medicine, Columbia University Medical Center, New York, NY
| | - Mahesh Mansukhani
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY
| | - Bhavana Pothuri
- Gynecologic Oncology, Columbia University Medical Center, New York, NY
| | - Jason D Wright
- Gynecologic Oncology, Columbia University Medical Center, New York, NY
| | - Andreas M Kaufmann
- Department of Gynecology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Achim Schneider
- Department of Gynecology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Hugo Arias-Pulido
- Department of Radiology, Geisel School of Medicine at Dartmouth College, Lebanon, NH
| | - Vundavalli V Murty
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY.,Institute for Cancer Genetics, Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, NY
| |
Collapse
|
56
|
Abstract
BACKGROUND High attrition rates in drug discovery call for new approaches to improve target validation. Academia is filling gaps, but often lacks the experience and resources of the pharmaceutical industry resulting in poorly characterized tool compounds. DISCUSSION The SGC has established an open access chemical probe consortium, currently encompassing ten pharmaceutical companies. One of its mandates is to create well-characterized inhibitors (chemical probes) for epigenetic targets to enable new biology and target validation for drug development. CONCLUSION Epigenetic probe compounds have proven to be very valuable and have not only spurred a plethora of novel biological findings, but also provided starting points for clinical trials. These probes have proven to be critical complementation to traditional genetic targeting strategies and provided sometimes surprising results.
Collapse
Affiliation(s)
- Peter J Brown
- Structural Genomics Consortium, University of Toronto, 101 College Street, Toronto, ON M5G 1L7, Canada
| | - Susanne Müller
- Structural Genomics Consortium, University of Oxford, NDM Research Building, Roosevelt Drive, Oxford, OX3 7FZ, UK
| |
Collapse
|
57
|
An Optimization-Driven Analysis Pipeline to Uncover Biomarkers and Signaling Paths: Cervix Cancer. MICROARRAYS 2015; 4:287-310. [PMID: 26388997 PMCID: PMC4573573 DOI: 10.3390/microarrays4020287] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Establishing how a series of potentially important genes might relate to each other is relevant to understand the origin and evolution of illnesses, such as cancer. High-throughput biological experiments have played a critical role in providing information in this regard. A special challenge, however, is that of trying to conciliate information from separate microarray experiments to build a potential genetic signaling path. This work proposes a two-step analysis pipeline, based on optimization, to approach meta-analysis aiming to build a proxy for a genetic signaling path.
Collapse
|
58
|
Clark PGK, Vieira LCC, Tallant C, Fedorov O, Singleton DC, Rogers CM, Monteiro OP, Bennett JM, Baronio R, Müller S, Daniels DL, Méndez J, Knapp S, Brennan PE, Dixon DJ. LP99: Discovery and Synthesis of the First Selective BRD7/9 Bromodomain Inhibitor. Angew Chem Int Ed Engl 2015; 54:6217-21. [PMID: 25864491 PMCID: PMC4449114 DOI: 10.1002/anie.201501394] [Citation(s) in RCA: 130] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Revised: 03/05/2015] [Indexed: 11/06/2022]
Abstract
The bromodomain-containing proteins BRD9 and BRD7 are part of the human SWI/SNF chromatin-remodeling complexes BAF and PBAF. To date, no selective inhibitor for BRD7/9 has been reported despite its potential value as a biological tool or as a lead for future therapeutics. The quinolone-fused lactam LP99 is now reported as the first potent and selective inhibitor of the BRD7 and BRD9 bromodomains. Development of LP99 from a fragment hit was expedited through balancing structure-based inhibitor design and biophysical characterization against tractable chemical synthesis: Complexity-building nitro-Mannich/lactamization cascade processes allowed for early structure-activity relationship studies whereas an enantioselective organocatalytic nitro-Mannich reaction enabled the synthesis of the lead scaffold in enantioenriched form and on scale. This epigenetic probe was shown to inhibit the association of BRD7 and BRD9 to acetylated histones in vitro and in cells. Moreover, LP99 was used to demonstrate that BRD7/9 plays a role in regulating pro-inflammatory cytokine secretion.
Collapse
Affiliation(s)
- Peter G K Clark
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford, OX1 3TA (UK)
| | - Lucas C C Vieira
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford, OX1 3TA (UK)
| | - Cynthia Tallant
- Structural Genomics Consortium & Target Discovery Institute, University of Oxford, NDM Research Building, Roosevelt Drive, Oxford, OX3 7DQ and OX3 7FZ (UK)
| | - Oleg Fedorov
- Structural Genomics Consortium & Target Discovery Institute, University of Oxford, NDM Research Building, Roosevelt Drive, Oxford, OX3 7DQ and OX3 7FZ (UK)
| | - Dean C Singleton
- Structural Genomics Consortium & Target Discovery Institute, University of Oxford, NDM Research Building, Roosevelt Drive, Oxford, OX3 7DQ and OX3 7FZ (UK)
| | - Catherine M Rogers
- Structural Genomics Consortium & Target Discovery Institute, University of Oxford, NDM Research Building, Roosevelt Drive, Oxford, OX3 7DQ and OX3 7FZ (UK)
| | - Octovia P Monteiro
- Structural Genomics Consortium & Target Discovery Institute, University of Oxford, NDM Research Building, Roosevelt Drive, Oxford, OX3 7DQ and OX3 7FZ (UK)
| | - James M Bennett
- Structural Genomics Consortium & Target Discovery Institute, University of Oxford, NDM Research Building, Roosevelt Drive, Oxford, OX3 7DQ and OX3 7FZ (UK)
| | - Roberta Baronio
- Structural Genomics Consortium & Target Discovery Institute, University of Oxford, NDM Research Building, Roosevelt Drive, Oxford, OX3 7DQ and OX3 7FZ (UK)
| | - Susanne Müller
- Structural Genomics Consortium & Target Discovery Institute, University of Oxford, NDM Research Building, Roosevelt Drive, Oxford, OX3 7DQ and OX3 7FZ (UK)
| | | | - Jacqui Méndez
- Promega Corporation, 2800 Woods Hollow Road, Madison, W153611 (USA)
| | - Stefan Knapp
- Structural Genomics Consortium & Target Discovery Institute, University of Oxford, NDM Research Building, Roosevelt Drive, Oxford, OX3 7DQ and OX3 7FZ (UK)
| | - Paul E Brennan
- Structural Genomics Consortium & Target Discovery Institute, University of Oxford, NDM Research Building, Roosevelt Drive, Oxford, OX3 7DQ and OX3 7FZ (UK).
| | - Darren J Dixon
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford, OX1 3TA (UK).
| |
Collapse
|
59
|
Theodoulou NH, Bamborough P, Bannister AJ, Becher I, Bit RA, Che KH, Chung CW, Dittmann A, Drewes G, Drewry DH, Gordon L, Grandi P, Leveridge M, Lindon M, Michon AM, Molnar J, Robson SC, Tomkinson NCO, Kouzarides T, Prinjha RK, Humphreys PG. Discovery of I-BRD9, a Selective Cell Active Chemical Probe for Bromodomain Containing Protein 9 Inhibition. J Med Chem 2015; 59:1425-39. [PMID: 25856009 DOI: 10.1021/acs.jmedchem.5b00256] [Citation(s) in RCA: 169] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Acetylation of histone lysine residues is one of the most well-studied post-translational modifications of chromatin, selectively recognized by bromodomain "reader" modules. Inhibitors of the bromodomain and extra terminal domain (BET) family of bromodomains have shown profound anticancer and anti-inflammatory properties, generating much interest in targeting other bromodomain-containing proteins for disease treatment. Herein, we report the discovery of I-BRD9, the first selective cellular chemical probe for bromodomain-containing protein 9 (BRD9). I-BRD9 was identified through structure-based design, leading to greater than 700-fold selectivity over the BET family and 200-fold over the highly homologous bromodomain-containing protein 7 (BRD7). I-BRD9 was used to identify genes regulated by BRD9 in Kasumi-1 cells involved in oncology and immune response pathways and to the best of our knowledge, represents the first selective tool compound available to elucidate the cellular phenotype of BRD9 bromodomain inhibition.
Collapse
Affiliation(s)
- Natalie H Theodoulou
- Epinova Discovery Performance Unit, GlaxoSmithKline R&D , Stevenage, Hertfordshire SG1 2NY, U.K.,WestCHEM, Department of Pure and Applied Chemistry, Thomas Graham Building, University of Strathclyde , 295 Cathedral Street, Glasgow G1 1XL, U.K
| | - Paul Bamborough
- Computational & Structural Chemistry, Molecular Discovery Research, GlaxoSmithKline R&D , Stevenage, Hertfordshire SG1 2NY, U.K
| | - Andrew J Bannister
- Department of Pathology, Gurdon Institute , Tennis Court Road, Cambridge CB2 1QN, U.K
| | - Isabelle Becher
- Cellzome GmbH, Molecular Discovery Research, GlaxoSmithKline R&D , Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Rino A Bit
- Epinova Discovery Performance Unit, GlaxoSmithKline R&D , Stevenage, Hertfordshire SG1 2NY, U.K
| | - Ka Hing Che
- Department of Pathology, Gurdon Institute , Tennis Court Road, Cambridge CB2 1QN, U.K
| | - Chun-wa Chung
- Computational & Structural Chemistry, Molecular Discovery Research, GlaxoSmithKline R&D , Stevenage, Hertfordshire SG1 2NY, U.K
| | - Antje Dittmann
- Cellzome GmbH, Molecular Discovery Research, GlaxoSmithKline R&D , Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Gerard Drewes
- Cellzome GmbH, Molecular Discovery Research, GlaxoSmithKline R&D , Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - David H Drewry
- Department of Chemical Biology, GlaxoSmithKline , Research Triangle Park, North Carolina 27709, United States
| | - Laurie Gordon
- Biological Sciences, Molecular Discovery Research, GlaxoSmithKline R&D , Stevenage, Hertfordshire SG1 2NY, U.K
| | - Paola Grandi
- Cellzome GmbH, Molecular Discovery Research, GlaxoSmithKline R&D , Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Melanie Leveridge
- Biological Sciences, Molecular Discovery Research, GlaxoSmithKline R&D , Stevenage, Hertfordshire SG1 2NY, U.K
| | - Matthew Lindon
- Epinova Discovery Performance Unit, GlaxoSmithKline R&D , Stevenage, Hertfordshire SG1 2NY, U.K
| | - Anne-Marie Michon
- Cellzome GmbH, Molecular Discovery Research, GlaxoSmithKline R&D , Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Judit Molnar
- Epinova Discovery Performance Unit, GlaxoSmithKline R&D , Stevenage, Hertfordshire SG1 2NY, U.K
| | - Samuel C Robson
- Department of Pathology, Gurdon Institute , Tennis Court Road, Cambridge CB2 1QN, U.K
| | - Nicholas C O Tomkinson
- WestCHEM, Department of Pure and Applied Chemistry, Thomas Graham Building, University of Strathclyde , 295 Cathedral Street, Glasgow G1 1XL, U.K
| | - Tony Kouzarides
- Department of Pathology, Gurdon Institute , Tennis Court Road, Cambridge CB2 1QN, U.K
| | - Rab K Prinjha
- Epinova Discovery Performance Unit, GlaxoSmithKline R&D , Stevenage, Hertfordshire SG1 2NY, U.K
| | - Philip G Humphreys
- Epinova Discovery Performance Unit, GlaxoSmithKline R&D , Stevenage, Hertfordshire SG1 2NY, U.K
| |
Collapse
|
60
|
Clark PGK, Vieira LCC, Tallant C, Fedorov O, Singleton DC, Rogers CM, Monteiro OP, Bennett JM, Baronio R, Müller S, Daniels DL, Méndez J, Knapp S, Brennan PE, Dixon DJ. LP99: Discovery and Synthesis of the First Selective BRD7/9 Bromodomain Inhibitor. ACTA ACUST UNITED AC 2015; 127:6315-6319. [PMID: 27346896 PMCID: PMC4871321 DOI: 10.1002/ange.201501394] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Revised: 03/05/2015] [Indexed: 01/29/2023]
Abstract
The bromodomain‐containing proteins BRD9 and BRD7 are part of the human SWI/SNF chromatin‐remodeling complexes BAF and PBAF. To date, no selective inhibitor for BRD7/9 has been reported despite its potential value as a biological tool or as a lead for future therapeutics. The quinolone‐fused lactam LP99 is now reported as the first potent and selective inhibitor of the BRD7 and BRD9 bromodomains. Development of LP99 from a fragment hit was expedited through balancing structure‐based inhibitor design and biophysical characterization against tractable chemical synthesis: Complexity‐building nitro‐Mannich/lactamization cascade processes allowed for early structure–activity relationship studies whereas an enantioselective organocatalytic nitro‐Mannich reaction enabled the synthesis of the lead scaffold in enantioenriched form and on scale. This epigenetic probe was shown to inhibit the association of BRD7 and BRD9 to acetylated histones in vitro and in cells. Moreover, LP99 was used to demonstrate that BRD7/9 plays a role in regulating pro‐inflammatory cytokine secretion.
Collapse
Affiliation(s)
- Peter G K Clark
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford, OX1 3TA (UK)
| | - Lucas C C Vieira
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford, OX1 3TA (UK)
| | - Cynthia Tallant
- Structural Genomics Consortium & Target Discovery Institute, University of Oxford, NDM Research Building, Roosevelt Drive, Oxford, OX3 7DQ and OX3 7FZ (UK)
| | - Oleg Fedorov
- Structural Genomics Consortium & Target Discovery Institute, University of Oxford, NDM Research Building, Roosevelt Drive, Oxford, OX3 7DQ and OX3 7FZ (UK)
| | - Dean C Singleton
- Structural Genomics Consortium & Target Discovery Institute, University of Oxford, NDM Research Building, Roosevelt Drive, Oxford, OX3 7DQ and OX3 7FZ (UK)
| | - Catherine M Rogers
- Structural Genomics Consortium & Target Discovery Institute, University of Oxford, NDM Research Building, Roosevelt Drive, Oxford, OX3 7DQ and OX3 7FZ (UK)
| | - Octovia P Monteiro
- Structural Genomics Consortium & Target Discovery Institute, University of Oxford, NDM Research Building, Roosevelt Drive, Oxford, OX3 7DQ and OX3 7FZ (UK)
| | - James M Bennett
- Structural Genomics Consortium & Target Discovery Institute, University of Oxford, NDM Research Building, Roosevelt Drive, Oxford, OX3 7DQ and OX3 7FZ (UK)
| | - Roberta Baronio
- Structural Genomics Consortium & Target Discovery Institute, University of Oxford, NDM Research Building, Roosevelt Drive, Oxford, OX3 7DQ and OX3 7FZ (UK)
| | - Susanne Müller
- Structural Genomics Consortium & Target Discovery Institute, University of Oxford, NDM Research Building, Roosevelt Drive, Oxford, OX3 7DQ and OX3 7FZ (UK)
| | | | - Jacqui Méndez
- Promega Corporation, 2800 Woods Hollow Road, Madison, W153611 (USA)
| | - Stefan Knapp
- Structural Genomics Consortium & Target Discovery Institute, University of Oxford, NDM Research Building, Roosevelt Drive, Oxford, OX3 7DQ and OX3 7FZ (UK)
| | - Paul E Brennan
- Structural Genomics Consortium & Target Discovery Institute, University of Oxford, NDM Research Building, Roosevelt Drive, Oxford, OX3 7DQ and OX3 7FZ (UK)
| | - Darren J Dixon
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford, OX1 3TA (UK)
| |
Collapse
|
61
|
Picaud S, Strocchia M, Terracciano S, Lauro G, Mendez J, Daniels D, Riccio R, Bifulco G, Bruno I, Filippakopoulos P. 9H-purine scaffold reveals induced-fit pocket plasticity of the BRD9 bromodomain. J Med Chem 2015; 58:2718-36. [PMID: 25703523 PMCID: PMC4403932 DOI: 10.1021/jm501893k] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Indexed: 12/20/2022]
Abstract
The 2-amine-9H-purine scaffold was identified as a weak bromodomain template and was developed via iterative structure based design into a potent nanomolar ligand for the bromodomain of human BRD9 with small residual micromolar affinity toward the bromodomain of BRD4. Binding of the lead compound 11 to the bromodomain of BRD9 results in an unprecedented rearrangement of residues forming the acetyllysine recognition site, affecting plasticity of the protein in an induced-fit pocket. The compound does not exhibit any cytotoxic effect in HEK293 cells and displaces the BRD9 bromodomain from chromatin in bioluminescence proximity assays without affecting the BRD4/histone complex. The 2-amine-9H-purine scaffold represents a novel template that can be further modified to yield highly potent and selective tool compounds to interrogate the biological role of BRD9 in diverse cellular systems.
Collapse
Affiliation(s)
- Sarah Picaud
- Nuffield
Department of Clinical Medicine, Structural
Genomics Consortium, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford OX3 7DQ, U.K.
| | - Maria Strocchia
- Department
of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy
| | - Stefania Terracciano
- Department
of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy
| | - Gianluigi Lauro
- Department
of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy
| | - Jacqui Mendez
- Promega
Corporation, 2800 Woods
Hollow Road, Madison, Wisconsin 53711, United States
| | - Danette
L. Daniels
- Promega
Corporation, 2800 Woods
Hollow Road, Madison, Wisconsin 53711, United States
| | - Raffaele Riccio
- Department
of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy
| | - Giuseppe Bifulco
- Department
of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy
| | - Ines Bruno
- Department
of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy
| | - Panagis Filippakopoulos
- Nuffield
Department of Clinical Medicine, Structural
Genomics Consortium, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford OX3 7DQ, U.K.
- Nuffield
Department of Clinical Medicine, Ludwig
Cancer Research, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford OX3 7DQ, U.K.
| |
Collapse
|
62
|
Camacho CV, Todorova PK, Gillam MC, Tomimatsu N, del Alcazar CRG, Ilcheva M, Mukherjee B, McEllin B, Vemireddy V, Hatanpaa K, Story MD, Habib AA, Murty VV, Bachoo R, Burma S. DNA double-strand breaks cooperate with loss of Ink4 and Arf tumor suppressors to generate glioblastomas with frequent Met amplification. Oncogene 2015; 34:1064-72. [PMID: 24632607 PMCID: PMC4167163 DOI: 10.1038/onc.2014.29] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Revised: 12/31/2013] [Accepted: 01/01/2014] [Indexed: 12/15/2022]
Abstract
Glioblastomas (GBM) are highly radioresistant and lethal brain tumors. Ionizing radiation (IR)-induced DNA double-strand breaks (DSBs) are a risk factor for the development of GBM. In this study, we systematically examined the contribution of IR-induced DSBs to GBM development using transgenic mouse models harboring brain-targeted deletions of key tumor suppressors frequently lost in GBM, namely Ink4a, Ink4b, Arf and/or PTEN. Using low linear energy transfer (LET) X-rays to generate simple breaks or high LET HZE particles (Fe ions) to generate complex breaks, we found that DSBs induce high-grade gliomas in these mice which, otherwise, do not develop gliomas spontaneously. Loss of Ink4a and Arf was sufficient to trigger IR-induced glioma development but additional loss of Ink4b significantly increased tumor incidence. We analyzed IR-induced tumors for copy number alterations to identify oncogenic changes that were generated and selected for as a consequence of stochastic DSB events. We found Met amplification to be the most significant oncogenic event in these radiation-induced gliomas. Importantly, Met activation resulted in the expression of Sox2, a GBM cancer stem cell marker, and was obligatory for tumor formation. In sum, these results indicate that radiation-induced DSBs cooperate with loss of Ink4 and Arf tumor suppressors to generate high-grade gliomas that are commonly driven by Met amplification and activation.
Collapse
Affiliation(s)
- Cristel V. Camacho
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX
| | - Pavlina K. Todorova
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX
| | - Molly C. Gillam
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX
| | - Nozomi Tomimatsu
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX
| | | | - Mariya Ilcheva
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX
| | - Bipasha Mukherjee
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX
| | - Brian McEllin
- Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, Dallas, TX
| | - Vamsidhara Vemireddy
- Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, Dallas, TX
| | - Kimmo Hatanpaa
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX
| | - Michael D. Story
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX
| | - Amyn A. Habib
- Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, Dallas, TX
- VA North Texas Health Care System, Dallas, TX
| | - Vundavalli V. Murty
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY
| | - Robert Bachoo
- Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, Dallas, TX
| | - Sandeep Burma
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX
| |
Collapse
|
63
|
Li G, Gan Y, Fan Y, Wu Y, Lin H, Song Y, Cai X, Yu X, Pan W, Yao M, Gu J, Tu H. Enriched environment inhibits mouse pancreatic cancer growth and down-regulates the expression of mitochondria-related genes in cancer cells. Sci Rep 2015; 5:7856. [PMID: 25598223 PMCID: PMC4297951 DOI: 10.1038/srep07856] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Accepted: 12/17/2014] [Indexed: 01/02/2023] Open
Abstract
Psycho-social stress has been suggested to influence the development of cancer, but it remains poorly defined with regard to pancreatic cancer, a lethal malignancy with few effective treatment modalities. In this study, we sought to investigate the impacts of enriched environment (EE) housing, a rodent model of "eustress", on the growth of mouse pancreatic cancer, and to explore the potential underlying mechanisms through gene expression profiling. The EE mice showed significantly reduced tumor weights in both subcutaneous (53%) and orthotopic (41%) models, while each single component of EE (inanimate stimulation, social stimulation or physical exercise) was not profound enough to achieve comparative anti-tumor effects as EE. The integrative transcriptomic and proteomic analysis revealed that in response to EE, a total of 129 genes in the tumors showed differential expression at both the mRNA and protein levels. The differentially expressed genes were mostly localized to the mitochondria and enriched in the citrate cycle and oxidative phosphorylation pathways. Interestingly, nearly all of the mitochondria-related genes were down-regulated by EE. Our data have provided experimental evidence in favor of the application of positive stress or of benign environmental stimulation in pancreatic cancer therapy.
Collapse
Affiliation(s)
- Guohua Li
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, 25/Ln. 2200 Xietu Road, Shanghai 200032, China
| | - Yu Gan
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, 25/Ln. 2200 Xietu Road, Shanghai 200032, China
| | - Yingchao Fan
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, 25/Ln. 2200 Xietu Road, Shanghai 200032, China
| | - Yufeng Wu
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, 25/Ln. 2200 Xietu Road, Shanghai 200032, China
| | - Hechun Lin
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, 25/Ln. 2200 Xietu Road, Shanghai 200032, China
| | - Yanfang Song
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, 25/Ln. 2200 Xietu Road, Shanghai 200032, China
| | - Xiaojin Cai
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, 25/Ln. 2200 Xietu Road, Shanghai 200032, China
| | - Xiang Yu
- Institute of Neuroscience and State Key Laboratory of Neuroscience, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Weihong Pan
- Blood-Brain Barrier Group, Pennington Biomedical Research Center, 6400 Perkins Road, Baton Rouge, LA 70808, United States
| | - Ming Yao
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, 25/Ln. 2200 Xietu Road, Shanghai 200032, China
| | - Jianren Gu
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, 25/Ln. 2200 Xietu Road, Shanghai 200032, China
| | - Hong Tu
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, 25/Ln. 2200 Xietu Road, Shanghai 200032, China
| |
Collapse
|
64
|
Role of microRNAs in cancers of the female reproductive tract: insights from recent clinical and experimental discovery studies. Clin Sci (Lond) 2014; 128:153-80. [PMID: 25294164 DOI: 10.1042/cs20140087] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
microRNAs (miRNAs) are small RNA molecules that represent the top of the pyramid of many tumorigenesis cascade pathways as they have the ability to affect multiple, intricate, and still undiscovered downstream targets. Understanding how miRNA molecules serve as master regulators in these important networks involved in cancer initiation and progression open up significant innovative areas for therapy and diagnosis that have been sadly lacking for deadly female reproductive tract cancers. This review will highlight the recent advances in the field of miRNAs in epithelial ovarian cancer, endometrioid endometrial cancer and squamous-cell cervical carcinoma focusing on studies associated with actual clinical information in humans. Importantly, recent miRNA profiling studies have included well-characterized clinical specimens of female reproductive tract cancers, allowing for studies correlating miRNA expression with clinical outcomes. This review will summarize the current thoughts on the role of miRNA processing in unique miRNA species present in these cancers. In addition, this review will focus on current data regarding miRNA molecules as unique biomarkers associated with clinically significant outcomes such as overall survival and chemotherapy resistance. We will also discuss why specific miRNA molecules are not recapitulated across multiple studies of the same cancer type. Although the mechanistic contributions of miRNA molecules to these clinical phenomena have been confirmed using in vitro and pre-clinical mouse model systems, these studies are truly only the beginning of our understanding of the roles miRNAs play in cancers of the female reproductive tract. This review will also highlight useful areas for future research regarding miRNAs as therapeutic targets in cancers of the female reproductive tract.
Collapse
|
65
|
Houldsworth J. FHACT: the FISH-based HPV-associated cancer test that detects nonrandom gain at four genomic loci as biomarkers of disease progression. Expert Rev Mol Diagn 2014; 14:921-34. [DOI: 10.1586/14737159.2014.965685] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
66
|
Liao S, Xiao S, Zhu G, Zheng D, He J, Pei Z, Li G, Zhou Y. CD38 is highly expressed and affects the PI3K/Akt signaling pathway in cervical cancer. Oncol Rep 2014; 32:2703-9. [PMID: 25310288 DOI: 10.3892/or.2014.3537] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Accepted: 09/02/2014] [Indexed: 11/06/2022] Open
Abstract
Cervical cancer is the second most common cancer and the fifth most deadly malignancy in females worldwide, affecting 500,000 individuals each year. It is the leading cause of cancer mortality among women in developing countries. Dysregulated activation of genes, such as CD44, SOX9 and SKP2, plays a role in cervical cancer. CD38 is known to be involved in activities typical of cell surface receptors, such as signaling for activation and proliferation events and heterotypic cell adhesion. CD38 contributes to disease progression and relapse in certain tumors, such as acute myeloid and chronic lymphocytic leukemia. To the best of our knowledge, there is currently no report on the relationship between CD38 and cervical cancer. Using qPCR, immunohistochemistry, and western blot analysis, the expression levels of CD38 were investigated and found to be upregulated in cervical cancer. CD38 was correlated with dysregulation of the phosphatidylinositol 3-kinase (PI3K)/Akt signaling pathway in cervical cancer tissues in vitro. At the same time, CD38 overexpression affected the expression of PI3K, Akt, MDM2 and p53 in vivo. The results of the present study suggested that CD38 is highly expressed in cervical carcinoma tissues and play an important role in dysregulation of the PI3K/Akt signaling pathway.
Collapse
Affiliation(s)
- Shan Liao
- Hunan Provincial Tumor Hospital and The Tumor Hospital Affiliated to Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, P.R. China
| | - Songshu Xiao
- Department of Gynecology and Obstetrics, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, P.R. China
| | - Guangchao Zhu
- Hunan Provincial Tumor Hospital and The Tumor Hospital Affiliated to Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, P.R. China
| | - Danwei Zheng
- Hunan Provincial Tumor Hospital and The Tumor Hospital Affiliated to Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, P.R. China
| | - Junyu He
- Hunan Provincial Tumor Hospital and The Tumor Hospital Affiliated to Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, P.R. China
| | - Zhen Pei
- Hunan Provincial Tumor Hospital and The Tumor Hospital Affiliated to Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, P.R. China
| | - Guiyuan Li
- Hunan Provincial Tumor Hospital and The Tumor Hospital Affiliated to Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, P.R. China
| | - Yanhong Zhou
- Hunan Provincial Tumor Hospital and The Tumor Hospital Affiliated to Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, P.R. China
| |
Collapse
|
67
|
Sharma G, Dua P, Agarwal SM. A Comprehensive Review of Dysregulated miRNAs Involved in Cervical Cancer. Curr Genomics 2014; 15:310-23. [PMID: 25132800 PMCID: PMC4133953 DOI: 10.2174/1389202915666140528003249] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Revised: 05/19/2014] [Accepted: 05/27/2014] [Indexed: 02/06/2023] Open
Abstract
MicroRNAs(miRNAs) have become the center of interest in oncology. In recent years, various studies have demonstrated that miRNAs regulate gene expression by influencing important regulatory genes and thus are responsible for causing cervical cancer. Cervical cancer being the third most diagnosed cancer among the females worldwide, is the fourth leading cause of cancer related mortality. Prophylactic human papillomavirus (HPV) vaccines and new HPV screening tests, combined with traditional Pap test screening have greatly reduced cervical cancer. Yet, thousands of women continue to be diagnosed with and die of this preventable disease annually. This has necessitated the scientists to ponder over ways of evolving new methods and chalk out novel treatment protocols/strategies. As miRNA deregulation plays a key role in malignant transformation of cervical cancer along with its targets that can be exploited for both prognostic and therapeutic strategies, we have collected and reviewed the role of miRNA in cervical cancer. A systematic search was performed using PubMed for articles that report aberrant expression of miRNA in cervical cancer. The present review provides comprehensive information for 246 differentially expressed miRNAs gathered from 51 published articles that have been implicated in cervical cancer progression. Of these, more than 40 miRNAs have been reported in the literature in several instances signifying their role in the regulation of cancer. We also identified 40 experimentally validated targets, studied the cause of miRNAs dysregulation along with its mechanism and role in different stages of cervical cancer. We also identified and analysed miRNA clusters and their expression pattern in cervical cancer. This review is expected to further enhance our understanding in this field and serve as a valuable reference resource.
Collapse
Affiliation(s)
- Garima Sharma
- Bioinformatics Division, Institute of Cytology and Preventive Oncology, Noida-201301, India
| | - Pradeep Dua
- Central Council for Research in Ayurvedic Sciences (CCRAS), New Delhi-110058, India
| | - Subhash Mohan Agarwal
- Bioinformatics Division, Institute of Cytology and Preventive Oncology, Noida-201301, India
| |
Collapse
|
68
|
Kuglik P, Smetana J, Vallova V, Moukova L, Kasikova K, Cvanova M, Brozova L. Genome-wide screening of DNA copy number alterations in cervical carcinoma patients with CGH+SNP microarrays and HPV-FISH. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2014; 7:5071-5082. [PMID: 25197380 PMCID: PMC4152070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Accepted: 06/24/2014] [Indexed: 06/03/2023]
Abstract
Alterations in the genome that lead to changes in DNA sequence copy number are characteristic features of solid tumors. We used CGH+SNP microarray and HPV-FISH techniques for detailed screening of copy number alterations (CNAs) in a cohort of 26 patients with cervical carcinoma (CC). This approach identified CNAs in 96.2% (25/26) of tumors. Array-CGH discovered CNAs in 73.1% (19/26) of samples, HPV-FISH experiments revealed CNAs in additional 23.1% (6/26) of samples. Common gains of genetic sequences were observed in 3q (50.0%), 1q (42.4%), 19q (23.1%), while losses were frequently found in 11q (30.8%), 4q (23.1%) and 13q (19.2%). Chromosomal regions involved in loss of heterozygosity were observed in 15.4% of samples in 8q21, 11q23, 14q21 and 18q12.2. Incidence of gain 3q was associated with HPV 16 and HPV 18 positive samples and simultaneous presence of gain 1q (P = 0.033). We did not found a correlation between incidence of CNAs identified by array-CGH and HPV strain infection and incidence of lymph node metastases. Subsequently, HPV-FISH was used for validation of array-CGH results in 23 patients for incidence of hTERC (3q26) and MYC (8q24) amplification. Using HPV-FISH, we found chromosomal lesions of hTERC in 87.0% and MYC in 65.2% of specimens. Our findings confirmed the important role of HPV infection and specific genomic alterations in the development of invasive cervical cancer. This study also indicates that CGH+SNP microarrays allow detecting genome-wide CNAs and copy-neutral loss of heterozygosity more precisely, however, it may be less sensitive than FISH in samples with low level clonal CNAs.
Collapse
Affiliation(s)
- Petr Kuglik
- Laboratory of Molecular Cytogenetics, Institute of Experimental Biology, Faculty of Science, Masaryk UniversityBrno, Czech Republic
- Department of Medical Genetics, University HospitalBrno, Czech Republic
| | - Jan Smetana
- Laboratory of Molecular Cytogenetics, Institute of Experimental Biology, Faculty of Science, Masaryk UniversityBrno, Czech Republic
- Department of Medical Genetics, University HospitalBrno, Czech Republic
| | - Vladimira Vallova
- Laboratory of Molecular Cytogenetics, Institute of Experimental Biology, Faculty of Science, Masaryk UniversityBrno, Czech Republic
- Department of Medical Genetics, University HospitalBrno, Czech Republic
| | - Lucie Moukova
- Department of Gynecological Oncology, Masaryk Memorial Cancer InstituteBrno, Czech Republic
| | - Katerina Kasikova
- Laboratory of Molecular Cytogenetics, Institute of Experimental Biology, Faculty of Science, Masaryk UniversityBrno, Czech Republic
- Department of Medical Genetics, University HospitalBrno, Czech Republic
| | - Michaela Cvanova
- Institute of Biostatistics and Analyses, Faculty of Medicine and Faculty of Science, Masaryk UniversityBrno, Czech Republic
| | - Lucie Brozova
- Institute of Biostatistics and Analyses, Faculty of Medicine and Faculty of Science, Masaryk UniversityBrno, Czech Republic
| |
Collapse
|
69
|
Impact of gene dosage on gene expression, biological processes and survival in cervical cancer: a genome-wide follow-up study. PLoS One 2014; 9:e97842. [PMID: 24879114 PMCID: PMC4039463 DOI: 10.1371/journal.pone.0097842] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Accepted: 04/25/2014] [Indexed: 12/20/2022] Open
Abstract
We investigated the role of tumor copy number (CN)–altered genome (CN-AG) in the carcinogenesis of cervical cancer (CC), especially its effect on gene expression, biological processes, and patient survival. Fifty-nine human papillomavirus 16 (HPV16)-positive CCs were investigated with microarrays–31 for mapping CN-AG and 55 for global gene expression, with 27 CCs in common. Five-year survival was investigated in 55 patients. Deletions and amplifications >2.5 Mb were defined as CN alterations. The %CN-AG varied from 0 to 32.2% (mean = 8.1±8.9). Tumors were classified as low (mean = 0.5±0.6, n = 11), medium (mean = 5.4±2.4, n = 10), or high (mean = 19.2±6.6, n = 10) CN. The highest %CN-AG was found in 3q, which contributed an average of 55% of all CN alterations. Genome-wide, only 5.3% of CN-altered genes were deregulated directly by gene dosage. In contrast, the rate in fully duplicated 3q was twice as high. Amplification of 3q explained 23.2% of deregulated genes in whole tumors (r2 = 0.232, p = 0.006; analysis of variance), including genes located in 3q and other chromosomes. A total of 862 genes were deregulated exclusively in high-CN tumors, but only 22.9% were CN altered. This suggests that the remaining genes are not deregulated directly by gene dosage, but by mechanisms induced in trans by CN-altered genes. Anaphase-promoting complex/cyclosome (APC/C)-dependent proteasome proteolysis, glycolysis, and apoptosis were upregulated, whereas cell adhesion and angiogenesis were downregulated exclusively in high-CN tumors. The high %CN-AG and upregulated gene expression profile of APC/C-dependent proteasome proteolysis were associated with poor patient survival (p<0.05, log-rank test). Along with glycolysis, they were linearly associated with FIGO stage (r>0.38, p<0.01, Spearman test). Therefore, inhibition of APC/C-dependent proteasome proteolysis and glycolysis could be useful for CC treatment. However, whether they are indispensable for tumor growth remains to be demonstrated.
Collapse
|
70
|
Caffarel MM, Coleman N. Oncostatin M receptor is a novel therapeutic target in cervical squamous cell carcinoma. J Pathol 2014; 232:386-90. [PMID: 24659184 PMCID: PMC4260121 DOI: 10.1002/path.4305] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Revised: 11/13/2013] [Accepted: 11/14/2013] [Indexed: 12/25/2022]
Abstract
Cervical carcinoma is the second most common cause of cancer deaths in women worldwide. Treatments have not changed for decades and survival rates for advanced disease remain low. An exciting new molecular target for the treatment of cervical squamous cell carcinoma (SCC), and possibly for SCCs at other anatomical sites, is the oncostatin M receptor (OSMR). This cell surface cytokine receptor is commonly copy number gained and overexpressed in advanced cervical SCC, changes that are associated with significantly worse clinical outcomes. OSMR overexpression in cervical SCC cells results in enhanced responsiveness to the major ligand oncostatin M (OSM), which induces several pro-malignant effects, including a pro-angiogenic phenotype and increased cell migration and invasiveness. OSMR is a strong candidate for antibody-mediated inhibition, a strategy that has had a major impact on haematological malignancies and various solid tumours such as HER2-positive breast cancers.
Collapse
|
71
|
Abstract
About 20 years have passed since the discovery of the first microRNA (miRNA) and by now microRNAs are implicated in a variety of physiological and pathological processes. Since the discovery of the powerful effect miRNAs have on biological processes, it has been suggested that mutations affecting miRNA function may play a role in the pathogenesis of human diseases. Over the past several years microRNAs have been found to play a major role in various human diseases. In addition, many studies aim to apply miRNAs for diagnostic and therapeutic applications in human diseases. In this chapter, we summarize the role of miRNAs in pathological processes and discuss how miRNAs could be used as disease biomarkers.
Collapse
Affiliation(s)
- Kemal Uğur Tüfekci
- Department of Neuroscience, Institute of Health Science, University of Dokuz Eylul, Izmir, Turkey
| | | | | | | |
Collapse
|
72
|
Yuan L, Chu H, Wang M, Gu X, Shi D, Ma L, Zhong D, Du M, Li P, Tong N, Fu G, Qin C, Yin C, Zhang Z. Genetic variation in DROSHA 3'UTR regulated by hsa-miR-27b is associated with bladder cancer risk. PLoS One 2013; 8:e81524. [PMID: 24312312 PMCID: PMC3842954 DOI: 10.1371/journal.pone.0081524] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Accepted: 10/14/2013] [Indexed: 12/02/2022] Open
Abstract
Purpose miRNAs can regulate the biological processes, including differentiation, proliferation and apoptosis. DICER and DROSHA are two members of RNase III family, playing pivotal roles in the pathway of miRNAs biogenesis. In this study, we hypothesized that genetic variations of the DICER and DROSHA genes were associated with the bladder cancer risk. Experimental Design We performed a case-control study of 685 bladder cancer cases and 730 controls to investigate the association between the seven functional SNPs of DICER and DROSHA genes and bladder cancer risk. We then evaluated the functionality of the important SNPs. Results We found that rs10719T>C polymorphism located in 3’ untranslated region (UTR) of DROSHA gene was associated with the increased risk of bladder cancer. Stratified analysis suggested that rs10719TC/CC genotype can increase risk of bladder cancer among male patients (Adjusted OR = 1.34, 95% CI = 1.05-1.70, P = 0.018), and ever smokers (1.56, 1.14-2.14, 0.006), compared with TT genotype. Furthermore, DROSHA rs10719T>C polymorphism was predicted to regulate the binding activity of hsa-miR-27a/b. Luciferase reported gene assay confirmed that rs10719 T to G substitution disrupted the binding site for hsa-miR-27b, resulting the increased levels of DROSHA protein. Conclusions Taken together, these findings suggested that DROSHA rs10719T>C polymorphism may be associated with bladder cancer risk in a Chinese population, and hsa-miR-27b can influence the expression of DROSHA protein by binding with 3’UTR.
Collapse
Affiliation(s)
- Lin Yuan
- Department of Urology, Jiangsu Province Hospital of TCM, Nanjing, China
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing, China
| | - Haiyan Chu
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing, China
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Cancer Center, Nanjing Medical University, Nanjing, China
- Department of Genetic Toxicology, the Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Meilin Wang
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing, China
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Cancer Center, Nanjing Medical University, Nanjing, China
- Department of Genetic Toxicology, the Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Xiaojian Gu
- Department of Urology, Jiangsu Province Hospital of TCM, Nanjing, China
| | - Danni Shi
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Cancer Center, Nanjing Medical University, Nanjing, China
| | - Lan Ma
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Cancer Center, Nanjing Medical University, Nanjing, China
| | - Dongyan Zhong
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Cancer Center, Nanjing Medical University, Nanjing, China
| | - Mulong Du
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Cancer Center, Nanjing Medical University, Nanjing, China
| | - Pu Li
- Department of Urology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Na Tong
- Department of Genetic Toxicology, the Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Guangbo Fu
- Department of Urology, the Huai-An First Affiliated Hospital of Nanjing Medical University, Huai-An, China
| | - Chao Qin
- Department of Urology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Changjun Yin
- Department of Urology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Zhengdong Zhang
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing, China
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Cancer Center, Nanjing Medical University, Nanjing, China
- Department of Genetic Toxicology, the Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
- * E-mail:
| |
Collapse
|
73
|
Srivastava P, Mangal M, Agarwal SM. Understanding the transcriptional regulation of cervix cancer using microarray gene expression data and promoter sequence analysis of a curated gene set. Gene 2013; 535:233-8. [PMID: 24291025 DOI: 10.1016/j.gene.2013.11.028] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2013] [Revised: 11/12/2013] [Accepted: 11/15/2013] [Indexed: 02/08/2023]
Abstract
Cervical cancer, the malignant neoplasm of the cervix uteri is the second most common cancer among women worldwide and the top-most cancer in India. Several factors are responsible for causing cervical cancer, which alter the expression of oncogenic genes resulting in up or down-regulation of gene expression and inactivation of tumor-suppressor genes/gene products. Gene expression is regulated by interactions between transcription factors (TFs) and specific regulatory elements in the promoter regions of target genes. Thus, it is important to decipher and analyze TFs that bind to regulatory regions of diseased genes and regulate their expression. In the present study, computational methods involving the combination of gene expression data from microarray experiments and promoter sequence analysis of a curated gene set involved in the cervical cancer causation have been utilized for identifying potential regulatory elements. Consensus predictions of two approaches led to the identification of twelve TFs that might be crucial to the regulation of cervical cancer progression. Subsequently, TF enrichment and oncomine expression analysis suggested that the transcription factor family E2F played an important role for the regulation of genes involve in cervical carcinogenesis. Our results suggest that E2F possesses diagnostic/prognostic value and can act as a potential drug target in cervical cancer.
Collapse
Affiliation(s)
- Prashant Srivastava
- Integrative Genomics and Medicine, MRC Clinical Sciences, Imperial College, London, UK
| | - Manu Mangal
- Bioinformatics Division, Institute of Cytology and Preventive Oncology, Noida-201301, India
| | - Subhash Mohan Agarwal
- Bioinformatics Division, Institute of Cytology and Preventive Oncology, Noida-201301, India.
| |
Collapse
|
74
|
Caffarel MM, Chattopadhyay A, Araujo AM, Bauer J, Scarpini CG, Coleman N. Tissue transglutaminase mediates the pro-malignant effects of oncostatin M receptor over-expression in cervical squamous cell carcinoma. J Pathol 2013; 231:168-79. [PMID: 23765377 PMCID: PMC4288975 DOI: 10.1002/path.4222] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Revised: 05/23/2013] [Accepted: 06/01/2013] [Indexed: 01/06/2023]
Abstract
Oncostatin M receptor (OSMR) is commonly over-expressed in advanced cervical squamous cell carcinoma (SCC), producing a significantly worse clinical outcome. Cervical SCC cells that over-express OSMR show enhanced responsiveness to the major ligand OSM, which induces multiple pro-malignant effects, including increased cell migration and invasiveness. Here, we show that tissue transglutaminase (TGM2) is an important mediator of the ligand-dependent phenotypic effects of OSMR over-expression in SCC cells. TGM2 expression correlated with disease progression and with OSMR levels in clinical samples of cervical and oral SCC. TGM2 depletion in cervical SCC cells abrogated OSM-induced migration on fibronectin-coated surfaces and invasiveness through extracellular matrix, while ectopic expression of TGM2 increased cell motility and invasiveness. Confocal microscopy and co-immunoprecipitation assays showed that TGM2 interacted with integrin-α5β1 in the presence of fibronectin in cervical SCC cells, with OSM treatment strengthening the interaction. Importantly, integrin-α5β1 and fibronectin were also over-expressed in cervical and oral SCC, where levels correlated with those of OSMR and TGM2. This combined tissue and in vitro study demonstrates for the first time that stimulation of over-expressed OSMR in cervical SCC cells activates TGM2/integrin-α5β1 interactions and induces pro-malignant changes. We conclude that an OSMR/TGM2/integrin-α5β1/fibronectin pathway is of biological significance in cervical SCC and a candidate for therapeutic targeting.
Collapse
|
75
|
Ronchi CL, Sbiera S, Leich E, Henzel K, Rosenwald A, Allolio B, Fassnacht M. Single nucleotide polymorphism array profiling of adrenocortical tumors--evidence for an adenoma carcinoma sequence? PLoS One 2013; 8:e73959. [PMID: 24066089 PMCID: PMC3774745 DOI: 10.1371/journal.pone.0073959] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Accepted: 07/25/2013] [Indexed: 12/20/2022] Open
Abstract
Adrenocortical tumors consist of benign adenomas and highly malignant carcinomas with a still incompletely understood pathogenesis. A total of 46 adrenocortical tumors (24 adenomas and 22 carcinomas) were investigated aiming to identify novel genes involved in adrenocortical tumorigenesis. High-resolution single nucleotide polymorphism arrays (Affymetrix) were used to detect copy number alterations (CNAs) and copy neutral losses of heterozygosity (cnLOH). Genomic clustering showed good separation between adenomas and carcinomas, with best partition including only chromosome 5, which was highly amplified in 17/22 malignant tumors. The malignant tumors had more relevant genomic aberrations than benign tumors, such as a higher median number of recurrent CNA (2631 vs 94), CNAs >100 Kb (62.5 vs 7) and CN losses (72.5 vs 5.5), and a higher percentage of samples with cnLOH (91% vs 29%). Within the carcinoma cohort, a precise genetic pattern (i.e. large gains at chr 5, 7, 12, and 19, and losses at chr 1, 2, 13, 17, and 22) was associated with a better prognosis (overall survival: 72.2 vs 35.4 months, P=0.063). Interestingly, >70% of gains frequent in beningn were also present in malignant tumors. Notch signaling was the most frequently involved pathway in both tumor entities. Finally, a CN gain at imprinted “IGF2” locus chr 11p15.5 appeared to be an early alteration in a multi-step tumor progression, followed by the loss of one or two alleles, associated with increased IGF2 expression, only in carcinomas. Our study serves as database for the identification of genes and pathways, such as Notch signaling, which could be involved in the pathogenesis of adrenocortical tumors. Using these data, we postulate an adenoma-carcinoma sequence for these tumors.
Collapse
Affiliation(s)
- Cristina L. Ronchi
- Endocrine and Diabetes Unit, Department of Internal Medicine I, University Hospital, University of Würzburg, Wuerzburg, Germany
- * E-mail:
| | - Silviu Sbiera
- Endocrine and Diabetes Unit, Department of Internal Medicine I, University Hospital, University of Würzburg, Wuerzburg, Germany
- Department of Internal Medicine IV, University Hospital, Ludwig-Maximilian-University Munich, Munich, Germany
| | - Ellen Leich
- Institute of Pathology, University of Würzburg, Wuerzburg, Germany
| | - Katharina Henzel
- Endocrine and Diabetes Unit, Department of Internal Medicine I, University Hospital, University of Würzburg, Wuerzburg, Germany
| | | | - Bruno Allolio
- Endocrine and Diabetes Unit, Department of Internal Medicine I, University Hospital, University of Würzburg, Wuerzburg, Germany
| | - Martin Fassnacht
- Endocrine and Diabetes Unit, Department of Internal Medicine I, University Hospital, University of Würzburg, Wuerzburg, Germany
- Department of Internal Medicine IV, University Hospital, Ludwig-Maximilian-University Munich, Munich, Germany
| |
Collapse
|
76
|
Diaz-Padilla I, Monk BJ, Mackay HJ, Oaknin A. Treatment of metastatic cervical cancer: future directions involving targeted agents. Crit Rev Oncol Hematol 2012; 85:303-14. [PMID: 22883215 DOI: 10.1016/j.critrevonc.2012.07.006] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2012] [Revised: 07/11/2012] [Accepted: 07/18/2012] [Indexed: 12/23/2022] Open
Abstract
Cervical cancer is the third most common cause of female cancer mortality, and it remains a major health problem in populations with limited economic resources. Metastatic disease or recurrent lesions not amenable to radical local excision or regional radiation have a poor prognosis, and are treated with palliative platinum-based chemotherapy. There are few effective therapeutic options for patients who progressed after first-line chemotherapy. Future advances in the treatment of metastatic or recurrent disease may rely on more effective and better-tolerated therapies, and molecularly driven targeted agents could represent an attractive option. Inhibition of tumor angiogenesis and epidermal growth factor receptor directed therapies have focused the most recent clinical research efforts. A thorough molecular characterization of cervical cancer remains crucial for a rationale implementation of targeted agents and companion biomarkers. Alternative clinical trial designs may also be necessary to optimize the clinical development of new drugs for metastatic cervical cancer.
Collapse
Affiliation(s)
- Ivan Diaz-Padilla
- Division of Medical Oncology and Hematology, Princess Margaret Hospital, University of Toronto, 610 University Avenue, Toronto, Ontario M5G 2M9, Canada.
| | | | | | | |
Collapse
|
77
|
Amplified genes may be overexpressed, unchanged, or downregulated in cervical cancer cell lines. PLoS One 2012; 7:e32667. [PMID: 22412903 PMCID: PMC3296745 DOI: 10.1371/journal.pone.0032667] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2011] [Accepted: 01/30/2012] [Indexed: 11/19/2022] Open
Abstract
Several copy number-altered regions (CNAs) have been identified in the genome of cervical cancer, notably, amplifications of 3q and 5p. However, the contribution of copy-number alterations to cervical carcinogenesis is unresolved because genome-wide there exists a lack of correlation between copy-number alterations and gene expression. In this study, we investigated whether CNAs in the cell lines CaLo, CaSki, HeLa, and SiHa were associated with changes in gene expression. On average, 19.2% of the cell-line genomes had CNAs. However, only 2.4% comprised minimal recurrent regions (MRRs) common to all the cell lines. Whereas 3q had limited common gains (13%), 5p was entirely duplicated recurrently. Genome-wide, only 15.6% of genes located in CNAs changed gene expression; in contrast, the rate in MRRs was up to 3 times this. Chr 5p was confirmed entirely amplified by FISH; however, maximum 33.5% of the explored genes in 5p were deregulated. In 3q, this rate was 13.4%. Even in 3q26, which had 5 MRRs and 38.7% recurrently gained SNPs, the rate was only 15.1%. Interestingly, up to 19% of deregulated genes in 5p and 73% in 3q26 were downregulated, suggesting additional factors were involved in gene repression. The deregulated genes in 3q and 5p occurred in clusters, suggesting local chromatin factors may also influence gene expression. In regions amplified discontinuously, downregulated genes increased steadily as the number of amplified SNPs increased (p<0.01, Spearman's correlation). Therefore, partial gene amplification may function in silencing gene expression. Additional genes in 1q, 3q and 5p could be involved in cervical carcinogenesis, specifically in apoptosis. These include PARP1 in 1q, TNFSF10 and ECT2 in 3q and CLPTM1L, AHRR, PDCD6, and DAP in 5p. Overall, gene expression and copy-number profiles reveal factors other than gene dosage, like epigenetic or chromatin domains, may influence gene expression within the entirely amplified genome segments.
Collapse
|
78
|
Li CF, Wang JM, Kang HY, Huang CK, Wang JW, Fang FM, Wang YH, Wu WR, Li SH, Yu SC, Lee JC, Lan J, Shiue YL, Wu LC, Huang HY. Characterization of gene amplification-driven SKP2 overexpression in myxofibrosarcoma: potential implications in tumor progression and therapeutics. Clin Cancer Res 2012; 18:1598-610. [PMID: 22322669 DOI: 10.1158/1078-0432.ccr-11-3077] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Myxofibrosarcoma remains obscure in molecular determinants of clinical aggressiveness, for which we elucidated implications of SKP2 amplification. EXPERIMENTAL DESIGN Array comparative genomic hybridization was applied on samples and cell lines (NMFH-1 to OH931) to search causal genes of tumor progression. SKP2 gene dosage was determined in 82 independent tumors for clinical correlates. Stable SKP2 knockdown was achieved in myxofibrosarcoma cells to assess its oncogenic attributes and candidate mediators in prometastatic function. Pharmacologic assays were evaluated in vitro and in vivo for the therapeutic relevance of bortezomib. RESULTS DNA gains frequently involved 5p in which three amplicons were differentially overrepresented in samples behaving unfavorably, encompassing mRNA-upregulated TRIO, SKP2, and AMACR genes. Detected in NMFH-1 cells and 38% of tumors, SKP2 amplification was associated with SKP2 immunoexpression and adverse prognosticators and independently predictive of worse outcomes. Nevertheless, SKP2-expressing OH931 cells and 14% of such tumors lacked gene amplification. Knockdown of SKP2 suppressed proliferation, anchorage-independent growth, migration, and invasion of sarcoma cells and downregulated motility-promoting genes, including ITGB2, ACTN1, IGF1, and ENAH. In vitro, bortezomib downregulated SKP2 expression at the mRNA level with p27(kip1) accumulation, induced caspase activation, and decreased cell viability in myxofibrosarcoma cells but not in fibroblasts. In vivo, bortezomib inhibited growth of NMFH-1 xenografts, the cells of which displayed decreased SKP2 expression but increased p27(kip1) and terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL). CONCLUSIONS As a predominant mechanism driving protein overexpression, SKP2 amplification confers tumor aggressiveness in myxofibrosarcoma. The sensitivity of myxofibrosarcoma cells to bortezomib with SKP2-repressing effect indicates the potentiality of ubiquitin-proteasome pathway as a therapeutic target.
Collapse
Affiliation(s)
- Chien-Feng Li
- Department of Pathology, National Institute of Cancer Research, Taiwan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
79
|
Gallagher MF, Heffron CC, Laios A, O'Toole SA, Ffrench B, Smyth PC, Flavin RJ, Elbaruni SA, Spillane CD, Martin CM, Sheils OM, O'Leary JJ. Suppression of cancer stemness p21-regulating mRNA and microRNA signatures in recurrent ovarian cancer patient samples. J Ovarian Res 2012; 5:2. [PMID: 22260314 PMCID: PMC3285047 DOI: 10.1186/1757-2215-5-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2011] [Accepted: 01/19/2012] [Indexed: 01/05/2023] Open
Abstract
Background Malignant ovarian disease is characterised by high rates of mortality due to high rates of recurrent chemoresistant disease. Anecdotal evidence indicates this may be due to chemoresistant properties of cancer stem cells (CSCs). However, our understanding of the role of CSCs in recurrent ovarian disease remains sparse. In this study we used gene microarrays and meta-analysis of our previously published microRNA (miRNA) data to assess the involvement of cancer stemness signatures in recurrent ovarian disease. Methods Microarray analysis was used to characterise early regulation events in an embryonal carcinoma (EC) model of cancer stemness. This was then compared to our previously published microarray data from a study of primary versus recurrent ovarian disease. In parallel, meta-analysis was used to identify cancer stemness miRNA signatures in tumor patient samples. Results Microarray analysis demonstrated a 90% difference between gene expression events involved in early regulation of differentiation in murine EC (mEC) and embryonic stem (mES) cells. This contrasts the known parallels between mEC and mES cells in the undifferentiated and well-differentiated states. Genelist comparisons identified a cancer stemness signature set of genes in primary versus recurrent data, a subset of which are known p53-p21 regulators. This signature is present in primary and recurrent or in primary alone but essentially never in recurrent tumors specifically. Meta-analysis of miRNA expression showed a much stronger cancer stemness signature within tumor samples. This miRNA signature again related to p53-p21 regulation and was expressed prominently in recurrent tumors. Our data indicate that the regulation of p53-p21 in ovarian cancer involves, at least partially, a cancer stemness component. Conclusion We present a p53-p21 cancer stemness signature model for ovarian cancer. We propose that this may, at least partially, differentially regulate the p53-p21 mechanism in ovarian disease. Targeting CSCs within ovarian cancer represents a potential therapeutic avenue.
Collapse
Affiliation(s)
- Michael F Gallagher
- Department of Histopathology, University of Dublin, Trinity College, Trinity Centre for Health Sciences, St James' Hospital, Dublin 8, Ireland.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
80
|
Oskowitz AZ, Penfornis P, Tucker A, Prockop DJ, Pochampally R. Drosha regulates hMSCs cell cycle progression through a miRNA independent mechanism. Int J Biochem Cell Biol 2011; 43:1563-72. [PMID: 21794839 PMCID: PMC3476475 DOI: 10.1016/j.biocel.2011.07.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2010] [Revised: 06/29/2011] [Accepted: 07/11/2011] [Indexed: 12/19/2022]
Abstract
Recently we demonstrated that the miRNA regulate human mesenchymal stem cells (hMSCs) differentiation. To determine the role of the miRNA pathway in hMSCs proliferation, Drosha and Dicer knockdown hMSCs were generated using a lentiviral based tetracycline inducible shRNA. hMSCs with reduced Drosha expression had a significantly reduced proliferation rate, while hMSCs with reduced Dicer expression displayed a proliferation rate similar to untransduced cells. Cell cycle analysis identified that unlike Dicer knockdown, Drosha knockdown hMSCs contained an increased number of G1 phase cells, with a reduced level of cells in S phase, compared to controls. ELISAs of hMSCs revealed decreased levels of pRB and stable levels of total RB with Drosha knockdown. Two key regulators of the G1/S phase transition, cyclin dependent kinase inhibitor 2A (p16) and cyclin dependent kinase inhibitor 2B (p15), were increased in Drosha knockdown cells but not in Dicer knockdown. Transcripts of 28S and 18S rRNA were significantly reduced in Drosha knockdown hMSCs, with no change in rRNA levels in Dicer knockdown hMSCs. 45S pre-rRNA transcripts were not significantly different in either knockdown model. The above results indicate that Drosha modifies hMSCs proliferation through a miRNA independent mechanism, potentially by regulating rRNA processing.
Collapse
Affiliation(s)
- Adam Z Oskowitz
- Center for Stem Cell Research and Regenerative Medicine, New Orleans, LA 70112, U.S.A
| | - Patrice Penfornis
- Center for Stem Cell Research and Regenerative Medicine, New Orleans, LA 70112, U.S.A
| | - Alan Tucker
- Center for Stem Cell Research and Regenerative Medicine, New Orleans, LA 70112, U.S.A
| | - Darwin J Prockop
- Center for Stem Cell Research and Regenerative Medicine, New Orleans, LA 70112, U.S.A
- Department of Biochemistry Tulane University Health Sciences Center, New Orleans, LA 70112, U.S.A
| | - Radhika Pochampally
- Center for Stem Cell Research and Regenerative Medicine, New Orleans, LA 70112, U.S.A
- Department of Pharmacology, New Orleans, LA 70112, U.S.A
| |
Collapse
|
81
|
Winder DM, Chattopadhyay A, Muralidhar B, Bauer J, English WR, Zhang X, Karagavriilidou K, Roberts I, Pett MR, Murphy G, Coleman N. Overexpression of the oncostatin M receptor in cervical squamous cell carcinoma cells is associated with a pro-angiogenic phenotype and increased cell motility and invasiveness. J Pathol 2011; 225:448-62. [DOI: 10.1002/path.2968] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2011] [Revised: 06/28/2011] [Accepted: 06/30/2011] [Indexed: 01/07/2023]
|
82
|
Akagi I, Miyashita M, Ishibashi O, Mishima T, Kikuchi K, Makino H, Nomura T, Hagiwara N, Uchida E, Takizawa T. Relationship between altered expression levels of MIR21, MIR143, MIR145, and MIR205 and clinicopathologic features of esophageal squamous cell carcinoma. Dis Esophagus 2011; 24:523-30. [PMID: 21453382 DOI: 10.1111/j.1442-2050.2011.01177.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
In spite of the undisputed importance of altered expression patterns of microRNAs (miRNAs) in various cancers, there is little information on the clinicopathologic significance of cancer-related miRNAs (MIR21, MIR143, MIR144, MIR145, and MIR205) in esophageal squamous cell carcinoma (ESCC). We examined the expression levels of the precursor and mature miRNA genes in ESCC using real-time polymerase chain reaction (PCR). We also investigated the mRNA expression levels of processing elements (RNASEN, DGCR8, and DICER1) that participate in miRNA-biogenesis pathway. Furthermore, we analyzed the relationships between the expression levels of these five miRNAs and the clinicopathologic parameters of ESCC patients. The expression levels of mature MIR21 and mature MIR145 were higher in ESCC than those in normal epithelium (P < 0.05). The mature/pre ratio of MIR21 in ESCC was higher than that in normal epithelium (P < 0.05). With regard to miRNA-processing elements, the expression level of RNASEN was higher in ESCC than in normal epithelium (P < 0.05). Furthermore, altered expression of these miRNAs was related to the clinicopathologic features of ESCC patients. The high expression of mature MIR21 and mature MIR205 was associated with lymph node positivity in ESCC patients (P < 0.05). The high levels of expression of mature MIR143 and mature MIR145 were associated with recurrence of metastasis in ESCC patients (P < 0.05). The findings may imply that miRNA biogenesis is aberrantly accelerated in ESCC. Analysis of the expression levels of miRNAs should provide useful information for evaluation of the staging, prognosis, and treatment of ESCC patients.
Collapse
Affiliation(s)
- I Akagi
- Division of Surgery for Organ Function and Biological Regulation, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
83
|
Lam AKY, Gopalan V, Nassiri MR, Kasim K, Dissanayake J, Tang JCO, Smith RA. Altered JS-2 expression in colorectal cancers and its clinical pathological relevance. Mol Oncol 2011; 5:475-81. [PMID: 21802380 DOI: 10.1016/j.molonc.2011.06.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2011] [Accepted: 06/23/2011] [Indexed: 01/05/2023] Open
Abstract
JS-2 is a novel gene located at 5p15.2 and originally detected in primary oesophageal cancer. There is no study on the role of JS-2 in colorectal cancer. The aim of this study is to determine the gene copy number and expression of JS-2 in a large cohort of patients with colorectal tumours and correlate these to the clinicopathological features of the cancer patients. We evaluated the DNA copy number and mRNA expression of JS-2 in 176 colorectal tissues (116 adenocarcinomas, 30 adenomas and 30 non-neoplastic tissues) using real-time polymerase chain reaction. JS-2 expression was also evaluated in two colorectal cancer cell lines and a benign colorectal cell line. JS-2 amplification was noted in 35% of the colorectal adenocarcinomas. Significant differences in relative expression levels for JS-2 mRNA between different colorectal tissues were noted (p = 0.05). Distal colorectal adenocarcinoma had significantly higher copy number than proximal adenocarcinoma (p = 0.005). The relative expression level of JS-2 was different between colonic and rectal adenocarcinoma (p = 0.007). Mucinous adenocarcinoma showed higher JS-2 expression than non-mucinous adenocarcinoma (p = 0.02). Early T-stage cancers appear to have higher JS-2 copy number and lower expression of JS-2 mRNA than later stage cancers (p = 0.001 and 0.03 respectively). Colorectal cancer cell lines showed lower expression of JS-2 than the benign colorectal cell line. JS-2 copy number change and expression were shown for the first time to be altered in the carcinogenesis of colorectal cancer. In addition, genetic alteration of JS-2 was found to be related to location, pathological subtypes and staging of colorectal cancer.
Collapse
Affiliation(s)
- Alfred King-Yin Lam
- Department of Pathology, Griffith Medical School, Gold Coast Campus, Gold Coast QLD 4222, Australia.
| | | | | | | | | | | | | |
Collapse
|
84
|
Muralidhar B, Winder D, Murray M, Palmer R, Barbosa-Morais N, Saini H, Roberts I, Pett M, Coleman N. Functional evidence that Drosha overexpression in cervical squamous cell carcinoma affects cell phenotype and microRNA profiles. J Pathol 2011; 224:496-507. [PMID: 21590768 DOI: 10.1002/path.2898] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2010] [Revised: 03/03/2011] [Accepted: 03/08/2011] [Indexed: 12/27/2022]
Abstract
Although gain of chromosome 5p is one of the most frequent DNA copy-number imbalances in cervical squamous cell carcinoma (SCC), the genes that drive its selection remain poorly understood. In a previous cross-sectional clinical study, we showed that the microRNA processor Drosha (located on chromosome 5p) demonstrates frequent copy-number gain and overexpression in cervical SCC, associated with altered microRNA profiles. Here, we have conducted gene depletion/overexpression experiments to demonstrate the functional significance of up-regulated Drosha in cervical SCC cells. Drosha depletion by RNA interference (RNAi) produced significant, specific reductions in cell motility/invasiveness in vitro, with a silent RNAi-resistant Drosha mutation providing phenotype rescue. Unsupervised hierarchical clustering following global profiling of 319 microRNAs in 18 cervical SCC cell line specimens generated two groups according to Drosha expression levels. Altering Drosha levels in individual SCC lines changed the group into which the cells clustered, with gene depletion effects being rescued by the RNAi-resistant mutation. Forty-five microRNAs showed significant differential expression between the groups, including four of 14 that were differentially expressed in association with Drosha levels in clinical samples. miR-31 up-regulation in Drosha-overexpressing samples/cell lines was the highest-ranked change (by adjusted p value) in both analyses, an observation validated by northern blotting. These functional data support the role of Drosha as an oncogene in cervical SCC, by affecting expression of cancer-associated microRNAs that have the potential to regulate numerous protein-coding genes.
Collapse
Affiliation(s)
- Balaji Muralidhar
- Medical Research Council Cancer Cell Unit, Hutchison/MRC Research Centre, Hills Road, Cambridge, CB2 0XZ, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
85
|
Zheng ZM, Wang X. Regulation of cellular miRNA expression by human papillomaviruses. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2011; 1809:668-77. [PMID: 21616186 DOI: 10.1016/j.bbagrm.2011.05.005] [Citation(s) in RCA: 152] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 03/17/2011] [Revised: 04/20/2011] [Accepted: 05/09/2011] [Indexed: 12/17/2022]
Abstract
High-risk HPV infection leads to aberrant expression of cellular oncogenic and tumor suppressive miRNAs. A large number of these miRNA genes are downstream targets of the transcription factors c-Myc, p53, and E2F and their expression can therefore be modulated by oncogenic HPV E6 and E7. Cervical cancer represents a unique tumor model for understanding how viral E6 and E7 oncoproteins deregulate the expression of the miR-15/16 cluster, miR-17-92 family, miR-21, miR-23b, miR-34a, and miR-106b/93/25 cluster via the E6-p53 and E7-pRb pathways. Moreover, miRNAs may influence the expression of papillomavirus genes in a differentiation-dependent manner by targeting viral RNA transcripts. Cellular miRNAs affecting HPV DNA replication are of great interest and will be a future focus. We are entering an era focusing on miRNA and noncoding RNA, and the studies on HPV and host miRNA interactions will continue shedding more light on our understanding of the HPV life cycle and the mechanistic underpinnings of HPV-induced oncogenesis. This article is part of a Special Issue entitled: "MicroRNAs in viral gene regulation".
Collapse
Affiliation(s)
- Zhi-Ming Zheng
- National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| | | |
Collapse
|
86
|
Lei J, Mesters JR, Brunn AV, Hilgenfeld R. Crystal structure of the middle domain of human poly(A)-binding protein-interacting protein 1. Biochem Biophys Res Commun 2011; 408:680-5. [DOI: 10.1016/j.bbrc.2011.04.088] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2011] [Accepted: 04/19/2011] [Indexed: 10/18/2022]
|
87
|
Narayan G, Murty VV. Integrative genomic approaches in cervical cancer: implications for molecular pathogenesis. Future Oncol 2011; 6:1643-52. [PMID: 21062161 DOI: 10.2217/fon.10.114] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Cervical cancer (CC) as a single diagnostic entity exhibits differences in clinical behavior and poor outcomes in response to therapy in advanced tumors. Although infection of high-risk human papillomavirus is recognized as an important initiating event in cervical tumorigenesis, stratification of CC into subclasses for progression and response to treatment remains elusive. Existing knowledge of genetic, epigenetic and transcriptional alterations is inadequate in addressing the issues of diagnosis, progression and response to treatment. Recent technological advances in high-throughput genomics and the application of integrative approaches have greatly accelerated gene discovery, facilitating the identification of molecular targets. In this article, we discuss the results obtained by preliminary integrative analysis of DNA copy number increases and gene expression, utilizing the two most common copy number-gained regions of 5p and 20q in identifying gene targets in CC. These analyses provide insights into the roles of genes such as RNASEN, POLS and SKP2 on 5p, KIF3B, RALY and E2F1 at 20q11.2 and CSE1L, ZNF313 and B4GALT5 at 20q13.13. Future integrative applications using additional datasets, such as mutations, DNA methylation and clinical outcomes, will raise the promise of accomplishing the identification of biological pathways and molecular targets for therapies for patients with CC.
Collapse
Affiliation(s)
- Gopeshwar Narayan
- Department of Pathology & Cell Biology, Institute for Cancer Genetics, Columbia University Medical Center, 1130 St. Nicholas Avenue, New York, NY, USA
| | | |
Collapse
|
88
|
Variability in the incidence of miRNAs and genes in fragile sites and the role of repeats and CpG islands in the distribution of genetic material. PLoS One 2010; 5:e11166. [PMID: 20567512 PMCID: PMC2887363 DOI: 10.1371/journal.pone.0011166] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2010] [Accepted: 05/26/2010] [Indexed: 12/13/2022] Open
Abstract
Background Chromosomal fragile sites are heritable specific loci especially prone to breakage. Some of them are associated with human genetic disorders and several studies have demonstrated their importance in genome instability in cancer. MicroRNAs (miRNAs) are small non-coding RNAs responsible of post-transcriptional gene regulation and their involvement in several diseases such as cancer has been widely demonstrated. The altered expression of miRNAs is sometimes due to chromosomal rearrangements and epigenetic events, thus it is essential to study miRNAs in the context of their genomic locations, in order to find significant correlations between their aberrant expression and the phenotype. Principal Findings Here we use statistical models to study the incidence of human miRNA genes on fragile sites and their association with cancer-specific translocation breakpoints, repetitive elements, and CpG islands. Our results show that, on average, fragile sites are denser in miRNAs and also in protein coding genes. However, the distribution of miRNAs and protein coding genes in fragile versus non-fragile sites depends on chromosome. We find also a positive correlation between fragility and repeats, and between miRNAs and CpG islands. Conclusion Our results show that the relationship between site fragility and miRNA density is far more complex than previously thought. For example, we find that protein coding genes seem to be following similar patterns as miRNAs, if considered their overall distribution. However, once we allow for differences at the chromosome level in our statistical analysis, we find that distribution of miRNA and protein coding genes in fragile sites is very different from that of miRNA. This is a novel result that we believe may help discover new potential correlations between the localization of miRNAs and their crucial role in biological processes and in the development of diseases.
Collapse
|
89
|
Purdie KJ, Harwood CA, Gibbon K, Chaplin T, Young BD, Cazier JB, Singh N, Leigh IM, Proby CM. High-resolution genomic profiling of human papillomavirus-associated vulval neoplasia. Br J Cancer 2010; 102:1044-51. [PMID: 20234371 PMCID: PMC2844038 DOI: 10.1038/sj.bjc.6605589] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Background: The incidence of human papillomavirus-associated vulval neoplasia is increasing worldwide; yet the associated genetic changes remain poorly understood. Methods: We have used single-nucleotide polymorphism microarray analysis to perform the first high-resolution investigation of genome-wide allelic imbalance in vulval neoplasia. Our sample series comprised 21 high-grade vulval intraepithelial neoplasia and 6 vulval squamous cell carcinomas, with paired non-lesional samples used to adjust for normal copy number variation. Results: Overall the most common recurrent aberrations were gains at 1p and 20, with the most frequent deletions observed at 2q, 3p and 10. Copy-neutral loss of heterozygosity at 6p was a recurrent event in vulval intraepithelial neoplasia. The pattern of genetic alterations differed from the characteristic changes we previously identified in cutaneous squamous cell carcinomas. Vulval neoplasia samples did not exhibit gain at 5p, a frequent recurrent aberration in a series of cervical tumours analysed elsewhere using an identical protocol. Conclusion: This series of 27 vulval samples comprises the largest systematic genome-wide analysis of vulval neoplasia performed to date. Despite shared papillomavirus status and regional proximity, our data suggest that the frequency of certain genetic alterations may differ in vulval and cervical tumours.
Collapse
Affiliation(s)
- K J Purdie
- Centre for Cutaneous Research, Institute of Cell and Molecular Science, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, 4 Newark Street, London, UK.
| | | | | | | | | | | | | | | | | |
Collapse
|
90
|
Torres A, Torres K, Maciejewski R, Harvey WH. MicroRNAs and their role in gynecological tumors. Med Res Rev 2010; 31:895-923. [PMID: 20358579 DOI: 10.1002/med.20205] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
There have been only few events in the history of molecular biology that could be compared to the discovery of microRNAs and their role in cell physiology and pathology. MicroRNAs are small, single-stranded, noncoding RNAs composed of 19-25 nucleotides (∼22 nt), which have been proven to regulate gene expression at the posttranscriptional level. The regulatory function of microRNAs was demonstrated in normal and diseased conditions. In particular, it has been linked to cell cycle regulation, cell proliferation and differentiation, inflammatory response, and apoptosis. Altered expression profiles of microRNA have been observed in many pathologies, including diabetes, rheumatoid arthritis, and several cancers. To date, more than 700 human microRNAs have been identified and in silico-based analyses estimate at least 500 more to be identified. The purpose of this review is to present the current perspective on microRNAs structure and biogenesis as well as their contribution to the etiopathogenesis of gynecological tumors. We discuss results of the recent publications that indicate possibilities of microRNAs use as novel markers for tumors screening, early diagnosis, and treatment monitoring. The possible utilization of microRNAs as prognostic factors and specific therapy targets is also reviewed.
Collapse
Affiliation(s)
- Anna Torres
- Laboratory of Biostructure, Human Anatomy Department, Medical University of Lublin, Lublin, Poland.
| | | | | | | |
Collapse
|
91
|
Narayan G, Scotto L, Neelakantan V, Kottoor SH, Wong AHY, Loke SL, Mansukhani M, Pothuri B, Wright JD, Kaufmann AM, Schneider A, Arias-Pulido H, Tao Q, Murty VV. Protocadherin PCDH10, involved in tumor progression, is a frequent and early target of promoter hypermethylation in cervical cancer. Genes Chromosomes Cancer 2010; 48:983-92. [PMID: 19681120 DOI: 10.1002/gcc.20703] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Cervical cancer (CC) is the second most common cancer in women. Currently, no tractable molecular-based therapeutic targets exist for patients with invasive CC and no predictive markers of risk assessment for progression of precancerous lesions are identified. New molecular insights into CC pathogenesis are urgently needed. Towards this goal, we first determined the copy number alterations of chromosome 4 and then examined the role of PCDH10 mapped to 4q28 as a candidate tumor suppressor gene. We identified monosomy 4 in 47% of 81 invasive CC studied by SNP array and found that 91% of 130 invasive CC harboring methylation in the promoter region of the PCDH10 gene. We then showed that aberrant promoter hypermethylation of PCDH10 is associated with downregulation of gene expression and cell lines exposed to demethylating agent resulted in profound reactivated gene expression. We also showed that the promoter methylation in the PCDH10 gene occurs at an earliest identifiable stage of low-grade squamous intraepithelial lesion. Our studies demonstrate that inactivation of PCDH10 may be a critical event in CC progression and form a potentially useful therapeutic target for CC.
Collapse
Affiliation(s)
- Gopeshwar Narayan
- Department of Pathology, Columbia University Medical Center, New York, NY 10032, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
92
|
Triboulet R, Gregory RI. Autoregulatory Mechanisms Controlling the Microprocessor. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010; 700:56-66. [DOI: 10.1007/978-1-4419-7823-3_6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
93
|
Gene dosage, expression, and ontology analysis identifies driver genes in the carcinogenesis and chemoradioresistance of cervical cancer. PLoS Genet 2009; 5:e1000719. [PMID: 19911042 PMCID: PMC2768783 DOI: 10.1371/journal.pgen.1000719] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2009] [Accepted: 10/14/2009] [Indexed: 12/26/2022] Open
Abstract
Integrative analysis of gene dosage, expression, and ontology (GO) data was performed to discover driver genes in the carcinogenesis and chemoradioresistance of cervical cancers. Gene dosage and expression profiles of 102 locally advanced cervical cancers were generated by microarray techniques. Fifty-two of these patients were also analyzed with the Illumina expression method to confirm the gene expression results. An independent cohort of 41 patients was used for validation of gene expressions associated with clinical outcome. Statistical analysis identified 29 recurrent gains and losses and 3 losses (on 3p, 13q, 21q) associated with poor outcome after chemoradiotherapy. The intratumor heterogeneity, assessed from the gene dosage profiles, was low for these alterations, showing that they had emerged prior to many other alterations and probably were early events in carcinogenesis. Integration of the alterations with gene expression and GO data identified genes that were regulated by the alterations and revealed five biological processes that were significantly overrepresented among the affected genes: apoptosis, metabolism, macromolecule localization, translation, and transcription. Four genes on 3p (RYBP, GBE1) and 13q (FAM48A, MED4) correlated with outcome at both the gene dosage and expression level and were satisfactorily validated in the independent cohort. These integrated analyses yielded 57 candidate drivers of 24 genetic events, including novel loci responsible for chemoradioresistance. Further mapping of the connections among genetic events, drivers, and biological processes suggested that each individual event stimulates specific processes in carcinogenesis through the coordinated control of multiple genes. The present results may provide novel therapeutic opportunities of both early and advanced stage cervical cancers.
Collapse
|
94
|
Kanaan AS, Frank F, Maedler-Kron C, Verma K, Sonenberg N, Nagar B. Crystallization and preliminary X-ray diffraction analysis of the middle domain of Paip1. Acta Crystallogr Sect F Struct Biol Cryst Commun 2009; 65:1060-4. [PMID: 19851022 DOI: 10.1107/s1744309109036513] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2009] [Accepted: 09/09/2009] [Indexed: 11/10/2022]
Abstract
The poly(A)-binding protein (PABP) simultaneously interacts with the poly(A) tail of mRNAs and the scaffolding protein eIF4G to mediate mRNA circularization, resulting in stimulation of protein translation. PABP is regulated by the PABP-interacting protein Paip1. Paip1 is thought to act as a translational activator in 5' cap-dependent translation by interacting with PABP and the initiation factors eIF4A and eIF3. Here, the crystallization and preliminary diffraction analysis of the middle domain of Paip1 (Paip1M), which produces crystals that diffract to a resolution of 2.2 A, are presented.
Collapse
Affiliation(s)
- Ahmad Seif Kanaan
- Department of Biochemistry, McGill University, Montréal, Québec, Canada
| | | | | | | | | | | |
Collapse
|
95
|
Chernoff KA, Bordone L, Horst B, Simon K, Twadell W, Lee K, Cohen JA, Wang S, Silvers DN, Brunner G, Celebi JT. GAB2 amplifications refine molecular classification of melanoma. Clin Cancer Res 2009; 15:4288-91. [PMID: 19509136 DOI: 10.1158/1078-0432.ccr-09-0280] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Gain-of-function mutations in BRAF, NRAS, or KIT are associated with distinct melanoma subtypes with KIT mutations and/or copy number changes frequently observed among melanomas arising from sun-protected sites, such as acral skin (palms, soles, and nail bed) and mucous membranes. GAB2 has recently been implicated in melanoma pathogenesis, and increased copy numbers are found in a subset of melanomas. We sought to determine the association of increased copy numbers of GAB2 among melanoma subtypes in the context of genetic alterations in BRAF, NRAS, and KIT. EXPERIMENTAL DESIGN A total of 85 melanomas arising from sun-protected (n = 23) and sun-exposed sites (n = 62) were analyzed for copy number changes using array-based comparative genomic hybridization and for gain-of-function mutations in BRAF, NRAS, and KIT. RESULTS GAB2 amplifications were found in 9% of the cases and were associated with melanomas arising from acral and mucosal sites (P = 0.005). Increased copy numbers of the KIT locus were observed in 6% of the cases. The overall mutation frequencies for BRAF and NRAS were 43.5% and 14%, respectively, and were mutually exclusive. Among the acral and mucosal melanomas studied, the genetic alteration frequency was 26% for GAB2, 13% for KIT, 30% for BRAF, and 4% for NRAS. Importantly, the majority of GAB2 amplifications occurred independent from genetic events in BRAF, NRAS, and KIT. CONCLUSIONS GAB2 amplification is critical for melanomas arising from sun-protected sites. Genetic alterations in GAB2 will help refine the molecular classification of melanomas.
Collapse
Affiliation(s)
- Karen A Chernoff
- Departments of Dermatology and Pathology and Department of Biostatistics, Mailman School of Public Health, Columbia University, New York, New York, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
96
|
Kim WC, Lee CH. The role of mammalian ribonucleases (RNases) in cancer. Biochim Biophys Acta Rev Cancer 2009; 1796:99-113. [PMID: 19463900 DOI: 10.1016/j.bbcan.2009.05.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2008] [Revised: 05/08/2009] [Accepted: 05/13/2009] [Indexed: 01/01/2023]
Abstract
Ribonucleases (RNases) are a group of enzymes that cleave RNAs at phosphodiester bonds resulting in remarkably diverse biological consequences. This review focuses on mammalian RNases that are capable of, or potentially capable of, cleaving messenger RNA (mRNA) as well as other RNAs in cells and play roles in the development of human cancers. The aims of this review are to provide an overview of the roles of currently known mammalian RNases, and the evidence that associate them as regulators of tumor development. The roles of these RNases as oncoproteins and/or tumor suppressors in influencing cell growth, apoptosis, angiogenesis, and other cellular hallmarks of cancer will be presented and discussed. The RNases under discussion include RNases from the conventional mRNA decay pathways, RNases that are activated under cellular stress, RNases from the miRNA pathway, and RNases with multifunctional activity.
Collapse
Affiliation(s)
- Wan-Cheol Kim
- Chemistry Program, University of Northern British Columbia, 3333 University Way, Prince George, BC, Canada V2N 4Z9
| | | |
Collapse
|
97
|
Schmittgen TD. Regulation of microRNA processing in development, differentiation and cancer. J Cell Mol Med 2009; 12:1811-9. [PMID: 18752632 PMCID: PMC2648385 DOI: 10.1111/j.1582-4934.2008.00483.x] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
microRNA (miRNA) is a class of small, noncoding, regulatory RNAs. The ∼ 21 nt mature miRNA is processed from larger precursor molecules following a coordinated series of events. In theory, miRNA processing may be regulated at any of these steps. A growing body of evidence has demonstrated various steps in the miRNA biogenesis process for which regulation occurs. RNA editing of miRNA precursors, SNPs or mutations in the miRNA precursors, regulation by RNA binding proteins, alterations in the levels of key processing proteins, as well as a number of unknown mechanisms contribute to the regulation of miRNA processing. This article reviews the available literature on the regulation of miRNA processing that occurs within normal cells, during development or in diseases such as cancer.
Collapse
|
98
|
Pei Y, Zhang T, Renault V, Zhang X. An overview of hepatocellular carcinoma study by omics-based methods. Acta Biochim Biophys Sin (Shanghai) 2009; 41:1-15. [PMID: 19129945 DOI: 10.1093/abbs/gmn001] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most deadly malignancies worldwide. Scientists have been studying the molecular mechanism of HCC for years, but the understanding of it remains incomplete and scattered across the literature at different molecular levels. Chromosomal aberrations, epigenetic abnormality and changes of gene expression have been reported in HCC. High-throughput omics technologies have been widely applied, aiming at the discovery of candidate biomarkers for cancer staging, prediction of recurrence and prognosis, and treatment selection. Large amounts of data on genetic and epigenetic abnormalities, gene expression profiles, microRNA expression profiles and proteomics have been accumulating, and bioinformatics is playing a more and more important role. In this paper, we review the current omics-based studies on HCC at the levels of genomics, transcriptomics and proteomics. Integrating observations from multiple aspects is an essential step toward the systematic understanding of the disease.
Collapse
Affiliation(s)
- Yunfei Pei
- TNLIST/Department of Automation, Bioinformatics and Bioinformatics Division, MOE Key Laboratory, Tsinghua University, Beijing, China
| | | | | | | |
Collapse
|