51
|
Jain G, Pendola M, Rao A, Cölfen H, Evans JS. A Model Sea Urchin Spicule Matrix Protein Self-Associates To Form Mineral-Modifying Protein Hydrogels. Biochemistry 2016; 55:4410-21. [PMID: 27426695 DOI: 10.1021/acs.biochem.6b00619] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
In the purple sea urchin Strongylocentrotus purpuratus, the formation and mineralization of fracture-resistant skeletal elements such as the embryonic spicule require the combinatorial participation of numerous spicule matrix proteins such as the SpSM30A-F isoforms. However, because of limited abundance, it has been difficult to pursue extensive biochemical studies of the SpSM30 proteins and deduce their role in spicule formation and mineralization. To circumvent these problems, we expressed a model recombinant spicule matrix protein, rSpSM30B/C, which possesses the key sequence attributes of isoforms "B" and "C". Our findings indicate that rSpSM30B/C is expressed in insect cells as a single polypeptide containing variations in glycosylation that create microheterogeneity in rSpSM30B/C molecular masses. These post-translational modifications incorporate O- and N-glycans and anionic mono- and bisialylated and mono- and bisulfated monosaccharides on the protein molecules and enhance its aggregation propensity. Bioinformatics and biophysical experiments confirm that rSpSM30B/C is an intrinsically disordered, aggregation-prone protein that forms porous protein hydrogels that control the in vitro mineralization process in three ways: (1) increase the time interval for prenucleation cluster formation and transiently stabilize an ACC polymorph, (2) promote and organize single-crystal calcite nanoparticles, and (3) promote faceted growth and create surface texturing of calcite crystals. These features are also common to mollusk shell nacre proteins, and we conclude that rSpSM30B/C is a spiculogenesis protein that exhibits traits found in other calcium carbonate mineral modification proteins.
Collapse
Affiliation(s)
- Gaurav Jain
- Laboratory for Chemical Physics, Center for Skeletal and Craniofacial Biology, New York University , 345 East 24th Street, New York, New York 10010, United States
| | - Martin Pendola
- Laboratory for Chemical Physics, Center for Skeletal and Craniofacial Biology, New York University , 345 East 24th Street, New York, New York 10010, United States
| | - Ashit Rao
- Department of Chemistry, Physical Chemistry, Universität Konstanz , Universitätstrasse 10, D-78457 Konstanz, Germany
| | - Helmut Cölfen
- Department of Chemistry, Physical Chemistry, Universität Konstanz , Universitätstrasse 10, D-78457 Konstanz, Germany
| | - John Spencer Evans
- Laboratory for Chemical Physics, Center for Skeletal and Craniofacial Biology, New York University , 345 East 24th Street, New York, New York 10010, United States
| |
Collapse
|
52
|
The Widespread Prevalence and Functional Significance of Silk-Like Structural Proteins in Metazoan Biological Materials. PLoS One 2016; 11:e0159128. [PMID: 27415783 PMCID: PMC4944945 DOI: 10.1371/journal.pone.0159128] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 06/28/2016] [Indexed: 01/05/2023] Open
Abstract
In nature, numerous mechanisms have evolved by which organisms fabricate biological structures with an impressive array of physical characteristics. Some examples of metazoan biological materials include the highly elastic byssal threads by which bivalves attach themselves to rocks, biomineralized structures that form the skeletons of various animals, and spider silks that are renowned for their exceptional strength and elasticity. The remarkable properties of silks, which are perhaps the best studied biological materials, are the result of the highly repetitive, modular, and biased amino acid composition of the proteins that compose them. Interestingly, similar levels of modularity/repetitiveness and similar bias in amino acid compositions have been reported in proteins that are components of structural materials in other organisms, however the exact nature and extent of this similarity, and its functional and evolutionary relevance, is unknown. Here, we investigate this similarity and use sequence features common to silks and other known structural proteins to develop a bioinformatics-based method to identify similar proteins from large-scale transcriptome and whole-genome datasets. We show that a large number of proteins identified using this method have roles in biological material formation throughout the animal kingdom. Despite the similarity in sequence characteristics, most of the silk-like structural proteins (SLSPs) identified in this study appear to have evolved independently and are restricted to a particular animal lineage. Although the exact function of many of these SLSPs is unknown, the apparent independent evolution of proteins with similar sequence characteristics in divergent lineages suggests that these features are important for the assembly of biological materials. The identification of these characteristics enable the generation of testable hypotheses regarding the mechanisms by which these proteins assemble and direct the construction of biological materials with diverse morphologies. The SilkSlider predictor software developed here is available at https://github.com/wwood/SilkSlider.
Collapse
|
53
|
Proteomic changes occurring along gonad maturation in the edible sea urchin Paracentrotus lividus. J Proteomics 2016; 144:63-72. [DOI: 10.1016/j.jprot.2016.05.035] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 05/25/2016] [Accepted: 05/30/2016] [Indexed: 12/20/2022]
|
54
|
Kocot KM, Aguilera F, McDougall C, Jackson DJ, Degnan BM. Sea shell diversity and rapidly evolving secretomes: insights into the evolution of biomineralization. Front Zool 2016; 13:23. [PMID: 27279892 PMCID: PMC4897951 DOI: 10.1186/s12983-016-0155-z] [Citation(s) in RCA: 105] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 05/27/2016] [Indexed: 12/21/2022] Open
Abstract
An external skeleton is an essential part of the body plan of many animals and is thought to be one of the key factors that enabled the great expansion in animal diversity and disparity during the Cambrian explosion. Molluscs are considered ideal to study the evolution of biomineralization because of their diversity of highly complex, robust and patterned shells. The molluscan shell forms externally at the interface of animal and environment, and involves controlled deposition of calcium carbonate within a framework of macromolecules that are secreted from the dorsal mantle epithelium. Despite its deep conservation within Mollusca, the mantle is capable of producing an incredible diversity of shell patterns, and macro- and micro-architectures. Here we review recent developments within the field of molluscan biomineralization, focusing on the genes expressed in the mantle that encode secreted proteins. The so-called mantle secretome appears to regulate shell deposition and patterning and in some cases becomes part of the shell matrix. Recent transcriptomic and proteomic studies have revealed marked differences in the mantle secretomes of even closely-related molluscs; these typically exceed expected differences based on characteristics of the external shell. All mantle secretomes surveyed to date include novel genes encoding lineage-restricted proteins and unique combinations of co-opted ancient genes. A surprisingly large proportion of both ancient and novel secreted proteins containing simple repetitive motifs or domains that are often modular in construction. These repetitive low complexity domains (RLCDs) appear to further promote the evolvability of the mantle secretome, resulting in domain shuffling, expansion and loss. RLCD families further evolve via slippage and other mechanisms associated with repetitive sequences. As analogous types of secreted proteins are expressed in biomineralizing tissues in other animals, insights into the evolution of the genes underlying molluscan shell formation may be applied more broadly to understanding the evolution of metazoan biomineralization.
Collapse
Affiliation(s)
- Kevin M Kocot
- School of Biological Sciences, University of Queensland, Brisbane, Queensland 4072 Australia.,Current address: Department of Biological Sciences and Alabama Museum of Natural History, The University of Alabama, Tuscaloosa, Alabama 35487 USA
| | - Felipe Aguilera
- School of Biological Sciences, University of Queensland, Brisbane, Queensland 4072 Australia.,Current address: Sars International Centre for Marine Molecular Biology, University of Bergen, Thormøhlensgate 55, Bergen, 5008 Norway
| | - Carmel McDougall
- School of Biological Sciences, University of Queensland, Brisbane, Queensland 4072 Australia
| | - Daniel J Jackson
- Department of Geobiology, Goldschmidtstr.3, Georg-August University of Göttingen, 37077 Göttingen, Germany
| | - Bernard M Degnan
- School of Biological Sciences, University of Queensland, Brisbane, Queensland 4072 Australia
| |
Collapse
|
55
|
Karakostis K, Costa C, Zito F, Brümmer F, Matranga V. Characterization of an Alpha Type Carbonic Anhydrase from Paracentrotus lividus Sea Urchin Embryos. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2016; 18:384-395. [PMID: 27230618 DOI: 10.1007/s10126-016-9701-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Accepted: 02/10/2016] [Indexed: 06/05/2023]
Abstract
Carbonic anhydrases (CA) are zinc metalloenzymes that catalyze the reversible hydration of carbon dioxide to bicarbonate. In the sea urchin, CA has a role in the formation of the calcitic skeleton during embryo development. Here, we report a newly identified mRNA sequence from embryos of the sea urchin Paracentrotus lividus, referred to as Pl-can. The complete coding sequence was identified with the aid of both EST databases and experimental procedures. Pl-CAN is a 447 aa-long protein, with an estimated molecular mass of 48.5 kDa and an isoelectric point of 6.83. The in silico study of functional domains showed, in addition to the alpha type CA-specific domain, the presence of an unexpected glycine-rich region at the N-terminal of the molecule. This is not found in any other species described so far, but probably it is restricted to the sea urchins. The phylogenetic analysis indicated that Pl-CAN is evolutionarily closer to human among chordates than to other species. The putative role(s) of the identified domains is discussed. The Pl-can temporal and spatial expression profiles, analyzed throughout embryo development by comparative qPCR and whole-mount in situ hybridization (WMISH), showed that Pl-can mRNA is specifically expressed in the primary mesenchyme cells (PMC) of the embryo and levels increase along with the growth of the embryonic skeleton, reaching a peak at the pluteus stage. A recombinant fusion protein was produced in E. coli and used to raise specific antibodies in mice recognized the endogenous Pl-CAN by Western blot in embryo extracts from gastrula and pluteus.
Collapse
Affiliation(s)
- Konstantinos Karakostis
- Institute of Biomedicine and Molecular Immunology "A. Monroy", National Research Council, Via Ugo La Malfa, 153-90146, Palermo, Italy
- Institute for Biomaterials and Biomolecular Systems, University of Stuttgart, Stuttgart, Germany
- INSERM - UMR 1162, Institute de Génétique Moléculaire, Hôpital St. Louis, 27 rue Juliette Dodu, 75010, Paris, France
| | - Caterina Costa
- Institute of Biomedicine and Molecular Immunology "A. Monroy", National Research Council, Via Ugo La Malfa, 153-90146, Palermo, Italy.
| | - Francesca Zito
- Institute of Biomedicine and Molecular Immunology "A. Monroy", National Research Council, Via Ugo La Malfa, 153-90146, Palermo, Italy
| | - Franz Brümmer
- Institute for Biomaterials and Biomolecular Systems, University of Stuttgart, Stuttgart, Germany
| | - Valeria Matranga
- Institute of Biomedicine and Molecular Immunology "A. Monroy", National Research Council, Via Ugo La Malfa, 153-90146, Palermo, Italy
| |
Collapse
|
56
|
Czarkwiani A, Ferrario C, Dylus DV, Sugni M, Oliveri P. Skeletal regeneration in the brittle star Amphiura filiformis. Front Zool 2016; 13:18. [PMID: 27110269 PMCID: PMC4841056 DOI: 10.1186/s12983-016-0149-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 04/12/2016] [Indexed: 12/17/2022] Open
Abstract
Background Brittle stars regenerate their whole arms post-amputation. Amphiura filiformis can now be used for molecular characterization of arm regeneration due to the availability of transcriptomic data. Previous work showed that specific developmental transcription factors known to take part in echinoderm skeletogenesis are expressed during adult arm regeneration in A. filiformis; however, the process of skeleton formation remained poorly understood. Here, we present the results of an in-depth microscopic analysis of skeletal morphogenesis during regeneration, using calcein staining, EdU labeling and in situ hybridization. Results To better compare different samples, we propose a staging system for the early A. filiformis arm regeneration stages based on morphological landmarks identifiable in living animals and supported by histological analysis. We show that the calcified spicules forming the endoskeleton first appear very early during regeneration in the dermal layer of regenerates. These spicules then mature into complex skeletal elements of the differentiated arm during late regeneration. The mesenchymal cells in the dermal area express the skeletal marker genes Afi-c-lectin, Afi-p58b and Afi-p19; however, EdU labeling shows that these dermal cells do not proliferate. Conclusions A. filiformis arms regenerate through a consistent set of developmental stages using a distalization-intercalation mode, despite variability in regeneration rate. Skeletal elements form in a mesenchymal cell layer that does not proliferate and thus must be supplied from a different source. Our work provides the basis for future cellular and molecular studies of skeleton regeneration in brittle stars. Electronic supplementary material The online version of this article (doi:10.1186/s12983-016-0149-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Anna Czarkwiani
- Department of Genetics, Evolution and Environment, University College London, London, UK
| | - Cinzia Ferrario
- Department of Biosciences, University of Milan, Milan, Italy
| | - David Viktor Dylus
- Department of Genetics, Evolution and Environment, University College London, London, UK ; Centre for Mathematics, Physics and Engineering in the Life Sciences and Experimental Biology, University College London, London, UK ; Present address: Department of Ecology and Evolution & Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | - Michela Sugni
- Department of Biosciences, University of Milan, Milan, Italy
| | - Paola Oliveri
- Department of Genetics, Evolution and Environment, University College London, London, UK ; Research Department of Genetics, Evolution and Environment, University College London, Room 426, Darwin Building, Gower Street, London, WC1E 6BT UK
| |
Collapse
|
57
|
Karakostis K, Zanella-Cléon I, Immel F, Guichard N, Dru P, Lepage T, Plasseraud L, Matranga V, Marin F. A minimal molecular toolkit for mineral deposition? Biochemistry and proteomics of the test matrix of adult specimens of the sea urchin Paracentrotus lividus. J Proteomics 2016; 136:133-44. [DOI: 10.1016/j.jprot.2016.01.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Revised: 12/22/2015] [Accepted: 01/04/2016] [Indexed: 12/16/2022]
|
58
|
Dylus DV, Czarkwiani A, Stångberg J, Ortega-Martinez O, Dupont S, Oliveri P. Large-scale gene expression study in the ophiuroid Amphiura filiformis provides insights into evolution of gene regulatory networks. EvoDevo 2016; 7:2. [PMID: 26759711 PMCID: PMC4709884 DOI: 10.1186/s13227-015-0039-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 12/21/2015] [Indexed: 11/20/2022] Open
Abstract
Background The evolutionary mechanisms involved in shaping complex gene regulatory networks (GRN) that encode for morphologically similar structures in distantly related animals remain elusive. In this context, echinoderm larval skeletons found in brittle stars and sea urchins provide an ideal system. Here, we characterize for the first time the development of the larval skeleton in the ophiuroid Amphiura filiformis and compare it systematically with its counterpart in sea urchin. Results We show that ophiuroids and euechinoids, that split at least 480 Million years ago (Mya), have remarkable similarities in tempo and mode of skeletal development. Despite morphological and ontological similarities, our high-resolution study of the dynamics of genetic regulatory states in A. filiformis highlights numerous differences in the architecture of their underlying GRNs. Importantly, the A.filiformispplx, the closest gene to the sea urchin double negative gate (DNG) repressor pmar1, fails to drive the skeletogenic program in sea urchin, showing important evolutionary differences in protein function. hesC, the second repressor of the DNG, is co-expressed with most of the genes that are repressed in sea urchin, indicating the absence of direct repression of tbr, ets1/2, and delta in A. filiformis. Furthermore, the absence of expression in later stages of brittle star skeleton development of key regulatory genes, such as foxb and dri, shows significantly different regulatory states. Conclusion Our data fill up an important gap in the picture of larval mesoderm in echinoderms and allows us to explore the evolutionary implications relative to the recently established phylogeny of echinoderm classes. In light of recent studies on other echinoderms, our data highlight a high evolutionary plasticity of the same nodes throughout evolution of echinoderm skeletogenesis. Finally, gene duplication, protein function diversification, and cis-regulatory element evolution all contributed to shape the regulatory program for larval skeletogenesis in different branches of echinoderms. Electronic supplementary material The online version of this article (doi:10.1186/s13227-015-0039-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- David Viktor Dylus
- Research Department of Genetics, Evolution and Environment, University College London, Room 426, Darwin Building, Gower Street, London, WC1E 6BT UK ; CoMPLEX/SysBio, UCL, Gower Street, London, WC1E 6BT UK ; Department of Ecology and Evolution, University of Lausanne, 1015 Lausanne, Switzerland
| | - Anna Czarkwiani
- Research Department of Genetics, Evolution and Environment, University College London, Room 426, Darwin Building, Gower Street, London, WC1E 6BT UK
| | - Josefine Stångberg
- Research Department of Genetics, Evolution and Environment, University College London, Room 426, Darwin Building, Gower Street, London, WC1E 6BT UK ; Research Department of Animal Ecology, Evolutionary Biology Centre, Uppsala University, Norbyvägen 18D, 752 36 Uppsala, Sweden
| | - Olga Ortega-Martinez
- Department of Biological and Environmental Sciences, Sven Lovén Centre for Marine Sciences, University of Gothenburg, Kristineberg 566, 451 78 Fiskebäckskil, Sweden
| | - Sam Dupont
- Department of Biological and Environmental Sciences, Sven Lovén Centre for Marine Sciences, University of Gothenburg, Kristineberg 566, 451 78 Fiskebäckskil, Sweden
| | - Paola Oliveri
- Research Department of Genetics, Evolution and Environment, University College London, Room 426, Darwin Building, Gower Street, London, WC1E 6BT UK
| |
Collapse
|
59
|
L. Flores R, Gonzales K, W. Seaver R, T. Livingston B. The skeletal proteome of the brittle star <em>Ophiothrix spiculata</em> identifies C-type lectins and other proteins conserved in echinoderm skeleton formation. AIMS MOLECULAR SCIENCE 2016. [DOI: 10.3934/molsci.2016.3.357] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
60
|
Germer J, Mann K, Wörheide G, Jackson DJ. The Skeleton Forming Proteome of an Early Branching Metazoan: A Molecular Survey of the Biomineralization Components Employed by the Coralline Sponge Vaceletia Sp. PLoS One 2015; 10:e0140100. [PMID: 26536128 PMCID: PMC4633127 DOI: 10.1371/journal.pone.0140100] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Accepted: 09/22/2015] [Indexed: 01/09/2023] Open
Abstract
The ability to construct a mineralized skeleton was a major innovation for the Metazoa during their evolution in the late Precambrian/early Cambrian. Porifera (sponges) hold an informative position for efforts aimed at unraveling the origins of this ability because they are widely regarded to be the earliest branching metazoans, and are among the first multi-cellular animals to display the ability to biomineralize in the fossil record. Very few biomineralization associated proteins have been identified in sponges so far, with no transcriptome or proteome scale surveys yet available. In order to understand what genetic repertoire may have been present in the last common ancestor of the Metazoa (LCAM), and that may have contributed to the evolution of the ability to biocalcify, we have studied the skeletal proteome of the coralline demosponge Vaceletia sp. and compare this to other metazoan biomineralizing proteomes. We bring some spatial resolution to this analysis by dividing Vaceletia's aragonitic calcium carbonate skeleton into "head" and "stalk" regions. With our approach we were able to identify 40 proteins from both the head and stalk regions, with many of these sharing some similarity to previously identified gene products from other organisms. Among these proteins are known biomineralization compounds, such as carbonic anhydrase, spherulin, extracellular matrix proteins and very acidic proteins. This report provides the first proteome scale analysis of a calcified poriferan skeletal proteome, and its composition clearly demonstrates that the LCAM contributed several key enzymes and matrix proteins to its descendants that supported the metazoan ability to biocalcify. However, lineage specific evolution is also likely to have contributed significantly to the ability of disparate metazoan lineages to biocalcify.
Collapse
Affiliation(s)
- Juliane Germer
- Department of Geobiology, Georg-August University of Göttingen, Göttingen, Germany
| | - Karlheinz Mann
- Max Planck Institute of Biochemistry, Department of Proteomics and Signal Transduction, Munich, Germany
| | - Gert Wörheide
- Department of Earth- and Environmental Sciences & GeoBio-Center, Ludwig-Maximilians-Universität München, München, Germany
- SNSB—Bavarian State Collections of Palaeontology & Geology, München, Germany
| | - Daniel John Jackson
- Department of Geobiology, Georg-August University of Göttingen, Göttingen, Germany
| |
Collapse
|
61
|
Isowa Y, Sarashina I, Oshima K, Kito K, Hattori M, Endo K. Proteome analysis of shell matrix proteins in the brachiopod Laqueus rubellus. Proteome Sci 2015; 13:21. [PMID: 26279640 PMCID: PMC4536745 DOI: 10.1186/s12953-015-0077-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Accepted: 07/31/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The calcitic brachipod shells contain proteins that play pivotal roles in shell formation and are important in understanding the evolution of biomineralization. Here, we performed a large-scale exploration of shell matrix proteins in the brachiopod Laqueus rubellus. RESULTS A total of 40 proteins from the shell were identified. Apart from five proteins, i.e., ICP-1, MSP130, a cysteine protease, a superoxide dismutase, and actin, all other proteins identified had no homologues in public databases. Among these unknown proteins, one shell matrix protein was identified with a domain architecture that includes a NAD(P) binding domain, an ABC-type transport system, a transmembrane region, and an aspartic acid rich region, which has not been detected in other biominerals. We also identified pectin lyase-like, trypsin inhibitor, and saposin B functional domains in the amino acid sequences of the shell matrix proteins. The repertoire of brachiopod shell matrix proteins also contains two basic amino acid-rich proteins and proteins that have a variety of repeat sequences. CONCLUSIONS Our study suggests an independent origin and unique mechanisms for brachiopod shell formation.
Collapse
Affiliation(s)
- Yukinobu Isowa
- Department of Earth and Planetary Science, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033 Japan
| | - Isao Sarashina
- The University Museum, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033 Japan
| | - Kenshiro Oshima
- Center for Omics and Bioinformatics, Department of Computational Biology, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8561 Japan
| | - Keiji Kito
- Department of Life Science, School of Agriculture, Meiji University, 1-1-1 Higashimita, Tama, Kawasaki, Kanagawa 214-8571 Japan
| | - Masahira Hattori
- Center for Omics and Bioinformatics, Department of Computational Biology, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8561 Japan
| | - Kazuyoshi Endo
- Department of Earth and Planetary Science, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033 Japan
| |
Collapse
|
62
|
Zito F, Koop D, Byrne M, Matranga V. Carbonic anhydrase inhibition blocks skeletogenesis and echinochrome production in Paracentrotus lividus and Heliocidaris tuberculata embryos and larvae. Dev Growth Differ 2015; 57:507-14. [PMID: 26108341 DOI: 10.1111/dgd.12229] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Revised: 05/07/2015] [Accepted: 05/12/2015] [Indexed: 11/26/2022]
Abstract
Carbonic anhydrases (CAs) are a family of widely distributed metalloenzymes, involved in diverse physiological processes. These enzymes catalyse the reversible conversion of carbon dioxide to protons and bicarbonate. At least 19 genes encoding for CAs have been identified in the sea urchin genome, with one of these localized to the skeletogenic mesoderm (primary mesenchyme cells, PMCs). We investigated the effects of a specific inhibitor of CA, acetazolamide (AZ), on development of two sea urchin species with contrasting investment in skeleton production, Paracentrotus lividus and Heliocidaris tuberculata, to determine the role of CA on PMC differentiation, skeletogenesis and on non-skeletogenic mesodermal (NSM) cells. Embryos were cultured in the presence of AZ from the blastula stage prior to skeleton formation and development to the larval stage was monitored. At the dose of 8 mmol/L AZ, 98% and 90% of P. lividus and H. tuberculata embryos lacked skeleton, respectively. Nevertheless, an almost normal PMC differentiation was indicated by the expression of msp130, a PMC-specific marker. Strikingly, the AZ-treated embryos also lacked the echinochrome pigment produced by the pigment cells, a subpopulation of NSM cells with immune activities within the larva. Conversely, all ectoderm and endoderm derivatives and other subpopulations of mesoderm developed normally. The inhibitory effects of AZ were completely reversed after removal of the inhibitor from the medium. Our data, together with new information concerning the involvement of CA on skeleton formation, provide evidence for the first time of a possible role of the CAs in larval immune pigment cells.
Collapse
Affiliation(s)
- Francesca Zito
- Institute of Biomedicine and Molecular Immunology "A. Monroy", National Research Council, Via Ugo La Malfa, Palermo, 153 - 90146, Italy
| | - Demian Koop
- Schools of Medical and Biological Sciences, University of Sydney, Sydney, New South Wales, 2006, Australia
| | - Maria Byrne
- Schools of Medical and Biological Sciences, University of Sydney, Sydney, New South Wales, 2006, Australia
| | - Valeria Matranga
- Institute of Biomedicine and Molecular Immunology "A. Monroy", National Research Council, Via Ugo La Malfa, Palermo, 153 - 90146, Italy
| |
Collapse
|
63
|
Kanold JM, Guichard N, Immel F, Plasseraud L, Corneillat M, Alcaraz G, Brümmer F, Marin F. Spine and test skeletal matrices of the Mediterranean sea urchin Arbacia lixula--a comparative characterization of their sugar signature. FEBS J 2015; 282:1891-905. [PMID: 25702947 DOI: 10.1111/febs.13242] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Revised: 01/19/2015] [Accepted: 02/17/2015] [Indexed: 11/27/2022]
Abstract
Calcified structures of sea urchins are biocomposite materials that comprise a minor fraction of organic macromolecules, such as proteins, glycoproteins and polysaccharides. These macromolecules are thought to collectively regulate mineral deposition during the process of calcification. When occluded, they modify the properties of the mineral. In the present study, the organic matrices (both soluble and insoluble in acetic acid) of spines and tests from the Mediterranean black sea urchin Arbacia lixula were extracted and characterized, in order to determine whether they exhibit similar biochemical signatures. Bulk characterizations were performed by mono-dimensional SDS/PAGE, FT-IR spectroscopy, and an in vitro crystallization assay. We concentrated our efforts on characterization of the sugar moieties. To this end, we determined the monosaccharide content of the soluble and insoluble organic matrices of A. lixula spines and tests by HPAE-PAD, together with their respective lectin-binding profiles via enzyme-linked lectin assay. Finally, we performed in situ localization of N-acetyl glucosamine-containing saccharides on spines and tests using gold-conjugated wheatgerm agglutinin. Our data show that the test and spine matrices exhibit different biochemical signatures with regard to their saccharidic fraction, suggesting that future studies should analyse the regulation of mineral deposition by the matrix in these two mineralized structures in detail. This study re-emphasizes the importance of non-protein moieties, i.e. sugars, in calcium carbonate systems, and highlights the need to clearly identify their function in the biomineralization process.
Collapse
Affiliation(s)
- Julia M Kanold
- Department of Zoology, Institute of Biomaterials and Biomolecular Systems, University of Stuttgart, Germany
| | - Nathalie Guichard
- UMR CNRS 6282 Biogéosciences, Bâtiment des Sciences Gabriel, Université de Bourgogne, Dijon, France
| | - Françoise Immel
- UMR CNRS 6282 Biogéosciences, Bâtiment des Sciences Gabriel, Université de Bourgogne, Dijon, France
| | - Laurent Plasseraud
- Institut de Chimie Moléculaire de l'Université de Bourgogne, UMR CNRS 6302, Faculté des Sciences Mirande, Université de Bourgogne, Dijon, France
| | - Marion Corneillat
- Unité Propre Soutien de Programme PROXISS, Département Agronomie Environnement AgroSupDijon, Dijon Cedex, France
| | - Gérard Alcaraz
- Unité Propre Soutien de Programme PROXISS, Département Agronomie Environnement AgroSupDijon, Dijon Cedex, France
| | - Franz Brümmer
- Department of Zoology, Institute of Biomaterials and Biomolecular Systems, University of Stuttgart, Germany
| | - Frédéric Marin
- UMR CNRS 6282 Biogéosciences, Bâtiment des Sciences Gabriel, Université de Bourgogne, Dijon, France
| |
Collapse
|
64
|
Kanold JM, Immel F, Broussard C, Guichard N, Plasseraud L, Corneillat M, Alcaraz G, Brümmer F, Marin F. The test skeletal matrix of the black sea urchin Arbacia lixula. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2015; 13:24-34. [DOI: 10.1016/j.cbd.2014.12.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Revised: 12/13/2014] [Accepted: 12/18/2014] [Indexed: 11/26/2022]
|
65
|
Examination of the skeletal proteome of the brittle star Ophiocoma wendtii reveals overall conservation of proteins but variation in spicule matrix proteins. Proteome Sci 2015; 13:7. [PMID: 25705131 PMCID: PMC4336488 DOI: 10.1186/s12953-015-0064-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Accepted: 01/20/2015] [Indexed: 11/21/2022] Open
Abstract
Background While formation of mineralized tissue is characteristic of many animal taxa, the proteins that interact with mineral are diverse and appear in many cases to be of independent origin. Extracellular matrix proteins involved in mineralization do share some common features. They tend to be disordered, secreted proteins with repetitive, low complexity. The genes encoding these proteins are often duplicated and undergo concerted evolution, further diversifying the repetitive domains. This makes it difficult to identify mineralization genes and the proteins they encode using bioinformatics techniques. Here we describe the use of proteomics to identify mineralization genes in an ophiuroid echinoderm, Ophiocoma wendtii (O. wendtii). Results We have isolated the occluded proteins within the mineralized tissue of the brittle star Ophiocoma wendtii. The proteins were analyzed both unfractionated and separated on SDS-PAGE gels. Each slice was analyzed using mass spectroscopy and the amino acid sequence of the most prevalent peptides was obtained. This was compared to both an embryonic transcriptome from the gastrula stage when skeleton is being formed and a tube foot (an adult mineralized tissue) transcriptome. Thirty eight proteins were identified which matched known proteins or protein domains in the NCBI databases. These include C-type lectins, ECM proteins, Kazal-type protease inhibitors, matrix metalloproteases as well as more common cellular proteins. Many of these are similar to those found in the sea urchin Strongylocentrotus purpuratus (S. purpuratus) skeleton. We did not, however, identify clear homologs to the sea urchin spicule matrix proteins, and the number of C-type lectin containing genes was much reduced compared to sea urchins. Also notably absent was MSP-130. Conclusions Our results show an overall conservation of the types of proteins found in the mineralized tissues of two divergent groups of echinoderms, as well as in mineralized tissues in general. However, the extensive gene duplication and concerted evolution seen in the spicule matrix proteins found in the sea urchin skeleton was not observed in the brittle star. Electronic supplementary material The online version of this article (doi:10.1186/s12953-015-0064-7) contains supplementary material, which is available to authorized users.
Collapse
|
66
|
Echinoderms: Hierarchically Organized Light Weight Skeletons. BIOLOGICALLY-INSPIRED SYSTEMS 2015. [DOI: 10.1007/978-94-017-9398-8_8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
67
|
Gambardella C, Ferrando S, Morgana S, Gallus L, Ramoino P, Ravera S, Bramini M, Diaspro A, Faimali M, Falugi C. Exposure of Paracentrotus lividus male gametes to engineered nanoparticles affects skeletal bio-mineralization processes and larval plasticity. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2015; 158:181-191. [PMID: 25481784 DOI: 10.1016/j.aquatox.2014.11.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Revised: 11/14/2014] [Accepted: 11/18/2014] [Indexed: 06/04/2023]
Abstract
The aim of this study is to contribute to the understanding of the mechanisms underlying nanoparticle (NP)-induced embryotoxicity in aquatic organisms. We previously demonstrated that exposure of male gametes to NPs causes non-dose-dependent skeletal damage in sea urchin (Paracentrotus lividus) larvae. In the present study, the molecular mechanisms responsible for these anomalies in sea urchin development from male gametes exposed to cobalt (Co), titanium dioxide (TiO2) and silver (Ag) NPs were investigated by histochemical, immunohistochemical and Western blot analyses. P. lividus sperm were exposed to different NP concentrations (from 0.0001 to 1 mg/L). The distribution of molecules related to skeletogenic cell identification, including ID5 immunoreactivity (IR), wheat germ agglutinin (WGA) affinity and fibronectin (FN) IR, were investigated by confocal laser scanning microscopy at the gastrula (24 h) and pluteus (72 h) stages. Our results identified a spatial correspondence among PMCs, ID5 IR and WGA affinity sites. The altered FN pattern suggests that it is responsible for the altered skeletogenic cell migration, while the Golgi apparatus of the skeletogenic cells, denoted by their WGA affinity, shows different aspects according to the degree of anomalies caused by NP concentrations. The ID5 IR, a specific marker of skeletogenic cells in sea urchin embryos (in particular of the msp130 protein responsible for Ca(2+) and Mg(2+) mineralization), localized in the cellular strands prefiguring the skeletal rods in the gastrula stage and, in the pluteus stage, was visible according to the degree of mineralization of the skeleton. In conclusion, the present study suggests that the investigated NPs suspended in seawater interfere with the bio-mineralization processes in marine organisms, and the results of this study offer a new series of specific endpoints for the mechanistic understanding of NP toxicity.
Collapse
Affiliation(s)
- Chiara Gambardella
- Institute of Marine Science (ISMAR), National Council of Researches (CNR), Via De Marini 6, 16149 Genova, Italy.
| | - Sara Ferrando
- Department of Earth, Environment and Life Sciences (DISTAV), University of Genova, Viale Benedetto XV 5, 16136 Genova, Italy
| | - Silvia Morgana
- Institute of Marine Science (ISMAR), National Council of Researches (CNR), Via De Marini 6, 16149 Genova, Italy
| | - Lorenzo Gallus
- Department of Earth, Environment and Life Sciences (DISTAV), University of Genova, Viale Benedetto XV 5, 16136 Genova, Italy
| | - Paola Ramoino
- Department of Earth, Environment and Life Sciences (DISTAV), University of Genova, Viale Benedetto XV 5, 16136 Genova, Italy
| | - Silvia Ravera
- Department of Pharmacy (DIFAR), Biochemistry Lab., University of Genova, Viale Benedetto XV 5, 16136 Genova, Italy
| | - Mattia Bramini
- Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia (IIT), Via Morego 30, 16163 Genova, Italy
| | - Alberto Diaspro
- Department of Nanophysics, Istituto Italiano di Tecnologia (IIT), Via Morego 30, 16163 Genova, Italy
| | - Marco Faimali
- Institute of Marine Science (ISMAR), National Council of Researches (CNR), Via De Marini 6, 16149 Genova, Italy
| | - Carla Falugi
- Department of Earth, Environment and Life Sciences (DISVA), Polytechnic University of Marche, Ancona, Italy
| |
Collapse
|
68
|
Voigt O, Adamski M, Sluzek K, Adamska M. Calcareous sponge genomes reveal complex evolution of α-carbonic anhydrases and two key biomineralization enzymes. BMC Evol Biol 2014; 14:230. [PMID: 25421146 PMCID: PMC4265532 DOI: 10.1186/s12862-014-0230-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Accepted: 10/28/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Calcium carbonate biominerals form often complex and beautiful skeletal elements, including coral exoskeletons and mollusc shells. Although the ability to generate these carbonate structures was apparently gained independently during animal evolution, it sometimes involves the same gene families. One of the best-studied of these gene families comprises the α- carbonic anhydrases (CAs), which catalyse the reversible transformation of CO2 to HCO3 - and fulfill many physiological functions. Among Porifera -the oldest animal phylum with the ability to produce skeletal elements- only the class of calcareous sponges can build calcitic spicules, which are the extracellular products of specialized cells, the sclerocytes. Little is known about the molecular mechanisms of their synthesis, but inhibition studies suggest an essential role of CAs. In order to gain insight into the evolution and function of CAs in biomineralization of a basal metazoan species, we determined the diversity and expression of CAs in the calcareous sponges Sycon ciliatum and Leucosolenia complicata by means of genomic screening, RNA-Seq and RNA in situ hybridization expression analysis. Active biomineralization was located with calcein-staining. RESULTS We found that the CA repertoires of two calcareous sponge species are strikingly more complex than those of other sponges. By characterizing their expression patterns, we could link two CAs (one intracellular and one extracellular) to the process of calcite spicule formation in both studied species. The extracellular biomineralizing CAs seem to be of paralogous origin, a finding that advises caution against assuming functional conservation of biomineralizing genes based upon orthology assessment alone. Additionally, calcareous sponges possess acatalytic CAs related to human CAs X and XI, suggesting an ancient origin of these proteins. Phylogenetic analyses including CAs from genomes of all non-bilaterian phyla suggest multiple gene losses and duplications and presence of several CAs in the last common ancestor of metazoans. CONCLUSIONS We identified two key biomineralization enzymes from the CA-family in calcareous sponges and propose their possible interaction in spicule formation. The complex evolutionary history of the CA family is driven by frequent gene diversification and losses. These evolutionary patterns likely facilitated the numerous events of independent recruitment of CAs into biomineralization within Metazoa.
Collapse
|
69
|
Analytical pyrolysis-based study on intra-skeletal organic matrices from Mediterranean corals. Anal Bioanal Chem 2014; 406:6021-33. [DOI: 10.1007/s00216-014-7995-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Revised: 06/08/2014] [Accepted: 06/24/2014] [Indexed: 10/25/2022]
|
70
|
Killian CE, Wilt FH. Investigating protein function in biomineralized tissues using molecular biology techniques. Methods Enzymol 2014; 532:367-88. [PMID: 24188776 DOI: 10.1016/b978-0-12-416617-2.00017-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
We describe modern molecular biology methods currently used in the study of biomineralization. We focus our descriptions on two areas of biomineralization research in which these methods have been particularly powerful. The first area is the use of modern molecular methods to identify and characterize the so-called occluded matrix proteins present in mineralized tissues. More specifically, we describe the use of RNA-seq and the next generation of DNA sequencers and the use of direct protein sequencing and mass spectrometers as ways of identifying proteins present in mineralized tissues. The second area is the use of molecular methods to examine the function of proteins in biomineralization. RNA interference (RNAi), morpholino antisense, and other methods are described and discussed as ways of elucidating protein function.
Collapse
|
71
|
Dubois P. The skeleton of postmetamorphic echinoderms in a changing world. THE BIOLOGICAL BULLETIN 2014; 226:223-36. [PMID: 25070867 DOI: 10.1086/bblv226n3p223] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Available evidence on the impact of acidification and its interaction with warming on the skeleton of postmetamorphic (juvenile and adult) echinoderms is reviewed. Data are available on sea urchins, starfish, and brittle stars in 33 studies. Skeleton growth of juveniles of all sea urchin species studied so far is affected from pH 7.8 to 7.6 in seawater, values that are expected to be reached during the 21st century. Growth in adult sea urchins (six species studied) is apparently only marginally affected at seawater pH relevant to this century. The interacting effect of temperature differed according to studies. Juvenile starfish as well as adults seem to be either not impacted or even boosted by acidification. Brittle stars show moderate effects at pH below or equal to 7.4. Dissolution of the body wall skeleton is unlikely to be a major threat to sea urchins. Spines, however, due to their exposed position, are more prone to this threat, but their regeneration abilities can probably ensure their maintenance, although this could have an energetic cost and induce changes in resource allocation. No information is available on skeleton dissolution in starfish, and the situation in brittle stars needs further assessment. Very preliminary evidence indicates that mechanical properties in sea urchins could be affected. So, although the impact of ocean acidification on the skeleton of echinoderms has been considered as a major threat from the first studies, we need a better understanding of the induced changes, in particular the functional consequences of growth modifications and dissolution related to mechanical properties. It is suggested to focus studies on these aspects.
Collapse
Affiliation(s)
- Philippe Dubois
- Laboratoire de Biologie marine CP160/15, Université Libre de Bruxelles, av F.D. Roosevelt, 50, B-1050 Bruxelles, Belgium
| |
Collapse
|
72
|
Mann K, Edsinger E. The Lottia gigantea shell matrix proteome: re-analysis including MaxQuant iBAQ quantitation and phosphoproteome analysis. Proteome Sci 2014; 12:28. [PMID: 25018669 PMCID: PMC4094399 DOI: 10.1186/1477-5956-12-28] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Accepted: 05/01/2014] [Indexed: 12/29/2022] Open
Abstract
Background Although the importance of proteins of the biomineral organic matrix and their posttranslational modifications for biomineralization is generally recognized, the number of published matrix proteomes is still small. This is mostly due to the lack of comprehensive sequence databases, usually derived from genomic sequencing projects. However, in-depth mass spectrometry-based proteomic analysis, which critically depends on high-quality sequence databases, is a very fast tool to identify candidates for functional biomineral matrix proteins and their posttranslational modifications. Identification of such candidate proteins is facilitated by at least approximate quantitation of the identified proteins, because the most abundant ones may also be the most interesting candidates for further functional analysis. Results Re-quantification of previously identified Lottia shell matrix proteins using the intensity-based absolute quantification (iBAQ) method as implemented in the MaxQuant identification and quantitation software showed that only 57 of the 382 accepted identifications constituted 98% of the total identified matrix proteome. This group of proteins did not contain obvious intracellular proteins, such as cytoskeletal components or ribosomal proteins, invariably identified as minor components of high-throughput biomineral matrix proteomes. Fourteen of these major proteins were phosphorylated to a variable extent. All together we identified 52 phospho sites in 20 of the 382 accepted proteins with high confidence. Conclusions We show that iBAQ quantitation may be a useful tool to narrow down the group of functional biomineral matrix protein candidates for further research in cell biology, genetics or materials research. Knowledge of posttranslational modifications in these major proteins could be a valuable addition to previously published proteomes. This is true especially for phosphorylation, because this modification was already shown to modify mineralization processes in some instances.
Collapse
Affiliation(s)
- Karlheinz Mann
- Max-Planck-Institut für Biochemie, Abteilung Proteomics und Signaltransduktion, Am Klopferspitz 18, Martinsried D-82152, Germany
| | - Eric Edsinger
- Rokhsar Department, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA ; Present address: Brenner Unit, Okinawa institute of Science and Technology, 1919-0 Tancha, Onna-son, Kunigami-gun, Okinawa 904-0495, Japan
| |
Collapse
|
73
|
Abstract
Primary mesenchyme cells (PMCs) are skeletogenenic cells that produce a calcareous endoskeleton in developing sea urchin larvae. The PMCs fuse to form a cavity in which spicule matrix proteins and calcium are secreted forming the mineralized spicule. In this study, living sea urchin embryos were stained with fluorescently conjugated wheat germ agglutinin, a lectin that preferentially binds to PMCs, and the redistribution of this fluorescent tag was examined during sea urchin development. Initially, fluorescence was associated primarily with the surface of PMCs. Subsequently, the fluorescent label redistributed to intracellular vesicles in the PMCs. As the larval skeleton developed, intracellular granular staining diminished and fluorescence appeared in the spicules. Spicules that were cleaned to remove membranous material associated with the surface exhibited bright fluorescence, which indicated that fluorescently labelled lectin had been incorporated into the spicule matrix. The results provide evidence for a cellular pathway in which material is taken up at the cell surface, sequestered in intracellular vesicles and then incorporated into the developing spicule.
Collapse
|
74
|
Ettensohn CA. Horizontal transfer of themsp130gene supported the evolution of metazoan biomineralization. Evol Dev 2014; 16:139-48. [DOI: 10.1111/ede.12074] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Charles A. Ettensohn
- Department of Biological Sciences; Carnegie Mellon University; 4400 Fifth Avenue Pittsburgh PA 15213 USA
| |
Collapse
|
75
|
Rafiq K, Shashikant T, McManus CJ, Ettensohn CA. Genome-wide analysis of the skeletogenic gene regulatory network of sea urchins. Development 2014; 141:950-61. [PMID: 24496631 DOI: 10.1242/dev.105585] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
A central challenge of developmental and evolutionary biology is to understand the transformation of genetic information into morphology. Elucidating the connections between genes and anatomy will require model morphogenetic processes that are amenable to detailed analysis of cell/tissue behaviors and to systems-level approaches to gene regulation. The formation of the calcified endoskeleton of the sea urchin embryo is a valuable experimental system for developing such an integrated view of the genomic regulatory control of morphogenesis. A transcriptional gene regulatory network (GRN) that underlies the specification of skeletogenic cells (primary mesenchyme cells, or PMCs) has recently been elucidated. In this study, we carried out a genome-wide analysis of mRNAs encoded by effector genes in the network and uncovered transcriptional inputs into many of these genes. We used RNA-seq to identify >400 transcripts differentially expressed by PMCs during gastrulation, when these cells undergo a striking sequence of behaviors that drives skeletal morphogenesis. Our analysis expanded by almost an order of magnitude the number of known (and candidate) downstream effectors that directly mediate skeletal morphogenesis. We carried out genome-wide analysis of (1) functional targets of Ets1 and Alx1, two pivotal, early transcription factors in the PMC GRN, and (2) functional targets of MAPK signaling, a pathway that plays an essential role in PMC specification. These studies identified transcriptional inputs into >200 PMC effector genes. Our work establishes a framework for understanding the genomic regulatory control of a major morphogenetic process and has important implications for reconstructing the evolution of biomineralization in metazoans.
Collapse
Affiliation(s)
- Kiran Rafiq
- Department of Biological Sciences, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA 15213, USA
| | | | | | | |
Collapse
|
76
|
Koga H, Morino Y, Wada H. The echinoderm larval skeleton as a possible model system for experimental evolutionary biology. Genesis 2014; 52:186-92. [PMID: 24549940 DOI: 10.1002/dvg.22758] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2013] [Revised: 02/12/2014] [Accepted: 02/14/2014] [Indexed: 01/29/2023]
Abstract
The evolution of various body plans results from the acquisition of novel structures as well as the loss of existing structures. Some novel structures necessitate multiple evolutionary steps, requiring organisms to overcome the intermediate steps, which might be less adaptive or neutral. To examine this issue, echinoderms might provide an ideal experimental system. A larval skeleton is acquired in some echinoderm lineages, such as sea urchins, probably via the co-option of the skeletogenic machinery that was already established to produce the adult skeleton. The acquisition of a larval skeleton was found to require multiple steps and so provides a model experimental system for reproducing intermediate evolutionary stages. The fact that echinoderm embryology has been studied with various natural populations also presents an advantage.
Collapse
Affiliation(s)
- Hiroyuki Koga
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tennodai, Tsukuba, Japan
| | | | | |
Collapse
|
77
|
Pinsino A, Roccheri MC, Matranga V. Manganese overload affects p38 MAPK phosphorylation and metalloproteinase activity during sea urchin embryonic development. MARINE ENVIRONMENTAL RESEARCH 2014; 93:64-69. [PMID: 23998794 DOI: 10.1016/j.marenvres.2013.08.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Revised: 07/22/2013] [Accepted: 08/07/2013] [Indexed: 06/02/2023]
Abstract
In the marine environment, manganese represents a potential emerging contaminant, resulting from an increased production of manganese-containing compounds. In earlier reports we found that the exposure of Paracentrotus lividus sea urchin embryos to manganese produced phenotypes with no skeleton. In addition, manganese interfered with calcium uptake, perturbed extracellular signal-regulated kinase (ERK) signaling, affected the expression of skeletogenic genes, and caused an increase of the hsc70 and hsc60 protein levels. Here, we extended our studies focusing on the temporal activation of the p38 mitogen-activated protein kinase (p38 MAPK) and the proteolytic activity of metalloproteinases (MMPs). We found that manganese affects the stage-dependent dynamics of p38 MAPK activation and inhibits the total gelatin-auto-cleaving activity of MMPs, with the exclusion of the 90-85 kDa and 68-58 kDa MMPs, whose levels remain high all throughout development. Our findings correlate, for the first time to our knowledge, an altered activation pattern of the p38 MAPK with an aberrant MMP proteolytic activity in the sea urchin embryo.
Collapse
Affiliation(s)
- A Pinsino
- Istituto di Biomedicina e Immunologia Molecolare "Alberto Monroy", Consiglio Nazionale delle Ricerche, Palermo, Italy.
| | - M C Roccheri
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF), Università di Palermo, Italy
| | - V Matranga
- Istituto di Biomedicina e Immunologia Molecolare "Alberto Monroy", Consiglio Nazionale delle Ricerche, Palermo, Italy
| |
Collapse
|
78
|
Marie B, Ramos-Silva P, Marin F, Marie A. Proteomics of CaCO3biomineral-associated proteins: How to properly address their analysis. Proteomics 2013; 13:3109-16. [DOI: 10.1002/pmic.201300162] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Revised: 07/26/2013] [Accepted: 08/05/2013] [Indexed: 01/01/2023]
Affiliation(s)
- Benjamin Marie
- UMR 7245 CNRS/MNHN; Molécules de Communication et d'Adaptation des Micro-organismes; Muséum National d'Histoire Naturelle; Paris France
| | - Paula Ramos-Silva
- UMR 6282 CNRS/uB; Biogéosciences; Université de Bourgogne; Dijon France
- Section Computational Science; Informatics Institute; Universiteit van Amsterdam; Amsterdam The Netherlands
| | - Frédéric Marin
- UMR 6282 CNRS/uB; Biogéosciences; Université de Bourgogne; Dijon France
| | - Arul Marie
- UMR 7245 CNRS/MNHN; Plateforme de Spectrométrie de Masse et de Protéomique; Muséum National d'Histoire Naturelle; Paris France
| |
Collapse
|
79
|
Roles of larval sea urchin spicule SM50 domains in organic matrix self-assembly and calcium carbonate mineralization. J Struct Biol 2013; 183:205-15. [PMID: 23796503 DOI: 10.1016/j.jsb.2013.06.004] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Revised: 05/29/2013] [Accepted: 06/09/2013] [Indexed: 12/31/2022]
Abstract
The larval spicule matrix protein SM50 is the most abundant occluded matrix protein present in the mineralized larval sea urchin spicule. Recent evidence implicates SM50 in the stabilization of amorphous calcium carbonate (ACC). Here, we investigate the molecular interactions of SM50 and CaCO3 by investigating the function of three major domains of SM50 as small ubiquitin-like modifier (SUMO) fusion proteins - a C-type lectin domain (CTL), a glycine rich region (GRR) and a proline rich region (PRR). Under various mineralization conditions, we find that SUMO-CTL is monomeric and influences CaCO3 mineralization, SUMO-GRR aggregates into large protein superstructures and SUMO-PRR modifies the early CaCO3 mineralization stages as well as growth. The combination of these mineralization and self-assembly properties of the major domains synergistically enable the full-length SM50 to fulfill functions of constructing the organic spicule matrix as well as performing necessary mineralization activities such as Ca(2+) ion recruitment and organization to allow for proper growth and development of the mineralized larval sea urchin spicule.
Collapse
|
80
|
Ramos-Silva P, Kaandorp J, Huisman L, Marie B, Zanella-Cléon I, Guichard N, Miller DJ, Marin F. The skeletal proteome of the coral Acropora millepora: the evolution of calcification by co-option and domain shuffling. Mol Biol Evol 2013; 30:2099-112. [PMID: 23765379 PMCID: PMC3748352 DOI: 10.1093/molbev/mst109] [Citation(s) in RCA: 116] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
In corals, biocalcification is a major function that may be drastically affected by ocean acidification (OA). Scleractinian corals grow by building up aragonitic exoskeletons that provide support and protection for soft tissues. Although this process has been extensively studied, the molecular basis of biocalcification is poorly understood. Notably lacking is a comprehensive catalog of the skeleton-occluded proteins—the skeletal organic matrix proteins (SOMPs) that are thought to regulate the mineral deposition. Using a combination of proteomics and transcriptomics, we report the first survey of such proteins in the staghorn coral Acropora millepora. The organic matrix (OM) extracted from the coral skeleton was analyzed by mass spectrometry and bioinformatics, enabling the identification of 36 SOMPs. These results provide novel insights into the molecular basis of coral calcification and the macroevolution of metazoan calcifying systems, whereas establishing a platform for studying the impact of OA at molecular level. Besides secreted proteins, extracellular regions of transmembrane proteins are also present, suggesting a close control of aragonite deposition by the calicoblastic epithelium. In addition to the expected SOMPs (Asp/Glu-rich, galaxins), the skeletal repertoire included several proteins containing known extracellular matrix domains. From an evolutionary perspective, the number of coral-specific proteins is low, many SOMPs having counterparts in the noncalcifying cnidarians. Extending the comparison with the skeletal OM proteomes of other metazoans allowed the identification of a pool of functional domains shared between phyla. These data suggest that co-option and domain shuffling may be general mechanisms by which the trait of calcification has evolved.
Collapse
Affiliation(s)
- Paula Ramos-Silva
- UMR 6282 CNRS, Biogéosciences, Université de Bourgogne, Dijon, France
| | | | | | | | | | | | | | | |
Collapse
|
81
|
Wilt F, Killian CE, Croker L, Hamilton P. SM30 protein function during sea urchin larval spicule formation. J Struct Biol 2013; 183:199-204. [PMID: 23583702 DOI: 10.1016/j.jsb.2013.04.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Revised: 03/20/2013] [Accepted: 04/01/2013] [Indexed: 10/26/2022]
Abstract
A central issue in better understanding the process of biomineralization is to elucidate the function of occluded matrix proteins present in mineralized tissues. A potent approach to addressing this issue utilizes specific inhibitors of expression of known genes. Application of antisense oligonucleotides that specifically suppress translation of a given mRNA are capable of causing aberrant biomineralization, thereby revealing, at least in part, a likely function of the protein and gene under investigation. We have applied this approach to study the possible function(s) of the SM30 family of proteins, which are found in spicules, teeth, spines, and tests of Strongylocentrotus purpuratus as well as other euechinoid sea urchins. It is possible using the anti-SM30 morpholino-oligonucleotides (MO's) to reduce the level of these proteins to very low levels, yet the development of skeletal spicules in the embryo shows little or no aberration. This surprising result requires re-thinking about the role of these, and possibly other occluded matrix proteins.
Collapse
Affiliation(s)
- Fred Wilt
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720-3200, United States.
| | | | | | | |
Collapse
|
82
|
Ettensohn CA. Encoding anatomy: Developmental gene regulatory networks and morphogenesis. Genesis 2013; 51:383-409. [PMID: 23436627 DOI: 10.1002/dvg.22380] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Revised: 02/06/2013] [Accepted: 02/07/2013] [Indexed: 12/19/2022]
Affiliation(s)
- Charles A. Ettensohn
- Department of Biological Sciences; Carnegie Mellon University; Pittsburgh; Pennsylvania
| |
Collapse
|
83
|
Proteomic analysis of skeletal organic matrix from the stony coral Stylophora pistillata. Proc Natl Acad Sci U S A 2013; 110:3788-93. [PMID: 23431140 DOI: 10.1073/pnas.1301419110] [Citation(s) in RCA: 118] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
It has long been recognized that a suite of proteins exists in coral skeletons that is critical for the oriented precipitation of calcium carbonate crystals, yet these proteins remain poorly characterized. Using liquid chromatography-tandem mass spectrometry analysis of proteins extracted from the cell-free skeleton of the hermatypic coral, Stylophora pistillata, combined with a draft genome assembly from the cnidarian host cells of the same species, we identified 36 coral skeletal organic matrix proteins. The proteome of the coral skeleton contains an assemblage of adhesion and structural proteins as well as two highly acidic proteins that may constitute a unique coral skeletal organic matrix protein subfamily. We compared the 36 skeletal organic matrix protein sequences to genome and transcriptome data from three other corals, three additional invertebrates, one vertebrate, and three single-celled organisms. This work represents a unique extensive proteomic analysis of biomineralization-related proteins in corals from which we identify a biomineralization "toolkit," an organic scaffold upon which aragonite crystals can be deposited in specific orientations to form a phenotypically identifiable structure.
Collapse
|
84
|
Launspach M, Rückmann K, Gummich M, Rademaker H, Doschke H, Radmacher M, Fritz M. Immobilisation and characterisation of the demineralised, fully hydrated organic matrix of nacre – An atomic force microscopy study. Micron 2012; 43:1351-63. [DOI: 10.1016/j.micron.2012.03.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2012] [Revised: 03/20/2012] [Accepted: 03/21/2012] [Indexed: 10/28/2022]
|
85
|
Vaughn R, Garnhart N, Garey JR, Thomas WK, Livingston BT. Sequencing and analysis of the gastrula transcriptome of the brittle star Ophiocoma wendtii. EvoDevo 2012; 3:19. [PMID: 22938175 PMCID: PMC3492025 DOI: 10.1186/2041-9139-3-19] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2012] [Accepted: 07/13/2012] [Indexed: 01/22/2023] Open
Abstract
UNLABELLED BACKGROUND The gastrula stage represents the point in development at which the three primary germ layers diverge. At this point the gene regulatory networks that specify the germ layers are established and the genes that define the differentiated states of the tissues have begun to be activated. These networks have been well-characterized in sea urchins, but not in other echinoderms. Embryos of the brittle star Ophiocoma wendtii share a number of developmental features with sea urchin embryos, including the ingression of mesenchyme cells that give rise to an embryonic skeleton. Notable differences are that no micromeres are formed during cleavage divisions and no pigment cells are formed during development to the pluteus larval stage. More subtle changes in timing of developmental events also occur. To explore the molecular basis for the similarities and differences between these two echinoderms, we have sequenced and characterized the gastrula transcriptome of O. wendtii. METHODS Development of Ophiocoma wendtii embryos was characterized and RNA was isolated from the gastrula stage. A transcriptome data base was generated from this RNA and was analyzed using a variety of methods to identify transcripts expressed and to compare those transcripts to those expressed at the gastrula stage in other organisms. RESULTS Using existing databases, we identified brittle star transcripts that correspond to 3,385 genes, including 1,863 genes shared with the sea urchin Strongylocentrotus purpuratus gastrula transcriptome. We characterized the functional classes of genes present in the transcriptome and compared them to those found in this sea urchin. We then examined those members of the germ-layer specific gene regulatory networks (GRNs) of S. purpuratus that are expressed in the O. wendtii gastrula. Our results indicate that there is a shared 'genetic toolkit' central to the echinoderm gastrula, a key stage in embryonic development, though there are also differences that reflect changes in developmental processes. CONCLUSIONS The brittle star expresses genes representing all functional classes at the gastrula stage. Brittle stars and sea urchins have comparable numbers of each class of genes and share many of the genes expressed at gastrulation. Examination of the brittle star genes in which sea urchin orthologs are utilized in germ layer specification reveals a relatively higher level of conservation of key regulatory components compared to the overall transcriptome. We also identify genes that were either lost or whose temporal expression has diverged from that of sea urchins.
Collapse
Affiliation(s)
- Roy Vaughn
- Department of Biological, Sciences, California State University Long Beach, 1250 Bellflower Blvd, Long Beach, CA 90815, USA.
| | | | | | | | | |
Collapse
|
86
|
Cameron CB, Bishop CD. Biomineral ultrastructure, elemental constitution and genomic analysis of biomineralization-related proteins in hemichordates. Proc Biol Sci 2012; 279:3041-8. [PMID: 22496191 PMCID: PMC3385480 DOI: 10.1098/rspb.2012.0335] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2012] [Accepted: 03/20/2012] [Indexed: 12/22/2022] Open
Abstract
Here, we report the discovery and characterization of biominerals in the acorn worms Saccoglossus bromophenolosus and Ptychodera flava galapagos (Phylum: Hemichordata). Using electron microscopy, X-ray microprobe analyses and confocal Raman spectroscopy, we show that hemichordate biominerals are small CaCO(3) aragonitic elements restricted to specialized epidermal structures, and in S. bromophenolosus, are apparently secreted by sclerocytes. Investigation of urchin biomineralizing proteins in the translated genome and expressed sequence tag (EST) libraries of Saccoglossus kowalevskii indicates that three members of the urchin MSP-130 family, a carbonic anhydrase and a matrix metaloprotease are present and transcribed during the development of S. kowalevskii. The SM family of proteins is absent from the hemichordate genome. These results increase the number of phyla known to biomineralize and suggest that some of the gene-regulatory 'toolkit', if not mineralized tissue themselves, may have been present in the common ancestor to hemichordates and echinoderms.
Collapse
Affiliation(s)
- C B Cameron
- Département de Sciences Biologiques, Université de Montréal, C.P. 6128, Succ. Centre-ville, Montréal, Quebec, Canada, H3C 3J7.
| | | |
Collapse
|
87
|
Chandramouli KH, Reish D, Qian PY. Gel-based and gel-free identification of proteins and phosphopeptides during egg-to-larva transition in polychaete Neanthes arenaceodentata. PLoS One 2012; 7:e38814. [PMID: 22719953 PMCID: PMC3376139 DOI: 10.1371/journal.pone.0038814] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2011] [Accepted: 05/10/2012] [Indexed: 12/15/2022] Open
Abstract
The polychaete Neanthes arenaceodentata- is cosmopolitan in distribution-, has been used as a laboratory test animal. Life history of this species has several unique features; the female dies after spawning and the male incubates the fertilized eggs through the 21-segmented stage. The larvae leave the tube and commence feeding. Changes in protein abundance and phosphorylation were examined during early development of N. arenaceodentata. A gel-based approach and gel-free enrichment of phosphopeptides coupled with mass spectrometry were used to identify proteins and phosphopeptides in fertilized ova and larval stages. Patterns of proteins and phosphoproteins changed from fertilized ova to larval stages. Twelve proteins occurred in phosphorylated form and nine as stage specific proteins. Cytoskeletal proteins have exhibited differential phosphorylation from ova to larval stages; whereas, other proteins exhibited stage-specific phosphorylation patterns. Ten phosphopeptides were identified that showed phosphorylation sites on serine or threonine residues. Sixty percent of the identified proteins were related to structural reorganization and others with protein synthesis, stress response and attachment. The abundance and distribution of two cytoskeleton proteins were examined further by 2-DE Western blot analysis. This is the first report on changes in protein expression and phosphorylation sites at Thr/Ser in early development of N. arenaceodentata. The 2-DE proteome maps and identified phosphoproteins contributes toward understanding the state of fertilized ova and early larval stages and serves as a basis for further studies on proteomics changes under different developmental conditions in this and other polychaete species.
Collapse
Affiliation(s)
| | - Donald Reish
- Department of Biological Sciences, California State University, Long Beach, California, United States of America
- * E-mail: (DR); (PYQ)
| | - Pei-Yuan Qian
- Division of Life Science, Hong Kong University of Science and Technology, Hong Kong SAR, China
- * E-mail: (DR); (PYQ)
| |
Collapse
|
88
|
Mann K, Edsinger-Gonzales E, Mann M. In-depth proteomic analysis of a mollusc shell: acid-soluble and acid-insoluble matrix of the limpet Lottia gigantea. Proteome Sci 2012; 10:28. [PMID: 22540284 PMCID: PMC3374290 DOI: 10.1186/1477-5956-10-28] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2012] [Accepted: 04/27/2012] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Invertebrate biominerals are characterized by their extraordinary functionality and physical properties, such as strength, stiffness and toughness that by far exceed those of the pure mineral component of such composites. This is attributed to the organic matrix, secreted by specialized cells, which pervades and envelops the mineral crystals. Despite the obvious importance of the protein fraction of the organic matrix, only few in-depth proteomic studies have been performed due to the lack of comprehensive protein sequence databases. The recent public release of the gastropod Lottia gigantea genome sequence and the associated protein sequence database provides for the first time the opportunity to do a state-of-the-art proteomic in-depth analysis of the organic matrix of a mollusc shell. RESULTS Using three different sodium hypochlorite washing protocols before shell demineralization, a total of 569 proteins were identified in Lottia gigantea shell matrix. Of these, 311 were assembled in a consensus proteome comprising identifications contained in all proteomes irrespective of shell cleaning procedure. Some of these proteins were similar in amino acid sequence, amino acid composition, or domain structure to proteins identified previously in different bivalve or gastropod shells, such as BMSP, dermatopontin, nacrein, perlustrin, perlucin, or Pif. In addition there were dozens of previously uncharacterized proteins, many containing repeated short linear motifs or homorepeats. Such proteins may play a role in shell matrix construction or control of mineralization processes. CONCLUSIONS The organic matrix of Lottia gigantea shells is a complex mixture of proteins comprising possible homologs of some previously characterized mollusc shell proteins, but also many novel proteins with a possible function in biomineralization as framework building blocks or as regulatory components. We hope that this data set, the most comprehensive available at present, will provide a platform for the further exploration of biomineralization processes in molluscs.
Collapse
Affiliation(s)
- Karlheinz Mann
- Abteilung Proteomics und Signaltransduktion, Max-Planck-Institut für Biochemie, Am Klopferspitz 18, D-82152, Martinsried, Munich, Germany.
| | | | | |
Collapse
|
89
|
Phylogenetic analysis and expression patterns of p16 and p19 in Paracentrotus lividus embryos. Dev Genes Evol 2012; 222:245-51. [DOI: 10.1007/s00427-012-0405-9] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2012] [Accepted: 04/25/2012] [Indexed: 10/28/2022]
|
90
|
Abstract
Crystalline biominerals do not resemble faceted crystals. Current explanations for this property involve formation via amorphous phases. Using X-ray absorption near-edge structure (XANES) spectroscopy and photoelectron emission microscopy (PEEM), here we examine forming spicules in embryos of Strongylocentrotus purpuratus sea urchins, and observe a sequence of three mineral phases: hydrated amorphous calcium carbonate (ACC · H(2)O) → dehydrated amorphous calcium carbonate (ACC) → calcite. Unexpectedly, we find ACC · H(2)O-rich nanoparticles that persist after the surrounding mineral has dehydrated and crystallized. Protein matrix components occluded within the mineral must inhibit ACC · H(2)O dehydration. We devised an in vitro, also using XANES-PEEM, assay to identify spicule proteins that may play a role in stabilizing various mineral phases, and found that the most abundant occluded matrix protein in the sea urchin spicules, SM50, stabilizes ACC · H(2)O in vitro.
Collapse
|
91
|
Fasoli E, D'Amato A, Righetti PG, Barbieri R, Bellavia D. Exploration of the sea urchin coelomic fluid via combinatorial peptide ligand libraries. THE BIOLOGICAL BULLETIN 2012; 222:93-104. [PMID: 22589400 DOI: 10.1086/bblv222n2p93] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
The urchin Paracentrotus lividus has been characterized via previous capture and enhancement of low-abundance proteins with combinatorial peptide ligand libraries (CPLL, ProteoMiner). Whereas in the control only 26 unique gene products could be identified, 82 species could be detected after CPLL treatment. Due to the overwhelming presence of two major proteins-the toposome (a highly glycosylated, modified calcium-binding, iron-less transferrin) and the major yolk proteins, belonging to the class of cell adhesion proteins-which constituted about 70% of the proteome of this biological fluid and strongly interfered with the capture of the minority proteome, no additional proteins could be detected. Yet, at present, this constitutes the most thorough investigation of the proteome of this biological fluid.
Collapse
Affiliation(s)
- Elisa Fasoli
- Department of Chemistry, Materials and Chemical Engineering Giulio Natta, Politecnico di Milano, Via Mancinelli 7, Milan, Italy
| | | | | | | | | |
Collapse
|
92
|
Rafiq K, Cheers MS, Ettensohn CA. The genomic regulatory control of skeletal morphogenesis in the sea urchin. Development 2011; 139:579-90. [PMID: 22190640 DOI: 10.1242/dev.073049] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
A central challenge of developmental and evolutionary biology is to understand how anatomy is encoded in the genome. Elucidating the genetic mechanisms that control the development of specific anatomical features will require the analysis of model morphogenetic processes and an integration of biological information at genomic, cellular and tissue levels. The formation of the endoskeleton of the sea urchin embryo is a powerful experimental system for developing such an integrated view of the genomic regulatory control of morphogenesis. The dynamic cellular behaviors that underlie skeletogenesis are well understood and a complex transcriptional gene regulatory network (GRN) that underlies the specification of embryonic skeletogenic cells (primary mesenchyme cells, PMCs) has recently been elucidated. Here, we link the PMC specification GRN to genes that directly control skeletal morphogenesis. We identify new gene products that play a proximate role in skeletal morphogenesis and uncover transcriptional regulatory inputs into many of these genes. Our work extends the importance of the PMC GRN as a model developmental GRN and establishes a unique picture of the genomic regulatory control of a major morphogenetic process. Furthermore, because echinoderms exhibit diverse programs of skeletal development, the newly expanded sea urchin skeletogenic GRN will provide a foundation for comparative studies that explore the relationship between GRN evolution and morphological evolution.
Collapse
Affiliation(s)
- Kiran Rafiq
- Department of Biological Sciences, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA 15213, USA
| | | | | |
Collapse
|
93
|
Marie B, Zanella-Cléon I, Guichard N, Becchi M, Marin F. Novel proteins from the calcifying shell matrix of the Pacific oyster Crassostrea gigas. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2011; 13:1159-1168. [PMID: 21537946 DOI: 10.1007/s10126-011-9379-2] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2010] [Accepted: 03/29/2011] [Indexed: 05/30/2023]
Abstract
The shell of the Pacific oyster Crassostrea gigas is composed of more than 99% CaCO₃ and of around 0.5% of occluded organic matrix. According to classical views, this matrix is supposed to regulate the shell mineral deposition. In this study, we developed one of the first proteomic approaches applied to mollusk shell in order to characterise the calcifying matrix proteins. The insoluble organic matrix, purified after demineralisation of the shell powder, was digested with trypsin enzyme, and separated on nano-LC, prior to nanospray quadrupole/time-of-flight analysis. MS/MS spectra were searched against the above 220,000 EST sequences available in the public database for Crassostrea. Using this approach, we were able to identify partial or full-length sequence transcripts that encode eight novel shell matrix proteins.
Collapse
Affiliation(s)
- Benjamin Marie
- UMR 5561 CNRS Biogéosciences, Université de Bourgogne, 6 Bd. Gabriel, Dijon 21000, France.
| | | | | | | | | |
Collapse
|
94
|
Veis A. Organic matrix-related mineralization of sea urchin spicules, spines, test and teeth. FRONT BIOSCI-LANDMRK 2011; 16:2540-60. [PMID: 21622194 PMCID: PMC3516302 DOI: 10.2741/3871] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The camarodont echinoderms have five distinct mineralized skeletal elements: embryonic spicules, mature test, spines, lantern stereom and teeth. The spicules are transient structural elements whereas the spines, and test plates are permanent. The teeth grow continuously. The mineral is a high magnesium calcite, but the magnesium content is different in each type of skeletal element, varying from 5 to 40 mole% Mg. The organic matrix creates the spaces and environments for crystal initiation and growth. The detailed mechanisms of crystal regulation are not known, but acidic and phosphorylated matrix proteins may be of special importance. Biochemical studies, sequencing of the complete genome, and high-throughput proteomic analysis have not yet provided insight into the mechanisms of crystallization, calcite composition, and orientation applicable to all skeletal elements. The embryonic spicules are not representative of the mature skeletal elements. The next phase of research will have to focus on the specific localization of the proteins and individual biochemistries of each system with regard to mineral content and placement.
Collapse
Affiliation(s)
- Arthur Veis
- Feinberg School of Medicine, Northwestern University, Department of Cell and Molecular Biology, 303 E. Chicago Avenue, Chicago, Illinois 60611, USA.
| |
Collapse
|
95
|
Adomako-Ankomah A, Ettensohn CA. P58-A and P58-B: novel proteins that mediate skeletogenesis in the sea urchin embryo. Dev Biol 2011; 353:81-93. [PMID: 21362416 DOI: 10.1016/j.ydbio.2011.02.021] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2011] [Revised: 02/17/2011] [Accepted: 02/18/2011] [Indexed: 01/17/2023]
Abstract
During sea urchin embryogenesis, the skeleton is produced by primary mesenchyme cells (PMCs). PMCs undergo a sequence of morphogenetic behaviors that includes ingression, directed migration, and cell-cell fusion. Ultimately, PMCs deposit the calcite-containing biomineral that forms the endoskeleton of the late embryo and early larva. The endoskeleton has a stereotypical structure and is the major determinant of the distinctive, angular shape of the larva. Although many candidate biomineralization proteins have been identified, functional data concerning these proteins are scant. Here, we identify and characterize two new biomineralization genes, p58-a and p58-b. We show that these two genes are highly conserved in Strongylocentrotus purpuratus and Lytechinus variegatus, two sea urchin species whose ancestors diverged approximately 100 mya. The p58-a and p58-b genes lie in tandem on the chromosome, suggesting that one of the two genes arose via a gene duplication event. The two genes encode closely related, type I transmembrane proteins. We have established by whole mount in situ hybridization that p58-a and p58-b are expressed specifically in the PMCs in both species. Knockdown of either gene by morpholino antisense oligonucleotides leads to profound defects in skeletogenesis, although skeletal elements are not completely eliminated. The P58-A and P58-B proteins do not appear to play a role in the specification, directed migration or differentiation of the PMCs, but most likely are directly involved in biomineralization during sea urchin embryonic development.
Collapse
Affiliation(s)
- Ashrifia Adomako-Ankomah
- Department of Biological Sciences, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA 15213, USA
| | | |
Collapse
|
96
|
Abstract
Biomineralization is a "bottom-up" synthesis process that results in the formation of inorganic/organic nanocomposites with unrivaled control over structure, superior mechanical properties, adaptive response, and the capability of self-repair. While de novo design of such highly optimized materials may still be out of reach, engineering of the biosynthetic machinery may offer an alternative route to design advanced materials. Herein, we present an approach using micro-contact-printed lectins for patterning sea urchin embryo primary mesenchyme cells (PMCs) in vitro. We demonstrate not only that PMCs cultured on these substrates show attachment to wheat germ agglutinin and concanavalin A patterns but, more importantly, that the deposition and elongation of calcite spicules occurs cooperatively by multiple cells and in alignment with the printed pattern. This allows us to control the placement and orientation of smooth, cylindrical calcite single crystals where the crystallographic c-direction is parallel to the cylinder axis and the underlying line pattern.
Collapse
Affiliation(s)
- Ching-Hsuan Wu
- Department of Materials Science and Engineering, Northwestern University, 2220 Campus Drive, Evanston, Illinois 60208, United States
| | | | | |
Collapse
|
97
|
Echinoderms as Blueprints for Biocalcification: Regulation of Skeletogenic Genes and Matrices. MOLECULAR BIOMINERALIZATION 2011; 52:225-48. [DOI: 10.1007/978-3-642-21230-7_8] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
98
|
Gilbert PUPA, Wilt FH. Molecular aspects of biomineralization of the echinoderm endoskeleton. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2011; 52:199-223. [PMID: 21877267 DOI: 10.1007/978-3-642-21230-7_7] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Echinoderms possess a rigid endoskeleton composed of calcite and small amounts of occluded organic matrix proteins. The test (i.e., the shell-like structure of adults), spines, pedicellariae, tube feet, and teeth of adults, as well as delicate endoskeletal spicules found in larvae of some classes, are the main skeletal structures. They have been intensively studied for insight into the mechanisms of biomineralization. Recent work on characterization of the mineral phase and occluded proteins in embryonic skeletal spicules shows that these simple-looking structures contain scores of different proteins, and that the mineral phase is composed of amorphous calcium carbonate (ACC), which then transforms to an anhydrous ACC and eventually to calcite. Likewise, the adult tooth shows a similar transition from hydrated ACC to anhydrous ACC to calcite during its formation, and a similar transition is likely occurring during adult spine regeneration. We speculate that: (1) the ACC precursor is a general strategy employed in biomineralization in echinoderms, (2) the numerous occluded proteins play a role in post-secretion formation of the mature biomineralized structure, and (3) proteins with "multi-valent" intrinsically disordered domains are important for formation of occluded matrix structures, and regulation of crucial matrix-mineral interactions, such as ACC to calcite transitions and polymorph selection.
Collapse
Affiliation(s)
- P U P A Gilbert
- Department of Physics, University of Wisconsin-Madison, 1150 University Ave, Madison, WI, 53706, USA,
| | | |
Collapse
|
99
|
Marie B, Marie A, Jackson DJ, Dubost L, Degnan BM, Milet C, Marin F. Proteomic analysis of the organic matrix of the abalone Haliotis asinina calcified shell. Proteome Sci 2010; 8:54. [PMID: 21050442 PMCID: PMC2989941 DOI: 10.1186/1477-5956-8-54] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2010] [Accepted: 11/04/2010] [Indexed: 12/05/2022] Open
Abstract
Background The formation of the molluscan shell is regulated to a large extent by a matrix of extracellular macromolecules that are secreted by the shell forming tissue, the mantle. This so called "calcifying matrix" is a complex mixture of proteins and glycoproteins that is assembled and occluded within the mineral phase during the calcification process. While the importance of the calcifying matrix to shell formation has long been appreciated, most of its protein components remain uncharacterised. Results Recent expressed sequence tag (EST) investigations of the mantle tissue from the tropical abalone (Haliotis asinina) provide an opportunity to further characterise the proteins in the shell by a proteomic approach. In this study, we have identified a total of 14 proteins from distinct calcified layers of the shell. Only two of these proteins have been previously characterised from abalone shells. Among the novel proteins are several glutamine- and methionine-rich motifs and hydrophobic glycine-, alanine- and acidic aspartate-rich domains. In addition, two of the new proteins contained Kunitz-like and WAP (whey acidic protein) protease inhibitor domains. Conclusion This is one of the first comprehensive proteomic study of a molluscan shell, and should provide a platform for further characterization of matrix protein functions and interactions.
Collapse
Affiliation(s)
- Benjamin Marie
- UMR 5561 CNRS, Biogéosciences, Université de Bourgogne, 21000 Dijon, France.
| | | | | | | | | | | | | |
Collapse
|