51
|
Chimento A, Sirianni R, Casaburi I, Pezzi V. GPER Signaling in Spermatogenesis and Testicular Tumors. Front Endocrinol (Lausanne) 2014; 5:30. [PMID: 24639669 PMCID: PMC3944538 DOI: 10.3389/fendo.2014.00030] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Accepted: 02/20/2014] [Indexed: 12/04/2022] Open
Abstract
Estrogens play important roles in the regulation of testis development and spermatogenesis. Moreover, several evidences suggest that estrogen signaling can be involved in testicular tumorigenesis. The physiological effects of estrogen are mediated by the classical nuclear estrogen receptors ESR1 and 2, which regulate both genomic and rapid signaling events. In the recent years, a member of the seven-transmembrane G protein-coupled receptor family, GPR30 (GPER), has been identified to promote estrogen action in target cells including testicular cells. Ours and other studies reported that GPER is expressed in normal germ cells (spermatogonia, spermatocytes, spermatids), somatic cells (Sertoli and Leydig cells), and it is also involved in mediating estrogen action during spermatogenesis and testis development. In addition, GPER seems to be involved in modulating estrogen-dependent testicular cancer cell growth. However, in this context, the effects of GPER stimulation on cell survival and proliferation appear to be cell type specific. This review summarizes the current knowledge on the functions regulated by estrogens and mediated by GPER in normal and tumor testicular cells.
Collapse
Affiliation(s)
- Adele Chimento
- Laboratory of Applied Biology, Department of Pharmacy, Health and Nutrition Sciences, University of Calabria, Cosenza, Italy
| | - Rosa Sirianni
- Laboratory of Applied Biology, Department of Pharmacy, Health and Nutrition Sciences, University of Calabria, Cosenza, Italy
| | - Ivan Casaburi
- Laboratory of Applied Biology, Department of Pharmacy, Health and Nutrition Sciences, University of Calabria, Cosenza, Italy
| | - Vincenzo Pezzi
- Laboratory of Applied Biology, Department of Pharmacy, Health and Nutrition Sciences, University of Calabria, Cosenza, Italy
- *Correspondence: Vincenzo Pezzi, Laboratory of Applied Biology, Department of Pharmacy, Health and Nutrition Sciences, University of Calabria, Edificio Polifunzionale, Arcavacata di Rende, Cosenza 87036, Italy e-mail:
| |
Collapse
|
52
|
Pupo M, Vivacqua A, Perrotta I, Pisano A, Aquila S, Abonante S, Gasperi-Campani A, Pezzi V, Maggiolini M. The nuclear localization signal is required for nuclear GPER translocation and function in breast Cancer-Associated Fibroblasts (CAFs). Mol Cell Endocrinol 2013; 376:23-32. [PMID: 23748028 DOI: 10.1016/j.mce.2013.05.023] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Revised: 04/02/2013] [Accepted: 05/30/2013] [Indexed: 12/26/2022]
Abstract
Cancer associated fibroblasts (CAFs) actively contribute to the growth and invasion of cancer cells. In recent years, the G protein estrogen receptor (GPER) has been largely involved in the estrogenic signals in diverse types of normal and tumor cells. In CAFs, GPER was localized into the nucleus, however the molecular mechanisms which regulate its nuclear shuttle remain to be clarified. In the present study, we demonstrate that in breast CAFs GPER translocates into the nucleus through an importin-dependent mechanism. Moreover, we show that a nuclear localization signal is involved in the nuclear import of GPER, in the up-regulation of its target genes c-fos and CTGF and in the migration of CAFs induced by estrogens. Our data provide novel insights into the nuclear localization and function of GPER in CAFs toward a better understanding of the estrogen action elicited through these key players of the tumor microenvironment.
Collapse
Affiliation(s)
- Marco Pupo
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
53
|
Selective GPER activation decreases proliferation and activates apoptosis in tumor Leydig cells. Cell Death Dis 2013; 4:e747. [PMID: 23907461 PMCID: PMC3763437 DOI: 10.1038/cddis.2013.275] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2013] [Revised: 06/24/2013] [Accepted: 06/26/2013] [Indexed: 12/19/2022]
Abstract
We have previously shown that estrogens binding to estrogen receptor (ER) α increase proliferation of Leydig tumor cells. Estrogens can also bind to G protein-coupled ER (GPER) and activation of this receptor can either increase or decrease cell proliferation of several tumor types. The aim of this study was to investigate GPER expression in R2C rat tumor Leydig cells, evaluate effects of its activation on Leydig tumor cell proliferation and define the molecular mechanisms triggered in response to its activation. R2C cells express GPER and its activation, using the specific ligand G-1, is associated with decreased cell proliferation and initiation of apoptosis. Apoptosis after G-1 treatment was asserted by appearance of DNA condensation and fragmentation, decrease in Bcl-2 and increase in Bax expression, cytochrome c release, caspase and poly (ADP-ribose) polymerase-1 (PARP-1) activation. These effects were dependent on GPER activation because after silencing of the gene, using a specific small interfering RNA, cyt c release, PARP-1 activation and decrease in cell proliferation were abrogated. These events required a rapid, however, sustained extracellular regulated kinase 1/2 activation. G-1 was able to decrease the growth of R2C xenograft tumors in CD1 nude mice while increasing the number of apoptotic cells. In addition, in vivo administration of G-1 to male CD1 mice did not cause any alteration in testicular morphology, while cisplatin, the cytotoxic drug currently used for the therapy of Leydig tumors, severely damaged testicular structure, an event associated with infertility in cisplatin-treated patients. These observations indicate that GPER targeting for the therapy of Leydig cell tumor may represent a good alternative to cisplatin to preserve fertility in Leydig tumor patients.
Collapse
|
54
|
Andreassen M, Frystyk J, Faber J, Kristensen LØ, Juul A. Growth hormone (GH) activity is associated with increased serum oestradiol and reduced Anti-Müllerian Hormone in healthy male volunteers treated with GH and a GH antagonist. Andrology 2013; 1:595-601. [DOI: 10.1111/j.2047-2927.2013.00096.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Revised: 03/07/2013] [Accepted: 04/16/2013] [Indexed: 11/27/2022]
Affiliation(s)
- M. Andreassen
- Department of Internal Medicine; Endocrine Unit; Herlev Hospital; University of Copenhagen; Herlev; Denmark
| | | | - J. Faber
- Department of Internal Medicine; Endocrine Unit; Herlev Hospital; University of Copenhagen; Herlev; Denmark
| | - L. Ø. Kristensen
- Department of Internal Medicine; Endocrine Unit; Herlev Hospital; University of Copenhagen; Herlev; Denmark
| | - A. Juul
- Department of Growth and Reproduction; Rigshospitalet; University of Copenhagen; Copenhagen; Denmark
| |
Collapse
|
55
|
Chevalier N, Vega A, Bouskine A, Siddeek B, Michiels JF, Chevallier D, Fénichel P. GPR30, the non-classical membrane G protein related estrogen receptor, is overexpressed in human seminoma and promotes seminoma cell proliferation. PLoS One 2012; 7:e34672. [PMID: 22496838 PMCID: PMC3319601 DOI: 10.1371/journal.pone.0034672] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2011] [Accepted: 03/05/2012] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Testicular germ cell tumours are the most frequent cancer of young men with an increasing incidence all over the world. Pathogenesis and reasons of this increase remain unknown but epidemiological and clinical data have suggested that fetal exposure to environmental endocrine disruptors (EEDs) with estrogenic effects, could participate to testicular germ cell carcinogenesis. However, these EEDs (like bisphenol A) are often weak ligands for classical nuclear estrogen receptors. Several research groups recently showed that the non classical membrane G-protein coupled estrogen receptor (GPER/GPR30) mediates the effects of estrogens and several xenoestrogens through rapid non genomic activation of signal transduction pathways in various human estrogen dependent cancer cells (breast, ovary, endometrium). The aim of this study was to demonstrate that GPER was overexpressed in testicular tumours and was able to trigger JKT-1 seminoma cell proliferation. RESULTS We report here for the first time a complete morphological and functional characterization of GPER in normal and malignant human testicular germ cells. In normal adult human testes, GPER was expressed by somatic (Sertoli cells) and germ cells (spermatogonia and spermatocytes). GPER was exclusively overexpressed in seminomas, the most frequent testicular germ cell cancer, localized at the cell membrane and triggered a proliferative effect on JKT-1 cells in vitro, which was completely abolished by G15 (a GPER selective antagonist) and by siRNA invalidation. CONCLUSION These results demonstrate that GPER is expressed by human normal adult testicular germ cells, specifically overexpressed in seminoma tumours and able to trigger seminoma cell proliferation in vitro. It should therefore be considered rather than classical ERs when xeno-estrogens or other endocrine disruptors are assessed in testicular germ cell cancers. It may also represent a prognosis marker and/or a therapeutic target for seminomas.
Collapse
Affiliation(s)
- Nicolas Chevalier
- Institut National de la Santé et de la Recherche Médicale (INSERM) UMR U1065/UNS, Centre Méditerranéen de Médecine Moléculaire (C3M), Equipe 5 « Environnement, Reproduction et Cancers Hormono-Dépendants », Nice, France
- Université de Nice-Sophia Antipolis, Faculté de Médecine, Institut Signalisation et Pathologie (IFR 50), Nice, France
- Centre Hospitalier Universitaire de Nice, Hôpital de l'Archet, Service d'Endocrinologie, Diabétologie et Médecine de la Reproduction, Nice, France
| | - Aurélie Vega
- Institut National de la Santé et de la Recherche Médicale (INSERM) UMR U1065/UNS, Centre Méditerranéen de Médecine Moléculaire (C3M), Equipe 5 « Environnement, Reproduction et Cancers Hormono-Dépendants », Nice, France
- Université de Nice-Sophia Antipolis, Faculté de Médecine, Institut Signalisation et Pathologie (IFR 50), Nice, France
- Centre Hospitalier Universitaire de Nice, Hôpital de l'Archet, Service d'Endocrinologie, Diabétologie et Médecine de la Reproduction, Nice, France
| | - Adil Bouskine
- Institut National de la Santé et de la Recherche Médicale (INSERM) UMR U1065/UNS, Centre Méditerranéen de Médecine Moléculaire (C3M), Equipe 5 « Environnement, Reproduction et Cancers Hormono-Dépendants », Nice, France
- Université de Nice-Sophia Antipolis, Faculté de Médecine, Institut Signalisation et Pathologie (IFR 50), Nice, France
- Centre Hospitalier Universitaire de Nice, Hôpital de l'Archet, Service d'Endocrinologie, Diabétologie et Médecine de la Reproduction, Nice, France
| | - Bénazir Siddeek
- Institut National de la Santé et de la Recherche Médicale (INSERM) UMR U1065/UNS, Centre Méditerranéen de Médecine Moléculaire (C3M), Equipe 5 « Environnement, Reproduction et Cancers Hormono-Dépendants », Nice, France
- Université de Nice-Sophia Antipolis, Faculté de Médecine, Institut Signalisation et Pathologie (IFR 50), Nice, France
- Centre Hospitalier Universitaire de Nice, Hôpital de l'Archet, Service d'Endocrinologie, Diabétologie et Médecine de la Reproduction, Nice, France
| | - Jean-François Michiels
- Centre Hospitalier Universitaire de Nice, Hôpital Pasteur, Laboratoire d'Anatomie et Cytologie Pathologiques, Nice, France
| | - Daniel Chevallier
- Centre Hospitalier Universitaire de Nice, Hôpital Pasteur, Service d'Urologie, Nice, France
| | - Patrick Fénichel
- Institut National de la Santé et de la Recherche Médicale (INSERM) UMR U1065/UNS, Centre Méditerranéen de Médecine Moléculaire (C3M), Equipe 5 « Environnement, Reproduction et Cancers Hormono-Dépendants », Nice, France
- Université de Nice-Sophia Antipolis, Faculté de Médecine, Institut Signalisation et Pathologie (IFR 50), Nice, France
- Centre Hospitalier Universitaire de Nice, Hôpital de l'Archet, Service d'Endocrinologie, Diabétologie et Médecine de la Reproduction, Nice, France
| |
Collapse
|
56
|
Wallacides A, Chesnel A, Ajj H, Chillet M, Flament S, Dumond H. Estrogens promote proliferation of the seminoma-like TCam-2 cell line through a GPER-dependent ERα36 induction. Mol Cell Endocrinol 2012; 350:61-71. [PMID: 22138413 DOI: 10.1016/j.mce.2011.11.021] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2011] [Revised: 11/17/2011] [Accepted: 11/17/2011] [Indexed: 01/17/2023]
Abstract
Seminoma, originated from carcinoma in situ cells (CIS), is one of the main causes of cancer in young men. Postpubertal development of these testicular germ cell tumors suggests a hormone-sensitive way of CIS cell proliferation induction. Using the unique seminoma TCam-2 cell line, we demonstrate that both estradiol and testosterone can stimulate TCam-2 cell proliferation in the absence of the estradiol receptor ERα. We establish that estradiol can activate GPER-cAMP/PKA signalling pathway. TCam-2 cells express ERα36, a truncated isoform of the canonical ERα receptor, the expression of which is rapidly induced after estrogen treatment in a GPER-dependent manner. ERα36 knockdown indicates that ERα36 is (i) a downstream target of E(2)-activated GPER/PKA/CREB pathway, (ii) required for estradiol-dependent EGFR expression, (iii) necessary for cell proliferation. Colocalization of ERα36 with cytoskeleton microfilaments suggests a role of estrogens in cell motility. Our results highlight the functional role of ERα36 in context of seminoma cell proliferation and the importance of testing ERα36 in vivo as a possible future prognostic marker.
Collapse
Affiliation(s)
- Angelina Wallacides
- EA4421, Signalisation, Génomique et Recherche Translationnelle en Oncologie, Nancy-Université, Nancy, France
| | | | | | | | | | | |
Collapse
|
57
|
Lucas TF, Pimenta MT, Pisolato R, Lazari MFM, Porto CS. 17β-estradiol signaling and regulation of Sertoli cell function. SPERMATOGENESIS 2011; 1:318-324. [PMID: 22332115 DOI: 10.4161/spmg.1.4.18903] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2011] [Revised: 10/23/2011] [Accepted: 10/27/2011] [Indexed: 02/07/2023]
Abstract
In this review, we will present an overview of estrogen actions in the testis from immature and adult animals, with special emphasis on signaling mechanisms involved in the 17β-estradiol regulation of Sertoli cell function in immature rats. 17β-estradiol activates Sertoli cell proliferation in immature rats by a mechanism that involves the translocation of the estrogen receptors ESR1 and ESR2 to the plasma membrane, phosphorylation of epidermal growth factor receptor and activation of mitogen-activated protein kinase 3/1. Activation of the G protein-coupled estrogen receptor (GPER) also induces phosphorylation of mitogen-activated protein kinase 3/1 via epidermal growth factor receptor transactivation, which in turn increases expression of the antiapoptotic protein BCL2 and decreases the expression of proapoptotic protein BAX, indicating an antiapoptotic role of E2-GPER in immature rat Sertoli cells. In conclusion, ESRs and GPER can mediate rapid 17β-estradiol signaling in Sertoli cells, and modulate transcriptional events important for Sertoli cell function and maintenance of normal testis development and homeostasis. Our findings are important to clarify the role of estrogen in a critical period of testicular development and to direct further studies, which may contribute to better understand the causes of male infertility.
Collapse
Affiliation(s)
- Thaís Fg Lucas
- Section of Experimental Endocrinology; Department of Pharmacology; Escola Paulista de Medicina; Universidade Federal de São Paulo; São Paulo, Brazil
| | | | | | | | | |
Collapse
|