51
|
Besson P, Driffort V, Bon É, Gradek F, Chevalier S, Roger S. How do voltage-gated sodium channels enhance migration and invasiveness in cancer cells? BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2015; 1848:2493-501. [PMID: 25922224 DOI: 10.1016/j.bbamem.2015.04.013] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Revised: 04/13/2015] [Accepted: 04/20/2015] [Indexed: 11/16/2022]
Abstract
Voltage-gated sodium channels are abnormally expressed in tumors, often as neonatal isoforms, while they are not expressed, or only at a low level, in the matching normal tissue. The level of their expression and their activity is related to the aggressiveness of the disease and to the formation of metastases. A vast knowledge on the regulation of their expression and functioning has been accumulated in normal excitable cells. This helped understand their regulation in cancer cells. However, how voltage-gated sodium channels impose a pro-metastatic behavior to cancer cells is much less documented. This aspect will be addressed in the review. This article is part of a Special Issue entitled: Membrane channels and transporters in cancers.
Collapse
Affiliation(s)
- Pierre Besson
- Inserm UMR1069 "Nutrition, Croissance et Cancer", Faculté de Médecine, Université François Rabelais de Tours, France; Faculté de Sciences Pharmaceutiques, Université François Rabelais de Tours, France.
| | - Virginie Driffort
- Inserm UMR1069 "Nutrition, Croissance et Cancer", Faculté de Médecine, Université François Rabelais de Tours, France
| | - Émeline Bon
- Inserm UMR1069 "Nutrition, Croissance et Cancer", Faculté de Médecine, Université François Rabelais de Tours, France
| | - Frédéric Gradek
- Inserm UMR1069 "Nutrition, Croissance et Cancer", Faculté de Médecine, Université François Rabelais de Tours, France
| | - Stéphan Chevalier
- Inserm UMR1069 "Nutrition, Croissance et Cancer", Faculté de Médecine, Université François Rabelais de Tours, France; Faculté de Sciences Pharmaceutiques, Université François Rabelais de Tours, France
| | - Sébastien Roger
- Inserm UMR1069 "Nutrition, Croissance et Cancer", Faculté de Médecine, Université François Rabelais de Tours, France; Faculté des Sciences et Techniques, Université François Rabelais de Tours, France
| |
Collapse
|
52
|
Han C, Yang Y, de Greef BTA, Hoeijmakers JGJ, Gerrits MM, Verhamme C, Qu J, Lauria G, Merkies ISJ, Faber CG, Dib-Hajj SD, Waxman SG. The Domain II S4-S5 Linker in Nav1.9: A Missense Mutation Enhances Activation, Impairs Fast Inactivation, and Produces Human Painful Neuropathy. Neuromolecular Med 2015; 17:158-69. [DOI: 10.1007/s12017-015-8347-9] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Accepted: 03/09/2015] [Indexed: 10/23/2022]
|
53
|
Teramoto N, Yotsu-Yamashita M. Selective blocking effects of 4,9-anhydrotetrodotoxin, purified from a crude mixture of tetrodotoxin analogues, on NaV1.6 channels and its chemical aspects. Mar Drugs 2015; 13:984-95. [PMID: 25686275 PMCID: PMC4344613 DOI: 10.3390/md13020984] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2014] [Revised: 01/30/2015] [Accepted: 02/03/2015] [Indexed: 12/19/2022] Open
Abstract
Tetrodotoxin (TTX) is a potent neurotoxin found in a number of marine creatures including the pufferfish, where it is synthesized by bacteria and accumulated through the food chain. It is a potent and selective blocker of some types of voltage-gated Na+ channel (NaV channel). 4,9-Anhydrotetrodotoxin (4,9-anhydroTTX) was purified from a crude mixture of TTX analogues (such as TTX, 4-epiTTX, 6-epiTTX, 11-oxoTTX and 11-deoxyTTX) by the use of liquid chromatography-fluorescence detection (LC-FLD) techniques. Recently, it has been reported that 4,9-anhydroTTX selectively blocks the activity of NaV1.6 channels with a blocking efficacy 40–160 times higher than that for other TTX-sensitive NaV1.x channel isoforms. However, little attention has been paid to the molecular properties of the α-subunit in NaV1.6 channels and the characteristics of binding of 4,9-anhydroTTX. From a functional point of view, it is important to determine the relative expression of NaV1.6 channels in a wide variety of tissues. The aim of this review is to discuss briefly current knowledge about the pharmacology of 4,9-anhydroTTX, and provide an analysis of the molecular structure of native NaV1.6 channels. In addition, chemical aspects of 4,9-anhydroTTX are briefly covered.
Collapse
Affiliation(s)
- Noriyoshi Teramoto
- Department of Pharmacology, Faculty of Medicine, Saga University, Saga 849-8501, Japan.
- Laboratory of Biomedical Engineering, Graduate School of Biomedical Engineering, Tohoku University, Sendai 980-8575, Japan.
| | - Mari Yotsu-Yamashita
- Laboratory of Bioorganic Chemistry of Natural Products, Graduate School of Agricultural Science, Tohoku University, Sendai 981-8555, Japan.
| |
Collapse
|
54
|
Gudes S, Barkai O, Caspi Y, Katz B, Lev S, Binshtok AM. The role of slow and persistent TTX-resistant sodium currents in acute tumor necrosis factor-α-mediated increase in nociceptors excitability. J Neurophysiol 2015; 113:601-19. [PMID: 25355965 PMCID: PMC4297796 DOI: 10.1152/jn.00652.2014] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Accepted: 10/26/2014] [Indexed: 12/12/2022] Open
Abstract
Tetrodotoxin-resistant (TTX-r) sodium channels are key players in determining the input-output properties of peripheral nociceptive neurons. Changes in gating kinetics or in expression levels of these channels by proinflammatory mediators are likely to cause the hyperexcitability of nociceptive neurons and pain hypersensitivity observed during inflammation. Proinflammatory mediator, tumor necrosis factor-α (TNF-α), is secreted during inflammation and is associated with the early onset, as well as long-lasting, inflammation-mediated increase in excitability of peripheral nociceptive neurons. Here we studied the underlying mechanisms of the rapid component of TNF-α-mediated nociceptive hyperexcitability and acute pain hypersensitivity. We showed that TNF-α leads to rapid onset, cyclooxygenase-independent pain hypersensitivity in adult rats. Furthermore, TNF-α rapidly and substantially increases nociceptive excitability in vitro, by decreasing action potential threshold, increasing neuronal gain and decreasing accommodation. We extended on previous studies entailing p38 MAPK-dependent increase in TTX-r sodium currents by showing that TNF-α via p38 MAPK leads to increased availability of TTX-r sodium channels by partial relief of voltage dependence of their slow inactivation, thereby contributing to increase in neuronal gain. Moreover, we showed that TNF-α also in a p38 MAPK-dependent manner increases persistent TTX-r current by shifting the voltage dependence of activation to a hyperpolarized direction, thus producing an increase in inward current at functionally critical subthreshold voltages. Our results suggest that rapid modulation of the gating of TTX-r sodium channels plays a major role in the mediated nociceptive hyperexcitability of TNF-α during acute inflammation and may lead to development of effective treatments for inflammatory pain, without modulating the inflammation-induced healing processes.
Collapse
Affiliation(s)
- Sagi Gudes
- Department of Medical Neurobiology, Institute for Medical Research Israel-Canada, The Hebrew University Faculty of Medicine, Jerusalem, Israel; and The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University, Jerusalem, Israel
| | - Omer Barkai
- Department of Medical Neurobiology, Institute for Medical Research Israel-Canada, The Hebrew University Faculty of Medicine, Jerusalem, Israel; and The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University, Jerusalem, Israel
| | - Yaki Caspi
- Department of Medical Neurobiology, Institute for Medical Research Israel-Canada, The Hebrew University Faculty of Medicine, Jerusalem, Israel; and The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University, Jerusalem, Israel
| | - Ben Katz
- Department of Medical Neurobiology, Institute for Medical Research Israel-Canada, The Hebrew University Faculty of Medicine, Jerusalem, Israel; and The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University, Jerusalem, Israel
| | - Shaya Lev
- Department of Medical Neurobiology, Institute for Medical Research Israel-Canada, The Hebrew University Faculty of Medicine, Jerusalem, Israel; and The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University, Jerusalem, Israel
| | - Alexander M Binshtok
- Department of Medical Neurobiology, Institute for Medical Research Israel-Canada, The Hebrew University Faculty of Medicine, Jerusalem, Israel; and The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University, Jerusalem, Israel
| |
Collapse
|
55
|
Scheff NN, Yilmaz E, Gold MS. The properties, distribution and function of Na(+)-Ca(2+) exchanger isoforms in rat cutaneous sensory neurons. J Physiol 2014; 592:4969-93. [PMID: 25239455 PMCID: PMC4259538 DOI: 10.1113/jphysiol.2014.278036] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Accepted: 09/10/2014] [Indexed: 11/08/2022] Open
Abstract
The Na(+)-Ca(2+) exchanger (NCX) appears to play an important role in the regulation of the high K(+)-evoked Ca(2+) transient in putative nociceptive dorsal root ganglion (DRG) neurons. The purpose of the present study was to (1) characterize the properties of NCX activity in subpopulations of DRG neurons, (2) identify the isoform(s) underlying NCX activity, and (3) begin to assess the function of the isoform(s) in vivo. In retrogradely labelled neurons from the glabrous skin of adult male Sprague-Dawley rats, NCX activity, as assessed with fura-2-based microfluorimetry, was only detected in putative nociceptive IB4+ neurons. There were two modes of NCX activity: one was evoked in response to relatively large and long lasting (∼325 nm for >12 s) increases in the concentration of intracellular Ca(2+) ([Ca(2+)]i), and a second was active at resting [Ca(2+)]i > ∼150 nm. There also were two modes of evoked activity: one that decayed relatively rapidly (<5 min) and a second that persisted (>10 min). Whereas mRNA encoding all three NCX isoforms (NCX1-3) was detected in putative nociceptive cutaneous neurons with single cell PCR, pharmacological analysis and small interfering RNA (siRNA) knockdown of each isoform in vivo suggested that NCX2 and 3 were responsible for NCX activity. Western blot analyses suggested that NCX isoforms were differentially distributed within sensory neurons. Functional assays of excitability, action potential propagation, and nociceptive behaviour suggest NCX activity has little influence on excitability per se, but instead influences axonal conduction velocity, resting membrane potential, and nociceptive threshold. Together these results indicate that the function of NCX in the regulation of [Ca(2+)]i in putative nociceptive neurons may be unique relative to other cells in which these exchanger isoforms have been characterized and it has the potential to influence sensory neuron properties at multiple levels.
Collapse
Affiliation(s)
- N N Scheff
- The Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, USA Department of Anesthesiology, University of Pittsburgh, Pittsburgh, PA, USA Pittsburgh Center for Pain Research, University of Pittsburgh, Pittsburgh, PA, USA
| | - E Yilmaz
- The Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, USA Department of Anesthesiology, University of Pittsburgh, Pittsburgh, PA, USA Pittsburgh Center for Pain Research, University of Pittsburgh, Pittsburgh, PA, USA
| | - M S Gold
- The Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, USA Department of Anesthesiology, University of Pittsburgh, Pittsburgh, PA, USA Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA, USA Pittsburgh Center for Pain Research, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
56
|
Zhang MM, Wilson MJ, Gajewiak J, Rivier JE, Bulaj G, Olivera BM, Yoshikami D. Pharmacological fractionation of tetrodotoxin-sensitive sodium currents in rat dorsal root ganglion neurons by μ-conotoxins. Br J Pharmacol 2014; 169:102-14. [PMID: 23351163 DOI: 10.1111/bph.12119] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2012] [Revised: 12/18/2012] [Accepted: 12/27/2012] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND AND PURPOSE Adult rat dorsal root ganglion (DRG) neurons normally express transcripts for five isoforms of the α-subunit of voltage-gated sodium channels: NaV 1.1, 1.6, 1.7, 1.8 and 1.9. Tetrodotoxin (TTX) readily blocks all but NaV 1.8 and 1.9, and pharmacological agents that discriminate among the TTX-sensitive NaV 1-isoforms are scarce. Recently, we used the activity profile of a panel of μ-conotoxins in blocking cloned rodent NaV 1-isoforms expressed in Xenopus laevis oocytes to conclude that action potentials of A- and C-fibres in rat sciatic nerve were, respectively, mediated primarily by NaV 1.6 and NaV 1.7. EXPERIMENTAL APPROACH We used three μ-conotoxins, μ-TIIIA, μ-PIIIA and μ-SmIIIA, applied individually and in combinations, to pharmacologically differentiate the TTX-sensitive INa of voltage-clamped neurons acutely dissociated from adult rat DRG. We examined only small and large neurons whose respective INa were >50% and >80% TTX-sensitive. KEY RESULTS In both small and large neurons, the ability of the toxins to block TTX-sensitive INa was μ-TIIIA < μ-PIIIA < μ-SmIIIA, with the latter blocking ≳90%. Comparison of the toxin-susceptibility profiles of the neuronal INa with recently acquired profiles of rat NaV 1-isoforms, co-expressed with various NaV β-subunits in X. laevis oocytes, were consistent: NaV 1.1, 1.6 and 1.7 could account for all of the TTX-sensitive INa , with NaV 1.1 < NaV 1.6 < NaV 1.7 for small neurons and NaV 1.7 < NaV 1.1 < NaV 1.6 for large neurons. CONCLUSIONS AND IMPLICATIONS Combinations of μ-conotoxins can be used to determine the probable NaV 1-isoforms underlying the INa in DRG neurons. Preliminary experiments with sympathetic neurons suggest that this approach is extendable to other neurons.
Collapse
Affiliation(s)
- Min-Min Zhang
- Department of Biology, University of Utah, Salt Lake City, UT 84112, USA
| | | | | | | | | | | | | |
Collapse
|
57
|
Hagenston AM, Simonetti M. Neuronal calcium signaling in chronic pain. Cell Tissue Res 2014; 357:407-26. [PMID: 25012522 DOI: 10.1007/s00441-014-1942-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Accepted: 06/03/2014] [Indexed: 01/03/2023]
Abstract
Acute physiological pain, the unpleasant sensory response to a noxious stimulus, is essential for animals and humans to avoid potential injury. Pathological pain that persists after the original insult or injury has subsided, however, not only results in individual suffering but also imposes a significant cost on society. Improving treatments for long-lasting pathological pain requires a comprehensive understanding of the biological mechanisms underlying pain perception and the development of pain chronicity. In this review, we aim to highlight some of the major findings related to the involvement of neuronal calcium signaling in the processes that mediate chronic pain.
Collapse
Affiliation(s)
- Anna M Hagenston
- University of Heidelberg, Neurobiology, Im Neuenheimer Feld 364, 69120, Heidelberg, Germany,
| | | |
Collapse
|
58
|
Baxter JC, Ramachandra R, Mayne DR, Elmslie KS. Functional expression of α7-nicotinic acetylcholine receptors by muscle afferent neurons. J Neurophysiol 2014; 112:1549-58. [PMID: 24966300 DOI: 10.1152/jn.00035.2014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The exercise pressor reflex (EPR) is generated by group III and IV muscle afferents during exercise to increase cardiovascular function. Muscle contraction is triggered by ACh, which is metabolized into choline that could serve as a signal of exercise-induced activity. We demonstrate that ACh can induce current in muscle afferents neurons isolated from male Sprague-Dawley rats. The nicotinic ACh receptors (nAChRs) appear to be expressed by some group III-IV neurons since capsaicin (TRPV1) and/or ATP (P2X) induced current in 56% of ACh-responsive neurons. α7- And α4β2-nAChRs have been shown to be expressed in sensory neurons. An α7-nAChR antibody stained 83% of muscle afferent neurons. Functional expression was demonstrated by using the specific α7-nAChR blockers α-conotoxin ImI (IMI) and methyllycaconitine (MLA). MLA inhibited ACh responses in 100% of muscle afferent neurons, whereas IMI inhibited ACh responses in 54% of neurons. Dihydro-β-erythroidine, an α4β2-nAChR blocker, inhibited ACh responses in 50% of muscle afferent neurons, but recovery from block was not observed. Choline, an α7-nAChR agonist, elicited a response in 60% of ACh-responsive neurons. Finally, we demonstrated the expression of α7-nAChR by peripherin labeled (group IV) afferent fibers within gastrocnemius muscles. Some of these α7-nAChR-positive fibers were also positive for P2X3 receptors. Thus choline could serve as an activator of the EPR by opening α7-nAChR expressed by group IV (and possible group III) afferents. nAChRs could become pharmacological targets for suppressing the excessive EPR activation in patients with peripheral vascular disease.
Collapse
Affiliation(s)
- James C Baxter
- The Baker Laboratory of Pharmacology, Department of Pharmacology, Kirksville College of Osteopathic Medicine, A.T. Still University of Health Sciences, Kirksville, Missouri
| | - Renuka Ramachandra
- The Baker Laboratory of Pharmacology, Department of Pharmacology, Kirksville College of Osteopathic Medicine, A.T. Still University of Health Sciences, Kirksville, Missouri
| | - Dustin R Mayne
- The Baker Laboratory of Pharmacology, Department of Pharmacology, Kirksville College of Osteopathic Medicine, A.T. Still University of Health Sciences, Kirksville, Missouri
| | - Keith S Elmslie
- The Baker Laboratory of Pharmacology, Department of Pharmacology, Kirksville College of Osteopathic Medicine, A.T. Still University of Health Sciences, Kirksville, Missouri
| |
Collapse
|
59
|
Paroxysmal itch caused by gain-of-function Nav1.7 mutation. Pain 2014; 155:1702-1707. [PMID: 24820863 DOI: 10.1016/j.pain.2014.05.006] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Revised: 04/19/2014] [Accepted: 05/02/2014] [Indexed: 11/24/2022]
Abstract
Itch is a common experience. It can occur in the course of systemic diseases and can be a manifestation of allergies or a consequence of diseases affecting the somatosensory pathway. We describe a kindred characterized by paroxysmal itch caused by a variant in SCN9A gene encoding for the Nav1.7 sodium channel. Patients underwent clinical and somatosensory profile assessment by quantitative sensory testing, nerve conduction study, autonomic cardiovascular reflex, and sympathetic skin response examination, skin biopsy with quantification of intraepidermal nerve fiber density, and SCN9A mutational analysis. The index patient, her mother, and a sister presented with a stereotypical clinical picture characterized by paroxysmal itch attacks involving the shoulders, upper back, and upper limbs, followed by transient burning pain, and triggered by environmental warmth, hot drinks, and spicy food. Somatosensory profile assessment demonstrated a remarkably identical pattern of increased cold and pain thresholds and paradoxical heat sensation. Autonomic tests were negative, whereas skin biopsy revealed decreased intraepidermal nerve fiber density in 2 of the 3 patients. All affected members harbored the 2215A>G I739V substitution in exon 13 of SCN9A gene. Pregabalin treatment reduced itch intensity and attack frequency in all patients. The co-segregation of the I739V variant in the affected members of the family provides evidence, for the first time, that paroxysmal itch can be related to a mutation in sodium channel gene.
Collapse
|
60
|
Huang J, Han C, Estacion M, Vasylyev D, Hoeijmakers JGJ, Gerrits MM, Tyrrell L, Lauria G, Faber CG, Dib-Hajj SD, Merkies ISJ, Waxman SG. Gain-of-function mutations in sodium channel NaV1.9 in painful neuropathy. Brain 2014; 137:1627-42. [DOI: 10.1093/brain/awu079] [Citation(s) in RCA: 197] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|
61
|
Vasylyev DV, Han C, Zhao P, Dib-Hajj S, Waxman SG. Dynamic-clamp analysis of wild-type human Nav1.7 and erythromelalgia mutant channel L858H. J Neurophysiol 2014; 111:1429-43. [DOI: 10.1152/jn.00763.2013] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The link between sodium channel Nav1.7 and pain has been strengthened by identification of gain-of-function mutations in patients with inherited erythromelalgia (IEM), a genetic model of neuropathic pain in humans. A firm mechanistic link to nociceptor dysfunction has been precluded because assessments of the effect of the mutations on nociceptor function have thus far depended on electrophysiological recordings from dorsal root ganglia (DRG) neurons transfected with wild-type (WT) or mutant Nav1.7 channels, which do not permit accurate calibration of the level of Nav1.7 channel expression. Here, we report an analysis of the function of WT Nav1.7 and IEM L858H mutation within small DRG neurons using dynamic-clamp. We describe the functional relationship between current threshold for action potential generation and the level of WT Nav1.7 conductance in primary nociceptive neurons and demonstrate the basis for hyperexcitability at physiologically relevant levels of L858H channel conductance. We demonstrate that the L858H mutation, when modeled using dynamic-clamp at physiological levels within DRG neurons, produces a dramatically enhanced persistent current, resulting in 27-fold amplification of net sodium influx during subthreshold depolarizations and even greater amplification during interspike intervals, which provide a mechanistic basis for reduced current threshold and enhanced action potential firing probability. These results show, for the first time, a linear correlation between the level of Nav1.7 conductance and current threshold in DRG neurons. Our observations demonstrate changes in sodium influx that provide a mechanistic link between the altered biophysical properties of a mutant Nav1.7 channel and nociceptor hyperexcitability underlying the pain phenotype in IEM.
Collapse
Affiliation(s)
- Dmytro V. Vasylyev
- Department of Neurology and Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, Connecticut; and
- Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, Connecticut
| | - Chongyang Han
- Department of Neurology and Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, Connecticut; and
- Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, Connecticut
| | - Peng Zhao
- Department of Neurology and Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, Connecticut; and
- Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, Connecticut
| | - Sulayman Dib-Hajj
- Department of Neurology and Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, Connecticut; and
- Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, Connecticut
| | - Stephen G. Waxman
- Department of Neurology and Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, Connecticut; and
- Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, Connecticut
| |
Collapse
|
62
|
Sodium channels contribute to degeneration of dorsal root ganglion neurites induced by mitochondrial dysfunction in an in vitro model of axonal injury. J Neurosci 2014; 33:19250-61. [PMID: 24305821 DOI: 10.1523/jneurosci.2148-13.2013] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Axonal degeneration occurs in multiple neurodegenerative disorders of the central and peripheral nervous system. Although the underlying molecular pathways leading to axonal degeneration are incompletely understood, accumulating evidence suggests contributions of impaired mitochondrial function, disrupted axonal transport, and/or dysfunctional intracellular Ca(2+)-homeostasis in the injurious cascade associated with axonal degeneration. Utilizing an in vitro model of axonal degeneration, we studied a subset of mouse peripheral sensory neurons in which neurites were exposed selectively to conditions associated with the pathogenesis of axonal neuropathies in vivo. Rotenone-induced mitochondrial dysfunction resulted in neurite degeneration accompanied by reduced ATP levels and increased ROS levels in neurites. Blockade of voltage-gated sodium channels with TTX and reverse (Ca(2+)-importing) mode of the sodium-calcium exchanger (NCX) with KB-R7943 partially protected rotenone-treated neurites from degeneration, suggesting a contribution of sodium channels and reverse NCX activity to the degeneration of neurites resulting from impaired mitochondrial function. Pharmacological inhibition of the Na(+)/K(+)-ATPase with ouabain induced neurite degeneration, which was attenuated by TTX and KB-R7943, supporting a contribution of sodium channels in axonal degenerative pathways accompanying impaired Na(+)/K(+)-ATPase activity. Conversely, oxidant stress (H2O2)-induced neurite degeneration was not attenuated by TTX. Our results demonstrate that both energetic and oxidative stress targeted selectively to neurites induces neurite degeneration and that blockade of sodium channels and of reverse NCX activity blockade partially protects neurites from injury due to energetic stress, but not from oxidative stress induced by H2O2.
Collapse
|
63
|
Sawynok J. Topical analgesics for neuropathic pain: Preclinical exploration, clinical validation, future development. Eur J Pain 2013; 18:465-81. [DOI: 10.1002/j.1532-2149.2013.00400.x] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/13/2013] [Indexed: 12/28/2022]
Affiliation(s)
- J. Sawynok
- Department of Pharmacology; Dalhousie University; Halifax Nova Scotia Canada
| |
Collapse
|
64
|
Ahn HS, Vasylyev DV, Estacion M, Macala LJ, Shah P, Faber CG, Merkies IS, Dib-Hajj SD, Waxman SG. Differential effect of D623N variant and wild-type Nav1.7 sodium channels on resting potential and interspike membrane potential of dorsal root ganglion neurons. Brain Res 2013; 1529:165-77. [DOI: 10.1016/j.brainres.2013.07.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Revised: 07/02/2013] [Accepted: 07/03/2013] [Indexed: 12/15/2022]
|
65
|
Vanoye CG, Kunic JD, Ehring GR, George AL. Mechanism of sodium channel NaV1.9 potentiation by G-protein signaling. ACTA ACUST UNITED AC 2013; 141:193-202. [PMID: 23359282 PMCID: PMC3557314 DOI: 10.1085/jgp.201210919] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Tetrodotoxin (TTX)-resistant voltage-gated Na (Na(V)) channels have been implicated in nociception. In particular, Na(V)1.9 contributes to expression of persistent Na current in small diameter, nociceptive sensory neurons in dorsal root ganglia and is required for inflammatory pain sensation. Using ND7/23 cells stably expressing human Na(V)1.9, we elucidated the biophysical mechanisms responsible for potentiation of channel activity by G-protein signaling to better understand the response to inflammatory mediators. Heterologous Na(V)1.9 expression evoked TTX-resistant Na current with peak activation at -40 mV with extensive overlap in voltage dependence of activation and inactivation. Inactivation kinetics were slow and incomplete, giving rise to large persistent Na currents. Single-channel recording demonstrated long openings and correspondingly high open probability (P(o)) accounting for the large persistent current amplitude. Channels exposed to intracellular GTPγS, a proxy for G-protein signaling, exhibited twofold greater current density, slowing of inactivation, and a depolarizing shift in voltage dependence of inactivation but no change in activation voltage dependence. At the single-channel level, intracellular GTPγS had no effect on single-channel amplitude but caused an increased mean open time and greater P(o) compared with recordings made in the absence of GTPγS. We conclude that G-protein activation potentiates human Na(V)1.9 activity by increasing channel open probability and mean open time, causing the larger peak and persistent current, respectively. Our results advance our understanding about the mechanism of Na(V)1.9 potentiation by G-protein signaling during inflammation and provide a cellular platform useful for the discovery of Na(V)1.9 modulators with potential utility in treating inflammatory pain.
Collapse
Affiliation(s)
- Carlos G Vanoye
- Department of Medicine, Vanderbilt University, Nashville, TN 37232, USA
| | | | | | | |
Collapse
|
66
|
Kuroda H, Sobhan U, Sato M, Tsumura M, Ichinohe T, Tazaki M, Shibukawa Y. Sodium-calcium exchangers in rat trigeminal ganglion neurons. Mol Pain 2013; 9:22. [PMID: 23628073 PMCID: PMC3646678 DOI: 10.1186/1744-8069-9-22] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Accepted: 04/19/2013] [Indexed: 01/10/2023] Open
Abstract
Background Noxious stimulation and nerve injury induce an increase in intracellular Ca2+ concentration ([Ca2+]i) via various receptors or ionic channels. While an increase in [Ca2+]i excites neurons, [Ca2+]i overload elicits cytotoxicity, resulting in cell death. Intracellular Ca2+ is essential for many signal transduction mechanisms, and its level is precisely regulated by the Ca2+ extrusion system in the plasma membrane, which includes the Na+-Ca2+ exchanger (NCX). It has been demonstrated that Ca2+-ATPase is the primary mechanism for removing [Ca2+]i following excitatory activity in trigeminal ganglion (TG) neurons; however, the role of NCXs in this process has yet to be clarified. The goal of this study was to examine the expression/localization of NCXs in TG neurons and to evaluate their functional properties. Results NCX isoforms (NCX1, NCX2, and NCX3) were expressed in primary cultured rat TG neurons. All the NCX isoforms were also expressed in A-, peptidergic C-, and non-peptidergic C-neurons, and located not only in the somata, dendrites, axons and perinuclear region, but also in axons innervating the dental pulp. Reverse NCX activity was clearly observed in TG neurons. The inactivation kinetics of voltage-dependent Na+ channels were prolonged by NCX inhibitors when [Ca2+]i in TG neurons was elevated beyond physiological levels. Conclusions Our results suggest that NCXs in TG neurons play an important role in regulating Ca2+-homeostasis and somatosensory information processing by functionally coupling with voltage-dependent Na+ channels.
Collapse
Affiliation(s)
- Hidetaka Kuroda
- Oral Health Science Center hrc8, Tokyo Dental College, Tokyo 261-8502, Japan
| | | | | | | | | | | | | |
Collapse
|
67
|
Klein CJ, Wu Y, Kilfoyle DH, Sandroni P, Davis MD, Gavrilova RH, Low PA, Dyck PJ. Infrequent SCN9A mutations in congenital insensitivity to pain and erythromelalgia. J Neurol Neurosurg Psychiatry 2013; 84:386-91. [PMID: 23129781 PMCID: PMC3594382 DOI: 10.1136/jnnp-2012-303719] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
OBJECTIVE Mutations in SCN9A have been reported in (1) congenital insensitivity to pain (CIP); (2) primary erythromelalgia; (3) paroxysmal extreme pain disorder; (4) febrile seizures and recently (5) small fibre sensory neuropathy. We sought to investigate for SCN9A mutations in a clinically well-characterised cohort of patients with CIP and erythromelalgia. METHODS We sequenced all exons of SCN9A in 19 clinically well-studied cases including 6 CIP and 13 erythromelalgia (9 with family history, 10 with small-fibre neuropathy). The identified variants were assessed in dbSNP135, 1K genome, NHLBI-Exome Sequencing Project (5400-exomes) databases, and 768 normal chromosomes. RESULTS In erythromelalgia case 7, we identified a novel Q10>K mutation. In CIP case 6, we identified a novel, de novo splicing mutation (IVS8-2A>G); this splicing mutation compounded with a nonsense mutation (R523>X) and abolished SCN9A mRNA expression almost completely compared with his unaffected father. In CIP case 5, we found a variant (P610>T) previously considered causal for erythromelalgia, supporting recently raised doubt on its causal nature. We also found a splicing junction variant (IVS24-7delGTTT) in all 19 patients, this splicing variant was previously considered casual for CIP, but IVS24-7delGTTT was in fact the major allele in Caucasian populations. CONCLUSIONS Two novel SCN9A mutations were identified, but frequently polymorphism variants are found which may provide susceptibility factors in pain modulation. CIP and erythromelalgia are defined as genetically heterogeneous, and some SCN9A variants previously considered causal may only be modifying factors.
Collapse
Affiliation(s)
- Christopher J Klein
- Department of Neurology, Division of Peripheral Nerve Diseases, Mayo Clinic, Rochester, MN 55905, USA.
| | | | | | | | | | | | | | | |
Collapse
|
68
|
Shutov LP, Kim MS, Houlihan PR, Medvedeva YV, Usachev YM. Mitochondria and plasma membrane Ca2+-ATPase control presynaptic Ca2+ clearance in capsaicin-sensitive rat sensory neurons. J Physiol 2013; 591:2443-62. [PMID: 23381900 DOI: 10.1113/jphysiol.2012.249219] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The central processes of primary nociceptors form synaptic connections with the second-order nociceptive neurons located in the dorsal horn of the spinal cord. These synapses gate the flow of nociceptive information from the periphery to the CNS, and plasticity at these synapses contributes to centrally mediated hyperalgesia and allodynia. Although exocytosis and synaptic plasticity are controlled by Ca(2+) at the release sites, the mechanisms underlying presynaptic Ca(2+) signalling at the nociceptive synapses are not well characterized. We examined the presynaptic mechanisms regulating Ca(2+) clearance following electrical stimulation in capsaicin-sensitive nociceptors using a dorsal root ganglion (DRG)/spinal cord neuron co-culture system. Cytosolic Ca(2+) concentration ([Ca(2+)]i) recovery following electrical stimulation was well approximated by a monoexponential function with a ∼2 s. Inhibition of sarco-endoplasmic reticulum Ca(2+)-ATPase did not affect presynaptic [Ca(2+)]i recovery, and blocking plasmalemmal Na(+)/Ca(2+) exchange produced only a small reduction in the rate of [Ca(2+)]i recovery (∼12%) that was independent of intracellular K(+). However, [Ca(2+)]i recovery in presynaptic boutons strongly depended on the plasma membrane Ca(2+)-ATPase (PMCA) and mitochondria that accounted for ∼47 and 40%, respectively, of presynaptic Ca(2+) clearance. Measurements using a mitochondria-targeted Ca(2+) indicator, mtPericam, demonstrated that presynaptic mitochondria accumulated Ca(2+) in response to electrical stimulation. Quantitative analysis revealed that the mitochondrial Ca(2+) uptake is highly sensitive to presynaptic [Ca(2+)]i elevations, and occurs at [Ca(2+)]i levels as low as ∼200-300 nm. Using RT-PCR, we detected expression of several putative mitochondrial Ca(2+) transporters in DRG, such as MCU, Letm1 and NCLX. Collectively, this work identifies PMCA and mitochondria as the major regulators of presynaptic Ca(2+) signalling at the first sensory synapse, and underlines the high sensitivity of the mitochondrial Ca(2+) uniporter in neurons to cytosolic Ca(2+).
Collapse
Affiliation(s)
- Leonid P Shutov
- Y. M. Usachev: Department of Pharmacology, University of Iowa Carver College of Medicine, 2-340F BSB, 51 Newton Road, Iowa City, IA 52242, USA
| | | | | | | | | |
Collapse
|
69
|
Persson AK, Liu S, Faber CG, Merkies ISJ, Black JA, Waxman SG. Neuropathy-associated NaV1.7 variant I228M impairs integrity of dorsal root ganglion neuron axons. Ann Neurol 2012; 73:140-5. [DOI: 10.1002/ana.23725] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2012] [Revised: 07/25/2012] [Accepted: 08/03/2012] [Indexed: 02/03/2023]
|
70
|
Differential Effects of Low Dose Lidocaine on C-Fiber Classes in Humans. THE JOURNAL OF PAIN 2012. [DOI: 10.1016/j.jpain.2012.09.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
71
|
Faber CG, Lauria G, Merkies ISJ, Cheng X, Han C, Ahn HS, Persson AK, Hoeijmakers JGJ, Gerrits MM, Pierro T, Lombardi R, Kapetis D, Dib-Hajj SD, Waxman SG. Gain-of-function Nav1.8 mutations in painful neuropathy. Proc Natl Acad Sci U S A 2012; 109:19444-9. [PMID: 23115331 PMCID: PMC3511073 DOI: 10.1073/pnas.1216080109] [Citation(s) in RCA: 309] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Painful peripheral neuropathy often occurs without apparent underlying cause. Gain-of-function variants of sodium channel Na(v)1.7 have recently been found in ∼30% of cases of idiopathic painful small-fiber neuropathy. Here, we describe mutations in Na(v)1.8, another sodium channel that is specifically expressed in dorsal root ganglion (DRG) neurons and peripheral nerve axons, in patients with painful neuropathy. Seven Na(v)1.8 mutations were identified in 9 subjects within a series of 104 patients with painful predominantly small-fiber neuropathy. Three mutations met criteria for potential pathogenicity based on predictive algorithms and were assessed by voltage and current clamp. Functional profiling showed that two of these three Na(v)1.8 mutations enhance the channel's response to depolarization and produce hyperexcitability in DRG neurons. These observations suggest that mutations of Na(v)1.8 contribute to painful peripheral neuropathy.
Collapse
Affiliation(s)
| | | | - Ingemar S. J. Merkies
- Departments of Neurology and
- Department of Neurology, Spaarne Hospital, 2130 AT Hoofddorp, The Netherlands
| | - Xiaoyang Cheng
- Department of Neurology, Yale University School of Medicine, New Haven, CT 06510; and
- Center for Neuroscience and Regeneration Research, Veterans Affairs Medical Center, West Haven, CT 06516
| | - Chongyang Han
- Department of Neurology, Yale University School of Medicine, New Haven, CT 06510; and
- Center for Neuroscience and Regeneration Research, Veterans Affairs Medical Center, West Haven, CT 06516
| | - Hye-Sook Ahn
- Department of Neurology, Yale University School of Medicine, New Haven, CT 06510; and
- Center for Neuroscience and Regeneration Research, Veterans Affairs Medical Center, West Haven, CT 06516
| | - Anna-Karin Persson
- Department of Neurology, Yale University School of Medicine, New Haven, CT 06510; and
- Center for Neuroscience and Regeneration Research, Veterans Affairs Medical Center, West Haven, CT 06516
| | | | - Monique M. Gerrits
- Clinical Genomics, University Medical Centre Maastricht, 6202 AZ Maastricht, The Netherlands
| | | | | | - Dimos Kapetis
- Neuromuscular Diseases Unit and
- Bioinformatics Unit, Istituto di Ricovero e Cura a Carattere Scientifico Foundation, “Carlo Besta,” 20133 Milan, Italy
| | - Sulayman D. Dib-Hajj
- Department of Neurology, Yale University School of Medicine, New Haven, CT 06510; and
- Center for Neuroscience and Regeneration Research, Veterans Affairs Medical Center, West Haven, CT 06516
| | - Stephen G. Waxman
- Department of Neurology, Yale University School of Medicine, New Haven, CT 06510; and
- Center for Neuroscience and Regeneration Research, Veterans Affairs Medical Center, West Haven, CT 06516
| |
Collapse
|
72
|
Black JA, Frézel N, Dib-Hajj SD, Waxman SG. Expression of Nav1.7 in DRG neurons extends from peripheral terminals in the skin to central preterminal branches and terminals in the dorsal horn. Mol Pain 2012; 8:82. [PMID: 23134641 PMCID: PMC3517774 DOI: 10.1186/1744-8069-8-82] [Citation(s) in RCA: 140] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Accepted: 10/30/2012] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Sodium channel Nav1.7 has emerged as a target of considerable interest in pain research, since loss-of-function mutations in SCN9A, the gene that encodes Nav1.7, are associated with a syndrome of congenital insensitivity to pain, gain-of-function mutations are linked to the debiliting chronic pain conditions erythromelalgia and paroxysmal extreme pain disorder, and upregulated expression of Nav1.7 accompanies pain in diabetes and inflammation. Since Nav1.7 has been implicated as playing a critical role in pain pathways, we examined by immunocytochemical methods the expression and distribution of Nav1.7 in rat dorsal root ganglia neurons, from peripheral terminals in the skin to central terminals in the spinal cord dorsal horn. RESULTS Nav1.7 is robustly expressed within the somata of peptidergic and non-peptidergic DRG neurons, and along the peripherally- and centrally-directed C-fibers of these cells. Nav1.7 is also expressed at nodes of Ranvier in a subpopulation of Aδ-fibers within sciatic nerve and dorsal root. The peripheral terminals of DRG neurons within skin, intraepidermal nerve fibers (IENF), exhibit robust Nav1.7 immunolabeling. The central projections of DRG neurons in the superficial lamina of spinal cord dorsal horn also display Nav1.7 immunoreactivity which extends to presynaptic terminals. CONCLUSIONS The expression of Nav1.7 in DRG neurons extends from peripheral terminals in the skin to preterminal central branches and terminals in the dorsal horn. These data support a major contribution for Nav1.7 in pain pathways, including action potential electrogenesis, conduction along axonal trunks and depolarization/invasion of presynaptic axons. The findings presented here may be important for pharmaceutical development, where target engagement in the right compartment is essential.
Collapse
Affiliation(s)
- Joel A Black
- Department of Neurology and Paralyzed Veterans of America Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, CT 06510, USA.
| | | | | | | |
Collapse
|
73
|
|
74
|
Ankyrin-B structurally defines terminal microdomains of peripheral somatosensory axons. Brain Struct Funct 2012; 218:1005-16. [DOI: 10.1007/s00429-012-0443-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2012] [Accepted: 07/09/2012] [Indexed: 01/18/2023]
|
75
|
Affiliation(s)
- Mark D Baker
- Queen Mary University of London, Neuroscience and Trauma, Blizard Institute, London E1 2AT, UK.
| | | |
Collapse
|
76
|
Ramachandra R, McGrew SY, Baxter JC, Kiveric E, Elmslie KS. Tetrodotoxin-resistant voltage-dependent sodium channels in identified muscle afferent neurons. J Neurophysiol 2012; 108:2230-41. [PMID: 22855776 DOI: 10.1152/jn.00219.2012] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Muscle afferents are critical regulators of motor function (Group I and II) and cardiovascular responses to exercise (Group III and IV). However, little is known regarding the expressed voltage-dependent ion channels. We identified muscle afferent neurons in dorsal root ganglia (DRGs), using retrograde labeling to examine voltage-dependent sodium (Na(V)) channels. In patch-clamp recordings, we found that the dominant Na(V) current in the majority of identified neurons was insensitive to tetrodotoxin (TTX-R), with Na(V) current in only a few (14%) neurons showing substantial (>50%) TTX sensitivity (TTX-S). The TTX-R current was sensitive to a Na(V)1.8 channel blocker, A803467. Immunocytochemistry demonstrated labeling of muscle afferent neurons by a Na(V)1.8 antibody, which further supported expression of these channels. A portion of the TTX-R Na(V) current appeared to be noninactivating during our 25-ms voltage steps, which suggested activity of Na(V)1.9 channels. The majority of the noninactivating current was insensitive to A803467 but sensitive to extracellular sodium. Immunocytochemistry showed labeling of muscle afferent neurons by a Na(V)1.9 channel antibody, which supports expression of these channels. Further examination of the muscle afferent neurons showed that functional TTX-S channels were expressed, but were largely inactivated at physiological membrane potentials. Immunocytochemistry showed expression of the TTX-S channels Na(V)1.6 and Na(V)1.7 but not Na(V)1.1. Na(V)1.8 and Na(V)1.9 appear to be the dominant functional sodium channels in small- to medium-diameter muscle afferent neurons. The expression of these channels is consistent with the identification of these neurons as Group III and IV, which mediate the exercise pressor reflex.
Collapse
Affiliation(s)
- Renuka Ramachandra
- The Baker Laboratory of Pharmacology, Department of Pharmacology, Kirksville College of Osteopathic Medicine, AT Still University of Health Sciences, Kirksville, MO 63501, USA
| | | | | | | | | |
Collapse
|
77
|
Pristerà A, Baker MD, Okuse K. Association between tetrodotoxin resistant channels and lipid rafts regulates sensory neuron excitability. PLoS One 2012; 7:e40079. [PMID: 22870192 PMCID: PMC3411591 DOI: 10.1371/journal.pone.0040079] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2012] [Accepted: 06/05/2012] [Indexed: 12/19/2022] Open
Abstract
Voltage-gated sodium channels (VGSCs) play a key role in the initiation and propagation of action potentials in neurons. NaV1.8 is a tetrodotoxin (TTX) resistant VGSC expressed in nociceptors, peripheral small-diameter neurons able to detect noxious stimuli. NaV1.8 underlies the vast majority of sodium currents during action potentials. Many studies have highlighted a key role for NaV1.8 in inflammatory and chronic pain models. Lipid rafts are microdomains of the plasma membrane highly enriched in cholesterol and sphingolipids. Lipid rafts tune the spatial and temporal organisation of proteins and lipids on the plasma membrane. They are thought to act as platforms on the membrane where proteins and lipids can be trafficked, compartmentalised and functionally clustered. In the present study we investigated NaV1.8 sub-cellular localisation and explored the idea that it is associated with lipid rafts in nociceptors. We found that NaV1.8 is distributed in clusters along the axons of DRG neurons in vitro and ex vivo. We also demonstrated, by biochemical and imaging studies, that NaV1.8 is associated with lipid rafts along the sciatic nerve ex vivo and in DRG neurons in vitro. Moreover, treatments with methyl-β-cyclodextrin (MβCD) and 7-ketocholesterol (7KC) led to the dissociation between rafts and NaV1.8. By calcium imaging we demonstrated that the lack of association between rafts and NaV1.8 correlated with impaired neuronal excitability, highlighted by a reduction in the number of neurons able to conduct mechanically- and chemically-evoked depolarisations. These findings reveal the sub-cellular localisation of NaV1.8 in nociceptors and highlight the importance of the association between NaV1.8 and lipid rafts in the control of nociceptor excitability.
Collapse
Affiliation(s)
- Alessandro Pristerà
- Division of Cell and Molecular Biology, Faculty of Natural Sciences, Imperial College London, London, United Kingdom
| | - Mark D. Baker
- Neuroscience and Trauma Centre, Blizard Institute, Queen Mary University of London, Barts and The London School of Medicine and Dentistry, London, United Kingdom
| | - Kenji Okuse
- Division of Cell and Molecular Biology, Faculty of Natural Sciences, Imperial College London, London, United Kingdom
- * E-mail:
| |
Collapse
|
78
|
Vasylyev DV, Waxman SG. Membrane properties and electrogenesis in the distal axons of small dorsal root ganglion neurons in vitro. J Neurophysiol 2012; 108:729-40. [DOI: 10.1152/jn.00091.2012] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Although it is generally thought that sensory transduction occurs at or close to peripheral nerve endings, with action potentials subsequently propagating along the axons of dorsal root ganglia (DRG) neurons toward the central nervous system, the small diameter of nociceptive axons and their endings have made it difficult to estimate their membrane properties and electrogenic characteristics. Even the resting potentials of nociceptive axons are unknown. In this study, we developed the capability to record directly with patch-clamp electrodes from the small-diameter distal axons of DRG neurons in vitro. We showed using current-clamp recordings that 1) these sensory axons have a resting potential of −60.2 ± 1 mV; 2) both tetrodotoxin (TTX)-sensitive (TTX-S) and TTX-resistant (TTX-R) Na+ channels are present and available for activation at resting potential, at densities that can support action potential electrogenesis in these axons; 3) TTX-sensitive channels contribute to the amplification of small depolarizations that are subthreshold with respect to the action potential in these axons; 4) TTX-R channels can support the production of action potentials in these axons; and 5) these TTX-R channels can produce repetitive firing, even at depolarized membrane potentials where TTX-S channels are inactivated. Finally, using voltage-clamp recordings with an action potential as the command, we confirmed the presence of both TTX-S and TTX-R channels, which are activated sequentially during action potential in these axons. These results provide direct evidence for the presence of TTX-S and TTX-R Na+ channels that are functionally available at resting potential and contribute to electrogenesis in small-diameter afferent axons.
Collapse
Affiliation(s)
- Dmytro V. Vasylyev
- Department of Neurology and Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, Connecticut; and
- Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, Connecticut
| | - Stephen G. Waxman
- Department of Neurology and Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, Connecticut; and
- Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, Connecticut
| |
Collapse
|
79
|
Han C, Hoeijmakers JGJ, Liu S, Gerrits MM, te Morsche RHM, Lauria G, Dib-Hajj SD, Drenth JPH, Faber CG, Merkies ISJ, Waxman SG. Functional profiles of SCN9A variants in dorsal root ganglion neurons and superior cervical ganglion neurons correlate with autonomic symptoms in small fibre neuropathy. Brain 2012; 135:2613-28. [DOI: 10.1093/brain/aws187] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
80
|
Tate S, Derjean D, Rugiero F. Nav(1.8)igating the maze of sensory function. Pain 2012; 153:1985-1986. [PMID: 22738797 DOI: 10.1016/j.pain.2012.06.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2012] [Revised: 06/11/2012] [Accepted: 06/11/2012] [Indexed: 11/18/2022]
Affiliation(s)
- Simon Tate
- Convergence Pharmaceuticals Ltd., Babraham Research Campus, Cambridge CB22 3AT, UK
| | | | | |
Collapse
|
81
|
Nav1.8 expression is not restricted to nociceptors in mouse peripheral nervous system. Pain 2012; 153:2017-2030. [PMID: 22703890 DOI: 10.1016/j.pain.2012.04.022] [Citation(s) in RCA: 202] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2011] [Revised: 03/23/2012] [Accepted: 04/25/2012] [Indexed: 12/22/2022]
Abstract
A vast diversity of salient cues is sensed by numerous classes of primary sensory neurons, defined by specific neuropeptides, ion channels, or cytoskeletal proteins. Recent evidence has demonstrated a correlation between the expression of some of these molecular markers and transmission of signals related to distinct sensory modalities (eg, heat, cold, pressure). Voltage-gated sodium channel Na(v)1.8 has been reported to be preferentially expressed in small-diameter unmyelinated sensory afferents specialized for the detection of noxious stimuli (nociceptors), and Na(v)1.8-Cre mice have been widely used to investigate gene function in nociceptors. However, the identity of neurons in which Cre-mediated recombination occurs in these animals has not been resolved, and whether expression of Na(v)1.8 in these neurons is dynamic during development is not known, rendering interpretation of conditional knockout mouse phenotypes problematic. Here, we used genetics, immunohistochemistry, electrophysiology, and calcium imaging to precisely characterize the expression of Na(v)1.8 in the peripheral nervous system. We demonstrate that 75% of dorsal root ganglion (DRG) neurons express Na(v)1.8-Cre, including >90% of neurons expressing markers of nociceptors and, unexpectedly, a large population (∼40%) of neurons with myelinated A fibers. Furthermore, analysis of DRG neurons' central and peripheral projections revealed that Na(v)1.8-Cre is not restricted to nociceptors but is also expressed by at least 2 types of low-threshold mechanoreceptors essential for touch sensation, including those with C and Aβ fibers. Our results indicate that Na(v)1.8 underlies electrical activity of sensory neurons subserving multiple functional modalities, and call for cautious interpretation of the phenotypes of Na(v)1.8-Cre-driven conditional knockout mice.
Collapse
|
82
|
Hirakawa R, El-Bizri N, Shryock JC, Belardinelli L, Rajamani S. Block of Na+ currents and suppression of action potentials in embryonic rat dorsal root ganglion neurons by ranolazine. Neuropharmacology 2012; 62:2251-60. [DOI: 10.1016/j.neuropharm.2012.01.021] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2011] [Revised: 12/13/2011] [Accepted: 01/21/2012] [Indexed: 12/19/2022]
|
83
|
Tetrodotoxin (TTX) as a therapeutic agent for pain. Mar Drugs 2012; 10:281-305. [PMID: 22412801 PMCID: PMC3296997 DOI: 10.3390/md10020281] [Citation(s) in RCA: 90] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2011] [Revised: 01/19/2012] [Accepted: 01/19/2012] [Indexed: 12/19/2022] Open
Abstract
Tetrodotoxin (TTX) is a potent neurotoxin that blocks voltage-gated sodium channels (VGSCs). VGSCs play a critical role in neuronal function under both physiological and pathological conditions. TTX has been extensively used to functionally characterize VGSCs, which can be classified as TTX-sensitive or TTX-resistant channels according to their sensitivity to this toxin. Alterations in the expression and/or function of some specific TTX-sensitive VGSCs have been implicated in a number of chronic pain conditions. The administration of TTX at doses below those that interfere with the generation and conduction of action potentials in normal (non-injured) nerves has been used in humans and experimental animals under different pain conditions. These data indicate a role for TTX as a potential therapeutic agent for pain. This review focuses on the preclinical and clinical evidence supporting a potential analgesic role for TTX. In addition, the contribution of specific TTX-sensitive VGSCs to pain is reviewed.
Collapse
|
84
|
Hoeijmakers JGJ, Han C, Merkies ISJ, Macala LJ, Lauria G, Gerrits MM, Dib-Hajj SD, Faber CG, Waxman SG. Small nerve fibres, small hands and small feet: a new syndrome of pain, dysautonomia and acromesomelia in a kindred with a novel NaV1.7 mutation. ACTA ACUST UNITED AC 2012; 135:345-58. [PMID: 22286749 DOI: 10.1093/brain/awr349] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The Na(V)1.7 sodium channel is preferentially expressed within dorsal root ganglion and sympathetic ganglion neurons and their small-diameter peripheral axons. Gain-of-function variants of Na(V)1.7 have recently been described in patients with painful small fibre neuropathy and no other apparent cause. Here, we describe a novel syndrome of pain, dysautonomia, small hands and small feet in a kindred carrying a novel Na(V)1.7 mutation. A 35-year-old male presented with erythema and burning pain in the hands since early childhood, later disseminating to the feet, cheeks and ears. He also experienced progressive muscle cramps, profound sweating, bowel disturbances (diarrhoea or constipation), episodic dry eyes and mouth, hot flashes, and erectile dysfunction. Neurological examination was normal. Physical examination was remarkable in revealing small hands and feet (acromesomelia). Blood examination and nerve conduction studies were unremarkable. Intra-epidermal nerve fibre density was significantly reduced compared to age- and sex-matched normative values. The patient's brother and father reported similar complaints including distal extremity redness and pain, and demonstrated comparable distal limb under-development. Quantitative sensory testing revealed impaired warmth sensation in the proband, father and brother. Genetic analysis revealed a novel missense mutation in the SCN9A gene encoding sodium channel Na(V)1.7 (G856D; c.2567G > A) in all three affected subjects, but not in unaffected family members. Functional analysis demonstrated that the mutation hyperpolarizes (-9.3 mV) channel activation, depolarizes (+6.2 mV) steady-state fast-inactivation, slows deactivation and enhances persistent current and the response to slow ramp stimuli by 10- to 11-fold compared with wild-type Na(V)1.7 channels. Current-clamp analysis of dorsal root ganglion neurons transfected with G856D mutant channels demonstrated depolarized resting potential, reduced current threshold, increased repetitive firing in response to suprathreshold stimulation and increased spontaneous firing. Our results demonstrate that the G856D mutation produces DRG neuron hyperexcitability which underlies pain in this kindred, and suggest that small peripheral nerve fibre dysfunction due to this mutation may have contributed to distal limb under-development in this novel syndrome.
Collapse
Affiliation(s)
- Janneke G J Hoeijmakers
- Neuroscience and Regeneration Research Centre, VA Connecticut Healthcare System, 950 Campbell Avenue, Building 34, West Haven, CT 06516, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
85
|
Shepherd AJ, Mohapatra DP. Tissue preparation and immunostaining of mouse sensory nerve fibers innervating skin and limb bones. J Vis Exp 2012:e3485. [PMID: 22314687 DOI: 10.3791/3485] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Detection and primary processing of physical, chemical and thermal sensory stimuli by peripheral sensory nerve fibers is key to sensory perception in animals and humans. These peripheral sensory nerve fibers express a plethora of receptors and ion channel proteins which detect and initiate specific sensory stimuli. Methods are available to characterize the electrical properties of peripheral sensory nerve fibers innervating the skin, which can also be utilized to identify the functional expression of specific ion channel proteins in these fibers. However, similar electrophysiological methods are not available (and are also difficult to develop) for the detection of the functional expression of receptors and ion channel proteins in peripheral sensory nerve fibers innervating other visceral organs, including the most challenging tissues such as bone. Moreover, such electrophysiological methods cannot be utilized to determine the expression of non-excitable proteins in peripheral sensory nerve fibers. Therefore, immunostaining of peripheral/visceral tissue samples for sensory nerve fivers provides the best possible way to determine the expression of specific proteins of interest in these nerve fibers. So far, most of the protein expression studies in sensory neurons have utilized immunostaining procedures in sensory ganglia, where the information is limited to the expression of specific proteins in the cell body of specific types or subsets of sensory neurons. Here we report detailed methods/protocols for the preparation of peripheral/visceral tissue samples for immunostaining of peripheral sensory nerve fibers. We specifically detail methods for the preparation of skin or plantar punch biopsy and bone (femur) sections from mice for immunostaining of peripheral sensory nerve fibers. These methods are not only key to the qualitative determination of protein expression in peripheral sensory neurons, but also provide a quantitative assay method for determining changes in protein expression levels in specific types or subsets of sensory fibers, as well as for determining the morphological and/or anatomical changes in the number and density of sensory fibers during various pathological states. Further, these methods are not confined to the staining of only sensory nerve fibers, but can also be used for staining any types of nerve fibers in the skin, bones and other visceral tissue.
Collapse
|
86
|
Estacion M, Han C, Choi JS, Hoeijmakers JGJ, Lauria G, Drenth JPH, Gerrits MM, Dib-Hajj SD, Faber CG, Merkies ISJ, Waxman SG. Intra- and interfamily phenotypic diversity in pain syndromes associated with a gain-of-function variant of NaV1.7. Mol Pain 2011; 7:92. [PMID: 22136189 PMCID: PMC3248882 DOI: 10.1186/1744-8069-7-92] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2011] [Accepted: 12/02/2011] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Sodium channel NaV1.7 is preferentially expressed within dorsal root ganglia (DRG), trigeminal ganglia and sympathetic ganglion neurons and their fine-diamter axons, where it acts as a threshold channel, amplifying stimuli such as generator potentials in nociceptors. Gain-of-function mutations and variants (single amino acid substitutions) of NaV1.7 have been linked to three pain syndromes: Inherited Erythromelalgia (IEM), Paroxysmal Extreme Pain Disorder (PEPD), and Small Fiber Neuropathy (SFN). IEM is characterized clinically by burning pain and redness that is usually focused on the distal extremities, precipitated by mild warmth and relieved by cooling, and is caused by mutations that hyperpolarize activation, slow deactivation, and enhance the channel ramp response. PEPD is characterized by perirectal, periocular or perimandibular pain, often triggered by defecation or lower body stimulation, and is caused by mutations that severely impair fast-inactivation. SFN presents a clinical picture dominated by neuropathic pain and autonomic symptoms; gain-of-function variants have been reported to be present in approximately 30% of patients with biopsy-confirmed idiopathic SFN, and functional testing has shown altered fast-inactivation, slow-inactivation or resurgent current. In this paper we describe three patients who house the NaV1.7/I228M variant. METHODS We have used clinical assessment of patients, quantitative sensory testing and skin biopsy to study these patients, including two siblings in one family, in whom genomic screening demonstrated the I228M NaV1.7 variant. Electrophysiology (voltage-clamp and current-clamp) was used to test functional effects of the variant channel. RESULTS We report three different clinical presentations of the I228M NaV1.7 variant: presentation with severe facial pain, presentation with distal (feet, hands) pain, and presentation with scalp discomfort in three patients housing this NaV1.7 variant, two of which are from a single family. We also demonstrate that the NaV1.7/I228M variant impairs slow-inactivation, and produces hyperexcitability in both trigeminal ganglion and DRG neurons. CONCLUSION Our results demonstrate intra- and interfamily phenotypic diversity in pain syndromes produced by a gain-of-function variant of NaV1.7.
Collapse
Affiliation(s)
- Mark Estacion
- Department of Neurology, Yale University School of Medicine, New Haven, CT 06510, and Center for Neuroscience and Regeneration Research, Veterans Affairs Medical Center, West Haven, CT 06516, USA
| | - Chongyang Han
- Department of Neurology, Yale University School of Medicine, New Haven, CT 06510, and Center for Neuroscience and Regeneration Research, Veterans Affairs Medical Center, West Haven, CT 06516, USA
| | - Jin-Sung Choi
- Department of Neurology, Yale University School of Medicine, New Haven, CT 06510, and Center for Neuroscience and Regeneration Research, Veterans Affairs Medical Center, West Haven, CT 06516, USA
- College of Pharmacy, Catholic University of Korea, Bucheon, South Korea
| | - Janneke GJ Hoeijmakers
- Department of Neurology, University Medical Center Maastricht, Maastricht, the Netherlands
| | - Giuseppe Lauria
- Neuromuscular Diseases Unit, IRCCS Foundation, "Carlo Besta", Milan, Italy
| | - Joost PH Drenth
- Department of Gastroenterology and Hepatology, Radboud University Nijmegen Medical Center, Nijmegen, the Netherlands
| | - Monique M Gerrits
- Department of Clinical Genetics, University Medical Center Maastricht, Maastricht, the Netherlands
| | - Sulayman D Dib-Hajj
- Department of Neurology, Yale University School of Medicine, New Haven, CT 06510, and Center for Neuroscience and Regeneration Research, Veterans Affairs Medical Center, West Haven, CT 06516, USA
| | - Catharina G Faber
- Department of Neurology, University Medical Center Maastricht, Maastricht, the Netherlands
| | - Ingemar SJ Merkies
- Department of Neurology, University Medical Center Maastricht, Maastricht, the Netherlands
- Department of Neurology, Spaarne Hospital, Hoofddorp, the Netherlands
| | - Stephen G Waxman
- Department of Neurology, Yale University School of Medicine, New Haven, CT 06510, and Center for Neuroscience and Regeneration Research, Veterans Affairs Medical Center, West Haven, CT 06516, USA
| |
Collapse
|
87
|
Choi JS, Waxman SG. Physiological interactions between Nav1.7 and Nav1.8 sodium channels: a computer simulation study. J Neurophysiol 2011; 106:3173-84. [DOI: 10.1152/jn.00100.2011] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We have examined the question of how the level of expression of sodium channel Nav1.8 affects the function of dorsal root ganglion (DRG) neurons that also express Nav1.7 channels and, conversely, how the level of expression of sodium channel Nav1.7 affects the function of DRG neurons that also express Nav1.8, using computer simulations. Our results demonstrate several previously undescribed effects of expression of Nav1.7: 1) at potentials more negative than −50 mV, increasing Nav1.7 expression reduces current threshold. 2) Nav1.7 reduces, but does not eliminate, the dependence of action potential (AP) threshold on membrane potential. 3) In cells that express Nav1.8, the presence of Nav1.7 results in larger amplitude subthreshold oscillations and increases the frequency of repetitive firing. Our results also demonstrate multiple effects of expression of Nav1.8: 1) dependence of current threshold on membrane potential is eliminated or reversed by expression of Nav1.8 at ≥50% of normal values. 2) Expression of Nav1.8 alone, in the absence of Nav1.7, can support subthreshold oscillation. 3) Nav1.8 is required for generation of overshooting APs, and its expression results in a prolonged AP with an inflection of the falling phase. 4) Increasing levels of expression of Nav1.8 result in a reduction in the voltage threshold for AP generation. 5) Increasing levels of expression of Nav1.8 result in an attenuation of Nav1.7 current during activity evoked by sustained depolarization due, at least in part, to accumulation of fast inactivation by Nav1.7 following the first AP. These results indicate that changes in the level of expression of Nav1.7 and Nav1.8 may provide a regulatory mechanism that tunes the excitability of small DRG neurons.
Collapse
Affiliation(s)
- Jin-Sung Choi
- College of Pharmacy, Catholic University of Korea, Bucheon, Gyeonggi-Do, South Korea
- Department of Neurology and Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven; and
- Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, Connecticut
| | - Stephen G. Waxman
- Department of Neurology and Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven; and
- Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, Connecticut
| |
Collapse
|
88
|
Lolignier S, Amsalem M, Maingret F, Padilla F, Gabriac M, Chapuy E, Eschalier A, Delmas P, Busserolles J. Nav1.9 channel contributes to mechanical and heat pain hypersensitivity induced by subacute and chronic inflammation. PLoS One 2011; 6:e23083. [PMID: 21857998 PMCID: PMC3155549 DOI: 10.1371/journal.pone.0023083] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2011] [Accepted: 07/05/2011] [Indexed: 01/21/2023] Open
Abstract
Inflammation is known to be responsible for the sensitization of peripheral sensory neurons, leading to spontaneous pain and invalidating pain hypersensitivity. Given its role in regulating neuronal excitability, the voltage-gated Nav1.9 channel is a potential target for the treatment of pathological pain, but its implication in inflammatory pain is yet not fully described. In the present study, we examined the role of the Nav1.9 channel in acute, subacute and chronic inflammatory pain using Nav1.9-null mice and Nav1.9 knock-down rats. In mice we found that, although the Nav1.9 channel does not contribute to basal pain thresholds, it plays an important role in heat pain hypersensitivity induced by subacute paw inflammation (intraplantar carrageenan) and chronic ankle inflammation (complete Freund's adjuvant-induced monoarthritis). We showed for the first time that Nav1.9 also contributes to mechanical hypersensitivity in both models, as assessed using von Frey and dynamic weight bearing tests. Consistently, antisense-based Nav1.9 gene silencing in rats reduced carrageenan-induced heat and mechanical pain hypersensitivity. While no changes in Nav1.9 mRNA levels were detected in dorsal root ganglia (DRGs) during subacute and chronic inflammation, a significant increase in Nav1.9 immunoreactivity was observed in ipsilateral DRGs 24 hours following carrageenan injection. This was correlated with an increase in Nav1.9 immunolabeling in nerve fibers surrounding the inflamed area. No change in Nav1.9 current density could be detected in the soma of retrolabeled DRG neurons innervating inflamed tissues, suggesting that newly produced channels may be non-functional at this level and rather contribute to the observed increase in axonal transport. Our results provide evidence that Nav1.9 plays a crucial role in the generation of heat and mechanical pain hypersensitivity, both in subacute and chronic inflammatory pain models, and bring new elements for the understanding of its regulation in those models.
Collapse
Affiliation(s)
- Stéphane Lolignier
- Clermont Université, Laboratoire de Pharmacologie Fondamentale et Clinique de la Douleur, Clermont-Ferrand, France
- Institut National de la Santé et de la Recherche Médicale, Unité 766, Clermont-Ferrand, France
| | - Muriel Amsalem
- Université de la Méditerranée, Centre National de la Recherche Scientifique Unité Mixte de Recherche 6231, Centre de Recherche en Neurobiologie et Neurophysiologie de Marseille, Marseille, France
| | - François Maingret
- Université de la Méditerranée, Centre National de la Recherche Scientifique Unité Mixte de Recherche 6231, Centre de Recherche en Neurobiologie et Neurophysiologie de Marseille, Marseille, France
| | - Françoise Padilla
- Université de la Méditerranée, Centre National de la Recherche Scientifique Unité Mixte de Recherche 6231, Centre de Recherche en Neurobiologie et Neurophysiologie de Marseille, Marseille, France
| | - Mélanie Gabriac
- Université de la Méditerranée, Centre National de la Recherche Scientifique Unité Mixte de Recherche 6231, Centre de Recherche en Neurobiologie et Neurophysiologie de Marseille, Marseille, France
| | - Eric Chapuy
- Clermont Université, Laboratoire de Pharmacologie Fondamentale et Clinique de la Douleur, Clermont-Ferrand, France
- Institut National de la Santé et de la Recherche Médicale, Unité 766, Clermont-Ferrand, France
| | - Alain Eschalier
- Clermont Université, Laboratoire de Pharmacologie Fondamentale et Clinique de la Douleur, Clermont-Ferrand, France
- Institut National de la Santé et de la Recherche Médicale, Unité 766, Clermont-Ferrand, France
- Centre Hospitalier Universitaire de Clermont-Ferrand, Service de Pharmacologie, Clermont-Ferrand, France
| | - Patrick Delmas
- Université de la Méditerranée, Centre National de la Recherche Scientifique Unité Mixte de Recherche 6231, Centre de Recherche en Neurobiologie et Neurophysiologie de Marseille, Marseille, France
| | - Jérôme Busserolles
- Clermont Université, Laboratoire de Pharmacologie Fondamentale et Clinique de la Douleur, Clermont-Ferrand, France
- Institut National de la Santé et de la Recherche Médicale, Unité 766, Clermont-Ferrand, France
- * E-mail:
| |
Collapse
|
89
|
Faber CG, Hoeijmakers JGJ, Ahn HS, Cheng X, Han C, Choi JS, Estacion M, Lauria G, Vanhoutte EK, Gerrits MM, Dib-Hajj S, Drenth JPH, Waxman SG, Merkies ISJ. Gain of function NaV1.7 mutations in idiopathic small fiber neuropathy. Ann Neurol 2011; 71:26-39. [DOI: 10.1002/ana.22485] [Citation(s) in RCA: 394] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2011] [Revised: 05/10/2011] [Accepted: 05/13/2011] [Indexed: 11/10/2022]
|
90
|
|
91
|
Ahn HS, Black JA, Zhao P, Tyrrell L, Waxman SG, Dib-Hajj SD. Nav1.7 is the predominant sodium channel in rodent olfactory sensory neurons. Mol Pain 2011; 7:32. [PMID: 21569247 PMCID: PMC3101130 DOI: 10.1186/1744-8069-7-32] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2011] [Accepted: 05/10/2011] [Indexed: 12/19/2022] Open
Abstract
Background Voltage-gated sodium channel Nav1.7 is preferentially expressed in dorsal root ganglion (DRG) and sympathetic neurons within the peripheral nervous system. Homozygous or compound heterozygous loss-of-function mutations in SCN9A, the gene which encodes Nav1.7, cause congenital insensitivity to pain (CIP) accompanied by anosmia. Global knock-out of Nav1.7 in mice is neonatal lethal reportedly from starvation, suggesting anosmia. These findings led us to hypothesize that Nav1.7 is the main sodium channel in the peripheral olfactory sensory neurons (OSN, also known as olfactory receptor neurons). Methods We used multiplex PCR-restriction enzyme polymorphism, in situ hybridization and immunohistochemistry to determine the identity of sodium channels in rodent OSNs. Results We show here that Nav1.7 is the predominant sodium channel transcript, with low abundance of other sodium channel transcripts, in olfactory epithelium from rat and mouse. Our in situ hybridization data show that Nav1.7 transcripts are present in rat OSNs. Immunostaining of Nav1.7 and Nav1.6 channels in rat shows a complementary accumulation pattern with Nav1.7 in peripheral presynaptic OSN axons, and Nav1.6 primarily in postsynaptic cells and their dendrites in the glomeruli of the olfactory bulb within the central nervous system. Conclusions Our data show that Nav1.7 is the dominant sodium channel in rat and mouse OSN, and may explain anosmia in Nav1.7 null mouse and patients with Nav1.7-related CIP.
Collapse
Affiliation(s)
- Hye-Sook Ahn
- Department of Neurology, Yale University School of Medicine, New Haven, 06520, USA
| | | | | | | | | | | |
Collapse
|
92
|
Wang W, Gu J, Li YQ, Tao YX. Are voltage-gated sodium channels on the dorsal root ganglion involved in the development of neuropathic pain? Mol Pain 2011; 7:16. [PMID: 21345196 PMCID: PMC3052185 DOI: 10.1186/1744-8069-7-16] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2011] [Accepted: 02/23/2011] [Indexed: 12/17/2022] Open
Abstract
Neuropathic pain is a common clinical condition. Current treatments are often inadequate, ineffective, or produce potentially severe adverse effects. Understanding the mechanisms that underlie the development and maintenance of neuropathic pain will be helpful in identifying new therapeutic targets and developing effective strategies for the prevention and/or treatment of this disorder. The genesis of neuropathic pain is reliant, at least in part, on abnormal spontaneous activity within sensory neurons. Therefore, voltage-gated sodium channels, which are essential for the generation and conduction of action potentials, are potential targets for treating neuropathic pain. However, preclinical studies have shown unexpected results because most pain-associated voltage-gated channels in the dorsal root ganglion are down-regulated after peripheral nerve injury. The role of dorsal root ganglion voltage-gated channels in neuropathic pain is still unclear. In this report, we describe the expression and distribution of voltage-gated sodium channels in the dorsal root ganglion. We also review evidence regarding changes in their expression under neuropathic pain conditions and their roles in behavioral responses in a variety of neuropathic pain models. We finally discuss their potential involvement in neuropathic pain.
Collapse
Affiliation(s)
- Wei Wang
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | | | | | |
Collapse
|
93
|
Binshtok AM. Mechanisms of nociceptive transduction and transmission: a machinery for pain sensation and tools for selective analgesia. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2011; 97:143-77. [PMID: 21708310 DOI: 10.1016/b978-0-12-385198-7.00006-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Many surgical and dental procedures depend on use of local anesthetics to reversibly eliminate pain. By the blockade of voltage-gated sodium channels, local anesthetics prevent the transmission of nociceptive information. However, since all local anesthetics act non-selectively on all types of axons they also cause a loss of innocuous sensation, motor paralysis and autonomic block. Thus, approaches that produce only a selective blockade of pain fibers are of great potential clinical importance. In this chapter we will review the recent findings describing mechanisms of pain transduction and transmission and introduce novel therapeutic approaches to produce pain-selective analgesia.
Collapse
Affiliation(s)
- Alexander M Binshtok
- Department of Medical Neurobiology, Institute for Medical Research Israel Canada and Center for Research on Pain, The Hebrew University Medical School, Jerusalem, Israel
| |
Collapse
|