51
|
Fontaine M, Lepape A, Piriou V, Venet F, Friggeri A. Innate danger signals in acute injury: From bench to bedside. Anaesth Crit Care Pain Med 2016; 35:283-92. [PMID: 26987739 DOI: 10.1016/j.accpm.2015.10.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Revised: 10/08/2015] [Accepted: 10/08/2015] [Indexed: 11/24/2022]
Abstract
The description of the systemic inflammatory response syndrome (SIRS) as a reaction to numerous insults marked a turning point in the understanding of acute critical states, which are intensive care basic cases. This concept highlighted the final inflammatory response features whichever the injury mechanism is: infectious, or non-infectious such as extensive burns, traumas, major surgery or acute pancreatitis. In these cases of severe non-infectious insult, many endogenous mediators are released. Like infectious agents components, they can activate the immune system (via common signaling pathways) and initiate an inflammatory response. They are danger signals or alarmins. These molecules generally play an intracellular physiological role and acquire new functions when released in extracellular space. Many progresses brought new information on these molecules and on their function in infectious and non-infectious inflammation. These danger signals can be used as biomarkers and provide new pathophysiological and therapeutic approaches, particularly for immune dysfunctions occurring after an acute injury. We present herein the danger model, the main danger signals and the clinical consequences.
Collapse
Affiliation(s)
- Mathieu Fontaine
- Burn Intensive Care Unit, centre hospitalier Saint-Joseph-Saint-Luc, 20, quai Claude-Bernard, 69007 Lyon, France; EAM 4174 « Hemostasis, inflammation and sepsis », hospices civils de Lyon, université Claude-Bernard Lyon I, 69008 Lyon, France.
| | - Alain Lepape
- EAM 4174 « Hemostasis, inflammation and sepsis », hospices civils de Lyon, université Claude-Bernard Lyon I, 69008 Lyon, France; Intensive Care Unit, centre hospitalier Lyon Sud, 165, chemin du Grand-Revoyet, 69495 Pierre-Bénite cedex, France
| | - Vincent Piriou
- EAM 4174 « Hemostasis, inflammation and sepsis », hospices civils de Lyon, université Claude-Bernard Lyon I, 69008 Lyon, France; Intensive Care Unit, centre hospitalier Lyon Sud, 165, chemin du Grand-Revoyet, 69495 Pierre-Bénite cedex, France
| | - Fabienne Venet
- EAM 4174 « Hemostasis, inflammation and sepsis », hospices civils de Lyon, université Claude-Bernard Lyon I, 69008 Lyon, France; Immunology Laboratory, hôpital Édouard-Herriot, hospices civils de Lyon, 5, place d'Arsonval, 69437 Lyon cedex 03, France
| | - Arnaud Friggeri
- Intensive Care Unit, centre hospitalier Lyon Sud, 165, chemin du Grand-Revoyet, 69495 Pierre-Bénite cedex, France
| |
Collapse
|
52
|
Abstract
Purpose of review Despite the application of prophylactic antimicrobial therapy and advanced technologies, infection remains one of the most common causes of morbidity and mortality in surgical patients. Understanding the pathogenesis of surgical infection would offer new insights into the development of biomarkers to predict and stratify infection in patients, and to explore specific strategies to minimize this serious postoperative complication. Recent findings The acute nonspecific inflammatory response triggered by endogenous danger signals evoked by surgical insult is beneficial, while paradoxically associated with reduced resistance to infection. There is growing evidence indicating that primed inflammation by surgical insult exaggerates the dysregulation of the immune-inflammatory response to the invasion of pathogens postoperatively. Innate immune receptors, such as Toll-like receptors (TLRs), contribute to detecting both pathogen-associated molecular patterns and endogenous damage-associated molecular patterns, and to further amplifying inflammatory responses to infection. Current evidence shows the fascinating role of non-TLRs in the process of infection. Non-TLRs, such as membrane-associated triggering receptor expressed on myeloid cells family, cytosolic nucleotide-binding oligomerization domain-like receptors and nuclear receptor nuclear family 4 subgroup A receptors, are also crucial in triggering the immune responses and mounting an effective defense against surgical insults and the second hit of infection. Summary Understanding the pivotal role of non-TLRs in sensing exogenous and endogenous molecules, and the influence of primed systemic inflammation and depressed immune status on the defense against pathogen after surgical insult, would be helpful to fully explore the relevant sophisticated phenomena of surgical infection, and to elucidate the occurrence of heterogeneous constellations of clinical signs and symptoms among this special population.
Collapse
|
53
|
Identification of Predictive Early Biomarkers for Sterile-SIRS after Cardiovascular Surgery. PLoS One 2015; 10:e0135527. [PMID: 26263001 PMCID: PMC4532358 DOI: 10.1371/journal.pone.0135527] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Accepted: 07/22/2015] [Indexed: 12/21/2022] Open
Abstract
Systemic inflammatory response syndrome (SIRS) is a common complication after cardiovascular surgery that in severe cases can lead to multiple organ dysfunction syndrome and even death. We therefore set out to identify reliable early biomarkers for SIRS in a prospective small patient study for timely intervention. 21 Patients scheduled for planned cardiovascular surgery were recruited in the study, monitored for signs of SIRS and blood samples were taken to investigate biomarkers at pre-assigned time points: day of admission, start of surgery, end of surgery, days 1, 2, 3, 5 and 8 post surgery. Stored plasma and cryopreserved blood samples were analyzed for cytokine expression (IL1β, IL2, IL6, IL8, IL10, TNFα, IFNγ), other pro-inflammatory markers (sCD163, sTREM-1, ESM-1) and response to endotoxin. Acute phase proteins CRP, PCT and pro-inflammatory cytokines IL6 and IL8 were significantly increased (p<0.001) at the end of surgery in all patients but could not distinguish between groups. Normalization of samples revealed significant increases in IL1β changes (p<0.05) and decreased responses to endotoxin (p<0.01) in the SIRS group at the end of surgery. Soluble TREM-1 plasma concentrations were significantly increased in patients with SIRS (p<0.01). This small scale patient study could show that common sepsis markers PCT, CRP, IL6 and TNFα had low predictive value for early diagnosis of SIRS after cardiovascular surgery. A combination of normalized IL1β plasma levels, responses to endotoxin and soluble TREM-1 plasma concentrations at the end of surgery are predictive markers of SIRS development in this small scale study and could act as an indicator for starting early therapeutic interventions.
Collapse
|
54
|
The Immediate Intramedullary Nailing Surgery Increased the Mitochondrial DNA Release That Aggravated Systemic Inflammatory Response and Lung Injury Induced by Elderly Hip Fracture. Mediators Inflamm 2015; 2015:587378. [PMID: 26273137 PMCID: PMC4530272 DOI: 10.1155/2015/587378] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Revised: 02/08/2015] [Accepted: 02/20/2015] [Indexed: 02/04/2023] Open
Abstract
Conventional concept suggests that immediate surgery is the optimal choice for elderly hip fracture patients; however, few studies focus on the adverse effect of immediate surgery. This study aims to examine the adverse effect of immediate surgery, as well as to explore the meaning of mtDNA release after trauma. In the experiment, elderly rats, respectively, received hip fracture operations or hip fracture plus intramedullary nail surgery. After fracture operations, the serum mtDNA levels as well as the related indicators of systemic inflammatory response and lung injury significantly increased in the rats. After immediate surgery, the above variables were further increased. The serum mtDNA levels were significantly related with the serum cytokine (TNF-α and IL-10) levels and pulmonary histological score. In order to identify the meaning of mtDNA release following hip fracture, the elderly rats received injections with mtDNA. After treatment, the related indicators of systemic inflammatory response and lung injury significantly increased in the rats. These results demonstrated that the immediate surgery increased the mtDNA release that could aggravate systemic inflammatory response and lung injury induced by elderly hip fracture; serum mtDNA might serve as a potential biomarker of systemic inflammatory response and lung injury following elderly hip fracture.
Collapse
|
55
|
Peterson NW, Buote NJ, Barr JW. The impact of surgical timing and intervention on outcome in traumatized dogs and cats. J Vet Emerg Crit Care (San Antonio) 2015; 25:63-75. [PMID: 25605629 DOI: 10.1111/vec.12279] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2014] [Accepted: 09/23/2014] [Indexed: 01/13/2023]
Abstract
OBJECTIVE To review the relevant human and veterinary literature regarding the timing of surgical intervention for trauma patients and the impact on outcome. DATA SOURCES Original research, clinical studies, and review articles with no date restrictions from both human and veterinary literature. HUMAN DATA SYNTHESIS Despite extensive research into the ideal timing of surgical intervention for human trauma victims, debate is ongoing and views are still evolving. Prior to the 1970s, the standard of care consisted of delayed surgical treatment, as these patients were considered too ill to undergo surgery. Beginning in the 1970s, and continuing for nearly 2 decades, early definitive surgical treatment was recommended. The most recent evolution of human trauma management incorporates the concept of damage control surgery, which acknowledges the importance of early skeletal stabilization or laparotomy for reducing morbidity while attempting to avoid complications such as acute respiratory distress syndrome or multiple organ dysfunction syndrome. VETERINARY DATA SYNTHESIS Despite a relatively large amount of literature available regarding veterinary trauma, no evidence exists to provide the clinician guidance as to the ideal timing of surgery for trauma patients. With the exception of diaphragmatic hernia, no studies were identified that attempted to evaluate this variable. CONCLUSIONS Veterinary-specific studies are needed to evaluate the impact of surgical timing on outcome following trauma. The information that can be obtained from studies in this area can improve veterinary trauma care and may be used as models for human trauma care through translational applications.
Collapse
Affiliation(s)
- Nathan W Peterson
- Departments of Critical Care, VCA West Los Angeles Animal Hospital, Los Angeles, CA, 90025
| | | | | |
Collapse
|
56
|
Uhel F, Tadié JM, Le Tulzo Y. Choc septique : mécanismes du décès. MEDECINE INTENSIVE REANIMATION 2015. [DOI: 10.1007/s13546-015-1019-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
57
|
Mitchell MJ, Lin KS, King MR. Fluid shear stress increases neutrophil activation via platelet-activating factor. Biophys J 2014; 106:2243-53. [PMID: 24853753 PMCID: PMC4052238 DOI: 10.1016/j.bpj.2014.04.001] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Revised: 03/20/2014] [Accepted: 04/01/2014] [Indexed: 12/11/2022] Open
Abstract
Leukocyte exposure to hemodynamic shear forces is critical for physiological functions including initial adhesion to the endothelium, the formation of pseudopods, and migration into tissues. G-protein coupled receptors on neutrophils, which bind to chemoattractants and play a role in neutrophil chemotaxis, have been implicated as fluid shear stress sensors that control neutrophil activation. Recently, exposure to physiological fluid shear stresses observed in the microvasculature was shown to reduce neutrophil activation in the presence of the chemoattractant formyl-methionyl-leucyl-phenylalanine. Here, however, human neutrophil preexposure to uniform shear stress (0.1-2.75 dyn/cm(2)) in a cone-and-plate viscometer for 1-120 min was shown to increase, rather than decrease, neutrophil activation in the presence of platelet activating factor (PAF). Fluid shear stress exposure increased PAF-induced neutrophil activation in terms of L-selectin shedding, αMβ2 integrin activation, and morphological changes. Neutrophil activation via PAF was found to correlate with fluid shear stress exposure, as neutrophil activation increased in a shear stress magnitude- and time-dependent manner. These results indicate that fluid shear stress exposure increases neutrophil activation by PAF, and, taken together with previous observations, differentially controls how neutrophils respond to chemoattractants.
Collapse
Affiliation(s)
- Michael J Mitchell
- Department of Biomedical Engineering, Cornell University, Ithaca, New York
| | - Kimberly S Lin
- Department of Biomedical Engineering, Cornell University, Ithaca, New York
| | - Michael R King
- Department of Biomedical Engineering, Cornell University, Ithaca, New York.
| |
Collapse
|
58
|
Lord JM, Midwinter MJ, Chen YF, Belli A, Brohi K, Kovacs EJ, Koenderman L, Kubes P, Lilford RJ. The systemic immune response to trauma: an overview of pathophysiology and treatment. Lancet 2014; 384:1455-65. [PMID: 25390327 PMCID: PMC4729362 DOI: 10.1016/s0140-6736(14)60687-5] [Citation(s) in RCA: 499] [Impact Index Per Article: 45.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Improvements in the control of haemorrhage after trauma have resulted in the survival of many people who would otherwise have died from the initial loss of blood. However, the danger is not over once bleeding has been arrested and blood pressure restored. Two-thirds of patients who die following major trauma now do so as a result of causes other than exsanguination. Trauma evokes a systemic reaction that includes an acute, non-specific, immune response associated, paradoxically, with reduced resistance to infection. The result is damage to multiple organs caused by the initial cascade of inflammation aggravated by subsequent sepsis to which the body has become susceptible. This Series examines the biological mechanisms and clinical implications of the cascade of events caused by large-scale trauma that leads to multiorgan failure and death, despite the stemming of blood loss. Furthermore, the stark and robust epidemiological finding--namely, that age has a profound influence on the chances of surviving trauma irrespective of the nature and severity of the injury--will be explored. Advances in our understanding of the inflammatory response to trauma, the impact of ageing on this response, and how this information has led to new and emerging treatments aimed at combating immune dysregulation and reduced immunity after injury will also be discussed.
Collapse
Affiliation(s)
- Janet M Lord
- MRC-ARUK Centre for Musculoskeletal Ageing Research, School of Immunity and Infection, University of Birmingham, Birmingham, UK; NIHR Surgical Reconstruction and Microbiology Research Centre, University of Birmingham, Birmingham, UK
| | - Mark J Midwinter
- NIHR Surgical Reconstruction and Microbiology Research Centre, University of Birmingham, Birmingham, UK; School of Health and Population Sciences, University of Birmingham, Birmingham, UK
| | - Yen-Fu Chen
- NIHR Surgical Reconstruction and Microbiology Research Centre, University of Birmingham, Birmingham, UK; School of Health and Population Sciences, University of Birmingham, Birmingham, UK; Division of Health Sciences, University of Warwick, Coventry, UK
| | - Antonio Belli
- NIHR Surgical Reconstruction and Microbiology Research Centre, University of Birmingham, Birmingham, UK; Neurotrauma and Neurodegeneration Section, University of Birmingham, Birmingham, UK
| | - Karim Brohi
- Centre for Trauma Sciences, Blizard Institute, Queen Mary University of London, London, UK
| | - Elizabeth J Kovacs
- Loyola University Chicago Health Sciences Campus, Stritch School of Medicine, Department of Surgery, Burn and Shock Trauma Institute, Maywood, IL, USA
| | - Leo Koenderman
- University Medical Centre Utrecht, Department of Respiratory Medicine, Utrecht, Netherlands
| | - Paul Kubes
- University of Calgary, Department of Physiology and Pharmacology, Calvin Phoebe and Joan Snyder Institute for Chronic Disease, Calgary, Canada
| | - Richard J Lilford
- School of Health and Population Sciences, University of Birmingham, Birmingham, UK; Division of Health Sciences, University of Warwick, Coventry, UK.
| |
Collapse
|
59
|
Ather JL, Martin RA, Ckless K, Poynter ME. Inflammasome Activity in Non-Microbial Lung Inflammation. JOURNAL OF ENVIRONMENTAL IMMUNOLOGY AND TOXICOLOGY 2014; 1:108-117. [PMID: 25642415 PMCID: PMC4308734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The understanding of interleukin-1 (IL-1) family cytokines in inflammatory disease has rapidly developed, due in part to the discovery and characterization of inflammasomes, which are multi-subunit intracellular protein scaffolds principally enabling recognition of a myriad of cellular stimuli, leading to the activation of caspase-1 and the processing of IL-1β and IL-18. Studies continue to elucidate the role of inflammasomes in immune responses induced by both microbes and environmental factors. This review focuses on the current understanding of inflammasome activity in the lung, with particular focus on the non-microbial instigators of inflammasome activation, including inhaled antigens, oxidants, cigarette smoke, diesel exhaust particles, mineral fibers, and engineered nanomaterials, as well as exposure to trauma and pre-existing inflammatory conditions such as metabolic syndrome. Inflammasome activity in these sterile inflammatory states contribute to diseases including asthma, chronic obstructive disease, acute lung injury, ventilator-induced lung injury, pulmonary fibrosis, and lung cancer.
Collapse
Affiliation(s)
- Jennifer L. Ather
- Vermont Lung Center, Division of Pulmonary Disease and Critical Care, Department of Medicine, University of Vermont, Burlington, USA
| | - Rebecca A. Martin
- Vermont Lung Center, Division of Pulmonary Disease and Critical Care, Department of Medicine, University of Vermont, Burlington, USA
| | - Karina Ckless
- Chemistry Department, State University of New York at Plattsburgh, Plattsburgh, USA
| | - Matthew E. Poynter
- Vermont Lung Center, Division of Pulmonary Disease and Critical Care, Department of Medicine, University of Vermont, Burlington, USA
| |
Collapse
|
60
|
Baicalin Inhibits High-Mobility Group Box 1 Release and Improves Survival in Experimental Sepsis. Shock 2014; 41:324-30. [DOI: 10.1097/shk.0000000000000122] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
61
|
ZHANG JIANZHENG, LIU ZHI, LIU JIA, REN JIXIN, SUN TIANSHENG. Mitochondrial DNA induces inflammation and increases TLR9/NF-κB expression in lung tissue. Int J Mol Med 2014; 33:817-24. [PMID: 24535292 PMCID: PMC3976143 DOI: 10.3892/ijmm.2014.1650] [Citation(s) in RCA: 171] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Accepted: 01/30/2014] [Indexed: 12/16/2022] Open
Abstract
Mitochondrial DNA (mtDNA) contains unmethylated CpG motifs that exhibit immune stimulatory capacities. The aim of this study was to investigate whether mtDNA activates the Toll-like receptor 9 (TLR9)/nuclear factor-κB (NF-κB) pathway, thereby contributing to post-traumatic systemic inflammatory response syndrome (SIRS) and lung injury in rats. The effects of mtDNA on macrophage culture were examined in order to elucidate the putative cellular mechanisms. Rats and macrophage cultures were treated with phosphate-buffered saline, nuclear DNA, or mtDNA for 2, 4, 8 and 24 h. Histological analysis of lung tissue was undertaken following hematoxylin and eosin staining, and cytokine levels were assessed by ELISA. NF-κB and IκB-α phosphorylation levels, as well as TLR9 protein expression were determined by western blot analysis; NF-κB, IκB-α and TLR9 mRNA levels were analyzed by RT-PCR. A greater degree of inflammation and lung injury was observed in response to mtDNA. In addition, mtDNA increased serum tumor necrosis factor-α, interleukin (IL)-6 and IL-10 levels in vivo and increased their secretion by cultured macrophages (p<0.05). In lung tissue, mtDNA increased NF-κB, IκB-α and TLR9 mRNA levels (p<0.05); it also increased phosphorylated NF-κB p65 and TLR9 protein levels in the macrophage cultures. Thus, mtDNA may be part of the danger-associated molecular patterns, contributing to the initiation of sterile SIRS through the activation of the TLR9/NF-κB pathway and the induction of pro-inflammatory cytokine production.
Collapse
Affiliation(s)
- JIAN-ZHENG ZHANG
- Department of Orthopedics, Beijing Army General Hospital, Dongcheng, Beijing 100700, P.R. China
| | - ZHI LIU
- Department of Orthopedics, Beijing Army General Hospital, Dongcheng, Beijing 100700, P.R. China
| | - JIA LIU
- Department of Orthopedics, Beijing Army General Hospital, Dongcheng, Beijing 100700, P.R. China
| | - JI-XIN REN
- Department of Orthopedics, Beijing Army General Hospital, Dongcheng, Beijing 100700, P.R. China
| | - TIAN-SHENG SUN
- Department of Orthopedics, Beijing Army General Hospital, Dongcheng, Beijing 100700, P.R. China
| |
Collapse
|
62
|
Rodgers KM, Deming YK, Bercum FM, Chumachenko SY, Wieseler JL, Johnson KW, Watkins LR, Barth DS. Reversal of established traumatic brain injury-induced, anxiety-like behavior in rats after delayed, post-injury neuroimmune suppression. J Neurotrauma 2014; 31:487-97. [PMID: 24041015 PMCID: PMC3934516 DOI: 10.1089/neu.2013.3090] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Abstract Traumatic brain injury (TBI) increases the risk of neuropsychiatric disorders, particularly anxiety disorders. Yet, there are presently no therapeutic interventions to prevent the development of post-traumatic anxiety or effective treatments once it has developed. This is because, in large part, of a lack of understanding of the underlying pathophysiology. Recent research suggests that chronic neuroinflammatory responses to injury may play a role in the development of post-traumatic anxiety in rodent models. Acute peri-injury administration of immunosuppressive compounds, such as Ibudilast (MN166), have been shown to prevent reactive gliosis associated with immune responses to injury and also prevent lateral fluid percussion injury (LFPI)-induced anxiety-like behavior in rats. There is evidence in both human and rodent studies that post-traumatic anxiety, once developed, is a chronic, persistent, and drug-refractory condition. In the present study, we sought to determine whether neuroinflammation is associated with the long-term maintenance of post-traumatic anxiety. We examined the efficacy of an anti-inflammatory treatment in decreasing anxiety-like behavior and reactive gliosis when introduced at 1 month after injury. Delayed treatment substantially reduced established LFPI-induced freezing behavior and reactive gliosis in brain regions associated with anxiety and continued neuroprotective effects were evidenced 6 months post-treatment. These results support the conclusion that neuroinflammation may be involved in the development and maintenance of anxiety-like behaviors after TBI.
Collapse
Affiliation(s)
- Krista M. Rodgers
- Department of Psychology and Neuroscience, University of Colorado, Boulder, Colorado
| | - Yuetiva K. Deming
- Department of Psychology and Neuroscience, University of Colorado, Boulder, Colorado
| | - Florencia M. Bercum
- Department of Psychology and Neuroscience, University of Colorado, Boulder, Colorado
| | - Serhiy Y. Chumachenko
- Department of Psychology and Neuroscience, University of Colorado, Boulder, Colorado
| | - Julie L. Wieseler
- Department of Psychology and Neuroscience, University of Colorado, Boulder, Colorado
| | | | - Linda R. Watkins
- Department of Psychology and Neuroscience, University of Colorado, Boulder, Colorado
| | - Daniel S. Barth
- Department of Psychology and Neuroscience, University of Colorado, Boulder, Colorado
| |
Collapse
|
63
|
The adjuvant MF59 induces ATP release from muscle that potentiates response to vaccination. Proc Natl Acad Sci U S A 2013; 110:21095-100. [PMID: 24324152 DOI: 10.1073/pnas.1319784110] [Citation(s) in RCA: 112] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Vaccines are the most effective agents to control infections. In addition to the pathogen antigens, vaccines contain adjuvants that are used to enhance protective immune responses. However, the molecular mechanism of action of most adjuvants is ill-known, and a better understanding of adjuvanticity is needed to develop improved adjuvants based on molecular targets that further enhance vaccine efficacy. This is particularly important for tuberculosis, malaria, AIDS, and other diseases for which protective vaccines do not exist. Release of endogenous danger signals has been linked to adjuvanticity; however, the role of extracellular ATP during vaccination has never been explored. Here, we tested whether ATP release is involved in the immune boosting effect of four common adjuvants: aluminum hydroxide, calcium phosphate, incomplete Freund's adjuvant, and the oil-in-water emulsion MF59. We found that intramuscular injection is always associated with a weak transient release of ATP, which was greatly enhanced by the presence of MF59 but not by all other adjuvants tested. Local injection of apyrase, an ATP-hydrolyzing enzyme, inhibited cell recruitment in the muscle induced by MF59 but not by alum or incomplete Freund's adjuvant. In addition, apyrase strongly inhibited influenza-specific T-cell responses and hemagglutination inhibition titers in response to an MF59-adjuvanted trivalent influenza vaccine. These data demonstrate that a transient ATP release is required for innate and adaptive immune responses induced by MF59 and link extracellular ATP with an enhanced response to vaccination.
Collapse
|
64
|
Hyllienmark P, Brattström O, Larsson E, Martling CR, Petersson J, Oldner A. High incidence of post-injury pneumonia in intensive care-treated trauma patients. Acta Anaesthesiol Scand 2013; 57:848-54. [PMID: 23550742 DOI: 10.1111/aas.12111] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/04/2013] [Indexed: 12/29/2022]
Abstract
INTRODUCTION Trauma patients are susceptible to post-injury infections. We investigated the incidence, as well as risk factors for development of pneumonia in intensive care unit (ICU)-treated trauma patients. In addition, we report pathogens identified in patients that developed pneumonia. METHODS The study cohort consisted of 322 trauma patients admitted to the ICU at a level-one trauma centre following initial resuscitation. Patients 15 years or older with an ICU stay of more than 24 h were included. We investigated pre-hospital and hospital parameters during the first 24 h after admission and their possible association with pneumonia within 10 days of ICU admission. RESULTS Majority of the patients were male (78%) and the median age was 41 years. The overall degree of injury was high with a median Injury Severity Score (ISS) of 24. Overall 30-day mortality was 9%. Eighty-five (26%) patients developed pneumonia during their first 10 days in the ICU. Univariate logistic regression revealed that intubation in the field, shock, Glasgow Coma Scale (GCS) 3-8, major surgery within 24 h after admission, massive transfusion and ISS > 24 were all risk factors for subsequent development of pneumonia. In the multivariable model, only GCS 3-8 was identified as an independent risk factor. In 42 out of the 85 cases of pneumonia, the diagnosis was defined by significant growth of at least one pathogen where Enterobacteriaceae and Staphylococcus aureus were the most common. CONCLUSIONS Pneumonia is a common complication among ICU-treated trauma patients. Reduced consciousness is an independent risk factor for development of pneumonia after severe injury.
Collapse
Affiliation(s)
- P Hyllienmark
- Section of Anesthesiology and Intensive Care Medicine, Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden.
| | | | | | | | | | | |
Collapse
|