51
|
Park S, Park JA, Jeon JH, Lee Y. Traditional and Novel Mechanisms of Heat Shock Protein 90 (HSP90) Inhibition in Cancer Chemotherapy Including HSP90 Cleavage. Biomol Ther (Seoul) 2019; 27:423-434. [PMID: 31113013 PMCID: PMC6720532 DOI: 10.4062/biomolther.2019.051] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 04/19/2019] [Accepted: 04/25/2019] [Indexed: 12/22/2022] Open
Abstract
HSP90 is a molecular chaperone that increases the stability of client proteins. Cancer cells show higher HSP90 expression than normal cells because many client proteins play an important role in the growth and survival of cancer cells. HSP90 inhibitors mainly bind to the ATP binding site of HSP90 and inhibit HSP90 activity, and these inhibitors can be distinguished as ansamycin and non-ansamycin depending on the structure. In addition, the histone deacetylase inhibitors inhibit the activity of HSP90 through acetylation of HSP90. These HSP90 inhibitors have undergone or are undergoing clinical trials for the treatment of cancer. On the other hand, recent studies have reported that various reagents induce cleavage of HSP90, resulting in reduced HSP90 client proteins and growth suppression in cancer cells. Cleavage of HSP90 can be divided into enzymatic cleavage and non-enzymatic cleavage. Therefore, reagents inducing cleavage of HSP90 can be classified as another class of HSP90 inhibitors. We discuss that the cleavage of HSP90 can be another mechanism in the cancer treatment by HSP90 inhibition.
Collapse
Affiliation(s)
- Sangkyu Park
- Department of Biochemistry, College of Natural Sciences, Chungbuk National University, Cheongju 28644, Republic of Korea.,Biotechnology Research Institute, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Jeong-A Park
- Department of Biochemistry, College of Natural Sciences, Chungbuk National University, Cheongju 28644, Republic of Korea.,Biotechnology Research Institute, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Jae-Hyung Jeon
- Department of Biochemistry, College of Natural Sciences, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Younghee Lee
- Department of Biochemistry, College of Natural Sciences, Chungbuk National University, Cheongju 28644, Republic of Korea.,Biotechnology Research Institute, Chungbuk National University, Cheongju 28644, Republic of Korea
| |
Collapse
|
52
|
Park KS, Hong YS, Choi J, Yoon S, Kang J, Kim D, Lee KP, Im HS, Lee CH, Seo S, Kim SW, Lee DH, Park SR. HSP90 inhibitor, AUY922, debilitates intrinsic and acquired lapatinib-resistant HER2-positive gastric cancer cells. BMB Rep 2019. [PMID: 30591093 PMCID: PMC6330940 DOI: 10.5483/bmbrep.2018.51.12.259] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Human epidermal growth factor receptor 2 (HER2) inhibitors, such as trastuzumab and lapatinib are used to treat HER2-positive breast and gastric cancers. However, as with other targeted therapies, intrinsic or acquired resistance to HER2 inhibitors presents unresolved therapeutic problems for HER2-positive gastric cancer. The present study describes investigations with AUY922, a heat shock protein 90 (HSP90) inhibitor, in primary lapatinib-resistant (ESO26 and OE33) and lapatinib-sensitive gastric cancer cells (OE19, N87, and SNU-216) harboring HER2 amplification/over-expression. In order to investigate whether AUY922 could overcome intrinsic and acquired resistance to HER2 inhibitors in HER2-positive gastric cancer, we generated lapatinib-resistant gastric cancer cell lines (OE19/LR and N87/LR) by continuous exposure to lapatinib in vitro. We found that activation of HER2 and protein kinase B (AKT) were key factors in inducing intrinsic and acquired lapatinib-resistant gastric cancer cell lines, and that AUY922 effectively suppressed activation of both HER2 and AKT in acquired lapatinib-resistant gastric cancer cell lines. In conclusion, AUY922 showed a synergistic anti-cancer effect with lapatinib and sensitized gastric cancer cells with intrinsic resistance to lapatinib. Dual inhibition of the HSP90 and HER2 signaling pathways could represent a potent therapeutic strategy to treat HER2-positive gastric cancer with intrinsic and acquired resistance to lapatinib.
Collapse
Affiliation(s)
- Kang-Seo Park
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505; Department of Biomedical Sciences, University of Ulsan College of Medicine, Seoul 05505, Korea
| | - Yong Sang Hong
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea
| | - Junyoung Choi
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea
| | - Shinkyo Yoon
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea
| | - Jihoon Kang
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea; Division of Hematology/Oncology, Department of Internal Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul 03181, Korea
| | - Deokhoon Kim
- Asan Institute for Life Science, Department of Pathology, Asan Medical Center, Seoul 05505, Korea
| | - Kang-Pa Lee
- Asan Institute for Life Science, Department of Pathology, Asan Medical Center, Seoul 05505, Korea
| | - Hyeon-Su Im
- Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea
| | - Chang Hoon Lee
- Bio & Drug Discovery Division, Center for Drug Discovery Technology, Korea Research Institute of Chemical Technology (KRICT), Daejeon 34114, Republic of Korea
| | - Seyoung Seo
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea
| | - Sang-We Kim
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea
| | - Dae Ho Lee
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea
| | - Sook Ryun Park
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea
| |
Collapse
|
53
|
Saeedi M, Hashemi M, Mahdavi M, Rafinejad A, Najafi Z, Mirfazli SS, Mohammadian R, Karimpour-Razkenari E, Kabudanian Ardestani S, Safavi M, Akbarzadeh T. Synthesis and Anticancer Activity of N-(di/trimethoxyaryl)-5-arylisoxazole-3-carboxamide. Polycycl Aromat Compd 2019. [DOI: 10.1080/10406638.2018.1564677] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Mina Saeedi
- Medicinal Plants Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
- Persian Medicine and Pharmacy Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehdi Hashemi
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Mahdavi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Rafinejad
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Zahra Najafi
- Department of Medicinal Chemistry, School of pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Seyedeh Sara Mirfazli
- Department of Medicinal Chemistry, School of Pharmacy-International Campus, Iran University of Medical Sciences, Tehran, Iran
| | - Razieh Mohammadian
- Department of Biochemistry, Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | | | | | - Maliheh Safavi
- Department of Biotechnology, Iranian Research Organization for Science and Technology, Tehran, Iran
| | - Tahmineh Akbarzadeh
- Persian Medicine and Pharmacy Research Center, Tehran University of Medical Sciences, Tehran, Iran
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
54
|
Sokolowska I, Ngounou Wetie AG, Woods AG, Jayathirtha M, Darie CC. Role of Mass Spectrometry in Investigating a Novel Protein: The Example of Tumor Differentiation Factor (TDF). ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1140:417-433. [PMID: 31347062 DOI: 10.1007/978-3-030-15950-4_24] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Better understanding of central nervous system (CNS) molecules can include the identification of new molecules and their receptor systems. Discovery of novel proteins and elucidation of receptor targets can be accomplished using mass spectrometry (MS). We describe a case study of such a molecule, which our lab has studied using MS in combination with other protein identification techniques, such as immunohistochemistry and Western Blotting. This molecule is known as tumor differentiation factor (TDF), a recently-found protein secreted by the pituitary into the blood. TDF mRNA has been detected in brain; not heart, placenta, lung, liver, skeletal muscle, or pancreas. Currently TDF has an unclear function, and prior to our studies, its localization was only minimally understood, with no understanding of receptor targets. We investigated the distribution of TDF in the rat brain using immunohistochemistry (IHC) and immunofluorescence (IF). TDF protein was detected in pituitary and most other brain regions, in specific neurons but not astrocytes. We found TDF immunoreactivity in cultured neuroblastoma, not astrocytoma. These data suggest that TDF is localized to neurons, not to astrocytes. Our group also conducted studies to identify the TDF receptor (TDF-R). Using LC-MS/MS and Western blotting, we identified the members of the Heat Shock 70-kDa family of proteins (HSP70) as potential TDF-R candidates in both MCF7 and BT-549 human breast cancer cells (HBCC) and PC3, DU145, and LNCaP human prostate cancer cells (HPCC), but not in HeLa cells, NG108 neuroblastoma, or HDF-a and BLK CL.4 cells fibroblasts or fibroblast-like cells. These studies have combined directed protein identification techniques with mass spectrometry to increase our understanding of a novel protein that may have distinct actions as a hormone in the body and as a growth factor in the brain.
Collapse
Affiliation(s)
- Izabela Sokolowska
- Biochemistry & Proteomics Group, Department of Chemistry & Biomolecular Science, Clarkson University, Potsdam, NY, USA.
| | - Armand G Ngounou Wetie
- Biochemistry & Proteomics Group, Department of Chemistry & Biomolecular Science, Clarkson University, Potsdam, NY, USA
| | - Alisa G Woods
- Biochemistry & Proteomics Group, Department of Chemistry & Biomolecular Science, Clarkson University, Potsdam, NY, USA
| | - Madhuri Jayathirtha
- Biochemistry & Proteomics Group, Department of Chemistry & Biomolecular Science, Clarkson University, Potsdam, NY, USA
| | - Costel C Darie
- Biochemistry & Proteomics Group, Department of Chemistry & Biomolecular Science, Clarkson University, Potsdam, NY, USA
| |
Collapse
|
55
|
Somu P, Paul S. HSP90 and Its Inhibitors for Cancer Therapy: Use of Nano-delivery System to Improve Its Clinical Application. HEAT SHOCK PROTEINS 2019. [DOI: 10.1007/978-3-030-23158-3_8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
56
|
Abstract
Breast cancer remains the second leading cause of cancer death among woman, worldwide, despite advances in identifying novel targeted therapies and the development of treating strategies. Classification of clinical subtypes (ER+, PR+, HER2+, and TNBC (Triple-negative)) increases the complexity of breast cancers, which thus necessitates further investigation. Mouse models used in breast cancer research provide an essential approach to examine the mechanisms and genetic pathway in cancer progression and metastasis and to develop and evaluate clinical therapeutics. In this review, we summarize tumor transplantation models and genetically engineered mouse models (GEMMs) of breast cancer and their applications in the field of human breast cancer research and anti-cancer drug development. These models may help to improve the knowledge of underlying mechanisms and genetic pathways, as well as creating approaches for modeling clinical tumor subtypes, and developing innovative cancer therapy.
Collapse
|
57
|
Koga T, Kobayashi Y, Tomizawa K, Suda K, Kosaka T, Sesumi Y, Fujino T, Nishino M, Ohara S, Chiba M, Shimoji M, Takemoto T, Suzuki M, Jänne PA, Mitsudomi T. Activity of a novel HER2 inhibitor, poziotinib, for HER2 exon 20 mutations in lung cancer and mechanism of acquired resistance: An in vitro study. Lung Cancer 2018; 126:72-79. [PMID: 30527195 DOI: 10.1016/j.lungcan.2018.10.019] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 10/11/2018] [Accepted: 10/16/2018] [Indexed: 12/25/2022]
Abstract
OBJECTIVES Oncogenic HER2 mutations are present in 2-4% of lung adenocarcinomas, but the relevant clinical trials are unsatisfactory. The novel HER2 inhibitor poziotinib was recently developed and clinical trials are ongoing. We compared poziotinib with nine tyrosine kinase inhibitors (TKIs), and derived poziotinib-resistant clones to investigate the resistant mechanism. MATERIALS AND METHODS We introduced three common HER2 mutations A775_G776insYVMA (YVMA), G776delinsVC (VC) and P780_Y781insGSP (GSP), which account for 94% of HER2 exon 20 insertions in the literature, into Ba/F3 cells. We then compared the activity of poziotinib with that of nine TKIs (erlotinib, afatinib, dacomitinib, neratinib, osimertinib, AZ5104, pyrotinib, lapatinib, and irbinitinib), determined the 90% inhibitory concentration (IC90) through a growth inhibition assay, and defined a sensitivity index (SI) as IC90 divided by the trough concentration at the recommended dose as a surrogate for drug activity in humans. We also generated resistant clones by exposure to poziotinib in the presence of N-ethyl-N-nitrosourea, and HER2 secondary mutations that might serve as a resistance mechanism were searched. RESULTS YVMA showed resistance to all tested drugs except neratinib, poziotinib and pyrotinib. Poziotinib was the only drug with an SI less than 10 for YVMA, the most common HER2 exon 20 insertion. We established 62 poziotinib-resistant clones, and among these, only C805S of HER2, which is homologous to C797S of the EGFR, was identified as a secondary mutation in 19 clones. We also revealed that heat shock protein (HSP) 90 inhibitors show potent anti-growth activity to the C805S secondary mutant clone. CONCLUSIONS Poziotinib showed the most potent activity against HER2 exon 20 mutations. We identified the secondary C805S at the covalent binding site of HER2 to poziotinib as a potential mechanism of acquired resistance. HSP90 inhibitors might be a therapeutic strategy for the C805S secondary mutation.
Collapse
Affiliation(s)
- Takamasa Koga
- Department of Thoracic Surgery, Kindai University Faculty of Medicine, Osaka-Sayama, Japan; Department of Thoracic Surgery, Graduate School of Medical Science, Kumamoto University, Kumamoto, Japan
| | - Yoshihisa Kobayashi
- Department of Thoracic Surgery, Kindai University Faculty of Medicine, Osaka-Sayama, Japan; Department of Medical Oncology, Harvard Medical School, Boston, MA, United States
| | - Kenji Tomizawa
- Department of Thoracic Surgery, Kindai University Faculty of Medicine, Osaka-Sayama, Japan; Department of Thoracic Surgery, Izumi City Hospital, Izumi, Japan
| | - Kenichi Suda
- Department of Thoracic Surgery, Kindai University Faculty of Medicine, Osaka-Sayama, Japan
| | - Takayuki Kosaka
- Department of Medical Oncology, Harvard Medical School, Boston, MA, United States; Department of General Surgical Science, Gunma University Graduate School of Medicine, Maebashi, Japan; Lowe Center for Thoracic Oncology, Harvard Medical School, Boston, MA, United States
| | - Yuichi Sesumi
- Department of Thoracic Surgery, Kindai University Faculty of Medicine, Osaka-Sayama, Japan
| | - Toshio Fujino
- Department of Thoracic Surgery, Kindai University Faculty of Medicine, Osaka-Sayama, Japan
| | - Masaya Nishino
- Department of Thoracic Surgery, Kindai University Faculty of Medicine, Osaka-Sayama, Japan
| | - Shuta Ohara
- Department of Thoracic Surgery, Kindai University Faculty of Medicine, Osaka-Sayama, Japan
| | - Masato Chiba
- Department of Thoracic Surgery, Kindai University Faculty of Medicine, Osaka-Sayama, Japan
| | - Masaki Shimoji
- Department of Thoracic Surgery, Kindai University Faculty of Medicine, Osaka-Sayama, Japan
| | - Toshiki Takemoto
- Department of Thoracic Surgery, Kindai University Faculty of Medicine, Osaka-Sayama, Japan
| | - Makoto Suzuki
- Department of Thoracic Surgery, Graduate School of Medical Science, Kumamoto University, Kumamoto, Japan
| | - Pasi A Jänne
- Department of Medical Oncology, Harvard Medical School, Boston, MA, United States; Lowe Center for Thoracic Oncology, Harvard Medical School, Boston, MA, United States; Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Boston, MA, United States
| | - Tetsuya Mitsudomi
- Department of Thoracic Surgery, Kindai University Faculty of Medicine, Osaka-Sayama, Japan.
| |
Collapse
|
58
|
Chen X, Liu P, Wang Q, Li Y, Fu L, Fu H, Zhu J, Chen Z, Zhu W, Xie C, Lou L. DCZ3112, a novel Hsp90 inhibitor, exerts potent antitumor activity against HER2-positive breast cancer through disruption of Hsp90-Cdc37 interaction. Cancer Lett 2018; 434:70-80. [PMID: 30017966 DOI: 10.1016/j.canlet.2018.07.012] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 06/16/2018] [Accepted: 07/07/2018] [Indexed: 11/28/2022]
Abstract
Hsp90 regulates the stability of oncoproteins important in tumor development and progression, and represents a potential therapeutic target. However, all Hsp90 inhibitors currently in clinical trials target Hsp90 ATPase activity and exhibit low selectivity and high toxicity. In this study, we discovered a new Hsp90 inhibitor, DCZ3112, with a novel mechanism of action. DCZ3112 directly bound to the N-terminal domain of Hsp90 and inhibited Hsp90-Cdc37 interaction without inhibiting ATPase activity. DCZ3112 inhibited the proliferation predominantly in HER2-positive breast cancer cells, including those resistant to the classical Hsp90 inhibitor geldanamycin, which mainly targets ATPase. DCZ3112 produced synergistic in vitro activity in inhibiting cell proliferation, inducing G1-phase arrest and apoptosis, and reducing AKT and ERK phosphorylation. Consistent with this, DCZ3112 alone inhibited the growth of HER2-positive BT-474 xenografts, and exhibited enhanced antitumor activity when combined with the anti-HER2 antibody trastuzumab. Importantly, DCZ3112 also significantly inhibited the growth of trastuzumab-resistant BT-474 cells, and combined treatment retained synergistic antitumor activity. Thus, our findings show that disrupting Hsp90-Cdc37 interaction may represent a promising strategy against HER2-positive breast cancer, especially those with acquired resistance to trastuzumab.
Collapse
Affiliation(s)
- Xiangling Chen
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China; University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing 100049, China
| | - Peng Liu
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China; University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing 100049, China
| | - Quanren Wang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
| | - Yun Li
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
| | - Li Fu
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
| | - Haoyu Fu
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
| | - Jianming Zhu
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
| | - Zhaoqiang Chen
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China; University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing 100049, China
| | - Weiliang Zhu
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China; University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing 100049, China.
| | - Chengying Xie
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China; University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing 100049, China.
| | - Liguang Lou
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China; University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing 100049, China.
| |
Collapse
|
59
|
Zhu J, Mo J, Lin HZ, Chen Y, Sun HP. The recent progress of isoxazole in medicinal chemistry. Bioorg Med Chem 2018; 26:3065-3075. [DOI: 10.1016/j.bmc.2018.05.013] [Citation(s) in RCA: 153] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 05/06/2018] [Accepted: 05/10/2018] [Indexed: 11/15/2022]
|
60
|
Memmel S, Sisario D, Zöller C, Fiedler V, Katzer A, Heiden R, Becker N, Eing L, Ferreira FLR, Zimmermann H, Sauer M, Flentje M, Sukhorukov VL, Djuzenova CS. Migration pattern, actin cytoskeleton organization and response to PI3K-, mTOR-, and Hsp90-inhibition of glioblastoma cells with different invasive capacities. Oncotarget 2018; 8:45298-45310. [PMID: 28424411 PMCID: PMC5542187 DOI: 10.18632/oncotarget.16847] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 03/20/2017] [Indexed: 01/15/2023] Open
Abstract
High invasiveness and resistance to chemo- and radiotherapy of glioblastoma multiforme (GBM) make it the most lethal brain tumor. Therefore, new treatment strategies for preventing migration and invasion of GBM cells are needed. Using two different migration assays, Western blotting, conventional and super-resolution (dSTORM) fluorescence microscopy we examine the effects of the dual PI3K/mTOR-inhibitor PI-103 alone and in combination with the Hsp90 inhibitor NVP-AUY922 and/or irradiation on the migration, expression of marker proteins, focal adhesions and F-actin cytoskeleton in two GBM cell lines (DK-MG and SNB19) markedly differing in their invasive capacity. Both lines were found to be strikingly different in morphology and migration behavior. The less invasive DK-MG cells maintained a polarized morphology and migrated in a directionally persistent manner, whereas the highly invasive SNB19 cells showed a multipolar morphology and migrated randomly. Interestingly, a single dose of 2 Gy accelerated wound closure in both cell lines without affecting their migration measured by single-cell tracking. PI-103 inhibited migration of DK-MG (p53 wt, PTEN wt) but not of SNB19 (p53 mut, PTEN mut) cells probably due to aberrant reactivation of the PI3K pathway in SNB19 cells treated with PI-103. In contrast, NVP-AUY922 exerted strong anti-migratory effects in both cell lines. Inhibition of cell migration was associated with massive morphological changes and reorganization of the actin cytoskeleton. Our results showed a cell line-specific response to PI3K/mTOR inhibition in terms of GBM cell motility. We conclude that anti-migratory agents warrant further preclinical investigation as potential therapeutics for treatment of GBM.
Collapse
Affiliation(s)
- Simon Memmel
- Department of Radiation Oncology, University Hospital of Würzburg, Würzburg, Germany
| | - Dmitri Sisario
- Department of Radiation Oncology, University Hospital of Würzburg, Würzburg, Germany.,Department of Biotechnology and Biophysics, University of Würzburg, Würzburg, Germany
| | - Caren Zöller
- Department of Radiation Oncology, University Hospital of Würzburg, Würzburg, Germany
| | - Vanessa Fiedler
- Department of Radiation Oncology, University Hospital of Würzburg, Würzburg, Germany
| | - Astrid Katzer
- Department of Radiation Oncology, University Hospital of Würzburg, Würzburg, Germany
| | - Robin Heiden
- Department of Radiation Oncology, University Hospital of Würzburg, Würzburg, Germany
| | - Nicholas Becker
- Department of Radiation Oncology, University Hospital of Würzburg, Würzburg, Germany
| | - Lorenz Eing
- Department of Biotechnology and Biophysics, University of Würzburg, Würzburg, Germany
| | - Fábio L R Ferreira
- Department of Radiation Oncology, University Hospital of Würzburg, Würzburg, Germany
| | - Heiko Zimmermann
- Fraunhofer-Institut für Biomedizinische Technik, Sulzbach, Germany.,Molekulare und Zelluläre Biotechnologie/Nanotechnologie, Universität des Saarlandes, Saarbrücken, Germany
| | - Markus Sauer
- Department of Biotechnology and Biophysics, University of Würzburg, Würzburg, Germany
| | - Michael Flentje
- Department of Radiation Oncology, University Hospital of Würzburg, Würzburg, Germany
| | - Vladimir L Sukhorukov
- Department of Biotechnology and Biophysics, University of Würzburg, Würzburg, Germany
| | - Cholpon S Djuzenova
- Department of Radiation Oncology, University Hospital of Würzburg, Würzburg, Germany
| |
Collapse
|
61
|
Nguyen EV, Centenera MM, Moldovan M, Das R, Irani S, Vincent AD, Chan H, Horvath LG, Lynn DJ, Daly RJ, Butler LM. Identification of Novel Response and Predictive Biomarkers to Hsp90 Inhibitors Through Proteomic Profiling of Patient-derived Prostate Tumor Explants. Mol Cell Proteomics 2018; 17:1470-1486. [PMID: 29632047 DOI: 10.1074/mcp.ra118.000633] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 03/26/2018] [Indexed: 12/16/2022] Open
Abstract
Inhibition of the heat shock protein 90 (Hsp90) chaperone is a promising therapeutic strategy to target expression of the androgen receptor (AR) and other oncogenic drivers in prostate cancer cells. However, identification of clinically-relevant responses and predictive biomarkers is essential to maximize efficacy and treatment personalization. Here, we combined mass spectrometry (MS)-based proteomic analyses with a unique patient-derived explant (PDE) model that retains the complex microenvironment of primary prostate tumors. Independent discovery and validation cohorts of PDEs (n = 16 and 30, respectively) were cultured in the absence or presence of Hsp90 inhibitors AUY922 or 17-AAG. PDEs were analyzed by LC-MS/MS with a hyper-reaction monitoring data independent acquisition (HRM-DIA) workflow, and differentially expressed proteins identified using repeated measure analysis of variance (ANOVA; raw p value <0.01). Using gene set enrichment, we found striking conservation of the most significantly AUY922-altered gene pathways between the discovery and validation cohorts, indicating that our experimental and analysis workflows were robust. Eight proteins were selectively altered across both cohorts by the most potent inhibitor, AUY922, including TIMP1, SERPINA3 and CYP51A (adjusted p < 0.01). The AUY922-mediated decrease in secretory TIMP1 was validated by ELISA of the PDE culture medium. We next exploited the heterogeneous response of PDEs to 17-AAG in order to detect predictive biomarkers of response and identified PCBP3 as a marker with increased expression in PDEs that had no response or increased in proliferation. Also, 17-AAG treatment led to increased expression of DNAJA1 in PDEs that exhibited a cytostatic response, revealing potential drug resistance mechanisms. This selective regulation of DNAJA1 was validated by Western blot analysis. Our study establishes "proof-of-principle" that proteomic profiling of drug-treated PDEs represents an effective and clinically-relevant strategy for identification of biomarkers that associate with certain tumor-specific responses.
Collapse
Affiliation(s)
- Elizabeth V Nguyen
- From the ‡Cancer Program, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia.,§Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia
| | - Margaret M Centenera
- ¶Adelaide Medical School and Freemasons Foundation Centre for Men's Health, University of Adelaide, Adelaide, South Australia 5005, Australia.,‖South Australian Health and Medical Research Institute, Adelaide, South Australia 5000, Australia
| | - Max Moldovan
- ‖South Australian Health and Medical Research Institute, Adelaide, South Australia 5000, Australia
| | - Rajdeep Das
- ¶Adelaide Medical School and Freemasons Foundation Centre for Men's Health, University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Swati Irani
- ¶Adelaide Medical School and Freemasons Foundation Centre for Men's Health, University of Adelaide, Adelaide, South Australia 5005, Australia.,‖South Australian Health and Medical Research Institute, Adelaide, South Australia 5000, Australia
| | - Andrew D Vincent
- ¶Adelaide Medical School and Freemasons Foundation Centre for Men's Health, University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Howard Chan
- From the ‡Cancer Program, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia.,§Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia
| | - Lisa G Horvath
- **Cancer Division, The Kinghorn Cancer Centre/Garvan Institute of Medical Research, Darlinghurst, New South Wales 2010, Australia.,‡‡Royal Prince Alfred Hospital, Camperdown, New South Wales 2050, Australia.,§§Department of Medical Oncology, Chris O'Brien Lifehouse, Camperdown, New South Wales 2050, Australia
| | - David J Lynn
- ‖South Australian Health and Medical Research Institute, Adelaide, South Australia 5000, Australia.,¶¶School of Medicine, Flinders University, Bedford Park, SA 5042, Australia
| | - Roger J Daly
- From the ‡Cancer Program, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia; .,§Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia
| | - Lisa M Butler
- ¶Adelaide Medical School and Freemasons Foundation Centre for Men's Health, University of Adelaide, Adelaide, South Australia 5005, Australia.,‖South Australian Health and Medical Research Institute, Adelaide, South Australia 5000, Australia
| |
Collapse
|
62
|
Djuzenova CS, Fiedler V, Katzer A, Michel K, Deckert S, Zimmermann H, Sukhorukov VL, Flentje M. Dual PI3K- and mTOR-inhibitor PI-103 can either enhance or reduce the radiosensitizing effect of the Hsp90 inhibitor NVP-AUY922 in tumor cells: The role of drug-irradiation schedule. Oncotarget 2018; 7:38191-38209. [PMID: 27224913 PMCID: PMC5122382 DOI: 10.18632/oncotarget.9501] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Accepted: 05/01/2016] [Indexed: 12/12/2022] Open
Abstract
Inhibition of Hsp90 can increase the radiosensitivity of tumor cells. However, inhibition of Hsp90 alone induces the anti-apoptotic Hsp70 and thereby decreases radiosensitivity. Therefore, preventing Hsp70 induction can be a promising strategy for radiosensitization. PI-103, an inhibitor of PI3K and mTOR, has previously been shown to suppress the up-regulation of Hsp70. Here, we explore the impact of combining PI-103 with the Hsp90 inhibitor NVP-AUY922 in irradiated glioblastoma and colon carcinoma cells. We analyzed the cellular response to drug-irradiation treatments by colony-forming assay, expression of several marker proteins, cell cycle progression and induction/repair of DNA damage. Although PI-103, given 24 h prior to irradiation, slightly suppressed the NVP-AUY922-mediated up-regulation of Hsp70, it did not cause radiosensitization and even diminished the radiosensitizing effect of NVP-AUY922. This result can be explained by the activation of PI3K and ERK pathways along with G1-arrest at the time of irradiation. In sharp contrast, PI-103 not only exerted a radiosensitizing effect but also strongly enhanced the radiosensitization by NVP-AUY922 when both inhibitors were added 3 h before irradiation and kept in culture for 24 h. Possible reasons for the observed radiosensitization under this drug-irradiation schedule may be a down-regulation of PI3K and ERK pathways during or directly after irradiation, increased residual DNA damage and strong G2/M arrest 24 h thereafter. We conclude that duration of drug treatment before irradiation plays a key role in the concomitant targeting of PI3K/mTOR and Hsp90 in tumor cells.
Collapse
Affiliation(s)
- Cholpon S Djuzenova
- Department of Radiation Oncology, University Hospital of Würzburg, Würzburg, Germany
| | - Vanessa Fiedler
- Department of Radiation Oncology, University Hospital of Würzburg, Würzburg, Germany
| | - Astrid Katzer
- Department of Radiation Oncology, University Hospital of Würzburg, Würzburg, Germany
| | - Konstanze Michel
- Department of Radiation Oncology, University Hospital of Würzburg, Würzburg, Germany
| | - Stefanie Deckert
- Department of Radiation Oncology, University Hospital of Würzburg, Würzburg, Germany
| | - Heiko Zimmermann
- Fraunhofer-Institut für Biomedizinische Technik, St. Ingbert and Lehrstuhl für Molekulare und Zelluläre Biotechnologie/Nanotechnologie, Universität des Saarlandes, Saarbrücken, Germany
| | - Vladimir L Sukhorukov
- Department of Biotechnology and Biophysics, University of Würzburg, Würzburg, Germany
| | - Michael Flentje
- Department of Radiation Oncology, University Hospital of Würzburg, Würzburg, Germany.,Comprehensive Cancer Center Mainfranken, University of Würzburg, Würzburg, Germany
| |
Collapse
|
63
|
Canonici A, Qadir Z, Conlon NT, Collins DM, O'Brien NA, Walsh N, Eustace AJ, O'Donovan N, Crown J. The HSP90 inhibitor NVP-AUY922 inhibits growth of HER2 positive and trastuzumab-resistant breast cancer cells. Invest New Drugs 2018; 36:581-589. [PMID: 29396630 DOI: 10.1007/s10637-017-0556-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 12/19/2017] [Indexed: 12/29/2022]
Abstract
As HER2 is a client protein of the molecular chaperone Hsp90, targeting Hsp90 may be beneficial in HER2-positive breast cancer. In this study, the activity of the Hsp90 inhibitor NVP-AUY922 was assessed in HER2 overexpressing breast cancer cell lines, including two cell line models of acquired trastuzumab-resistance. The seven HER2-positive breast cancer cell lines tested showed significant sensitivity to NVP-AUY922 in vitro, with IC50 values between 6 and 17 nM. Combining NVP-AUY922 with chemotherapy did not improve response. NVP-AUY922 in combination with trastuzumab, significantly enhanced growth inhibition in three of the seven cell lines tested. In conclusion, our data shows that NVP-AUY922 displays potent anti-cancer activity in HER2-positive and trastuzumab-resistant breast cancer cells, and supports further testing of NVP-AUY922 in patients with HER2-positive breast cancer.
Collapse
Affiliation(s)
- Alexandra Canonici
- National Institute for Cellular Biotechnology, Dublin City University, Glasnevin, Dublin 9, Ireland
| | - Zulfiqar Qadir
- National Institute for Cellular Biotechnology, Dublin City University, Glasnevin, Dublin 9, Ireland
| | - Neil T Conlon
- National Institute for Cellular Biotechnology, Dublin City University, Glasnevin, Dublin 9, Ireland
| | - Denis M Collins
- National Institute for Cellular Biotechnology, Dublin City University, Glasnevin, Dublin 9, Ireland
| | - Neil A O'Brien
- Division of Hematology-Oncology, Department of Medicine, David Geffen School of Medicine, University of California at Los Angeles, CA, Los Angeles, USA
| | - Naomi Walsh
- National Institute for Cellular Biotechnology, Dublin City University, Glasnevin, Dublin 9, Ireland
| | - Alex J Eustace
- National Institute for Cellular Biotechnology, Dublin City University, Glasnevin, Dublin 9, Ireland.
| | - Norma O'Donovan
- National Institute for Cellular Biotechnology, Dublin City University, Glasnevin, Dublin 9, Ireland
| | - John Crown
- National Institute for Cellular Biotechnology, Dublin City University, Glasnevin, Dublin 9, Ireland
- Department of Medical Oncology, St Vincent's University Hospital, Dublin, Ireland
| |
Collapse
|
64
|
Dysregulated fibronectin trafficking by Hsp90 inhibition restricts prostate cancer cell invasion. Sci Rep 2018; 8:2090. [PMID: 29391407 PMCID: PMC5794796 DOI: 10.1038/s41598-018-19871-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 01/08/2018] [Indexed: 12/17/2022] Open
Abstract
The molecular chaperone Hsp90 is overexpressed in prostate cancer (PCa) and is responsible for the folding, stabilization and maturation of multiple oncoproteins, which are implicated in PCa progression. Compared to first-in-class Hsp90 inhibitors such as 17-allylamino-demethoxygeldanamycin (17-AAG) that were clinically ineffective, second generation inhibitor AUY922 has greater solubility and efficacy. Here, transcriptomic and proteomic analyses of patient-derived PCa explants identified cytoskeletal organization as highly enriched with AUY922 treatment. Validation in PCa cell lines revealed that AUY922 caused marked alterations to cell morphology, and suppressed cell motility and invasion compared to vehicle or 17-AAG, concomitant with dysregulation of key extracellular matrix proteins such as fibronectin (FN1). Interestingly, while the expression of FN1 was increased by AUY922, FN1 secretion was significantly decreased. This resulted in cytosolic accumulation of FN1 protein within late endosomes, suggesting that AUY922 disrupts vesicular secretory trafficking pathways. Depletion of FN1 by siRNA knockdown markedly reduced the invasive capacity of PCa cells, phenocopying AUY922. These results highlight a novel mechanism of action for AUY922 beyond its established effects on cellular mitosis and survival and, furthermore, identifies extracellular matrix cargo delivery as a potential therapeutic target for the treatment of aggressive PCa.
Collapse
|
65
|
NMR-Fragment Based Virtual Screening: A Brief Overview. Molecules 2018; 23:molecules23020233. [PMID: 29370102 PMCID: PMC6017141 DOI: 10.3390/molecules23020233] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 12/12/2017] [Accepted: 12/12/2017] [Indexed: 01/23/2023] Open
Abstract
Fragment-based drug discovery (FBDD) using NMR has become a central approach over the last twenty years for development of small molecule inhibitors against biological macromolecules, to control a variety of cellular processes. Yet, several considerations should be taken into account for obtaining a therapeutically relevant agent. In this review, we aim to list the considerations that make NMR fragment screening a successful process for yielding potent inhibitors. Factors that may govern the competence of NMR in fragment based drug discovery are discussed, as well as later steps that involve optimization of hits obtained by NMR-FBDD.
Collapse
|
66
|
Abstract
Fragment-based drug design strategies have been used in drug discovery since it was first demonstrated using experimental structural biology techniques such as nuclear magnetic resonance (NMR) and X-ray crystallography. The underlying idea is that existing or new chemical entities with known desirable properties may serve both as tool compounds and as starting points for hit-to-lead expansion. Despite the recent advancements, there remain challenges to overcome, such as assembly of the synthetically feasible structures, development of scoring functions to correlate structure and their activities, and fine tuning of the promising molecules. This chapter first covers the theoretical background needed to understand the concepts and the challenges related to the field of study, followed by the description of important protocols and related software. Case studies are presented to demonstrate practical applications.
Collapse
|
67
|
Maisel S, Broka D, Schroeder J. Intravesicular epidermal growth factor receptor subject to retrograde trafficking drives epidermal growth factor-dependent migration. Oncotarget 2017; 9:6463-6477. [PMID: 29464085 PMCID: PMC5814225 DOI: 10.18632/oncotarget.23766] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 12/23/2017] [Indexed: 12/31/2022] Open
Abstract
The Epidermal Growth Factor Receptor (EGFR) is frequently mutated and overexpressed in metastatic cancer. Although EGFR is a transmembrane tyrosine kinase localized to the basolateral membrane in normal epithelium, it is frequently found intracellularly localized in transformed cells. We have previously demonstrated the epithelial adaptor protein mucin 1 (MUC1) alters trafficking of EGFR, inhibiting its degradation and promoting its translocation to the nucleus, where it can directly modulate gene transcription. Here, we demonstrate that MUC1 promotes the retention of EGF-bound EGFR in Early Endosome Antigen1 (EEA1)-positive vesicles while preventing its trafficking to the lysosome. These events result in the accumulation of endosomal vesicles harboring active receptor throughout the cell and a reorganization of the actin cytoskeleton. EGF-dependent cell migration and filopodia formation is reliant upon this altered trafficking, and can be prevented by blocking retrograde trafficking. Together, these results indicate that intracellular EGFR may play an essential role in cancer metastasis and a potential mechanism for the failure of therapeutic antibodies in EGFR-driven metastatic breast cancer.
Collapse
Affiliation(s)
- Sabrina Maisel
- Cancer Biology Graduate Interdisciplinary Program, University of Arizona, Tucson, AZ, USA.,Arizona Cancer Center, University of Arizona, Tucson, AZ, USA
| | - Derrick Broka
- Arizona Cancer Center, University of Arizona, Tucson, AZ, USA
| | - Joyce Schroeder
- Cancer Biology Graduate Interdisciplinary Program, University of Arizona, Tucson, AZ, USA.,Arizona Cancer Center, University of Arizona, Tucson, AZ, USA.,Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ, USA.,BIO5 Institute, University of Arizona, Tucson, AZ, USA
| |
Collapse
|
68
|
Phase 2 Study of the HSP-90 Inhibitor AUY922 in Previously Treated and Molecularly Defined Patients with Advanced Non-Small Cell Lung Cancer. J Thorac Oncol 2017; 13:576-584. [PMID: 29247830 DOI: 10.1016/j.jtho.2017.11.131] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 11/10/2017] [Accepted: 11/24/2017] [Indexed: 11/20/2022]
Abstract
INTRODUCTION In this phase 2 study, we evaluated the activity of AUY922 in pretreated patients with stage IV NSCLC. METHODS Patients with advanced NSCLC were divided into molecularly defined strata based on mutations in the EGFR gene, the ALK receptor tyrosine kinase gene (ALK), the KRAS gene, or the wild type of all three. All patients must have received more than two prior lines of therapy, except for those in a fifth stratum for a less pretreated EGFR cohort (EGFR<2). In the EGFR-mutant and ALK-rearranged strata, prior platinum therapy was not required. Patients with EGFR mutation must have received an EGFR tyrosine kinase inhibitor unless they had de novo resistance (e.g., T790M or exon 20 insertions). Eligible patients received weekly intravenous AUY922, 70 mg/m2. The primary objective was to estimate efficacy (complete or partial response, or in the absence of complete or partial response, stable disease) at 18 weeks, by the Response Criteria in Solid Tumors. RESULTS A total of 153 patients from 21 global centers were enrolled from October 2010 to November 2014. The investigator-assessed overall response rate and stable disease rate at 18 weeks were 31.8% and 9.1% in the ALK-rearranged stratum, 17.1% and 8.6% in EGFR-mutant stratum, 9.7% and 22.6% in the EGFR<2 stratum, 0% and 7.1% in KRAS-mutant stratum, and 8.8% and 8.8% in wild-type stratum. Biomarker data showed activity of AUY922 in EGFR-mutant patients with exon 19 deletion, T790M mutation, and exon 20 insertion. The most common (≥40%) all-causality adverse events were diarrhea, nausea, and decreased appetite. Visual-related disorders were reported in 79.7% of patients (most were grade 1/2). Thirty-five patients (22.9%) reported night blindness. CONCLUSION AUY922 is active in patients with NSCLC, particularly among patients with ALK rearrangements and EGFR mutations.
Collapse
|
69
|
Yeramian A, García V, Bergadà L, Domingo M, Santacana M, Valls J, Martinez-Alonso M, Carceller JA, Cussac AL, Dolcet X, Matias-Guiu X. Bioluminescence Imaging to Monitor the Effects of the Hsp90 Inhibitor NVP-AUY922 on NF-κB Pathway in Endometrial Cancer. Mol Imaging Biol 2017; 18:545-56. [PMID: 26604096 DOI: 10.1007/s11307-015-0907-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
PURPOSE In this study, we first aimed to evaluate the effects in vitro and in vivo, of the Hsp90 inhibitor NVP-AUY922, in endometrial cancer (EC). We also aimed to track nuclear factor kappa B (NF-κB) signalling, a key pathway involved in endometrial carcinogenesis and to check whether NVP-AUY922 treatment modulates it both in vitro and in vivo. PROCEDURES I n vitro effects of NVP-AUY922 on EC cell growth and the signalling pathways were assessed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), clonogenic assays, Western Blot and luciferase assay. NVP-AUY922 effect on Ishikawa (IK) xenograft growth was evaluated in vivo, and NF-κB activity was monitored using bioluminescence imaging. RESULTS NVP-AUY922 inhibited the growth of three endometrial cell lines tested in vitro. In vivo, NVP-AUY922 reduced tumour growth of 47 % (p = 0.042) compared to control condition. Moreover, the bioluminescence signal of the tumours harbouring IK NF-κB-LUC cells was significantly reduced in NVP-AUY922-treated animals compared to untreated ones. CONCLUSIONS NVP-AUY922 reduced EC tumour growth and NF-κB signalling both in vitro and in vivo. As therapeutic resistance of EC remains a challenge for oncologists nowadays, we think that NVP-AUY922 represents a valid alternative to conventional chemotherapy, and we believe that this approach for assessing and tracking the activation of NF-κB pathway may be of therapeutic benefit.
Collapse
Affiliation(s)
- Andree Yeramian
- Department of Pathology and Molecular Genetics HUAV, Dept de Ciències Mèdiques Bàsiques, Institut de Recerca Biomedica de Lleida, Univeristy of Lleida, IRBLleida, Avenida Rovira Roure, No. 80, 25198, Lleida, Spain.
| | - Virginia García
- Department of Radiation Oncology, Hospital Universitari Arnau de Vilanova, Avenida Rovira Roure, No. 80, 25198, Lleida, Spain
| | - Laura Bergadà
- Department of Pathology and Molecular Genetics HUAV, Dept de Ciències Mèdiques Bàsiques, Institut de Recerca Biomedica de Lleida, Univeristy of Lleida, IRBLleida, Avenida Rovira Roure, No. 80, 25198, Lleida, Spain
| | - Mónica Domingo
- Department of Pathology and Molecular Genetics HUAV, Dept de Ciències Mèdiques Bàsiques, Institut de Recerca Biomedica de Lleida, Univeristy of Lleida, IRBLleida, Avenida Rovira Roure, No. 80, 25198, Lleida, Spain
| | - Maria Santacana
- Department of Pathology and Molecular Genetics HUAV, Dept de Ciències Mèdiques Bàsiques, Institut de Recerca Biomedica de Lleida, Univeristy of Lleida, IRBLleida, Avenida Rovira Roure, No. 80, 25198, Lleida, Spain
| | - Joan Valls
- Biostatistics Unit, Hospital Universitari Arnau de Vilanova, University of Lleida, IRB-Lleida, Avenida Rovira Roure, No. 80, 25198, Lleida, Spain
| | - Montserrat Martinez-Alonso
- Biostatistics Unit, Hospital Universitari Arnau de Vilanova, University of Lleida, IRB-Lleida, Avenida Rovira Roure, No. 80, 25198, Lleida, Spain
| | - José-Antonio Carceller
- Department of Radiation Oncology, Hospital Universitari Arnau de Vilanova, Avenida Rovira Roure, No. 80, 25198, Lleida, Spain
| | - Antonio Llombart Cussac
- Department of Oncology, Hospital Universitari Arnau de Vilanova, University of Lleida, IRB-Lleida, Avenida Rovira Roure, No. 80, 25198, Lleida, Spain
| | - Xavier Dolcet
- Department of Pathology and Molecular Genetics HUAV, Dept de Ciències Mèdiques Bàsiques, Institut de Recerca Biomedica de Lleida, Univeristy of Lleida, IRBLleida, Avenida Rovira Roure, No. 80, 25198, Lleida, Spain
| | - Xavier Matias-Guiu
- Department of Pathology and Molecular Genetics HUAV, Dept de Ciències Mèdiques Bàsiques, Institut de Recerca Biomedica de Lleida, Univeristy of Lleida, IRBLleida, Avenida Rovira Roure, No. 80, 25198, Lleida, Spain
| |
Collapse
|
70
|
Jhaveri K, Wang R, Teplinsky E, Chandarlapaty S, Solit D, Cadoo K, Speyer J, D'Andrea G, Adams S, Patil S, Haque S, O'Neill T, Friedman K, Esteva FJ, Hudis C, Modi S. A phase I trial of ganetespib in combination with paclitaxel and trastuzumab in patients with human epidermal growth factor receptor-2 (HER2)-positive metastatic breast cancer. Breast Cancer Res 2017; 19:89. [PMID: 28764748 PMCID: PMC5540198 DOI: 10.1186/s13058-017-0879-5] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 07/07/2017] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Targeted therapies in HER2-positive metastatic breast cancer significantly improve outcomes but efficacy is limited by therapeutic resistance. HER2 is an acutely sensitive Heat Shock Protein 90 (HSP90) client and HSP90 inhibition can overcome trastuzumab resistance. Preclinical data suggest that HSP90 inhibition is synergistic with taxanes with the potential for significant clinical activity. We therefore tested ganetespib, a HSP90 inhibitor, in combination with paclitaxel and trastuzumab in patients with trastuzumab-refractory HER2-positive metastatic breast cancer. METHODS In this phase I dose-escalation study, patients with trastuzumab-resistant HER2-positive metastatic breast cancer received weekly trastuzumab (2 mg/kg) and paclitaxel (80 mg/m2) on days 1, 8, 15, and 22 of a 28-day cycle with escalating doses of ganetespib (100 mg/m2, 150 mg/m2, and a third cohort of 125 mg/m2 if needed) on days 1, 8, and 15. Therapy was continued until disease progression or toxicity. The primary objective was to establish the safety and maximum tolerated dose and/or recommended phase II dose (RP2D) of this therapy. The secondary objectives included evaluation of the effects of ganetespib on the pharmacokinetics of paclitaxel, and to make a preliminary assessment of the efficacy of the combination therapy. RESULTS Dose escalation was completed for the two main cohorts without any observed dose-limiting toxicities. Nine patients received treatment. The median prior lines of anti-HER2 therapy numbered three (range 2-4), including prior pertuzumab in 9/9 patients and ado-trastuzumab emtansine (T-DM1) in 8/9 patients. The most common grade 1/2 adverse events (AEs) were diarrhea, fatigue, anemia, and rash. There were no grade 4 AEs related to ganetespib. The overall response rate was 22% (2/9 patients had partial response) and stable disease was seen in 56% (5/9 patients). The clinical benefit rate was 44% (4/9 patients). The median progression-free survival was 20 weeks (range 8-55). CONCLUSION The RP2D of ganetespib is 150 mg/m2 in combination with weekly paclitaxel plus trastuzumab. The combination was safe and well tolerated. Despite prior taxanes, pertuzumab, and T-DM1, clinical activity of this triplet regimen in this heavily pretreated cohort is promising and warrants further study in HER2-positive metastatic breast cancer. TRIAL REGISTRATION ClinicalTrials.gov NCT02060253 . Registered 30 January 2014.
Collapse
Affiliation(s)
- Komal Jhaveri
- Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Rui Wang
- Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | | | | | - David Solit
- Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Karen Cadoo
- Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - James Speyer
- Laura and Isaac Perlmutter Cancer Center at NYU Langone Medical Center, New York, NY, USA
| | | | - Sylvia Adams
- Laura and Isaac Perlmutter Cancer Center at NYU Langone Medical Center, New York, NY, USA
| | - Sujata Patil
- Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Sofia Haque
- Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Tara O'Neill
- Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Kent Friedman
- Laura and Isaac Perlmutter Cancer Center at NYU Langone Medical Center, New York, NY, USA
| | - Francisco J Esteva
- Laura and Isaac Perlmutter Cancer Center at NYU Langone Medical Center, New York, NY, USA
| | - Clifford Hudis
- Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Shanu Modi
- Memorial Sloan-Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
71
|
Abbasi M, Sadeghi-Aliabadi H, Amanlou M. Prediction of new Hsp90 inhibitors based on 3,4-isoxazolediamide scaffold using QSAR study, molecular docking and molecular dynamic simulation. ACTA ACUST UNITED AC 2017; 25:17. [PMID: 28666484 PMCID: PMC5493083 DOI: 10.1186/s40199-017-0182-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Accepted: 06/07/2017] [Indexed: 12/15/2022]
Abstract
Background Heat shock protein90 (Hsp90) are overexpressed in tumor cells, so the inhibition of the Hsp90 ATPase activity would be a significantly effective strategy in cancer therapy. Methods In the current study, 3,4-isoxazolediamide derivatives were suggested as an Hsp90 inhibitor for anti-cancer therapy. Multiple linear regression (MLR) and genetic algorithm of partial least square (GA-PLS) methods were performed to build models to predict the inhibitory activity of Hsp90. The leave-one out (LOO) cross-validation and Y-randomization tests were performed to models’ validation. The new ligands were monitored by applicability domain. Molecular docking studies were also conducted to evaluate the mode of interaction of these compounds with Hsp90. Identification of the likely pathways into the active site pocket and the involved residues were performed by CAVAER 3.0.1 software. According to QSAR models and docking analysis, three new compounds were predicted. 50 ns molecular dynamic simulation was performed for the strongest synthesized compound and the best predicted compound in terms of binding energy and interactions between ligand and protein. Results The made models showed the significance of size, shape, symmetry, and branching of molecules in inhibitory activities of Hsp90. Docking studies indicated that two hydroxyl groups in the resorcinol ring were important in interacting with Asp93 and the orientation of these groups was related to substitution of different R1 groups. Comparing of molecular dynamic simulation (MDs) results shows that new compound perched in active site with lower binding energy than the best synthesized compound. Conclusion The QSAR and docking analyses shown to be beneficial tools in the proposal of anti-cancer activities and a leader to the synthesis of new Hsp90 inhibitors based 3,4-isoxazolediamide. The MDs confirmed that predicted ligand is steady in the Hsp90 active sites. Graphical Abstract ![]()
Collapse
Affiliation(s)
- Maryam Abbasi
- Department of Medicinal Chemistry, Faculty of Pharmacy, Isfahan University of Medical Sciences, Isfahan, 81746-73461, Iran
| | - Hojjat Sadeghi-Aliabadi
- Department of Medicinal Chemistry, Faculty of Pharmacy, Isfahan University of Medical Sciences, Isfahan, 81746-73461, Iran.
| | - Massoud Amanlou
- Computational Chemistry Group, Pharmaceutical Sciences Research Center and Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
72
|
Sysak A, Obmińska-Mrukowicz B. Isoxazole ring as a useful scaffold in a search for new therapeutic agents. Eur J Med Chem 2017; 137:292-309. [PMID: 28605676 DOI: 10.1016/j.ejmech.2017.06.002] [Citation(s) in RCA: 192] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 05/28/2017] [Accepted: 06/01/2017] [Indexed: 01/19/2023]
Abstract
Due to its relatively easy synthesis, isoxazole ring has been as an object of interest for chemists and pharmacologists from research groups all over the world. Its chemical modifications include both connection of isoxazole with other aromatic, heteroaromatic or non aromatic rings and substitution with different alkyl groups. Thanks to their usually low cytotoxicity, isoxazole derivatives are still popular scaffolds for the development of new agents with variable biological activities, such as antimicrobial, antiviral, anticancer, anti-inflammatory, immunomodulatory, anticonvulsant or anti-diabetic properties. This review discusses the chemical structure of recently developed isoxazole derivatives with regards to their activity and potential therapeutic use.
Collapse
Affiliation(s)
- Angelika Sysak
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Wrocław University of Environmental and Life Sciences, ul. Norwida 31, 50-375 Wrocław, Poland.
| | - Bożena Obmińska-Mrukowicz
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Wrocław University of Environmental and Life Sciences, ul. Norwida 31, 50-375 Wrocław, Poland
| |
Collapse
|
73
|
Preclinical Study of AUY922, a Novel Hsp90 Inhibitor, in the Treatment of Esophageal Adenocarcinoma. Ann Surg 2017; 264:297-304. [PMID: 26445473 DOI: 10.1097/sla.0000000000001467] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
OBJECTIVE To assess the efficacy of heat-shock protein 90 (Hsp90) inhibitor, NVP-AUY922-AG (AUY922), in the treatment of esophageal adenocarcinoma (EAC) in vitro and in vivo. BACKGROUND EAC is a leading cause of cancer death, and current treatment options are limited. Hsp90, a chaperone protein that regulates several oncoproteins, is upregulated in EAC, and may be a novel target for therapy. METHODS In vitro, EAC cell lines were utilized to evaluate AUY922, alone and in combination with 5-fluorouracil (5-FU) and cisplatin. BrdU ELISA and flow cytometry were used to assess proliferation and measure apoptosis, respectively. Western blot and RT-PCR were performed to quantitate Hsp90 pathway expression. In vivo, esophagojejunostomy was performed on rats and treatment animals received AUY922 32 to 40 weeks postoperatively. Drug efficacy was evaluated with magnetic resonance imaging (MRI), endoscopic biopsy, gross histological evaluation, and Hsp90 pathway expression. RESULTS In vitro, AUY922 demonstrated antiproliferative activity in both cell lines and showed enhanced efficacy with cisplatin and 5-FU. Western Blot and RT-PCR demonstrated downregulation of CDK1 and CDK4 and upregulation of Hsp72. In vivo, AUY922 showed decrease in tumor volume in 36.4% of rats (control = 9.4%), increase in 9.1% (control = 37.5%), and stable disease in 54.5% (control = 43.7%). Necropsy confirmed the presence of EAC in 50% of treatment animals and 75% of control animals. mRNA expression, pre- and posttreatment, demonstrated significant downregulation of MIF, Hsp70, Hsp90β, and CDK4, and upregulation of Hsp72. CONCLUSIONS AUY922 exhibits antitumor efficacy in vitro and in vivo for EAC, suggesting the need for human clinical trials.
Collapse
|
74
|
Liu J, Sun W, Dong W, Wang Z, Qin Y, Zhang T, Zhang H. HSP90 inhibitor NVP-AUY922 induces cell apoptosis by disruption of the survivin in papillary thyroid carcinoma cells. Biochem Biophys Res Commun 2017; 487:313-319. [PMID: 28412368 DOI: 10.1016/j.bbrc.2017.04.056] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 04/09/2017] [Indexed: 10/19/2022]
Abstract
Heat shock protein 90 (HSP90) is a molecular chaperone required for maintaining the stability and function of signal proteins that plays an important role in promoting the growth and survival of cancer cells. The incidence of papillary thyroid carcinoma (PTC) has been increasing in recent years. The effect of the novel non-geldanamycin HSP90 inhibitor NVP-AUY922 on apoptosis of papillary thyroid carcinoma cells has not been investigated. The influence of AUY922 on the survival of PTC cell lines K1 and IHH4 was evaluated. Cell viability was determined by cell counting kit method. Cell apoptosis was assessed by flow cytometry and western blotting and the potential mechanism was evaluated by western blotting and immunoprecipitation. Overexpression plasmid was transfected by Lipofectamine 2000 method. In K1 and IHH4 cell lines, after the treatment of AUY922, cell viability decreased, and the proportion of apoptosis cells increased. AUY922 caused the cleavage of PARP and caspase-3 proteins, and altered expression of survivin, which was a client protein of HSP90. In AUY922-treated cells, overexpression of survivin attenuated growth inhibition and cell apoptosis. The results indicate that AUY922 induces apoptotic cell death in PTC cells. Moreover, our findings demonstrate that AUY922 induced apoptosis by downregulating the expression of survivin protein in PTC cells.
Collapse
Affiliation(s)
- Jinhao Liu
- Department of Thyroid Surgery, The First Hospital of China Medical University, No. 155 in Nanjing North Street, Heping Distinct, Shenyang 110001, Liaoning Province, People's Republic of China
| | - Wei Sun
- Department of Thyroid Surgery, The First Hospital of China Medical University, No. 155 in Nanjing North Street, Heping Distinct, Shenyang 110001, Liaoning Province, People's Republic of China
| | - Wenwu Dong
- Department of Thyroid Surgery, The First Hospital of China Medical University, No. 155 in Nanjing North Street, Heping Distinct, Shenyang 110001, Liaoning Province, People's Republic of China
| | - Zhihong Wang
- Department of Thyroid Surgery, The First Hospital of China Medical University, No. 155 in Nanjing North Street, Heping Distinct, Shenyang 110001, Liaoning Province, People's Republic of China
| | - Yuan Qin
- Department of Thyroid Surgery, The First Hospital of China Medical University, No. 155 in Nanjing North Street, Heping Distinct, Shenyang 110001, Liaoning Province, People's Republic of China
| | - Ting Zhang
- Department of Thyroid Surgery, The First Hospital of China Medical University, No. 155 in Nanjing North Street, Heping Distinct, Shenyang 110001, Liaoning Province, People's Republic of China
| | - Hao Zhang
- Department of Thyroid Surgery, The First Hospital of China Medical University, No. 155 in Nanjing North Street, Heping Distinct, Shenyang 110001, Liaoning Province, People's Republic of China.
| |
Collapse
|
75
|
Ochnik AM, Baxter RC. Combination therapy approaches to target insulin-like growth factor receptor signaling in breast cancer. Endocr Relat Cancer 2016; 23:R513-R536. [PMID: 27733416 DOI: 10.1530/erc-16-0218] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 09/09/2016] [Indexed: 12/19/2022]
Abstract
Insulin-like growth factor receptor (IGF1R) signaling as a therapeutic target has been widely studied and clinically tested. Despite the vast amount of literature supporting the biological role of IGF1R in breast cancer, effective clinical translation in targeting its activity as a cancer therapy has not been successful. The intrinsic complexity of cancer cell signaling mediated by many tyrosine kinase growth factor receptors that work together to modulate each other and intracellular downstream mediators in the cell highlights that studying IGF1R expression and activity as a prognostic factor and therapeutic target in isolation is certainly associated with problems. This review discusses the current literature and clinical trials associated with IGF-1 signaling and attempts to look at new ways of designing novel IGF1R-directed breast cancer therapy approaches to target its activity
and/or intracellular downstream signaling pathways in IGF1R-expressing breast cancers.
Collapse
Affiliation(s)
- Aleksandra M Ochnik
- Kolling Institute of Medical ResearchUniversity of Sydney, Royal North Shore Hospital, St Leonards, New South Wales, Australia
| | - Robert C Baxter
- Kolling Institute of Medical ResearchUniversity of Sydney, Royal North Shore Hospital, St Leonards, New South Wales, Australia
| |
Collapse
|
76
|
Roman D, VerHoeve J, Schadt H, Vicart A, Walker UJ, Turner O, Richardson TA, Wolford ST, Miller PE, Zhou W, Lu H, Akimov M, Kluwe W. Ocular toxicity of AUY922 in pigmented and albino rats. Toxicol Appl Pharmacol 2016; 309:55-62. [DOI: 10.1016/j.taap.2016.08.025] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 08/24/2016] [Accepted: 08/26/2016] [Indexed: 10/21/2022]
|
77
|
Renouf DJ, Hedley D, Krzyzanowska MK, Schmuck M, Wang L, Moore MJ. A phase II study of the HSP90 inhibitor AUY922 in chemotherapy refractory advanced pancreatic cancer. Cancer Chemother Pharmacol 2016; 78:541-5. [PMID: 27422303 DOI: 10.1007/s00280-016-3102-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Accepted: 07/06/2016] [Indexed: 12/21/2022]
Abstract
OBJECTIVES AUY922 is a novel heat shock protein inhibitor with preclinical activity in pancreatic cancer. This phase II study evaluated the efficacy of AUY922 in patients with advanced pancreatic cancer previously treated with chemotherapy. METHODS In this single-arm, Simon two-stage phase II trial, patients with metastatic or locally advanced pancreatic ductal adenocarcinoma who had progressed on at least one line of chemotherapy and were of good performances status (ECOG 0 or 1) were treated with AUY922 at a dose of 70 mg/m(2) IV weekly. The primary endpoint was disease control rate (objective response and stable disease ≥16 weeks). RESULTS Twelve patients were accrued, all of whom received treatment. At least possibly related ≥grade 3 adverse events included fatigue (8 %) and AST elevation (8 %). Ten patients were evaluable for response with 1 (10 %) having stable disease and 9 (90 %) progressive disease. The median progression-free survival was 1.6 months, and the median overall survival was 2.9 months. CONCLUSIONS AUY922 was not associated with significant efficacy in previously treated patients with advanced pancreatic cancer.
Collapse
Affiliation(s)
- D J Renouf
- British Columbia Cancer Agency, University of British Columbia, 600 West 10th Avenue, Vancouver, BC, V5Z4E6, Canada.
| | - D Hedley
- University Health Network-Princess Margaret Cancer Centre, Toronto, ON, Canada
| | - M K Krzyzanowska
- University Health Network-Princess Margaret Cancer Centre, Toronto, ON, Canada
| | - M Schmuck
- University Health Network-Princess Margaret Cancer Centre, Toronto, ON, Canada
| | - L Wang
- University Health Network-Princess Margaret Cancer Centre, Toronto, ON, Canada
| | - M J Moore
- British Columbia Cancer Agency, University of British Columbia, 600 West 10th Avenue, Vancouver, BC, V5Z4E6, Canada
| |
Collapse
|
78
|
Kong A, Rea D, Ahmed S, Beck JT, López RL, Biganzoli L, Armstrong AC, Aglietta M, Alba E, Campone M, Schmitz SFH, Lefebvre C, Akimov M, Lee SC. Phase 1B/2 study of the HSP90 inhibitor AUY922 plus trastuzumab in metastatic HER2-positive breast cancer patients who have progressed on trastuzumab-based regimen. Oncotarget 2016; 7:37680-37692. [PMID: 27129177 PMCID: PMC5122341 DOI: 10.18632/oncotarget.8974] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 03/31/2016] [Indexed: 11/25/2022] Open
Abstract
This open-label, multicenter, phase 1B/2 trial assessed AUY922 plus trastuzumab in patients with locally advanced or metastatic HER2-positive breast cancer previously treated with chemotherapy and anti-HER2 therapy. This study was composed of a dose-escalation part with AUY922 administered weekly at escalating doses with trastuzumab 2 mg/kg/week (phase 1B), followed by a phase 2 part using the same regimen at recommended phase 2 dose (RP2D). The primary objectives were to determine the maximum tolerated dose (MTD) and/or RP2D (phase 1B), and to evaluate preliminary antitumor activity (phase 2) of AUY922 plus trastuzumab at MTD/RP2D. Forty-five patients were treated with AUY922 plus trastuzumab (4 in phase 1B with AUY922 at 55 mg/m2 and 41 in phase 1B/2 with AUY922 at 70 mg/m2 [7 in phase 1B and 34 in phase 2]). One patient in phase 1B (70 mg/m2) experienced a dose-limiting toxicity (grade 3 diarrhea); the RP2D was weekly AUY922 70 mg/m2 plus trastuzumab. Of the 41 patients in the 70 mg/m2 cohort, the overall response rate (complete or partial responses) was 22.0% and 48.8% patients had stable disease. Study treatment-related adverse events occurred in 97.8% of patients; of these, 31.1% were grade 3 or 4. Forty-one patients (91.1%) reported ocular events (82.3% had grade 1 or 2 events). Two patients (4.4%) had ocular events leading to the permanent discontinuation of study treatment. AUY922 at 70 mg/m2 plus trastuzumab standard therapy is well tolerated and active in patients with HER2-positive metastatic breast cancer who progressed on trastuzumab-based therapy.
Collapse
Affiliation(s)
- Anthony Kong
- Previous address: Churchill Hospital, Oxford University Hospitals NHS Trust and University of Oxford, Oxford, United Kingdom
- School of Cancer Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Daniel Rea
- School of Cancer Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Samreen Ahmed
- Department of Oncology, University Hospitals of Leicester, Leicester Royal Infirmary, Leicester, United Kingdom
| | - J. Thaddeus Beck
- Department of Oncology, Highlands Oncology Group, Fayetteville, Arkansas, USA
| | - Rafael López López
- Department of Oncology, Hospital Clinico Universitario, Santiago de Compostela, Spain
| | - Laura Biganzoli
- Department of Medical Oncology, Nuovo Ospedale di Prato, Prato, Italy
| | - Anne C. Armstrong
- Department of Medical Oncology, The Christie NHS Foundation Trust, Manchester, United Kingdom
| | - Massimo Aglietta
- Department of Medical Oncology, University of Torino, FPO-IRCCS, Candiolo, Italy
| | - Emilio Alba
- Department of Medical Oncology, University Hospital, IBIMA, Malaga, Spain
| | - Mario Campone
- Department of Medical Oncology, Institut de Cancérologie de l'ouest René Gauducheau, Nantes, France
| | | | - Caroline Lefebvre
- Translational Clinical Oncology, Novartis Pharma AG, Basel, Switzerland
| | - Mikhail Akimov
- Oncology Global Development, Novartis Pharma AG, Basel, Switzerland
| | - Soo-Chin Lee
- Department of Hematology-Oncology, National University Cancer Institute Singapore, Singapore
| |
Collapse
|
79
|
Ishikawa C, Senba M, Mori N. Efficiency of AUY922 in mice with adult T-cell leukemia/lymphoma. Oncol Lett 2016; 12:387-392. [PMID: 27347156 PMCID: PMC4907013 DOI: 10.3892/ol.2016.4624] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Accepted: 03/03/2016] [Indexed: 11/06/2022] Open
Abstract
Adult T-cell leukemia/lymphoma (ATLL) is an aggressive malignancy caused by human T-cell leukemia virus type 1 (HTLV-1). ATLL is associated with poor prognosis mainly due to resistance to chemotherapy, which highlights the requirement for alternative therapies. The chaperone heat shock protein (HSP) 90 assist proteins involved in the onset and progression of ATLL. In the present study, the efficacy of a second generation HSP90 inhibitor termed AUY922 was investigated in ATLL. In vitro, AUY922 induced marked inhibition of cell viability in the HTLV-1-infected T-cell lines HUT-102 and MT-4. In immunodeficient mice bearing HUT-102 xenotransplants, AUY922 markedly retarded tumor growth, compared with the control group. Apoptosis was evident in hematoxylin and eosin stained- and terminal deoxynucleotidyl transferase deoxyuridine triphosphate nick end labeling-labeled tissue sections from AUY922-treated mice. In addition, AUY922 significantly reduced the serum levels of the surrogate tumor markers soluble interleukin-2 receptor and soluble cluster of differentiation 30. Overall, the present results demonstrate that AUY922 has potent anti-ATLL activity, thus providing a rationale for continuing the clinical development of HSP90 inhibitors in clinical trials for the treatment of patients with ATLL.
Collapse
Affiliation(s)
- Chie Ishikawa
- Department of Microbiology and Oncology, Graduate School of Medicine, University of the Ryukyus, Nishihara, Okinawa 903-0215, Japan; Division of Health Sciences, Transdisciplinary Research Organization for Subtropics and Island Studies, University of the Ryukyus, Nishihara, Okinawa 903-0213, Japan
| | - Masachika Senba
- Department of Pathology, Institute of Tropical Medicine, Nagasaki University, Nagasaki 852-8523, Japan
| | - Naoki Mori
- Department of Microbiology and Oncology, Graduate School of Medicine, University of the Ryukyus, Nishihara, Okinawa 903-0215, Japan
| |
Collapse
|
80
|
Park KS, Oh B, Lee MH, Nam KY, Jin HR, Yang H, Choi J, Kim SW, Lee DH. The HSP90 inhibitor, NVP-AUY922, sensitizes KRAS-mutant non-small cell lung cancer with intrinsic resistance to MEK inhibitor, trametinib. Cancer Lett 2016; 372:75-81. [DOI: 10.1016/j.canlet.2015.12.015] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Revised: 12/10/2015] [Accepted: 12/10/2015] [Indexed: 01/08/2023]
|
81
|
Wang M, Shen A, Zhang C, Song Z, Ai J, Liu H, Sun L, Ding J, Geng M, Zhang A. Development of Heat Shock Protein (Hsp90) Inhibitors To Combat Resistance to Tyrosine Kinase Inhibitors through Hsp90-Kinase Interactions. J Med Chem 2016; 59:5563-86. [PMID: 26844689 DOI: 10.1021/acs.jmedchem.5b01106] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Heat shock protein 90 (Hsp90) is a ubiquitous chaperone of all of the oncogenic tyrosine kinases. Many Hsp90 inhibitors, alone or in combination, have shown significant antitumor efficacy against the kinase-positive naïve and mutant models. However, clinical trials of these inhibitors are unsuccessful due to insufficient clinical benefits and nonoptimal safety profiles. Recently, much progress has been reported on the Hsp90-cochaperone-client complex, which will undoubtedly assist in the understanding of the interactions between Hsp90 and its clients. Meanwhile, Hsp90 inhibitors have shown promise against patients' resistance caused by early generation tyrosine kinase inhibitors (TKIs), and at least 13 Hsp90 inhibitors are being reevaluated in the clinic. In this regard, the objectives of the current perspective are to summarize the structure and function of the Hsp90-cochaperone-client complex, to analyze the structural and functional insights into the Hsp90-client interactions to address several existing unresolved problems with Hsp90 inhibitors, and to highlight the preclinical and clinical studies of Hsp90 inhibitors as an effective treatment against resistance to tyrosine kinase inhibitors.
Collapse
Affiliation(s)
- Meining Wang
- CAS Key Laboratory of Receptor Research, Synthetic Organic & Medicinal Chemistry Laboratory, Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences , 555 Zuchongzhi Lu, Building 3, Room 426, Pudong, Shanghai 201203, China
| | - Aijun Shen
- Division of Anti-tumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences , Shanghai 201203, China
| | - Chi Zhang
- Department of Medicinal Chemistry, China Pharmaceutical University , Nanjing 210009, China
| | - Zilan Song
- CAS Key Laboratory of Receptor Research, Synthetic Organic & Medicinal Chemistry Laboratory, Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences , 555 Zuchongzhi Lu, Building 3, Room 426, Pudong, Shanghai 201203, China
| | - Jing Ai
- Division of Anti-tumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences , Shanghai 201203, China
| | - Hongchun Liu
- Division of Anti-tumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences , Shanghai 201203, China
| | - Liping Sun
- Department of Medicinal Chemistry, China Pharmaceutical University , Nanjing 210009, China
| | - Jian Ding
- Division of Anti-tumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences , Shanghai 201203, China
| | - Meiyu Geng
- Division of Anti-tumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences , Shanghai 201203, China
| | - Ao Zhang
- CAS Key Laboratory of Receptor Research, Synthetic Organic & Medicinal Chemistry Laboratory, Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences , 555 Zuchongzhi Lu, Building 3, Room 426, Pudong, Shanghai 201203, China
| |
Collapse
|
82
|
Agyeman AS, Jun WJ, Proia DA, Kim CR, Skor MN, Kocherginsky M, Conzen SD. Hsp90 Inhibition Results in Glucocorticoid Receptor Degradation in Association with Increased Sensitivity to Paclitaxel in Triple-Negative Breast Cancer. Discov Oncol 2016; 7:114-26. [PMID: 26858237 DOI: 10.1007/s12672-016-0251-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Accepted: 01/05/2016] [Indexed: 11/30/2022] Open
Abstract
Targetable molecular drivers for triple-negative breast cancer (TNBC) have been difficult to identify; therefore, standard treatment remains limited to conventional chemotherapy. Recently, new-generation small-molecule Hsp90 inhibitors (e.g., ganetespib and NVP-AUY922) have demonstrated improved safety and activity profiles over the first-generation ansamycin class. In breast cancer, clinical responses have been observed in a subset of TNBC patients following ganetespib monotherapy; however, the underlying biology of Hsp90 inhibitor treatment and tumor response is not well understood. Glucocorticoid receptor (GR) activity in TNBC is associated with chemotherapy resistance. Here, we find that treatment of TNBC cell lines with ganetespib resulted in GR degradation and decreased GR-mediated gene expression. Ganetespib-associated GR degradation also sensitized TNBC cells to paclitaxel-induced cell death both in vitro and in vivo. The beneficial effect of the Hsp90 inhibitor on paclitaxel-induced cytotoxicity was reduced when GR was depleted in TNBC cells but could be recovered with GR overexpression. These findings suggest that GR-regulated anti-apoptotic and pro-proliferative signaling networks in TNBC are disrupted by Hsp90 inhibitors, thereby sensitizing TNBC to paclitaxel-induced cell death. Thus, GR+ TNBC patients may be a subgroup of breast cancer patients who are most likely to benefit from adding an Hsp90 inhibitor to taxane therapy.
Collapse
Affiliation(s)
- Abena S Agyeman
- Department of Medicine-Hematology/Oncology, The University of Chicago, Chicago, IL, 60637, USA
| | - Wesley J Jun
- Department of Medicine-Hematology/Oncology, The University of Chicago, Chicago, IL, 60637, USA
| | - David A Proia
- Synta Pharmaceuticals Corporation, Lexington, MA, 02421, USA
| | - Caroline R Kim
- Department of Medicine-Hematology/Oncology, The University of Chicago, Chicago, IL, 60637, USA
| | - Maxwell N Skor
- Department of Medicine-Hematology/Oncology, The University of Chicago, Chicago, IL, 60637, USA
| | - Masha Kocherginsky
- Department of Health Studies, The University of Chicago, Chicago, IL, 60637, USA
| | - Suzanne D Conzen
- Department of Medicine-Hematology/Oncology, The University of Chicago, Chicago, IL, 60637, USA.
- Ben May Department for Cancer Research, The University of Chicago, Chicago, IL, 60637, USA.
- Department of Medicine, The University of Chicago, 900 East 57th Street, Chicago, IL, 60637, USA.
| |
Collapse
|
83
|
PAF-Wnt signaling-induced cell plasticity is required for maintenance of breast cancer cell stemness. Nat Commun 2016; 7:10633. [PMID: 26843124 PMCID: PMC4743006 DOI: 10.1038/ncomms10633] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Accepted: 01/05/2016] [Indexed: 12/20/2022] Open
Abstract
Cancer stem cells (CSCs) contribute to tumour heterogeneity, therapy resistance and metastasis. However, the regulatory mechanisms of cancer cell stemness remain elusive. Here we identify PCNA-associated factor (PAF) as a key molecule that controls cancer cell stemness. PAF is highly expressed in breast cancer cells but not in mammary epithelial cells (MECs). In MECs, ectopic expression of PAF induces anchorage-independent cell growth and breast CSC marker expression. In mouse models, conditional PAF expression induces mammary ductal hyperplasia. Moreover, PAF expression endows MECs with a self-renewing capacity and cell heterogeneity generation via Wnt signalling. Conversely, ablation of endogenous PAF induces the loss of breast cancer cell stemness. Further cancer drug repurposing approaches reveal that NVP-AUY922 downregulates PAF and decreases breast cancer cell stemness. Our results unveil an unsuspected role of the PAF-Wnt signalling axis in modulating cell plasticity, which is required for the maintenance of breast cancer cell stemness. Stem cells are found in many tumour types and are thought to be partially responsible for cell survival following therapy. Here, the authors show that PCNA-associated factor, PAF, contributes to stemness in breast cancer cells and pharmacological targeting of PAF reduces mammosphere formation.
Collapse
|
84
|
Akahane K, Sanda T, Mansour MR, Radimerski T, DeAngelo DJ, Weinstock DM, Look AT. HSP90 inhibition leads to degradation of the TYK2 kinase and apoptotic cell death in T-cell acute lymphoblastic leukemia. Leukemia 2016; 30:219-28. [PMID: 26265185 PMCID: PMC4703488 DOI: 10.1038/leu.2015.222] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Revised: 07/01/2015] [Accepted: 08/04/2015] [Indexed: 01/25/2023]
Abstract
We previously found that tyrosine kinase 2 (TYK2) signaling through its downstream effector phospho-STAT1 acts to upregulate BCL2, which in turn mediates aberrant survival of T-cell acute lymphoblastic leukemia (T-ALL) cells. Here we show that pharmacologic inhibition of heat shock protein 90 (HSP90) with a small-molecule inhibitor, NVP-AUY922 (AUY922), leads to rapid degradation of TYK2 and apoptosis in T-ALL cells. STAT1 protein levels were not affected by AUY922 treatment, but phospho-STAT1 (Tyr-701) levels rapidly became undetectable, consistent with a block in signaling downstream of TYK2. BCL2 expression was downregulated after AUY922 treatment, and although this effect was necessary for AUY922-induced apoptosis, it was not sufficient because many T-ALL cell lines were resistant to ABT-199, a specific inhibitor of BCL2. Unlike ABT-199, AUY922 also upregulated the proapoptotic proteins BIM and BAD, whose increased expression was required for AUY922-induced apoptosis. Thus, the potent cytotoxicity of AUY922 involves the synergistic combination of BCL2 downregulation coupled with upregulation of the proapoptotic proteins BIM and BAD. This two-pronged assault on the mitochondrial apoptotic machinery identifies HSP90 inhibitors as promising drugs for targeting the TYK2-mediated prosurvival signaling axis in T-ALL cells.
Collapse
Affiliation(s)
- Koshi Akahane
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Takaomi Sanda
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
- Cancer Science Institute of Singapore, National University of Singapore, and Department of Medicine, Yong Loo Lin School of Medicine, 117599, Singapore
| | - Marc R. Mansour
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
- Department of Haematology, UCL Cancer Institute, University College London, UK
| | - Thomas Radimerski
- Disease Area Oncology, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Daniel J. DeAngelo
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, 02215, USA
| | - David M. Weinstock
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, 02215, USA
| | - A. Thomas Look
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
- Division of Hematology/Oncology, Children's Hospital, Boston, MA 02115, USA
| |
Collapse
|
85
|
Hsp90 Co-chaperones as Drug Targets in Cancer: Current Perspectives. TOPICS IN MEDICINAL CHEMISTRY 2016. [DOI: 10.1007/7355_2015_99] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
86
|
Wendel T, Zhen Y, Suo Z, Bruheim S, Wiedlocha A. The novel HSP90 inhibitor NVP-AUY922 shows synergistic anti-leukemic activity with cytarabine in vivo. Exp Cell Res 2015; 340:220-6. [PMID: 26748184 DOI: 10.1016/j.yexcr.2015.12.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Revised: 11/29/2015] [Accepted: 12/30/2015] [Indexed: 02/07/2023]
Abstract
HSP90 is a molecular chaperone essential for stability, activity and intracellular sorting of many proteins, including oncoproteins, such as tyrosine kinases, transcription factors and cell cycle regulatory proteins. Therefore, inhibitors of HSP90 are being investigated for their potential as anti-cancer drugs. Here we show that the HSP90 inhibitor NVP-AUY922 induced degradation of the fusion oncoprotein FOP2-FGFR1 in a human acute myeloid leukemia (AML) cell line, KG-1a. Concordantly, downstream signaling cascades, such as STAT1, STAT3 and PLCγ were abrogated. At concentrations that caused FOP2-FGFR1 degradation and signaling abrogation, NVP-AUY922 treatment caused significant cell death and inhibition of proliferation of KG-1a cells in vitro. In an animal model for AML, NVP-AUY922 administrated alone showed no anti-leukemic activity. However, when NVP-AUY922 was administered in combination with cytarabine, the two compounds showed significant synergistic anti-leukemic activity in vivo. Thus NVP-AUY922 and cytarabine combination therapy might be a prospective strategy for AML treatment.
Collapse
Affiliation(s)
- Torunn Wendel
- Department of Molecular Cell Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Montebello, 0379 Oslo, Norway; Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, Norway
| | - Yan Zhen
- Department of Molecular Cell Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Montebello, 0379 Oslo, Norway; Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, Norway
| | - Zenhe Suo
- Department of Pathology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Skjalg Bruheim
- Department of Tumor Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Montebello, 0379 Oslo, Norway.
| | - Antoni Wiedlocha
- Department of Molecular Cell Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Montebello, 0379 Oslo, Norway; Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, Norway.
| |
Collapse
|
87
|
Roundhill E, Turnbull D, Burchill S. Localization of MRP-1 to the outer mitochondrial membrane by the chaperone protein HSP90β. FASEB J 2015; 30:1712-23. [PMID: 26722004 DOI: 10.1096/fj.15-283408] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 12/08/2015] [Indexed: 12/29/2022]
Abstract
Overexpression of plasma membrane multidrug resistance-associated protein 1 (MRP-1) in Ewing's sarcoma (ES) predicts poor outcome. MRP-1 is also expressed in mitochondria, and we have examined the submitochondrial localization of MRP-1 and investigated the mechanism of MRP-1 transport and role of this organelle in the response to doxorubicin. The mitochondrial localization of MRP-1 was examined in ES cell lines by differential centrifugation and membrane solubilization by digitonin. Whether MRP-1 is chaperoned by heat shock proteins (HSPs) was investigated by immunoprecipitation, immunofluorescence microscopy, and HSP knockout using small hairpin RNA and inhibitors (apoptozole, 17-AAG, and NVPAUY). The effect of disrupting mitochondrial MRP-1-dependent efflux activity on the cytotoxic effect of doxorubicin was investigated by counting viable cell number. Mitochondrial MRP-1 is glycosylated and localized to the outer mitochondrial membrane, where it is coexpressed with HSP90. MRP-1 binds to both HSP90 and HSP70, although only inhibition of HSP90β decreases expression of MRP-1 in the mitochondria. Disruption of mitochondrial MRP-1-dependent efflux significantly increases the cytotoxic effect of doxorubicin (combination index, <0.9). For the first time, we have demonstrated that mitochondrial MRP-1 is expressed in the outer mitochondrial membrane and is a client protein of HSP90β, where it may play a role in the doxorubicin-induced resistance of ES.-Roundhill, E., Turnbull, D., Burchill, S. Localization of MRP-1 to the outer mitochondrial membrane by the chaperone protein HSP90β.
Collapse
Affiliation(s)
- Elizabeth Roundhill
- Children's Cancer Research Group, Leeds Institute of Cancer and Pathology, St. James's University Hospital, Leeds, United Kingdom; and
| | - Doug Turnbull
- Wellcome Trust Centre for Mitochondrial Research, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Susan Burchill
- Children's Cancer Research Group, Leeds Institute of Cancer and Pathology, St. James's University Hospital, Leeds, United Kingdom; and
| |
Collapse
|
88
|
Li L, An M, Shen H, Huang X, Yao X, Liu J, Zhu F, Zhang S, Chen S, He L, Zhang J, Zou Z, Jiang Y. The non-Geldanamycin Hsp90 inhibitors enhanced the antifungal activity of fluconazole. Am J Transl Res 2015; 7:2589-2602. [PMID: 26885259 PMCID: PMC4731659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 11/21/2015] [Indexed: 06/05/2023]
Abstract
The molecular chaperone heat shock protein 90 (Hsp90) is highly conserved in eukaryotes and facilitates the correct folding, productive assembly and maturation of a diverse cellular proteins. In fungi, especially the most prevalent human fungal pathogen Candida albicans, Hsp90 influences development and modulates drug resistance. Here, we mainly explore the effect of non-Geldanamycin Hsp90 inhibitor HSP990 on the activity of fluconazole (FLC) against Candida albicans and investigate the underlying mechanism. We demonstrate that HSP990 has potent synergistic antifungal activity with FLC against FLC-resistant C. albicans through the checkerboard microdilution assay,agar diffusion tests and time-kill curves, and shows low cytotoxicity to human umbilical vein endothelial cells. Further study shows that the activity of FLC against C. albicans biofilm formation in vitro is significantly enhanced when used in combination with HSP990. In a murine model of disseminated candidiasis, the therapeutic efficacy of FLC is also enhanced by the pharmacological inhibition of C. albicans Hsp90 function with HSP990. Thus, the combined use of small molecule compound and existing antifungal drugs may provide a potential therapeutic strategy for fungal infectious disease.
Collapse
Affiliation(s)
- Liping Li
- Shanghai Tenth People’s Hospital, and Department of Pharmacology, Tongji University School of Medicine1239 Siping Road, Shanghai 200092, China
| | - Maomao An
- Shanghai Tenth People’s Hospital, and Department of Pharmacology, Tongji University School of Medicine1239 Siping Road, Shanghai 200092, China
| | - Hui Shen
- Department of Laboratory Medicine, Changhai Hospital, The Second Military Medical UniversiyShanghai, China
| | - Xin Huang
- Shanghai Tenth People’s Hospital, and Department of Pharmacology, Tongji University School of Medicine1239 Siping Road, Shanghai 200092, China
| | - Xueya Yao
- Department of Anesthesiology, Changzheng Hospital, Second Military Medical University415 Fengyang Road, Shanghai 200433, China
| | - Jian Liu
- Shanghai Tenth People’s Hospital, and Department of Pharmacology, Tongji University School of Medicine1239 Siping Road, Shanghai 200092, China
| | - Fang Zhu
- Shanghai Tenth People’s Hospital, and Department of Pharmacology, Tongji University School of Medicine1239 Siping Road, Shanghai 200092, China
| | - Shiqun Zhang
- Shanghai Tenth People’s Hospital, and Department of Pharmacology, Tongji University School of Medicine1239 Siping Road, Shanghai 200092, China
| | - Simin Chen
- Shanghai Tenth People’s Hospital, and Department of Pharmacology, Tongji University School of Medicine1239 Siping Road, Shanghai 200092, China
| | - Lijuan He
- New Drug Research and Development Center, School of Pharmacy, Second Military Medical UniversityShanghai, China
| | - Jundong Zhang
- Shanghai Tenth People’s Hospital, and Department of Pharmacology, Tongji University School of Medicine1239 Siping Road, Shanghai 200092, China
| | - Zui Zou
- Department of Anesthesiology, Changzheng Hospital, Second Military Medical University415 Fengyang Road, Shanghai 200433, China
| | - Yuanying Jiang
- Shanghai Tenth People’s Hospital, and Department of Pharmacology, Tongji University School of Medicine1239 Siping Road, Shanghai 200092, China
- New Drug Research and Development Center, School of Pharmacy, Second Military Medical UniversityShanghai, China
| |
Collapse
|
89
|
Proia DA, Smith DL, Zhang J, Jimenez JP, Sang J, Ogawa LS, Sequeira M, Acquaviva J, He S, Zhang C, Khazak V, Astsaturov I, Inoue T, Tatsuta N, Osman S, Bates RC, Chimmanamada D, Ying W. HSP90 Inhibitor–SN-38 Conjugate Strategy for Targeted Delivery of Topoisomerase I Inhibitor to Tumors. Mol Cancer Ther 2015; 14:2422-32. [DOI: 10.1158/1535-7163.mct-15-0455] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Accepted: 08/07/2015] [Indexed: 11/16/2022]
|
90
|
Sun Y, Xiao S, Chen J, Wang M, Zheng Z, Song S, Zhang L. Heat shock protein 90 mediates the apoptosis and autophage in nicotinic-mycoepoxydiene-treated HeLa cells. Acta Biochim Biophys Sin (Shanghai) 2015; 47:451-8. [PMID: 25948110 DOI: 10.1093/abbs/gmv034] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Accepted: 01/14/2015] [Indexed: 12/30/2022] Open
Abstract
Heat shock protein 90 (Hsp90) is a fascinating target for cancer therapy due to its significant role in the crossroad of multiple signaling pathways associated with cell proliferation and regulation. Hsp90 inhibitors have the potential to be developed into anti-cancer drugs. Here, we identified nicotinic-mycoepoxydiene (NMD), a structurally novel compound as Hsp90 inhibitor to perform the anti-tumor activity. The compound selectively bound to the Hsp90 N-terminal domain, and degraded the Hsp90 client protein Akt. The degradation of Akt detained Bad in non-phosphorylation form. NMD-associated apoptosis was characterized by the formation of fragmented nuclei, poly(ADP-ribose) polymerase cleavage, cytochrome c release, caspase-3 activation, and the increased proportion of sub-G1 phase cells. Interestingly, the apoptosis was accompanied with autophagy, by exhibiting the increased expression of LC-3 and the decrease of lysosome pH value. Our findings provide a novel cellular mechanism by which Hsp90 inhibitor adjusts cell apoptosis and autophagy in vitro, suggesting that NMD not only has a potential to be developed into a novel anti-tumor pharmaceutical, but also exhibits a new mechanism in regulating cancer cell apoptosis and autophagy via Hsp90 inhibition.
Collapse
Affiliation(s)
- Yifei Sun
- Key Laboratory for Cell Stress, School of Life Sciences, Xiamen University, Xiamen 361102, China
| | - Shuyan Xiao
- Key Laboratory for Cell Stress, School of Life Sciences, Xiamen University, Xiamen 361102, China
| | - Junjie Chen
- Key Laboratory for Cell Stress, School of Life Sciences, Xiamen University, Xiamen 361102, China
| | - Miaomiao Wang
- Key Laboratory for Cell Stress, School of Life Sciences, Xiamen University, Xiamen 361102, China
| | - Zhonghui Zheng
- Key Laboratory for Cell Stress, School of Life Sciences, Xiamen University, Xiamen 361102, China
| | - Siyang Song
- Key Laboratory for Cell Stress, School of Life Sciences, Xiamen University, Xiamen 361102, China
| | - Lianru Zhang
- Key Laboratory for Cell Stress, School of Life Sciences, Xiamen University, Xiamen 361102, China
| |
Collapse
|
91
|
Cheng W, Ainiwaer A, Xiao L, Cao Q, Wu G, Yang Y, Mao R, Bao Y. Role of the novel HSP90 inhibitor AUY922 in hepatocellular carcinoma: Potential for therapy. Mol Med Rep 2015; 12:2451-6. [PMID: 25955495 PMCID: PMC4464165 DOI: 10.3892/mmr.2015.3725] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Accepted: 02/19/2015] [Indexed: 11/06/2022] Open
Abstract
The aim of the present study was to determine the correlation between hepatocellular carcinoma (HCC) and heat shock protein 90 (HSP90), involved in tumor angiogenesis, and to evaluate the effect of AUY922, a HSP90 inhibitor, in HCC. The expression of HSP90 and microvessel density (MVD) were measured in tissue samples from 76 patients with HCC by immunohistochemistry. Western blot analysis was performed to detect the expression of HSP90 in the HCC tissues and different HCC cell lines. The effects of time and concentration treatment with the AUY922 HSP90 inhibitor were investigated in HepG2 cells. Cell proliferation was measured using an MTT assay and a Transwell assay was performed to evaluate the migration of the HepG2 cells following treatment with different concentrations of AUY922. Positive staining of HSP90 was observed in 88.16% (67/76) of the HCC tissues, compared with 16.67% (4/24) of the normal tissues. The difference in the expression of HSP90 between the HCC and normal tissues was statistically significant (P<0.001). Tumors exhibiting positive expression of HSP90 had significantly higher MVD compared with the HSP90-negative counterparts (82.8 ± 12.44 vs. 23.8 ± 8.07, respectively; P<0.001). The expression levels of HSP90 were positively correlated with MVD in all the tissue samples (r_s=0.724; P<0.001). AUY922 inhibited the proliferation of the HepG2 cells in a time-and concentration-dependent manner, and the migration of HepG2 cells was distinctly suppressed following treatment with AUY922. These data suggested that the angiogenesis of human HCC may be mediated by HSP90, and that the specific HSP90 inhibitor, AUY922, has a therapeutic role in the treatment of HCC. Therefore, HSP90 may represent a selective target in molecularly targeted treatment of HCC.
Collapse
Affiliation(s)
- Wei Cheng
- Department of Oncology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830011, P.R. China
| | - Aimudula Ainiwaer
- Department of Oncology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830011, P.R. China
| | - Lei Xiao
- Department of Oncology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830011, P.R. China
| | - Qian Cao
- Department of Oncology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830011, P.R. China
| | - Ge Wu
- Department of Oncology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830011, P.R. China
| | - Ying Yang
- Department of Oncology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830011, P.R. China
| | - Rui Mao
- Department of Oncology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830011, P.R. China
| | - Yongxing Bao
- Department of Oncology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830011, P.R. China
| |
Collapse
|
92
|
Albanito L, Lappano R, Madeo A, Chimento A, Prossnitz ER, Cappello AR, Dolce V, Abonante S, Pezzi V, Maggiolini M. Effects of atrazine on estrogen receptor α- and G protein-coupled receptor 30-mediated signaling and proliferation in cancer cells and cancer-associated fibroblasts. ENVIRONMENTAL HEALTH PERSPECTIVES 2015; 123:493-9. [PMID: 25616260 PMCID: PMC4421771 DOI: 10.1289/ehp.1408586] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Accepted: 01/12/2015] [Indexed: 05/12/2023]
Abstract
BACKGROUND The pesticide atrazine does not bind to or activate the classical estrogen receptor (ER), but it up-regulates the aromatase activity in estrogen-sensitive tumor cells. The G protein estrogen receptor (GPR30/GPER) has been reported to be involved in certain biological responses to endogenous estrogens and environmental compounds exerting estrogen-like activity. OBJECTIVES We aimed to evaluate the potential of atrazine to trigger GPER-mediated signaling in cancer cells and cancer-associated fibroblasts (CAFs). METHODS AND RESULTS Using gene reporter assays in diverse types of cancer cells, we found that atrazine did not transactivate endogenous ERα or chimeric proteins that encode the ERα and ERβ hormone binding domains. Conversely, atrazine was able to bind to GPER to induce ERK activation and the expression of estrogen target genes, which, interestingly, appeared to rely on both GPER and ERα expression. As a biological counterpart, atrazine stimulated the proliferation of ovarian cancer cells that depend on GPER and ERα, as evidenced by gene silencing experiments and the use of specific signaling inhibitors. Of note, through GPER, atrazine elicited ERK phosphorylation, gene expression, and migration in CAFs, thus extending its stimulatory role to these main players of the tumor microenvironment. CONCLUSIONS Our results suggest a novel mechanism through which atrazine may exert relevant biological effects in cancer cells and CAFs. On the basis of our data, atrazine should be included among the environmental contaminants that may elicit estrogenic activity through GPER-mediated signaling.
Collapse
Affiliation(s)
- Lidia Albanito
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
93
|
Matysiak J, Juszczak M, Karpińska MM, Langner E, Walczak K, Lemieszek MK, Skrzypek A, Niewiadomy A, Rzeski W. Synthesis of 2-(2,4-dihydroxyphenyl)thieno-1,3-thiazin-4-ones, their lipophilicity and anticancer activity in vitro. Mol Divers 2015; 19:725-36. [DOI: 10.1007/s11030-015-9599-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2015] [Accepted: 04/06/2015] [Indexed: 11/25/2022]
|
94
|
Zhou X, Fan LX, Peters DJM, Trudel M, Bradner JE, Li X. Therapeutic targeting of BET bromodomain protein, Brd4, delays cyst growth in ADPKD. Hum Mol Genet 2015; 24:3982-93. [PMID: 25877301 DOI: 10.1093/hmg/ddv136] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Accepted: 04/13/2015] [Indexed: 01/13/2023] Open
Abstract
In this study, we identified a BET bromodomain (BRD) protein, Brd4, not only as a novel epigenetic regulator of autosomal dominant polycystic kidney disease (ADPKD) but also as a novel client protein of Hsp90. We found that Brd4 was upregulated in Pkd1 mutant mouse renal epithelial cells and tissues. This upregulation of Brd4 appears to result from the chaperone activity of Hsp90 and escape proteasomal degradation. We further identify that Brd4 is an upstream regulator of the expression of c-Myc which has been upregulated in all rodent models of PKD and ADPKD patients with unknown mechanism. Inhibition of Brd4 in Pkd1 mutant renal epithelial cells with JQ1, a selective small-molecular inhibitor of BET BRD protein(s), (1) decreased the levels of c-Myc mRNA and protein; (2) increased the levels of p21 mRNA and protein, which was transcriptionally repressed by c-Myc; (3) decreased the phosphorylation of Rb; and (4) decreased cystic epithelial cell proliferation as shown by inhibition of S-phase entry. Most importantly, treatment with JQ1 strikingly delayed cyst growth and kidney enlargement, and preserved renal function in two early stage genetic mouse strains with Pkd1 mutations. This study not only provides one of the mechanisms of how c-Myc is upregulated in PKD but also suggests that targeting Brd4 with JQ1 may function as a novel epigenetic approach in ADPKD. The unraveled link between Brd4 and Hsp90 in ADPKD may also be a general mechanism for the upregulation of Brd4 in cancer cells and opens up avenues for combination therapies against ADPKD and cancer.
Collapse
Affiliation(s)
- Xia Zhou
- Department of Internal Medicine, Kidney Institute
| | - Lucy X Fan
- Department of Internal Medicine, Kidney Institute
| | - Dorien J M Peters
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Marie Trudel
- Molecular Genetics and Development, Institut de Recherches Cliniques de Montreal, Université de Montreal, Faculté de Médecine, Montreal, Quebec, Canada and
| | - James E Bradner
- Department of Medicine, Dana Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Xiaogang Li
- Department of Internal Medicine, Kidney Institute, Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA,
| |
Collapse
|
95
|
Matysiak J, Juszczak M, Karpińska MM, Langner E, Walczak K, Lemieszek M, Skrzypek A, Rzeski W, Niewiadomy A. Synthesis, characterization, and pharmacological evaluation of novel azolo- and azinothiazinones containing 2,4-dihydroxyphenyl substituent as anticancer agents. MONATSHEFTE FUR CHEMIE 2015; 146:1315-1327. [PMID: 26190864 PMCID: PMC4498246 DOI: 10.1007/s00706-015-1453-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2015] [Accepted: 03/08/2015] [Indexed: 02/01/2023]
Abstract
ABSTRACT We reported the synthesis and characterization of a series of azolo- and azino[1,3]thiazinones containing the 2,4-dihydroxyphenyl substituent. The compounds were prepared by a new one-step reaction of aryl-modified sulfinylbis[(2,4-dihydroxyphenyl)methanethione]s and the corresponding aminoazolo(azino)carboxamides. Their chemical structures were confirmed by IR, NMR: 1H, 13C, HSQC, and EI-MS spectral data. The compounds inhibited proliferation and viability of lung cancer A549, colon cancer HT-29, and glioma C6 cells in a structure- and concentration-dependent manner. The activity of some analogues was below 10 μmol dm-3 (IC50). Glioma C6 cells were the most sensitive to tested compounds. Generally, the derivatives were not toxic for the skin fibroblast HSF culture. Moreover, some of them exerted a protective effect on the treated normal cells. Evaluation of compound properties in silico showed that they possess significant drug-like characteristics and most of them display a low toxicity. GRAPHICAL ABSTRACT
Collapse
Affiliation(s)
- Joanna Matysiak
- Department of Chemistry, University of Life Sciences in Lublin, Akademicka 15, 20-950 Lublin, Poland
| | - Małgorzata Juszczak
- Department of Medical Biology, Institute of Rural Health in Lublin, Jaczewskiego 2, 20-090 Lublin, Poland
| | - Monika M. Karpińska
- Institute of Industrial Organic Chemistry in Warsaw, Annopol 6, 03-236 Warsaw, Poland
| | - Ewa Langner
- Department of Medical Biology, Institute of Rural Health in Lublin, Jaczewskiego 2, 20-090 Lublin, Poland
- Department of Pharmacology, Medical University in Lublin, Chodźki 4a, 20-093 Lublin, Poland
| | - Katarzyna Walczak
- Department of Pharmacology, Medical University in Lublin, Chodźki 4a, 20-093 Lublin, Poland
| | - Marta Lemieszek
- Department of Medical Biology, Institute of Rural Health in Lublin, Jaczewskiego 2, 20-090 Lublin, Poland
| | - Alicja Skrzypek
- Department of Chemistry, University of Life Sciences in Lublin, Akademicka 15, 20-950 Lublin, Poland
| | - Wojciech Rzeski
- Department of Medical Biology, Institute of Rural Health in Lublin, Jaczewskiego 2, 20-090 Lublin, Poland
- Department of Virology and Immunology, Maria Curie-Skłodowska University in Lublin, Akademicka 19, 20-033 Lublin, Poland
| | - Andrzej Niewiadomy
- Department of Chemistry, University of Life Sciences in Lublin, Akademicka 15, 20-950 Lublin, Poland
- Institute of Industrial Organic Chemistry in Warsaw, Annopol 6, 03-236 Warsaw, Poland
| |
Collapse
|
96
|
Tao W, Chakraborty SN, Leng X, Ma H, Arlinghaus RB. HSP90 inhibitor AUY922 induces cell death by disruption of the Bcr-Abl, Jak2 and HSP90 signaling network complex in leukemia cells. Genes Cancer 2015; 6:19-29. [PMID: 25821558 PMCID: PMC4362481 DOI: 10.18632/genesandcancer.49] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Accepted: 01/28/2015] [Indexed: 11/25/2022] Open
Abstract
The Bcr-Abl protein is an important client protein of heat shock protein 90 (HSP90). We evaluated the inhibitory effects of the HSP90 ATPase inhibitor AUY922 on 32D mouse hematopoietic cells expressing wild-type Bcr-Abl (b3a2, 32Dp210) and mutant Bcr-Abl imatinib (IM)-resistant cell lines. Western blotting results of fractions from gel filtration column chromatography of 32Dp210 cells showed that HSP90 together with Bcr-Abl, Jak2 Stat3 and several other proteins co-eluted in peak column fractions of a high molecular weight network complex (HMWNC). Co-IP results showed that HSP90 directly bound to Bcr-Abl, Jak2, Stat 3 and Akt. The associations between HSP90 and Bcr-Abl or Bcr-Abl kinase domain mutants (T315I and E255K) were interrupted by AUY922 treatment. Tyrosine phosphorylation of Bcr-Abl showed a dose-dependent decrease in 32Dp210T315I following AUY922 treatment for 16h. AUY922 also markedly inhibited cell proliferation of both IM-sensitive 32Dp210 (IC50 =6 nM) and IM-resistant 32Dp210T315I cells (IC50 ≈6 nM) and human KBM-5R/KBM-7R cell lines (IC50 =50 nM). AUY922 caused significant G1 arrest in 32Dp210 cells but not in T315I or E255K cells. AUY922 efficiently induced apoptosis in 32Dp210 (IC50 =10 nM) and T315I or E255K lines with IC50 around 20 to 50 nM. Our results showed that Bcr-Abl and Jak2 form HMWNC with HSP90 in CML cells. Inhibition of HSP90 by AUY922 disrupted the structure of HMWNC, leading to Bcr-Abl degradation, nhibiting cell proliferation and inducing apoptosis. Thus, inhibition of HSP90 is a powerful way to inhibit not only IM-sensitive CML cells but also IM-resistant CML cells.
Collapse
Affiliation(s)
- Wenjing Tao
- Department of Translational Molecular Pathology, University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - Sandip N Chakraborty
- Department of Translational Molecular Pathology, University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - Xiaohong Leng
- Department of Translational Molecular Pathology, University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - Helen Ma
- Department of Translational Molecular Pathology, University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - Ralph B Arlinghaus
- Department of Translational Molecular Pathology, University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
97
|
Oki Y, Younes A, Knickerbocker J, Samaniego F, Nastoupil L, Hagemeister F, Romaguera J, Fowler N, Kwak L, Westin J. Experience with HSP90 inhibitor AUY922 in patients with relapsed or refractory non-Hodgkin lymphoma. Haematologica 2015; 100:e272-4. [PMID: 25820332 DOI: 10.3324/haematol.2015.126557] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
- Yasuhiro Oki
- Department of Lymphoma and Myeloma, University of Texas, MD Anderson Cancer Center, Houston, TX 77030 USA
| | - Anas Younes
- Department of Lymphoma and Myeloma, University of Texas, MD Anderson Cancer Center, Houston, TX 77030 USA
| | - Javier Knickerbocker
- Department of Lymphoma and Myeloma, University of Texas, MD Anderson Cancer Center, Houston, TX 77030 USA
| | - Felipe Samaniego
- Department of Lymphoma and Myeloma, University of Texas, MD Anderson Cancer Center, Houston, TX 77030 USA
| | - Loretta Nastoupil
- Department of Lymphoma and Myeloma, University of Texas, MD Anderson Cancer Center, Houston, TX 77030 USA
| | - Fredrick Hagemeister
- Department of Lymphoma and Myeloma, University of Texas, MD Anderson Cancer Center, Houston, TX 77030 USA
| | - Jorge Romaguera
- Department of Lymphoma and Myeloma, University of Texas, MD Anderson Cancer Center, Houston, TX 77030 USA
| | - Nathan Fowler
- Department of Lymphoma and Myeloma, University of Texas, MD Anderson Cancer Center, Houston, TX 77030 USA
| | - Larry Kwak
- Department of Lymphoma and Myeloma, University of Texas, MD Anderson Cancer Center, Houston, TX 77030 USA
| | - Jason Westin
- Department of Lymphoma and Myeloma, University of Texas, MD Anderson Cancer Center, Houston, TX 77030 USA
| |
Collapse
|
98
|
Antitumor activity of the combination of an HSP90 inhibitor and a PI3K/mTOR dual inhibitor against cholangiocarcinoma. Oncotarget 2015; 5:2372-89. [PMID: 24796583 PMCID: PMC4058012 DOI: 10.18632/oncotarget.1706] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The PI3K/Akt/mTOR pathway is overactivated and heat shock protein (HSP) 90 is overexpressed in common cancers. We hypothesized that targeting both pathways can kill intrahepatic cholangiocarcinoma (CCA) cells. HSP90 and PTEN protein expression was evaluated by immunohistochemical staining of samples from 78 patients with intrahepatic CCA. CCA cell lines and a thioacetamide (TAA)-induced CCA animal model were treated with NVP-AUY922 (an HSP90 inhibitor) and NVP-BEZ235 (a PI3K/mTOR inhibitor) alone or in combination. Both HSP90 overexpression and loss of PTEN were poor prognostic factors in patients with intrahepatic CCA. The combination of the HSP90 inhibitor NVP-AUY922 and the PI3K/mTOR inhibitor NVP-BEZ235 was synergistic in inducing cell death in CCA cells. A combination of NVP-AUY922 and NVP-BEZ235 caused tumor regression in CCA rat animal model. This combination not only inhibited the PI3K/Akt/mTOR pathway but also induced ROS, which may exacerbate the vicious cycle of ER stress. Our data suggest simultaneous targeting of the PI3K/mTOR and HSP pathways for CCA treatment.
Collapse
|
99
|
Further studies on anti-invasive chemotypes: An excursion from chalcones to curcuminoids. Bioorg Med Chem Lett 2015; 25:1021-5. [PMID: 25666820 DOI: 10.1016/j.bmcl.2015.01.027] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Revised: 01/13/2015] [Accepted: 01/15/2015] [Indexed: 01/14/2023]
Abstract
In our ongoing search for new anti-invasive chemotypes, we have made an excursion from previously reported potent 1,3-diarylpropenones (chalcones) to congeners bearing longer linkers between the aromatic moieties. Nine 1,ω-diarylalkenones, including curcumin and bisdemethoxycurcumin, were evaluated in the chick heart invasion assay. Unfortunately, these compounds proved less potent and more toxic than earlier evaluated chemotypes. In the 1,3-diarylpenta-2,4-dien-1-one series, fluoro and/or trimethoxy substitution caused an increase in potency. This agrees with observations made earlier for the chalcone class.
Collapse
|
100
|
Huang W, Wu QD, Zhang M, Kong YL, Cao PR, Zheng W, Xu JH, Ye M. Novel Hsp90 inhibitor FW-04-806 displays potent antitumor effects in HER2-positive breast cancer cells as a single agent or in combination with lapatinib. Cancer Lett 2015; 356:862-71. [DOI: 10.1016/j.canlet.2014.10.040] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Revised: 10/30/2014] [Accepted: 10/30/2014] [Indexed: 10/24/2022]
|