51
|
Adhikari P, Oh Y, Panthee DR. Current Status of Early Blight Resistance in Tomato: An Update. Int J Mol Sci 2017; 18:E2019. [PMID: 28934121 PMCID: PMC5666701 DOI: 10.3390/ijms18102019] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 09/11/2017] [Accepted: 09/15/2017] [Indexed: 12/01/2022] Open
Abstract
Early blight (EB) is one of the dreadful diseases of tomato caused by several species of Alternaria including Alternaria linariae (which includes A. solani and A. tomatophila), as well as A. alternata. In some instances, annual economic yield losses due to EB have been estimated at 79%. Alternaria are known only to reproduce asexually, but a highly-virulent isolate has the potential to overcome existing resistance genes. Currently, cultural practices and fungicide applications are employed for the management of EB due to the lack of strong resistant cultivars. Resistance sources have been identified in wild species of tomato; some breeding lines and cultivars with moderate resistance have been developed through conventional breeding methods. Polygenic inheritance of EB resistance, insufficient resistance in cultivated species and the association of EB resistance with undesirable horticultural traits have thwarted the effective breeding of EB resistance in tomato. Several quantitative trait loci (QTL) conferring EB resistance have been detected in the populations derived from different wild species including Solanum habrochaites, Solanum arcanum and S. pimpinellifolium, but none of them could be used in EB resistance breeding due to low individual QTL effects. Pyramiding of those QTLs would provide strong resistance. More research is needed to identify additional sources of useful resistance, to incorporate resistant QTLs into breeding lines through marker-assisted selection (MAS) and to develop resistant cultivars with desirable horticultural traits including high yielding potential and early maturity. This paper will review the current understanding of causal agents of EB of tomato, resistance genetics and breeding, problems associated with breeding and future prospects.
Collapse
Affiliation(s)
- Pragya Adhikari
- Department of Horticultural Science, North Carolina State University, Mountain Horticultural Crops Research and Extension Center, 455 Research Dr., Mills River, NC 28759, USA.
| | - Yeonyee Oh
- Center for Integrated Fungal Research, Department of Plant Pathology, North Carolina State University, Raleigh, NC 27606, USA.
| | - Dilip R Panthee
- Department of Horticultural Science, North Carolina State University, Mountain Horticultural Crops Research and Extension Center, 455 Research Dr., Mills River, NC 28759, USA.
| |
Collapse
|
52
|
Yun CS, Motoyama T, Osada H. Regulatory Mechanism of Mycotoxin Tenuazonic Acid Production in Pyricularia oryzae. ACS Chem Biol 2017; 12:2270-2274. [PMID: 28820236 DOI: 10.1021/acschembio.7b00353] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Tenuazonic acid (TeA) is a mycotoxin produced by the rice blast fungus Pyricularia oryzae and some plant pathogenic fungi. We previously demonstrated that TeA is biosynthesized in P. oryzae by TeA synthetase 1 (TAS1) and that its production is induced by osmo-sensory MAPK-encoding gene (OSM1) deletion or the addition of 1% DMSO to cultures; however, the regulatory mechanisms of TeA production were unknown. Here, we identify a Zn(II)2-Cys6-type transcription factor in the upstream region of TAS1, which is encoded by TAS2 and regulates TeA production. We also find PoLAE1, which is a homologue of LaeA, a regulator of fungal secondary metabolism. Analysis of PoLAE1 deletion and overexpression strains indicate that PoLAE1 drives TeA production. We also demonstrate that two TeA-inducing signals, 1% DMSO addition and OSM1 deletion, were transmitted through PoLAE1. Our results indicate that TeA production is regulated by two specific regulators, TAS2 and PoLAE1, in P. oryzae.
Collapse
Affiliation(s)
- Choong-Soo Yun
- Chemical Biology Research
Group, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan
| | - Takayuki Motoyama
- Chemical Biology Research
Group, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan
| | - Hiroyuki Osada
- Chemical Biology Research
Group, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan
| |
Collapse
|
53
|
Meena M, Gupta SK, Swapnil P, Zehra A, Dubey MK, Upadhyay RS. Alternaria Toxins: Potential Virulence Factors and Genes Related to Pathogenesis. Front Microbiol 2017; 8:1451. [PMID: 28848500 PMCID: PMC5550700 DOI: 10.3389/fmicb.2017.01451] [Citation(s) in RCA: 118] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 07/18/2017] [Indexed: 01/04/2023] Open
Abstract
Alternaria is an important fungus to study due to their different life style from saprophytes to endophytes and a very successful fungal pathogen that causes diseases to a number of economically important crops. Alternaria species have been well-characterized for the production of different host-specific toxins (HSTs) and non-host specific toxins (nHSTs) which depend upon their physiological and morphological stages. The pathogenicity of Alternaria species depends on host susceptibility or resistance as well as quantitative production of HSTs and nHSTs. These toxins are chemically low molecular weight secondary metabolites (SMs). The effects of toxins are mainly on different parts of cells like mitochondria, chloroplast, plasma membrane, Golgi complex, nucleus, etc. Alternaria species produce several nHSTs such as brefeldin A, tenuazonic acid, tentoxin, and zinniol. HSTs that act in very low concentrations affect only certain plant varieties or genotype and play a role in determining the host range of specificity of plant pathogens. The commonly known HSTs are AAL-, AK-, AM-, AF-, ACR-, and ACT-toxins which are named by their host specificity and these toxins are classified into different family groups. The HSTs are differentiated on the basis of bio-statistical and other molecular analyses. All these toxins have different mode of action, biochemical reactions and signaling mechanisms to cause diseases. Different species of Alternaria produced toxins which reveal its biochemical and genetic effects on itself as well as on its host cells tissues. The genes responsible for the production of HSTs are found on the conditionally dispensable chromosomes (CDCs) which have been well characterized. Different bio-statistical methods like basic local alignment search tool (BLAST) data analysis used for the annotation of gene prediction, pathogenicity-related genes may provide surprising knowledge in present and future.
Collapse
Affiliation(s)
- Mukesh Meena
- Department of Botany, Institute of Science, Banaras Hindu UniversityVaranasi, India
| | | | | | | | | | | |
Collapse
|
54
|
Estiarte N, Crespo-Sempere A, Marín S, Sanchis V, Ramos A. Exploring polyamine metabolism of Alternaria alternata to target new substances to control the fungal infection. Food Microbiol 2017; 65:193-204. [DOI: 10.1016/j.fm.2017.02.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 01/18/2017] [Accepted: 02/01/2017] [Indexed: 11/30/2022]
|
55
|
Grover S, Lawrence CB. The Alternaria alternata Mycotoxin Alternariol Suppresses Lipopolysaccharide-Induced Inflammation. Int J Mol Sci 2017; 18:ijms18071577. [PMID: 28726766 PMCID: PMC5536065 DOI: 10.3390/ijms18071577] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Revised: 06/30/2017] [Accepted: 07/08/2017] [Indexed: 11/16/2022] Open
Abstract
The Alternaria mycotoxins alternariol (AOH) and alternariol monomethyl ether (AME) have been shown to possess genotoxic and cytotoxic properties. In this study, the ability of AOH and AME to modulate innate immunity in the human bronchial epithelial cell line (BEAS-2B) and mouse macrophage cell line (RAW264.7) were investigated. During these studies, it was discovered that AOH and to a lesser extent AME potently suppressed lipopolysaccharide (LPS)-induced innate immune responses in a dose-dependent manner. Treatment of BEAS-2B cells with AOH resulted in morphological changes including a detached pattern of growth as well as elongated arms. AOH/AME-related immune suppression and morphological changes were linked to the ability of these mycotoxins to cause cell cycle arrest at the G2/M phase. This model was also used to investigate the AOH/AME mechanism of immune suppression in relation to aryl hydrocarbon receptor (AhR). AhR was not found to be important for the immunosuppressive properties of AOH/AME, but appeared important for the low levels of cell death observed in BEAS-2B cells.
Collapse
Affiliation(s)
- Shivani Grover
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA 24061, USA.
| | | |
Collapse
|
56
|
Wenderoth M, Pinecker C, Voß B, Fischer R. Establishment of CRISPR/Cas9 in Alternaria alternata. Fungal Genet Biol 2017; 101:55-60. [PMID: 28286319 DOI: 10.1016/j.fgb.2017.03.001] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 03/05/2017] [Accepted: 03/06/2017] [Indexed: 10/20/2022]
Abstract
The filamentous fungus Alternaria alternata is a potent producer of many secondary metabolites, some of which like alternariol or alternariol-methyl ether are toxic and/or cancerogenic. Many Alternaria species do not only cause post-harvest losses of food and feed, but are aggressive plant pathogens. Despite the great economic importance and the large number of research groups working with the fungus, the molecular toolbox is rather underdeveloped. Gene deletions often result in heterokaryotic strains and therefore, gene-function analyses are rather tedious. In addition, A. alternata lacks a sexual cycle and classical genetic approaches cannot be combined with molecular biological methods. Here, we show that CRISPR/Cas9 can be efficiently used for gene inactivation. Two genes of the melanin biosynthesis pathway, pksA and brm2, were chosen as targets. Several white mutants were obtained after several rounds of strain purification through protoplast regeneration or spore inoculation. Mutation of the genes was due to deletions from 1bp to 1.5kbp. The CRISPR/Cas9 system was also used to inactivate the orotidine-5-phosphate decarboxylase gene pyrG to create a uracil-auxotrophic strain. The strain was counter-selected with fluor-orotic acid and could be re-transformed with pyrG from Aspergillus fumigatus and pyr-4 from Neurospora crassa. In order to test the functioning of GFP, the fluorescent protein was fused to a nuclear localization signal derived from the StuA transcription factor of Aspergillus nidulans. After transformation bright nuclei were visible.
Collapse
Affiliation(s)
- Maximilian Wenderoth
- Karlsruhe Institute of Technology (KIT) - South Campus, Institute for Applied Biosciences, Dept. of Microbiology, Fritz-Haber-Weg 4, D-76131 Karlsruhe, Germany
| | - Christoph Pinecker
- Karlsruhe Institute of Technology (KIT) - South Campus, Institute for Applied Biosciences, Dept. of Microbiology, Fritz-Haber-Weg 4, D-76131 Karlsruhe, Germany
| | - Benjamin Voß
- Karlsruhe Institute of Technology (KIT) - South Campus, Institute for Applied Biosciences, Dept. of Microbiology, Fritz-Haber-Weg 4, D-76131 Karlsruhe, Germany
| | - Reinhard Fischer
- Karlsruhe Institute of Technology (KIT) - South Campus, Institute for Applied Biosciences, Dept. of Microbiology, Fritz-Haber-Weg 4, D-76131 Karlsruhe, Germany. http://www.iab.kit.de
| |
Collapse
|
57
|
Wang H, Lin J, Chang Y, Jiang CZ. Comparative Transcriptomic Analysis Reveals That Ethylene/H 2O 2-Mediated Hypersensitive Response and Programmed Cell Death Determine the Compatible Interaction of Sand Pear and Alternaria alternata. FRONTIERS IN PLANT SCIENCE 2017; 8:195. [PMID: 28261248 PMCID: PMC5309250 DOI: 10.3389/fpls.2017.00195] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 01/31/2017] [Indexed: 05/23/2023]
Abstract
A major restriction on sand pear (Pyrus pyrifolia) production is black spot disease caused by the necrotrophic fungus Alternaria alternata. However, the pear response mechanism to A. alternata is unknown at the molecular level. Here, host responses of a resistant cultivar Cuiguan (CG) and a susceptible cultivar Sucui1 (SC1) to A. alternata infection were investigated. We found that the primary necrotic lesion formed at 1 dpi and the expansion of lesions was aggressive in SC1. Data from transcriptomic profiles using RNA-Seq technology identified a large number of differentially expressed genes (DEGs) between CG and SC1 in the early phase of A. alternata infection. K-mean cluster and Mapman analysis revealed that genes involved in ethylene (ET) biosynthesis and ET signaling pathway, such as ACS, ACOs, and ERFs, and in hypersensitive response (HR) and programmed cell death (PCD) were significantly enriched and up-regulated in the susceptible cultivar SC1. Conversely, genes involved in response to hydrogen peroxide and superoxide were differentially up-regulated in the resistant cultivar CG after inoculation with the fungus. Furthermore, ET levels were highly accumulated in SC1, but not in CG. Higher activities of detoxifying enzymes such as catalases were detected in CG. Our results demonstrate that the ET-/H2O2-mediated PCD and detoxifying processes play a vital role in the interaction of pear and A. alternata.
Collapse
Affiliation(s)
- Hong Wang
- Institute of Horticulture, Jiangsu Academy of Agricultural Sciences/Jiangsu Key Laboratory for Horticultural Crop Genetic ImprovementNanjing, China
| | - Jing Lin
- Institute of Horticulture, Jiangsu Academy of Agricultural Sciences/Jiangsu Key Laboratory for Horticultural Crop Genetic ImprovementNanjing, China
| | - Youhong Chang
- Institute of Horticulture, Jiangsu Academy of Agricultural Sciences/Jiangsu Key Laboratory for Horticultural Crop Genetic ImprovementNanjing, China
| | - Cai-Zhong Jiang
- Department of Plant Sciences, University of California at DavisDavis, CA, USA
- Crops Pathology and Genetics Research Unit, United States Department of Agriculture, Agricultural Research ServiceDavis, CA, USA
| |
Collapse
|
58
|
Pedras MSC, Park MR. The biosynthesis of brassicicolin A in the phytopathogen Alternaria brassicicola. PHYTOCHEMISTRY 2016; 132:26-32. [PMID: 27665682 DOI: 10.1016/j.phytochem.2016.09.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 08/31/2016] [Accepted: 09/14/2016] [Indexed: 05/26/2023]
Abstract
Alternaria brassicicola (Schwein.) Wiltshire is a phytopathogenic fungus that together with A. brassicae causes Alternaria black spot disease in Brassica species. Brassicicolin A is the major host-selective phytotoxin produced in cultures of A. brassicicola. Biosynthetic studies to establish the metabolic precursors of brassicicolin A were carried out with isotopically labeled compounds. Incorporation of D-[13C6]glucose, L-[15N]valine, or L-[2H8]valine into brassicicolin A was established using 1H, 13C, 15N NMR and INADEQUATE spectroscopy and HPLC-ESI-MS spectrometry. Based on analyses of the spectroscopic data, the labeling patterns of brassicicolin A isolated from cultures incubated with the labeled precursors are found to be consistent with both the glycolytic and the valine pathways. That is, the carbons of mannitol and acetyl units and the isocyanide carbon atoms are derived from D-[13C6]glucose whereas the hydroxyisopentanoyl and isocyanoisopentanoyl units are derived from L-valine, including the nitrogen atoms of both isocyanide groups.
Collapse
Affiliation(s)
- M Soledade C Pedras
- Department of Chemistry, University of Saskatchewan, 110 Science Place, Saskatoon, SK, S7N 5C9, Canada.
| | - Myung Ryeol Park
- Department of Chemistry, University of Saskatchewan, 110 Science Place, Saskatoon, SK, S7N 5C9, Canada
| |
Collapse
|
59
|
Estiarte N, Lawrence C, Sanchis V, Ramos A, Crespo-Sempere A. LaeA and VeA are involved in growth morphology, asexual development, and mycotoxin production in Alternaria alternata. Int J Food Microbiol 2016; 238:153-164. [DOI: 10.1016/j.ijfoodmicro.2016.09.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 07/29/2016] [Accepted: 09/05/2016] [Indexed: 12/21/2022]
|
60
|
Draft Genome Sequence of Alternaria alternata Isolated from Onion Leaves in South Africa. GENOME ANNOUNCEMENTS 2016; 4:4/5/e01022-16. [PMID: 27660793 PMCID: PMC5034144 DOI: 10.1128/genomea.01022-16] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Alternaria alternata (Fr.) Keissler strain PPRI 21032 was isolated from onion leaves collected in Roodeplaat, Pretoria, South Africa. The whole genome of this strain was sequenced and produced a total of 33.12 Mb with a GC content of 50.9%. The whole genome comprises 11,701 predicted coding sequences.
Collapse
|
61
|
Genomic and transcriptomic analyses of the tangerine pathotype of Alternaria alternata in response to oxidative stress. Sci Rep 2016; 6:32437. [PMID: 27582273 PMCID: PMC5007530 DOI: 10.1038/srep32437] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 08/09/2016] [Indexed: 12/19/2022] Open
Abstract
The tangerine pathotype of Alternaria alternata produces the A. citri toxin (ACT) and is the causal agent of citrus brown spot that results in significant yield losses worldwide. Both the production of ACT and the ability to detoxify reactive oxygen species (ROS) are required for A. alternata pathogenicity in citrus. In this study, we report the 34.41 Mb genome sequence of strain Z7 of the tangerine pathotype of A. alternata. The host selective ACT gene cluster in strain Z7 was identified, which included 25 genes with 19 of them not reported previously. Of these, 10 genes were present only in the tangerine pathotype, representing the most likely candidate genes for this pathotype specialization. A transcriptome analysis of the global effects of H2O2 on gene expression revealed 1108 up-regulated and 498 down-regulated genes. Expressions of those genes encoding catalase, peroxiredoxin, thioredoxin and glutathione were highly induced. Genes encoding several protein families including kinases, transcription factors, transporters, cytochrome P450, ubiquitin and heat shock proteins were found associated with adaptation to oxidative stress. Our data not only revealed the molecular basis of ACT biosynthesis but also provided new insights into the potential pathways that the phytopathogen A. alternata copes with oxidative stress.
Collapse
|
62
|
Che J, Shi J, Gao Z, Zhang Y. Transcriptome Analysis Reveals the Genetic Basis of the Resveratrol Biosynthesis Pathway in an Endophytic Fungus (Alternaria sp. MG1) Isolated from Vitis vinifera. Front Microbiol 2016; 7:1257. [PMID: 27588016 PMCID: PMC4988973 DOI: 10.3389/fmicb.2016.01257] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Accepted: 07/29/2016] [Indexed: 12/19/2022] Open
Abstract
Alternaria sp. MG1, an endophytic fungus previously isolated from Merlot grape, produces resveratrol from glucose, showing similar metabolic flux to the phenylpropanoid biosynthesis pathway, currently found solely in plants. In order to identify the resveratrol biosynthesis pathway in this strain at the gene level, de novo transcriptome sequencing was conducted using Illumina paired-end sequencing. A total of 22,954,434 high-quality reads were assembled into contigs and 18,570 unigenes were identified. Among these unigenes, 14,153 were annotated in the NCBI non-redundant protein database and 5341 were annotated in the Swiss-Prot database. After KEGG mapping, 2701 unigenes were mapped onto 115 pathways. Eighty-four unigenes were annotated in major pathways from glucose to resveratrol, coding 20 enzymes for glycolysis, 10 for phenylalanine biosynthesis, 4 for phenylpropanoid biosynthesis, and 4 for stilbenoid biosynthesis. Chalcone synthase was identified for resveratrol biosynthesis in this strain, due to the absence of stilbene synthase. All the identified enzymes indicated a reasonable biosynthesis pathway from glucose to resveratrol via glycolysis, phenylalanine biosynthesis, phenylpropanoid biosynthesis, and stilbenoid pathways. These results provide essential evidence for the occurrence of resveratrol biosynthesis in Alternaria sp. MG1 at the gene level, facilitating further elucidation of the molecular mechanisms involved in this strain's secondary metabolism.
Collapse
Affiliation(s)
- Jinxin Che
- College of Food Science and Engineering, Northwest A & F University Yangling, China
| | - Junling Shi
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University Xi'an, China
| | - Zhenhong Gao
- College of Food Science and Engineering, Northwest A & F University Yangling, China
| | - Yan Zhang
- College of Food Science and Engineering, Northwest A & F University Yangling, China
| |
Collapse
|
63
|
Hou Y, Ma X, Wan W, Long N, Zhang J, Tan Y, Duan S, Zeng Y, Dong Y. Comparative Genomics of Pathogens Causing Brown Spot Disease of Tobacco: Alternaria longipes and Alternaria alternata. PLoS One 2016; 11:e0155258. [PMID: 27159564 PMCID: PMC4861331 DOI: 10.1371/journal.pone.0155258] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Accepted: 04/26/2016] [Indexed: 12/30/2022] Open
Abstract
The genus Alternaria is a group of infectious/contagious pathogenic fungi that not only invade a wide range of crops but also induce severe allergic reactions in a part of the human population. In this study, two strains Alternaria longipes cx1 and Alternaria alternata cx2 were isolated from different brown spot lesions on infected tobacco leaves. Their complete genomes were sequenced, de novo assembled, and comparatively analyzed. Phylogenetic analysis revealed that A. longipes cx1 and A. alternata cx2 diverged 3.3 million years ago, indicating a recent event of speciation. Seventeen non-ribosomal peptide synthetase (NRPS) genes and 13 polyketide synthase (PKS) genes in A. longipes cx1 and 13 NRPS genes and 12 PKS genes in A. alternata cx2 were identified in these two strains. Some of these genes were predicted to participate in the synthesis of non-host specific toxins (non-HSTs), such as tenuazonic acid (TeA), alternariol (AOH) and alternariol monomethyl ether (AME). By comparative genome analysis, we uncovered that A. longipes cx1 had more genes putatively involved in pathogen-plant interaction, more carbohydrate-degrading enzymes and more secreted proteins than A. alternata cx2. In summary, our results demonstrate the genomic distinction between A. longipes cx1 and A. altenata cx2. They will not only improve the understanding of the phylogenetic relationship among genus Alternaria, but more importantly provide valuable genomic resources for the investigation of plant-pathogen interaction.
Collapse
Affiliation(s)
- Yujie Hou
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Xiao Ma
- Longrun Pu-erh Tea Academy, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Wenting Wan
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Ni Long
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Jing Zhang
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yuntao Tan
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Shengchang Duan
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Yan Zeng
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Science, Kunming, Yunnan, China
| | - Yang Dong
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, China
- Biological Big Data College, Yunnan Agricultural University, Kunming, Yunnan, China
| |
Collapse
|
64
|
Weikl F, Ghirardo A, Schnitzler JP, Pritsch K. Sesquiterpene emissions from Alternaria alternata and Fusarium oxysporum: Effects of age, nutrient availability, and co-cultivation. Sci Rep 2016; 6:22152. [PMID: 26915756 PMCID: PMC4768142 DOI: 10.1038/srep22152] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Accepted: 02/08/2016] [Indexed: 11/09/2022] Open
Abstract
Alternaria alternata is one of the most studied fungi to date because of its impact on human life – from plant pathogenicity to allergenicity. However, its sesquiterpene emissions have not been systematically explored. Alternaria regularly co-occurs with Fusarium fungi, which are common plant pathogens, on withering plants. We analyzed the diversity and determined the absolute quantities of volatile organic compounds (VOCs) in the headspace above mycelial cultures of A. alternata and Fusarium oxysporum under different conditions (nutrient rich and poor, single cultures and co-cultivation) and at different mycelial ages. Using stir bar sorptive extraction and gas chromatography–mass spectrometry, we observed A. alternata to strongly emit sesquiterpenes, particularly during the early growth stages, while emissions from F. oxysporum consistently remained comparatively low. The emission profile characterizing A. alternata comprised over 20 sesquiterpenes with few effects from nutrient quality and age on the overall emission profile. Co-cultivation with F. oxysporum resulted in reduced amounts of VOCs emitted from A. alternata although its profile remained similar. Both fungi showed distinct emission profiles, rendering them suitable biomarkers for growth-detection of their phylotype in ambient air. The study highlights the importance of thorough and quantitative evaluations of fungal emissions of volatile infochemicals such as sesquiterpenes.
Collapse
Affiliation(s)
- Fabian Weikl
- Helmholtz Zentrum München - German Research Center for Environmental Health, Institute of Biochemical Plant Pathology (BIOP), Neuherberg, Germany
| | - Andrea Ghirardo
- Helmholtz Zentrum München - German Research Center for Environmental Health, Research Unit Environmental Simulation (EUS), Institute of Biochemical Plant Pathology, Neuherberg, Germany
| | - Jörg-Peter Schnitzler
- Helmholtz Zentrum München - German Research Center for Environmental Health, Research Unit Environmental Simulation (EUS), Institute of Biochemical Plant Pathology, Neuherberg, Germany
| | - Karin Pritsch
- Helmholtz Zentrum München - German Research Center for Environmental Health, Institute of Biochemical Plant Pathology (BIOP), Neuherberg, Germany
| |
Collapse
|
65
|
Yun CS, Motoyama T, Osada H. Biosynthesis of the mycotoxin tenuazonic acid by a fungal NRPS-PKS hybrid enzyme. Nat Commun 2015; 6:8758. [PMID: 26503170 PMCID: PMC4640141 DOI: 10.1038/ncomms9758] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 09/28/2015] [Indexed: 12/30/2022] Open
Abstract
Tenuazonic acid (TeA) is a well-known mycotoxin produced by various plant pathogenic fungi. However, its biosynthetic gene has been unknown to date. Here we identify the TeA biosynthetic gene from Magnaporthe oryzae by finding two TeA-inducing conditions of a low-producing strain. We demonstrate that TeA is synthesized from isoleucine and acetoacetyl-coenzyme A by TeA synthetase 1 (TAS1). TAS1 is a unique non-ribosomal peptide synthetase and polyketide synthase (NRPS–PKS) hybrid enzyme that begins with an NRPS module. In contrast to other NRPS/PKS hybrid enzymes, the PKS portion of TAS1 has only a ketosynthase (KS) domain and this domain is indispensable for TAS1 activity. Phylogenetic analysis classifies this KS domain as an independent clade close to type I PKS KS domain. We demonstrate that the TAS1 KS domain conducts the final cyclization step for TeA release. These results indicate that TAS1 is a unique type of NRPS–PKS hybrid enzyme. Tenuazonic acid is a mycotoxin produced by various plant pathogenic fungi but its biosynthetic gene is unknown to date. Here, the authors identify the tenuazonic acid biosynthetic gene encoding a protein with a unique KS domain that conducts cyclization step for tenuazonic acid release in Magnaporthe oryzae.
Collapse
Affiliation(s)
- Choong-Soo Yun
- Chemical Biology Research Group, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan
| | - Takayuki Motoyama
- Chemical Biology Research Group, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan
| | - Hiroyuki Osada
- Chemical Biology Research Group, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan
| |
Collapse
|