51
|
Maurizio PL, Fuseini H, Tegha G, Hosseinipour M, De Paris K. Signatures of divergent anti-malarial treatment responses in peripheral blood from adults and young children in Malawi. Malar J 2019; 18:205. [PMID: 31234875 PMCID: PMC6591936 DOI: 10.1186/s12936-019-2842-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 06/17/2019] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND Heterogeneity in the immune response to parasite infection is mediated in part by differences in host genetics, gender, and age group. In infants and young children, ongoing immunological maturation often results in increased susceptibility to infection and variable responses to drug treatment, increasing the risk of complications. Even though significant age-associated effects on host cytokine responses to Plasmodium falciparum infection have been identified, age-associated effects on uncomplicated malaria infection and anti-malarial treatment remain poorly understood. METHODS In samples of whole blood from a cohort of naturally infected malaria-positive individuals with non-severe falciparum malaria in Malawi (n = 63 total; 34 infants and young children < 2 years old, 29 adults > 18 years old), blood cytokine levels and monocyte and dendritic cell frequencies were assessed at two timepoints: acute infection, and 4 weeks post anti-malarial treatment. The effects of age group, gender, and timepoint were modeled, and the role of these factors on infection and treatment outcomes was evaluated. RESULTS Regardless of treatment timepoint, in this population age was significantly associated with overall blood haemoglobin, which was higher in adults, and plasma nitric oxide metabolites, IL-10, and TNF levels, which were higher in young children. There was a significant effect of age on the haemoglobin treatment response, whereby after treatment, levels increased in young children and decreased in adults. Furthermore, there were significant age-associated effects on treatment response for overall parasite load, IFN-γ, and IL-12(p40), and these effects were gender-dependent. Significant age effects on the overall levels and treatment response of myeloid dendritic cell frequencies were observed. In addition, within each age group, results showed continuous age effects on gametocyte levels (Pfs16), TNF, and nitric oxide metabolites. CONCLUSIONS In a clinical study of young children and adults experiencing natural falciparum malaria infection and receiving anti-malarial treatment, age-associated signatures of infection and treatment responses in peripheral blood were identified. This study describes host markers that may indicate, and potentially contribute to, differential post-treatment outcomes for malaria in young children versus adults.
Collapse
Affiliation(s)
- Paul L Maurizio
- Department of Medicine, Section of Genetic Medicine, The University of Chicago, Chicago, IL, 60637, USA.
- Department of Genetics, University of North Carolina-Chapel Hill, Chapel Hill, NC, 27599, USA.
- Curriculum in Bioinformatics and Computational Biology, University of North Carolina-Chapel Hill, Chapel Hill, NC, 27599, USA.
| | - Hubaida Fuseini
- Department of Pathology, Microbiology & Immunology, Vanderbilt University, Nashville, TN, USA
| | - Gerald Tegha
- Division of Infectious Diseases, Department of Medicine, University of North Carolina, 130 Mason Farm Rd, Bioinformatics Bldg, Chapel Hill, NC, 27599, USA
| | - Mina Hosseinipour
- Division of Infectious Diseases, Department of Medicine, University of North Carolina, 130 Mason Farm Rd, Bioinformatics Bldg, Chapel Hill, NC, 27599, USA
- University of North Carolina Project-Malawi, Lilongwe, Malawi
| | - Kristina De Paris
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC, 27599, USA
| |
Collapse
|
52
|
Barateiro A, Pereira MLM, Epiphanio S, Marinho CRF. Contribution of Murine Models to the Study of Malaria During Pregnancy. Front Microbiol 2019; 10:1369. [PMID: 31275284 PMCID: PMC6594417 DOI: 10.3389/fmicb.2019.01369] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 05/31/2019] [Indexed: 01/26/2023] Open
Abstract
Annually, many pregnancies occur in areas of Plasmodium spp. transmission, particularly in underdeveloped countries with widespread poverty. Estimations have suggested that several million women are at risk of developing malaria during pregnancy. In particular cases, systemic infection caused by Plasmodium spp. may extend to the placenta, dysregulating local homeostasis and promoting the onset of placental malaria; these processes are often associated with increased maternal and fetal mortality, intrauterine growth restriction, preterm delivery, and reduced birth weight. The endeavor to understand and characterize the mechanisms underlying disease onset and placental pathology face several ethical and logistical obstacles due to explicit difficulties in assessing human gestation and biological material. Consequently, the advent of murine experimental models for the study of malaria during pregnancy has substantially contributed to our understanding of this complex pathology. Herein, we summarize research conducted during recent decades using murine models of malaria during pregnancy and highlight the most relevant findings, as well as discuss similarities to humans and the translational capacity of achieved results.
Collapse
Affiliation(s)
- André Barateiro
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Marcelo L M Pereira
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil.,Institute of Biosystems and Integrative Sciences, Faculty of Sciences, University of Lisbon, Lisbon, Portugal
| | - Sabrina Epiphanio
- Department of Clinical Analysis and Toxicology, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Claudio R F Marinho
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
53
|
Luzolo AL, Ngoyi DM. Cerebral malaria. Brain Res Bull 2019; 145:53-58. [DOI: 10.1016/j.brainresbull.2019.01.010] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 12/28/2018] [Accepted: 01/03/2019] [Indexed: 01/17/2023]
|
54
|
Varo R, Bassat Q. Malaria, immunity and mental disorders: A plausible relationship? EBioMedicine 2019; 40:29-30. [PMID: 30642749 PMCID: PMC6412813 DOI: 10.1016/j.ebiom.2019.01.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 01/07/2019] [Indexed: 11/16/2022] Open
Affiliation(s)
- Rosauro Varo
- Centro de Investigação em Saúde de Manhiça, Maputo, Mozambique; ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Spain.
| | - Quique Bassat
- Centro de Investigação em Saúde de Manhiça, Maputo, Mozambique; ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Spain; ICREA, Pg. Lluís Companys 23, 08010 Barcelona, Spain; Pediatric Infectious Diseases Unit, Pediatrics Department, Hospital Sant Joan de Déu (University of Barcelona), Barcelona, Spain.
| |
Collapse
|
55
|
Wang J, Li Y, Shen Y, Liang J, Li Y, Huang Y, Liu X, Jiang D, Yang S, Zhao Y, Yang K. PDL1 Fusion Protein Protects Against Experimental Cerebral Malaria via Repressing Over-Reactive CD8 + T Cell Responses. Front Immunol 2019; 9:3157. [PMID: 30693001 PMCID: PMC6339951 DOI: 10.3389/fimmu.2018.03157] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 12/21/2018] [Indexed: 01/22/2023] Open
Abstract
Cerebral malaria (CM), mainly caused by Plasmodium falciparum (P. f.), is one of the most lethal complications of severe malaria. As immunopathology mediated by brain-infiltrating CD8+ T cells is the major pathogenesis of CM, there is no safe and efficient treatment clinically focused on CD8+ T cells. New methods are needed to protect the host from injury. As evidence has shown that programmed death-1 (PD-1) is one of the most efficient immunomodulatory molecules, we constructed two soluble fusion proteins, PDL1-IgG1Fc and PDL2-IgG1Fc, to enhance PD-1/PDL signaling pathways in innate and adaptive immune cells, including macrophages and CD8+ T cells. Firstly, we confirmed that PD-1 signal pathway deficiency led to higher levels of CD8+ T cell proliferation and shorter survival time in PD-1-deficient (Pdcd1−/−) mice than WT mice. Secondly, PDL1-IgG1Fc-treated mice exhibited a more prolonged survival time than control groups. Moreover, PDL1-IgG1Fc was observed to ameliorate blood-brain barrier (BBB) disruption by limiting the over-reactive CD8+ T cell cytotoxicity during experimental cerebral malaria (ECM). Further studies found thatPDL1-IgG1Fc-treated macrophages showed significant suppression in macrophage M1 polarization and their antigen presentation capability to CD8+ T cells. In conclusion, our results demonstrated that the administration of PDL1-IgG1Fc in the early stage before ECM onset has an obvious effect on the maintenance of immune microenvironment homeostasis in the brain and is deemed a promising candidate for protection against CM in the future.
Collapse
Affiliation(s)
- Jun Wang
- Department of Medical Microbiology and Parasitology, Fourth Military Medical University, Xi'an, China.,Department of Immunology, Fourth Military Medical University, Xi'an, China
| | - Yue Li
- Department of Medical Microbiology and Parasitology, Fourth Military Medical University, Xi'an, China
| | - Yan Shen
- Department of Medical Microbiology and Parasitology, Fourth Military Medical University, Xi'an, China
| | - Jiao Liang
- Department of Medical Microbiology and Parasitology, Fourth Military Medical University, Xi'an, China
| | - Yinghui Li
- Department of Medical Microbiology and Parasitology, Fourth Military Medical University, Xi'an, China
| | - Yuxiao Huang
- Department of Medical Microbiology and Parasitology, Fourth Military Medical University, Xi'an, China
| | - Xuewu Liu
- Department of Medical Microbiology and Parasitology, Fourth Military Medical University, Xi'an, China
| | - Dongbo Jiang
- Department of Immunology, Fourth Military Medical University, Xi'an, China
| | - Shuya Yang
- Department of Immunology, Fourth Military Medical University, Xi'an, China
| | - Ya Zhao
- Department of Medical Microbiology and Parasitology, Fourth Military Medical University, Xi'an, China
| | - Kun Yang
- Department of Immunology, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
56
|
Niewold P, Cohen A, van Vreden C, Getts DR, Grau GE, King NJC. Experimental severe malaria is resolved by targeting newly-identified monocyte subsets using immune-modifying particles combined with artesunate. Commun Biol 2018; 1:227. [PMID: 30564748 PMCID: PMC6292940 DOI: 10.1038/s42003-018-0216-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 10/31/2018] [Indexed: 12/29/2022] Open
Abstract
Current treatment of severe malaria and associated cerebral malaria (CM) and respiratory distress syndromes are directed primarily at the parasite. Targeting the parasite has only partial efficacy in advanced infection, as neurological damage and respiratory distress are due to accumulation of host blood cells in the brain microvasculature and lung interstitium. Here, computational analysis identifies Ly6Clo monocytes as a major component of the immune infiltrate in both organs in a preclinical mouse model. Specifically targeting Ly6Clo monocyte precursors, identified by adoptive transfer, with immune-modifying particles (IMP) prevents experimental CM (ECM) in 50% of Plasmodium berghei ANKA-infected mice in early treatment protocols. Furthermore, treatment at onset of clinical ECM with 2 doses of a novel combination of IMP and anti-malarial drug artesunate results in 88% survival. This combination confers protection against ECM and mortality in late stage severe experimental malaria and provides a viable advance on current treatment regimens.
Collapse
Affiliation(s)
- Paula Niewold
- 1Viral Immunopathology, Discipline of Pathology and Bosch Institute, School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Camperdown, NSW 2050 Australia
| | - Amy Cohen
- 2Vascular Immunology Unit, Discipline of Pathology and Bosch Institute, School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Camperdown, NSW 2050 Australia
| | - Caryn van Vreden
- 3Sydney Cytometry, The University of Sydney and The Centenary Institute, Camperdown, NSW 2050 Australia
| | - Daniel R Getts
- 4Department of Microbiology-Immunology and Interdepartmental Immunobiology Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611 USA.,TcR2, Therapeutics, 100 Binney Street, Suite 710, Cambridge, MA 02142 USA
| | - Georges E Grau
- 2Vascular Immunology Unit, Discipline of Pathology and Bosch Institute, School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Camperdown, NSW 2050 Australia
| | - Nicholas J C King
- 1Viral Immunopathology, Discipline of Pathology and Bosch Institute, School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Camperdown, NSW 2050 Australia.,3Sydney Cytometry, The University of Sydney and The Centenary Institute, Camperdown, NSW 2050 Australia
| |
Collapse
|
57
|
Totino PRR, de Souza HADS, Correa EHC, Daniel-Ribeiro CT, Ferreira-da-Cruz MDF. Eryptosis of non-parasitized erythrocytes is related to anemia in Plasmodium berghei low parasitema malaria of Wistar rats. Parasitol Res 2018; 118:377-382. [PMID: 30506514 DOI: 10.1007/s00436-018-6167-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Accepted: 11/23/2018] [Indexed: 01/03/2023]
Abstract
It is known that premature elimination of non-parasitized RBCs (nRBCs) plays an important role in the pathogenesis of malarial anemia, in which suicidal death process (eryptosis) of nRBCs has been suggested to be involved. To check this possibility, we investigate eryptosis during infection of P. berghei ANKA in Wistar rats, a malaria experimental model that, similar to human malaria, the infection courses with low parasitemia and acute anemia. As expected, P. berghei ANKA infection was marked by low parasite burdens that reached a mean peak of 3% between days six and nine post-infection and solved spontaneously. A significant reduction of the hemoglobin levels (~ 30%) was also observed on days subsequent to the peak of parasitemia, persisting until day 16 post-infection. In eryptosis assays, it was observed a significant increase in the levels of PS-exposing nRBC, which coincided with the reduction of hemoglobin levels and was positively related to anemia. In addition to PS externalization, eryptosis of nRBC induced by P. berghei infection was characterized by cytoplasm calcium influx, but not caspases activity. These results confirm our previous studies evidencing a pro-eryptotic effect of malaria infection on nRBCs and show that a caspase-independent eryptotic process is implicated in anemia induced by P. berghei ANKA infection in Wistar rats.
Collapse
Affiliation(s)
- Paulo Renato Rivas Totino
- Laboratory for Malaria Research, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, RJ, Brazil.
| | | | | | | | | |
Collapse
|
58
|
Glennon EKK, Dankwa S, Smith JD, Kaushansky A. Opportunities for Host-targeted Therapies for Malaria. Trends Parasitol 2018; 34:843-860. [PMID: 30122551 PMCID: PMC6168423 DOI: 10.1016/j.pt.2018.07.011] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 07/20/2018] [Accepted: 07/23/2018] [Indexed: 12/19/2022]
Abstract
Despite the recent successes of artemisinin-based antimalarial drugs, many still die from severe malaria, and eradication efforts are hindered by the limited drugs currently available to target transmissible gametocyte parasites and liver-resident dormant Plasmodium vivax hypnozoites. Host-targeted therapy is a new direction for infectious disease drug development and aims to interfere with host molecules, pathways, or networks that are required for infection or that contribute to disease. Recent advances in our understanding of host pathways involved in parasite development and pathogenic mechanisms in severe malaria could facilitate the development of host-targeted interventions against Plasmodium infection and malaria disease. This review discusses new opportunities for host-targeted therapeutics for malaria and the potential to harness drug polypharmacology to simultaneously target multiple host pathways using a single drug intervention.
Collapse
Affiliation(s)
- Elizabeth K K Glennon
- Center for Infectious Disease Research, 307 Westlake Ave N Suite 500, Seattle, WA 98109, USA; Department of Global Health, University of Washington, Harris Hydraulics Laboratory, Box 357965, Seattle, WA 98195, USA; These authors made an equal contribution
| | - Selasi Dankwa
- Center for Infectious Disease Research, 307 Westlake Ave N Suite 500, Seattle, WA 98109, USA; These authors made an equal contribution
| | - Joseph D Smith
- Center for Infectious Disease Research, 307 Westlake Ave N Suite 500, Seattle, WA 98109, USA; Department of Global Health, University of Washington, Harris Hydraulics Laboratory, Box 357965, Seattle, WA 98195, USA
| | - Alexis Kaushansky
- Center for Infectious Disease Research, 307 Westlake Ave N Suite 500, Seattle, WA 98109, USA; Department of Global Health, University of Washington, Harris Hydraulics Laboratory, Box 357965, Seattle, WA 98195, USA.
| |
Collapse
|