51
|
Zhang L, Yin H, Xie Y, Zhang Y, Dong F, Wu K, Yang L, Lv H. Exploring the anti‑oxidative mechanisms of Rhodiola rosea in ameliorating myocardial fibrosis through network pharmacology and in vitro experiments. Mol Med Rep 2024; 30:214. [PMID: 39370810 PMCID: PMC11450433 DOI: 10.3892/mmr.2024.13338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 09/02/2024] [Indexed: 10/08/2024] Open
Abstract
Myocardial fibrosis (MF) significantly compromises cardiovascular health by affecting cardiac function through excessive collagen deposition. This impairs myocardial contraction and relaxation and leads to severe complications and increased mortality. The present study employed network pharmacology and in vitro assays to investigate the bioactive compounds of Rhodiola rosea and their targets. Using databases such as HERB, the Encyclopedia of Traditional Chinese Medicine, Pubchem, OMIM and GeneCards, the present study identified effective components and MF‑related targets. Network analysis was conducted with Cytoscape to develop a Drug‑Ingredient‑Target‑Disease network and the STRING database was utilized to construct a protein‑protein interaction network. Key nodes were analyzed for pathway enrichment using Gene Ontology and Kyoto Encyclopedia of Genes and Genomes. Molecular interactions were further explored through molecular docking techniques. The bioactivity of salidroside (SAL), the principal component of Rhodiola rosea, against MF was experimentally validated in H9c2 cardiomyocytes treated with angiotensin II and assessed for cell viability, protein expression and oxidative stress markers. Network pharmacology identified 25 active ingredients and 372 targets in Rhodiola rosea, linking SAL with pathways such as MAPK, EGFR, advanced glycosylation end products‑advanced glycosylation end products receptor and Forkhead box O. SAL showed significant interactions with core targets such as albumin, IL6, AKT serine/threonine kinase 1, MMP9 and caspase‑3. In vitro, SAL mitigated AngII‑induced increases in collagen I and alpha smooth muscle actin protein levels and oxidative stress markers, demonstrating dose‑dependent effectiveness in reversing MF. SAL from Rhodiola rosea exhibited potent anti‑oxidative properties that mitigated MF by modulating multiple molecular targets and signaling pathways. The present study underscored the therapeutic potential of SAL in treating oxidative stress‑related cardiovascular diseases.
Collapse
Affiliation(s)
- Luna Zhang
- Department of Pharmacy, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116023, P.R. China
| | - Hang Yin
- Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY 10021, USA
| | - Yumin Xie
- Department of Pharmacy, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116023, P.R. China
| | - Yueyue Zhang
- Department of Pharmacy, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116023, P.R. China
| | - Feihong Dong
- Department of Pharmacy, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116023, P.R. China
| | - Ke Wu
- Department of Pharmacy, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116023, P.R. China
| | - Le Yang
- Department of Pharmacy, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116023, P.R. China
| | - Huiyi Lv
- Department of Pharmacy, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116023, P.R. China
| |
Collapse
|
52
|
Xiao M, Guo Z, Yang Y, Hu C, Cheng Q, Zhang C, Wu Y, Cheng Y, Benson WLM, Shamay SMN, Leung GPH, Li J, Gao H, Zhang J. Glycyrrhizic acid-based multifunctional nanoplatform for tumor microenvironment regulation. Chin J Nat Med 2024; 22:1089-1099. [PMID: 39725510 DOI: 10.1016/s1875-5364(24)60685-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Indexed: 12/28/2024]
Abstract
Natural compounds demonstrate unique therapeutic advantages for cancer treatment, primarily through direct tumor suppression or interference with the tumor microenvironment (TME). Glycyrrhizic acid (GL), a bioactive ingredient derived from the medicinal herb Glycyrrhiza uralensis Fisch., and its sapogenin glycyrrhetinic acid (GA), have been recognized for their ability to inhibit angiogenesis and remodel the TME. Consequently, the combination of GL with other therapeutic agents offers superior therapeutic benefits. Given GL's amphiphilic structure, self-assembly capability, and liver cancer targeting capacity, various GL-based nanoscale drug delivery systems have been developed. These GL-based nanosystems exhibit angiogenesis suppression and TME regulation properties, synergistically enhancing anti-cancer effects. This review summarizes recent advances in GL-based nanosystems, including polymer-drug micelles, drug-drug assembly nanoparticles (NPs), liposomes, and nanogels, for cancer treatment and tumor postoperative care, providing new insights into the anti-cancer potential of natural compounds. Additionally, the review discusses existing challenges and future perspectives for translating GL-based nanosystems from bench to bedside.
Collapse
Affiliation(s)
- Meng Xiao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Zhiqing Guo
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China
| | - Yating Yang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Chuan Hu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Qian Cheng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Chen Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yihan Wu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yanfen Cheng
- School of Medicine, Chengdu University, Chengdu 610106, China
| | - Wui Lau Man Benson
- Department of Rehabilitation Sciences, Faculty of Health and Social Sciences, Hong Kong Polytechnic University, Hong Kong 999077, China
| | - Sheung Mei Ng Shamay
- Department of Rehabilitation Sciences, Faculty of Health and Social Sciences, Hong Kong Polytechnic University, Hong Kong 999077, China
| | - George Pak-Heng Leung
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong 999077, China
| | - Jingjing Li
- Department of Rehabilitation Sciences, Faculty of Health and Social Sciences, Hong Kong Polytechnic University, Hong Kong 999077, China; The Research Centre for Chinese Medicine Innovation, Hong Kong Polytechnic University, Hong Kong 999077, China.
| | - Huile Gao
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.
| | - Jinming Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| |
Collapse
|
53
|
Lei J, Yang J, Cheng S, Lu F, Wu Z, Wang Z, Wang Z, Sun C, Lin L. Peimine induces apoptosis of glioblastoma cells through regulation of the PI3K/AKT signaling pathway. Exp Ther Med 2024; 28:447. [PMID: 39430343 PMCID: PMC11487465 DOI: 10.3892/etm.2024.12737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 08/22/2024] [Indexed: 10/22/2024] Open
Abstract
Glioblastoma (GBM) is one of the most malignant forms of intracranial tumors, with high mortality rates and invariably poor prognosis, due to the limited clinical treatment strategies available. As a natural compound, peimine's favorable pharmacological activities have been widely revealed. However, potential inhibitory effects of peimine on GBM have not been explored. In the present study, both in vitro and in vivo experiments were performed to elucidate the effects of peimine on GBM and to further delineate the underlying molecular mechanism of action. Different doses (0, 25 and 50 µM) of peimine were added to U87 cells, before MTT, colony formation, wound healing, Transwell migration and invasion, reactive oxygen species and mitochondrial transmembrane potential assays were used to measure proliferation, migration, invasion and apoptosis. Furthermore, western blotting was used to examine the possible effects of peimine on the expression of proteins associated with apoptosis and the PI3K/AKT signaling pathway. Subsequently, a GBM mouse xenograft model was used to assess the effects of peimine in vivo. The findings showed that peimine inhibited GBM proliferation, migration and invasion in a dose-dependent manner, whilst also inducing apoptosis. Peimine also reduced tumor growth in vivo. Mechanistically, peimine downregulated the expression of Bcl-2 and Caspase 3, whilst upregulating the protein expression levels of p53, Bax and Cleaved-Caspase 3 in a dose-dependent manner. In addition, PI3K and AKT phosphorylation levels were found to be decreased by peimine in a dose-dependent manner. In conclusion, these findings suggest that peimine may limit GBM growth by regulating the PI3K/AKT signaling pathway both in vitro and in vivo. These findings may have promising clinical implications.
Collapse
Affiliation(s)
- Jiaming Lei
- School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning, Hubei 437100, P.R. China
- Key Laboratory of Environmental Related Diseases and One Health, School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, Hubei 437100, P.R. China
| | - Jianbao Yang
- School of Public Health, Xianning Medical College, Hubei University of Science and Technology, Xianning, Hubei 437100, P.R. China
| | - Shijiao Cheng
- School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning, Hubei 437100, P.R. China
- Key Laboratory of Environmental Related Diseases and One Health, School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, Hubei 437100, P.R. China
| | - Feifei Lu
- School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning, Hubei 437100, P.R. China
- Key Laboratory of Environmental Related Diseases and One Health, School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, Hubei 437100, P.R. China
| | - Zihan Wu
- Department of Ultrasound, Xianning Traditional Chinese Medicine Hospital, Xianning, Hubei 437100, P.R. China
| | - Ziyi Wang
- Department of Medicine, Hubei University of Science and Technology, Xianning, Hubei 437100, P.R. China
| | - Ziqi Wang
- Department of Medicine, Hubei University of Science and Technology, Xianning, Hubei 437100, P.R. China
| | - Chenyu Sun
- Department of Medicine, Hubei University of Science and Technology, Xianning, Hubei 437100, P.R. China
| | - Li Lin
- Key Laboratory of Environmental Related Diseases and One Health, School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, Hubei 437100, P.R. China
| |
Collapse
|
54
|
Li X, Shan Y, Wang S, Wang J, Heng X. Triptolide induces apoptosis of glioma cells by inhibiting NF-κB activation during oxidative stress. Sci Rep 2024; 14:29740. [PMID: 39614071 DOI: 10.1038/s41598-024-80856-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 11/21/2024] [Indexed: 12/01/2024] Open
Abstract
Glioma is a common and fatal malignant primary brain tumor. Radiotherapy and first-line chemotherapy have little effect on the survival rate of patients, requiring alternative therapies. The main active ingredient of Tripterygium wilfordii Hook. F. triptolide (TP) has been shown to have anti-inflammatory and anti-proliferative properties, along with a wide range of anticancer activities. This study aimed to investigate the molecular mechanisms of triptolide in glioma treatment through network pharmacology and experimental validation. Cell viability was first assessed using Cell Counting Kit-8 (CCK8), followed by cell scratch assay and cell migration ability. Apoptosis-related markers, including TUNEL staining, Bcl-2-associated X protein (Bax), and B-cell lymphoma-2 (Bcl-2), were detected. Network pharmacology was used to predict the key targets of glioma, detect its signal pathways, screen the key components and targets for molecular docking, and explore the signaling pathways of TP. Lastly, immunofluorescence assays and ELISA were performed to elucidate the underlying mechanistic pathways. The network pharmacology data suggested that TP may inhibit glioma proliferation by regulating the signaling pathway of the nuclear factor kappa-B (NF-κB). The results showed that the underlying mechanism involved the regulation of the NF-κB signaling pathway to promote the generation of reactive oxygen species, thereby enhancing oxidative stress response and promoting cell apoptosis.
Collapse
Affiliation(s)
- Xinglan Li
- Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
- Department of Oncology, Linyi People's Hospital, Linyi, 276000, China
| | - Yubang Shan
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Si Wang
- The First School of Clinical Medicine, Yunnan University of Chinese Medicine, Kunming, 650500, China
| | - Jia Wang
- Library, Linyi People's Hospital, Linyi, 276000, China
| | - Xueyuan Heng
- Department of Neurosurgery, Linyi People's Hospital, Linyi, 276000, China.
- Department of Neurosurgery, Linyi People's Hospital, 27 East Jiefang Road, Lanshan District, Linyi City, Linyi, 276000, Shandong Province, China.
| |
Collapse
|
55
|
Lu Z, Zhu G, Feng X, Xiang Y, Chen C, Yuan H, Chen Z. Exploring the therapeutic potency of cryptotanshinone in cervical cancer: a multi-omics and network pharmacology approach. Front Genet 2024; 15:1435132. [PMID: 39664731 PMCID: PMC11632102 DOI: 10.3389/fgene.2024.1435132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Accepted: 11/11/2024] [Indexed: 12/13/2024] Open
Abstract
Introduction Cervical cancer remains a significant challenge in oncology with an escalating demand for novel therapeutic strategies that can navigate the complexities of its pathophysiology. This study elucidated the antineoplastic effects of cryptotanshinone, a derivative of danshen (Salvia miltiorrhiza), a herb widely utilized in traditional Chinese medicine practices. Methods Employing a comprehensive multi-omics approach, including transcriptomic, proteomic, and bioinformatics analyses, we investigated the potential effects of cryptotanshinone on cervical cancer through data mining and computational analysis. Results and Discussion Our results demonstrated that the potential of cryptotanshinone to disrupted cancer cell proliferation and induced apoptosis may be ascribed to its modulation of gene expression and interaction with specific protein networks. Furthermore, network pharmacology and pathway enrichment analyses identified critical hubs and signaling pathways, suggesting a multi-targeted mechanism of action. Furthermore, the establishment of a prognostic model, which is founded upon differentially expressed genes linked to cryptotanshinone treatment, underscores its promising role as both a prognostic biomarker and a therapeutic agent. These insights pave the way for the integration of cryptotanshinone into therapeutic regimens, offering a promising avenue for enhancing the efficacy of cervical cancer treatment and patient outcomes.
Collapse
Affiliation(s)
- Zenghong Lu
- Department of Oncology, The First Affiliated Hospital, Gannan Medical University, Ganzhou, China
| | - Gangfeng Zhu
- First Clinical Medical College, Gannan Medical University, Ganzhou, China
| | - Xiaofei Feng
- Department of Oncology, The First Affiliated Hospital, Gannan Medical University, Ganzhou, China
| | - Yi Xiang
- Department of Oncology, The First Affiliated Hospital, Gannan Medical University, Ganzhou, China
| | - Cixiang Chen
- First Clinical Medical College, Gannan Medical University, Ganzhou, China
| | - Huiting Yuan
- First Clinical Medical College, Gannan Medical University, Ganzhou, China
| | - Zhixing Chen
- Department of Gastroenterology, The First Affiliated Hospital, Gannan Medical University, Ganzhou, China
| |
Collapse
|
56
|
Adorisio S, Fierabracci A, Cham BT, Hoang VD, Thuy Linh NT, Nhung LTH, Martelli MP, Ayroldi E, Ronchetti S, Rosati L, Di Giacomo S, Thuy TT, Delfino DV. Modulatory Effect of Cucurbitacin D from Elaeocarpus hainanensis on ZNF217 Oncogene Expression in NPM-Mutated Acute Myeloid Leukemia. Pharmaceuticals (Basel) 2024; 17:1561. [PMID: 39770403 PMCID: PMC11676938 DOI: 10.3390/ph17121561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 11/12/2024] [Accepted: 11/15/2024] [Indexed: 01/11/2025] Open
Abstract
Background/Objectives: The expression of oncogene zinc-finger protein 217 (ZNF217) has been reported to play a central role in cancer development, resistance, and recurrence. Therefore, targeting ZNF217 has been proposed as a possible strategy to fight cancer, and there has been much research on compounds that can target ZNF217. The present work investigates the chemo-preventive properties of cucurbitacin D, a compound with a broad range of anticancer effects, in hematological cancer cells, specifically with regard to its ability to modulate ZNF217 expression. Methods: Different cucurbitacins were isolated from the Vietnamese plant Elaeocarpus hainanensis. The purified compounds were tested on nucleophosmin-mutated acute myeloid leukemia and other hematological cancer cell lines to assess their effects on the cell cycle, cell viability and apoptosis, and the expression of ZNF217. Results: Cucurbitacin D resulted in a reduction in the number of acute myeloid leukemia cells by inducing an increase in apoptosis and blocking cell cycle progression. It also led to a significant decrease in ZNF217 expression in the nucleophosmin-mutated acute myeloid leukemia cell line but not in the other hematologic cancer cell lines. The reduction in ZNF217 expression contributed significantly to the blocking of cell cycle progression but did not affect apoptosis. Conclusions: The obtained results suggest that cucurbitacin D is a promising molecule for targeting mutated nucleophosmin or its pathway in acute myeloid leukemia cells, although further studies are needed for in-depth investigations into its specific mechanisms.
Collapse
Affiliation(s)
- Sabrina Adorisio
- Section of Pharmacology, Department of Medicine and Surgery, University of Perugia, 06129 Perugia, Italy; (S.A.); (E.A.); (S.R.); (L.R.)
| | | | - Ba Thi Cham
- Department of Chemistry, Graduate University of Science and Technology, Vietnam Academy of Science and Technology (VAST), Hanoi 10072, Vietnam; (B.T.C.); (N.T.T.L.); (T.T.T.)
- Institute of Chemistry, VAST, Hanoi 10072, Vietnam
| | - Vu Dinh Hoang
- School of Chemistry and Life Sciences, Hanoi University of Science and Technology, Hanoi 10000, Vietnam;
| | - Nguyen Thi Thuy Linh
- Department of Chemistry, Graduate University of Science and Technology, Vietnam Academy of Science and Technology (VAST), Hanoi 10072, Vietnam; (B.T.C.); (N.T.T.L.); (T.T.T.)
- Institute of Chemistry, VAST, Hanoi 10072, Vietnam
| | - Le Thi Hong Nhung
- Faculty of Chemical Technology, Hanoi University of Industry, Hanoi 10000, Vietnam;
| | - Maria Paola Martelli
- Hematology, Department of Medicine and Surgery, University of Perugia and ‘Santa Maria della Misericordia’ Perugia Hospital, 06123 Perugia, Italy;
| | - Emira Ayroldi
- Section of Pharmacology, Department of Medicine and Surgery, University of Perugia, 06129 Perugia, Italy; (S.A.); (E.A.); (S.R.); (L.R.)
| | - Simona Ronchetti
- Section of Pharmacology, Department of Medicine and Surgery, University of Perugia, 06129 Perugia, Italy; (S.A.); (E.A.); (S.R.); (L.R.)
| | - Lucrezia Rosati
- Section of Pharmacology, Department of Medicine and Surgery, University of Perugia, 06129 Perugia, Italy; (S.A.); (E.A.); (S.R.); (L.R.)
| | - Silvia Di Giacomo
- Department of Physiology and Pharmacology “V. Erspamer”, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy;
- Department of Food Safety, Nutrition and Veterinary Public Health, Italian National Institute of Health, 00161 Rome, Italy
| | - Trinh Thi Thuy
- Department of Chemistry, Graduate University of Science and Technology, Vietnam Academy of Science and Technology (VAST), Hanoi 10072, Vietnam; (B.T.C.); (N.T.T.L.); (T.T.T.)
- Institute of Chemistry, VAST, Hanoi 10072, Vietnam
| | - Domenico Vittorio Delfino
- Section of Pharmacology, Department of Medicine and Surgery, University of Perugia, 06129 Perugia, Italy; (S.A.); (E.A.); (S.R.); (L.R.)
- Foligno Nursing School and Master in Physiotherapy in Musculoskeletal and Rheumatological Area, Department of Medicine and Surgery, University of Perugia, 06129 Perugia, Italy
| |
Collapse
|
57
|
Qian Y, Dong J, Zhang W, Xue X, Xiong Z, Zeng W, Wang Q, Fan Z, Zuo Z, Huang Z, Jiang Y. Deguelin inhibits the glioblastoma progression through suppressing CCL2/NFκB signaling pathway. Neuropharmacology 2024; 259:110109. [PMID: 39128581 DOI: 10.1016/j.neuropharm.2024.110109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 07/01/2024] [Accepted: 08/08/2024] [Indexed: 08/13/2024]
Abstract
Glioblastoma multiforme (GBM) is the most common primary intracranial tumor with characteristics of high aggressiveness and poor prognosis. Deguelin, a component from the bark of Leguminosae Mundulea sericea (African plant), displays antiproliferative effects in some tumors, however, the inhibitory effect and mechanism of deguelin on GBM were still poorly understood. At first, we found that deguelin reduced the viability of GBM cells by causing cell cycle arrest in G2/M phase and inducing their apoptosis. Secondly, deguelin inhibited the migration of GBM cells. Next, RNA-seq analysis identified that CCL2 (encoding chemokine CCL2) was downregulated significantly in deguelin-treated GBM cells. As reported, CCL2 promoted the cell growth, and CCL2 was associated with regulating NFκB signaling pathway, as well as involved in modulating tumor microenvironment (TME). Furthermore, we found that deguelin inactivated CCL2/NFκB signaling pathway, and exougous CCL2 could rescue the anti-inhibitory effect of deguelin on GBM cells via upregulating NFκB. Finally, we established a syngeneic intracranial orthotopic GBM model and found that deguelin regressed the tumor growth, contributed to an anti-tumorigenic TME and inhibited angiogenesis of GBM by suppressing CCL2/NFκB in vivo. Taken together, these results suggest the anti-GBM effect of deguelin via inhibiting CCL2/NFκB pathway, which may provide a new strategy for the treatment of GBM.
Collapse
Affiliation(s)
- Yiming Qian
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China
| | - Jianhong Dong
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China
| | - Wei Zhang
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China
| | - Xiumin Xue
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China
| | - Zhenrong Xiong
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China
| | - Weiquan Zeng
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China
| | - Qian Wang
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China
| | - Ziwei Fan
- Department of Orthopedics (Spine Surgery), The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Zhenxing Zuo
- Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Zhihui Huang
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China.
| | - Yuanyuan Jiang
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China.
| |
Collapse
|
58
|
Tang N, Deng W, Wu Y, Deng Z, Wu X, Xiong J, Zhao Q. Single-Cell Spatial-Temporal Analysis of ZNF451 in Mediating Drug Resistance and CD8 + T Cell Dysfunction. RESEARCH (WASHINGTON, D.C.) 2024; 7:0530. [PMID: 39534688 PMCID: PMC11555180 DOI: 10.34133/research.0530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 10/02/2024] [Accepted: 10/19/2024] [Indexed: 11/16/2024]
Abstract
Cisplatin is widely used to treat osteosarcoma, but recurrent cases often develop resistance, allowing the disease to progress and complicating clinical management. This study aimed to elucidate the immune microenvironment of osteosarcoma, providing insights into the mechanisms of recurrence and identifying potential therapeutic strategies. By analyzing multiple single-cell and bulk RNA-sequencing datasets, we discovered that the SUMOylation-related gene ZNF451 promotes osteosarcoma recurrence and alters its immune microenvironment. ZNF451 was found to importantly enhance the growth, migration, and invasion of resistant cells while also reducing their sensitivity to cisplatin and lowering their apoptosis rate. Moreover, our data indicated that ZNF451 plays a crucial role in bone resorption and epithelial-mesenchymal transition. ZNF451 also regulates CD8+ T cell function, leading to their exhaustion and transition to the CD8T.EXH state. Additionally, β-cryptoxanthin has been identified as a potential therapeutic agent that inhibits osteosarcoma progression by targeting ZNF451. In summary, these findings highlight the critical role of ZNF451 in promoting osteosarcoma progression and underscore its potential as a therapeutic target and biomarker for osteosarcoma.
Collapse
Affiliation(s)
- Ning Tang
- Department of Orthopaedics, Third Xiangya Hospital,
Central South University, Changsha, Hunan, China
- Department of Orthopaedics, Liuzhou Municipal Liutie Central Hospital, Liuzhou, Guangxi, China
| | - Woding Deng
- Xiangya School of Medicine,
Central South University, Changsha, Hunan, China
| | - Yupeng Wu
- Department of Spine Surgery,
First Affiliated Hospital of University of South China, Hengyang, Hunan, China
| | - Zhixuan Deng
- Institute of Cell Biology, Hengyang Medical School,
University of South China, Hengyang, Hunan, China
| | - Xin Wu
- Department of Spine Surgery, Third Xiangya Hospital,
Central South University, Changsha, Hunan, China
| | - Jianbin Xiong
- Department of Orthopaedics, Liuzhou Municipal Liutie Central Hospital, Liuzhou, Guangxi, China
| | - Qiangqiang Zhao
- Department of Hematology,
Liuzhou People’s Hospital affiliated to Guangxi Medical University, Liuzhou, Guangxi, China
- Department of Hematology,
The Qinghai Provincial People’s Hospital, Xining, Qinghai, China
| |
Collapse
|
59
|
Ramos GDC, Ramos INDF, Watanabe LA, Castro LAW, de Moraes AJG, dos Santos GR, Siqueira JEDS, Khayat AS, Marinho AMDR, Marinho PSB. Cytotoxic and Antibacterial Activity of Koninginins Isolated from the Mangrove-Derived Endophytic Fungus Trichoderma sp. Molecules 2024; 29:5278. [PMID: 39598667 PMCID: PMC11596921 DOI: 10.3390/molecules29225278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 10/28/2024] [Accepted: 11/02/2024] [Indexed: 11/29/2024] Open
Abstract
The search for bioactive compounds for the treatment of several diseases has led to the study of endophytic fungi. Neoplastic diseases are among the most significant health concerns due to their high mortality rate, and there is a dearth of efficacious pharmaceutical agents for the treatment of cancer. Gastric cancer is one of the most aggressive forms of cancer and is among those with the highest mortality rates in Brazil. Accordingly, the objective of this study was to identify compounds with cytotoxic activity from the mangrove-derived endophytic fungus Trichoderma sp. Isolation of the chemical compounds was conducted using chromatographic methods, while structural elucidation was achieved through the application of spectroscopic (NMR and UV) and spectrometric (MS) techniques. The fungus Trichoderma sp. was found to produce five distinct koninginins (A, B, C, E, and J). The organic phases of the extracts and isolated compounds were evaluated for their antimicrobial and cytotoxic potentials, respectively, through microdilution testing and the MTT method. In the cytotoxicity assay, both the AF extract and koninginin A demonstrated favorable outcomes, indicating their potential as promising anticancer therapeutic agents.
Collapse
Affiliation(s)
- Gisele da Costa Ramos
- Chemistry Graduate Program, Federal University of Pará, Rua Augusto Corrêa, 01, Belém 66075110, Brazil; (G.d.C.R.); (L.A.W.); (J.E.d.S.S.); (A.M.d.R.M.)
| | - Ingryd Nayara de Farias Ramos
- Oncology Research Center, Federal University of Pará, Rua dos Mundurucus, 4487, Belém 66073005, Brazil; (I.N.d.F.R.); (A.S.K.)
| | - Luciano Almeida Watanabe
- Chemistry Graduate Program, Federal University of Pará, Rua Augusto Corrêa, 01, Belém 66075110, Brazil; (G.d.C.R.); (L.A.W.); (J.E.d.S.S.); (A.M.d.R.M.)
| | | | - Alessandra Jackeline Guedes de Moraes
- Institute of Agricultural Sciences, Federal Rural University of the Amazon, Avenida Presidente Tancredo Neves, 2501, Belém 66077830, Brazil; (A.J.G.d.M.); (G.R.d.S.)
| | - Gleiciane Rodrigues dos Santos
- Institute of Agricultural Sciences, Federal Rural University of the Amazon, Avenida Presidente Tancredo Neves, 2501, Belém 66077830, Brazil; (A.J.G.d.M.); (G.R.d.S.)
| | - José Edson de Sousa Siqueira
- Chemistry Graduate Program, Federal University of Pará, Rua Augusto Corrêa, 01, Belém 66075110, Brazil; (G.d.C.R.); (L.A.W.); (J.E.d.S.S.); (A.M.d.R.M.)
| | - André Salim Khayat
- Oncology Research Center, Federal University of Pará, Rua dos Mundurucus, 4487, Belém 66073005, Brazil; (I.N.d.F.R.); (A.S.K.)
| | - Andrey Moacir do Rosario Marinho
- Chemistry Graduate Program, Federal University of Pará, Rua Augusto Corrêa, 01, Belém 66075110, Brazil; (G.d.C.R.); (L.A.W.); (J.E.d.S.S.); (A.M.d.R.M.)
| | - Patrícia Santana Barbosa Marinho
- Chemistry Graduate Program, Federal University of Pará, Rua Augusto Corrêa, 01, Belém 66075110, Brazil; (G.d.C.R.); (L.A.W.); (J.E.d.S.S.); (A.M.d.R.M.)
| |
Collapse
|
60
|
Li GG, Chu XF, Xing YM, Xue X, Ihtisham B, Liang XF, Xu JX, Mi Y, Zheng PY. Baicalin Prevents Colon Cancer by Suppressing CDKN2A Protein Expression. Chin J Integr Med 2024; 30:1007-1017. [PMID: 38941045 DOI: 10.1007/s11655-024-4109-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/31/2024] [Indexed: 06/29/2024]
Abstract
OBJECTIVE To observe the therapeutic effects and underlying mechanism of baicalin against colon cancer. METHODS The effects of baicalin on the proliferation and growth of colon cancer cells MC38 and CT26. WT were observed and predicted potential molecular targets of baicalin for colon cancer therapy were studied by network pharmacology. Furthermore, molecular docking and drug affinity responsive target stability (DARTS) analysis were performed to confirm the interaction between potential targets and baicalin. Finally, the mechanisms predicted by in silico analyses were experimentally verified in-vitro and in-vivo. RESULTS Baicalin significantly inhibited proliferation, invasion, migration, and induced apoptosis in MC38 and CT26 cells (all P<0.01). Additionally, baicalin caused cell cycle arrest at the S phase, while the G0/G1 phase was detected in the tiny portion of the cells. Subsequent network pharmacology analysis identified 6 therapeutic targets associated with baicalin, which potentially affect various pathways including 39 biological processes and 99 signaling pathways. In addition, molecular docking and DARTS predicted the potential binding of baicalin with cyclin dependent kinase inhibitor 2A (CDKN2A), protein kinase B (AKT), caspase 3, and mitogen-activated protein kinase (MAPK). In vitro, the expressions of CDKN2A, MAPK, and p-AKT were suppressed by baicalin in MC38 and CT26 cells. In vivo, baicalin significantly reduced the tumor size and weight (all P<0.01) in the colon cancer mouse model via inactivating p-AKT, CDKN2A, cyclin dependent kinase 4, cyclin dependent kinase 2, interleukin-1, tumor necrosis factor α, and activating caspase 3 and mouse double minute 2 homolog signaling (all P<0.05). CONCLUSION Baicalin suppressed the CDKN2A protein level to prevent colon cancer and could be used as a therapeutic target for colon cancer.
Collapse
Affiliation(s)
- Gang-Gang Li
- Henan Key Laboratory of Helicobacter pylori, Microbiota and Gastrointestinal Cancers, Marshall Medical Research Center, Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, 400015, China
| | - Xiu-Feng Chu
- Henan Key Laboratory of Helicobacter pylori, Microbiota and Gastrointestinal Cancers, Marshall Medical Research Center, Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, 400015, China
| | - Ya-Min Xing
- Henan Key Laboratory of Helicobacter pylori, Microbiota and Gastrointestinal Cancers, Marshall Medical Research Center, Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, 400015, China
| | - Xia Xue
- Henan Key Laboratory of Helicobacter pylori, Microbiota and Gastrointestinal Cancers, Marshall Medical Research Center, Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, 400015, China
| | - Bukhari Ihtisham
- Henan Key Laboratory of Helicobacter pylori, Microbiota and Gastrointestinal Cancers, Marshall Medical Research Center, Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, 400015, China
| | - Xin-Feng Liang
- Henan Key Laboratory of Helicobacter pylori, Microbiota and Gastrointestinal Cancers, Marshall Medical Research Center, Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, 400015, China
| | - Ji-Xuan Xu
- Henan Key Laboratory of Helicobacter pylori, Microbiota and Gastrointestinal Cancers, Marshall Medical Research Center, Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, 400015, China
| | - Yang Mi
- Henan Key Laboratory of Helicobacter pylori, Microbiota and Gastrointestinal Cancers, Marshall Medical Research Center, Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, 400015, China
| | - Peng-Yuan Zheng
- Henan Key Laboratory of Helicobacter pylori, Microbiota and Gastrointestinal Cancers, Marshall Medical Research Center, Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, 400015, China.
| |
Collapse
|
61
|
Guo S, Yan X, Wang Y, Han J, Zhao J, Huang S, Wang J. Utilization of traditional Chinese medicine in the management of cutaneous ulceration induced by cervical lymph node metastasis in tonsillar carcinoma: A case report. Explore (NY) 2024; 20:103071. [PMID: 39413535 DOI: 10.1016/j.explore.2024.103071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 10/03/2024] [Indexed: 10/18/2024]
Abstract
OBJECTIVE Cutaneous ulcers induced by metastasis present a challenging clinical issue, often resistant to conventional dressing change interventions. In this case, we demonstrates the efficacy of Traditional Chinese Medicine in managing ruptured tumors. CASE PRESENTATION We present a case study of a 40-year-old Chinese male patient diagnosed with advanced tonsillar squamous cell carcinoma with cervical lymph node metastasis and cutaneous ulceration. Despite nearly six months of conventional dressing treatment yielding minimal improvement, significant healing of the ulcerated surface of the neck metastasis was observed after approximately two months of decoction therapy. The cancerous lesion exhibited a reduction of nearly 90 %, with concomitant alleviation of secondly symptoms such as cold intolerance, excessive sweating, anxiety and depression. CONCLUSIONS In this case, we introduces Traditional Chinese Medicine may be an effective alternative therapy for the treatment of cancer-related disease. And it may also be an optional therapeutic approach for healthcare practitioners with cutaneous carcinoma ulceration.
Collapse
Affiliation(s)
- Suying Guo
- Beijing Hospital of Traditional Chinese Medicine Afliated with Capital Medical University, Beijing 100010, PR China
| | - Xinyu Yan
- Beijing Hospital of Traditional Chinese Medicine Afliated with Capital Medical University, Beijing 100010, PR China
| | - Yaqin Wang
- Beijing Hospital of Traditional Chinese Medicine Afliated with Capital Medical University, Beijing 100010, PR China
| | - Jinshuai Han
- Beijing Hospital of Traditional Chinese Medicine Afliated with Capital Medical University, Beijing 100010, PR China
| | - Jingyi Zhao
- Beijing Hospital of Traditional Chinese Medicine Afliated with Capital Medical University, Beijing 100010, PR China
| | - Shaoting Huang
- Beijing Hospital of Traditional Chinese Medicine Afliated with Capital Medical University, Beijing 100010, PR China
| | - Junge Wang
- Beijing Hospital of Traditional Chinese Medicine Afliated with Capital Medical University, Beijing 100010, PR China.
| |
Collapse
|
62
|
Liu X, Dong W, Zhang Y, Tian Y, Xiao Y, Yang M, Yuan X, Li G, Liu J, Kai M. In vitro and in vivo evaluation of antibacterial activity and mechanism of luteolin from Humulus scandens against Escherichia coli from chicken. Poult Sci 2024; 103:104132. [PMID: 39208485 PMCID: PMC11399789 DOI: 10.1016/j.psj.2024.104132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 07/08/2024] [Accepted: 07/24/2024] [Indexed: 09/04/2024] Open
Abstract
Resistance of Escherichia coli (E.coli) to antibiotics has steadily increased over time; hence, there is an urgent need to develop safer alternatives to antibiotics. The present study aimed to evaluate the effect of luteolin (Lut) on E. coli from chicken. The bioactive compound Lut from Humulus scandens was selected by network pharmacology and molecular docking analyses. Scanning electron microscopy (SEM), transmission electron microscopy (TEM), and confocal laser scanning microscopy (CLSM) were used to observe the effects of Lut on the morphology and structure of E. coli cells. The data-independent acquisition (DIA) method was used to analyze protein expression level of E. coli before and after Lut treatment. The in vivo evaluation of the antibacterial, anti-inflammatory, and oxidative effects of Lut on E.coli was conducted using E.coli isolated strains infected the SPF chicken model. The network pharmacology analysis revealed 19 distinctive bioactive compounds such as Lut and β-sitosterol in H. scandens; furthermore, 30 core targets were selected from H. scandens. The KEGG enrichment analysis showed that the PI3K-Akt, TNF, MAPK, IL-17, JAK-STAT, and HIF-1 pathways were related from H. scandens. Based on the results of the network pharmacology analysis, Lut was subjected to screening by molecular docking analysis to determine its antibacterial effect on E. coli and the associated mechanism of action. The minimum inhibitory concentration (MIC) of Lut against E. coli standard strains was 500 µg/mL. SEM, TEM, and CLSM results indicated that Lut damaged the cell wall and cell membrane of E. coli strains and destroyed the cell structure, leading to cell death.The expression level of membrane structure, Phenylalanine metabolism and some other metabolic pathways in E.coli changed after treatment with Lut (P < 0.05). In vivo experiments in the SPF chicken model showed that Lut treatment alleviated the decline in the growth performance of chickens (P < 0.05), prevented pathological changes in the correspond ding organs and suppressed the inflammatory response induced by E. coli infection (P < 0.05), improved the immunity and antioxidant capacity of chickens (P < 0.05), and protected them against infection with E. coli strains. To summarize, Lut from H. scandens can inhibit E. coli growth by damaging the cell membrane structureand affecting the expression level of some metabolic proteins. In vivo experiments also showed that Lut can significantly reduce the damage caused by E. coli isolates on SPF chickens, improve their antioxidant capacity and immunity, and reduce inflammatory responses following E. coli infection.
Collapse
Affiliation(s)
- Xia Liu
- Poultry Breeding Engineering Technology Center of Shandong Province, Poultry Institute, Jinan Key Laboratory for Agricultural Experimental Animal and Comparative Medicine, Shandong Academy of Agricultural Sciences, Shandong Provincial Key Laboratory of Poultry Diseases Diagnosis and Immunology, Jinan 250023, China; College of Animal Science and Veterinary Medicine, Shandong Agricultural University, 271018, Taian, China
| | - Wenwen Dong
- Poultry Breeding Engineering Technology Center of Shandong Province, Poultry Institute, Jinan Key Laboratory for Agricultural Experimental Animal and Comparative Medicine, Shandong Academy of Agricultural Sciences, Shandong Provincial Key Laboratory of Poultry Diseases Diagnosis and Immunology, Jinan 250023, China
| | - Yuxia Zhang
- Poultry Breeding Engineering Technology Center of Shandong Province, Poultry Institute, Jinan Key Laboratory for Agricultural Experimental Animal and Comparative Medicine, Shandong Academy of Agricultural Sciences, Shandong Provincial Key Laboratory of Poultry Diseases Diagnosis and Immunology, Jinan 250023, China
| | - Ye Tian
- Poultry Breeding Engineering Technology Center of Shandong Province, Poultry Institute, Jinan Key Laboratory for Agricultural Experimental Animal and Comparative Medicine, Shandong Academy of Agricultural Sciences, Shandong Provincial Key Laboratory of Poultry Diseases Diagnosis and Immunology, Jinan 250023, China
| | - Yaqing Xiao
- Poultry Breeding Engineering Technology Center of Shandong Province, Poultry Institute, Jinan Key Laboratory for Agricultural Experimental Animal and Comparative Medicine, Shandong Academy of Agricultural Sciences, Shandong Provincial Key Laboratory of Poultry Diseases Diagnosis and Immunology, Jinan 250023, China; College of Veterinary Medicine, Hebei Agricultural University, Baoding 071000, China
| | - Menghao Yang
- Poultry Breeding Engineering Technology Center of Shandong Province, Poultry Institute, Jinan Key Laboratory for Agricultural Experimental Animal and Comparative Medicine, Shandong Academy of Agricultural Sciences, Shandong Provincial Key Laboratory of Poultry Diseases Diagnosis and Immunology, Jinan 250023, China; College of Animal Science and Veterinary Medicine, Shandong Agricultural University, 271018, Taian, China
| | - Xiaoyuan Yuan
- Poultry Breeding Engineering Technology Center of Shandong Province, Poultry Institute, Jinan Key Laboratory for Agricultural Experimental Animal and Comparative Medicine, Shandong Academy of Agricultural Sciences, Shandong Provincial Key Laboratory of Poultry Diseases Diagnosis and Immunology, Jinan 250023, China
| | - Guiming Li
- Poultry Breeding Engineering Technology Center of Shandong Province, Poultry Institute, Jinan Key Laboratory for Agricultural Experimental Animal and Comparative Medicine, Shandong Academy of Agricultural Sciences, Shandong Provincial Key Laboratory of Poultry Diseases Diagnosis and Immunology, Jinan 250023, China; Shandong Blue Sea ecological agriculture Co., LTD, Dongying 257100, China
| | - Jianzhu Liu
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, 271018, Taian, China
| | - Meng Kai
- Poultry Breeding Engineering Technology Center of Shandong Province, Poultry Institute, Jinan Key Laboratory for Agricultural Experimental Animal and Comparative Medicine, Shandong Academy of Agricultural Sciences, Shandong Provincial Key Laboratory of Poultry Diseases Diagnosis and Immunology, Jinan 250023, China.
| |
Collapse
|
63
|
Huang M, Wang J, Zhou H, Lv Z, Li T, Liu M, Lv Y, Wu A, Xia J, Xu H, Chen W, Liu P. (-) - Epicatechin regulates LOC107986454 by targeting the miR-143-3p/EZH2 axis to enhance the radiosensitivity of non-small cell lung cancer. Am J Med Sci 2024; 368:503-517. [PMID: 38944201 DOI: 10.1016/j.amjms.2024.06.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 04/10/2024] [Accepted: 06/24/2024] [Indexed: 07/01/2024]
Abstract
BACKGROUND AND OBJECTIVE Non-small cell lung cancer (NSCLC) is a pernicious tumor with high incidence and mortality rates. The incidence rate of NSCLC increases with age and poses a serious danger to human health. The aim of this study was to determine the mechanism by which (-)-epicatechin (EC) alleviates NSCLC. METHODS Twenty-four pairs of NSCLC tissues and cancer-adjacent tissues were collected, and A549 and H460 radiotherapy-resistant strains were generated by repeatedly irradiating A549 and H460 cells with dose-gradient X-rays. Radiotherapy-resistant H460 cells were successfully injected subcutaneously into the left dorsal side of nude mice at a dose of 1 × 105 to establish an NSCLC animal model. The levels of interrelated genes and proteins were detected by RT‒qPCR and Western blotting, and cell proliferation and apoptosis were evaluated by CCK‒8 assay, Transwell assay, flow cytometry, and TUNEL staining. RESULTS LOC107986454 was highly expressed in NSCLC patients, while miR-143-3p was expressed at low levels and was negatively correlated with LOC107986454. Functionally, EC promoted autophagy and apoptosis induced by radiotherapy, restrained cell proliferation and migration, and ultimately enhanced the radiosensitivity of NSCLC cells. A downstream mechanistic study showed that EC facilitated miR-143-3p expression by inhibiting LOC107986454 and then restraining the expression of EZH2, which ultimately facilitated autophagy and apoptosis in cancer cells, inhibited proliferation and migration, and enhanced the radiosensitivity of NSCLC cells. CONCLUSION EC can enhance the radiosensitivity of NSCLC cells by regulating the LOC107986454/miR-143-3p/EZH2 axis.
Collapse
Affiliation(s)
- Meifang Huang
- Department of Oncology, The First People's Hospital of Qujing, The Qujing Affiliated Hospital of Kunming Medical University, Qujing, Yunnan, 655000, China
| | - Junfeng Wang
- Department of Thoracic Surgery, The First People's Hospital of Qujing, The Qujing Affiliated Hospital of Kunming Medical University, Qujing, Yunnan, 655000, China
| | - Huahua Zhou
- Department of Oncology, The First People's Hospital of Qujing, The Qujing Affiliated Hospital of Kunming Medical University, Qujing, Yunnan, 655000, China
| | - Zengbo Lv
- Department of Oncology, The First People's Hospital of Qujing, The Qujing Affiliated Hospital of Kunming Medical University, Qujing, Yunnan, 655000, China
| | - Tianqian Li
- Department of Oncology, The First People's Hospital of Qujing, The Qujing Affiliated Hospital of Kunming Medical University, Qujing, Yunnan, 655000, China
| | - Meiyan Liu
- Department of Oncology, The First People's Hospital of Qujing, The Qujing Affiliated Hospital of Kunming Medical University, Qujing, Yunnan, 655000, China
| | - Yaqing Lv
- Department of Clinical Pharmacy, The First People's Hospital of Qujing, The Qujing Affiliated Hospital of Kunming Medical University, Qujing, Yunnan, 655000, China
| | - Anao Wu
- Department of Oncology, The First People's Hospital of Qujing, The Qujing Affiliated Hospital of Kunming Medical University, Qujing, Yunnan, 655000, China
| | - Jie Xia
- Department of Oncology, The First People's Hospital of Qujing, The Qujing Affiliated Hospital of Kunming Medical University, Qujing, Yunnan, 655000, China
| | - Hongying Xu
- Department of Oncology, The First People's Hospital of Qujing, The Qujing Affiliated Hospital of Kunming Medical University, Qujing, Yunnan, 655000, China
| | - Weiwen Chen
- Department of Endocrinology, Qujing Second People's Hospital of Yunnan Province, Qujing, Yunnan, 655000, China.
| | - Peiwan Liu
- Department of Hepatobiliary Surgery, The First People's Hospital of Qujing, The Qujing Affiliated Hospital of Kunming Medical University, Qujing, Yunnan, 655000, China.
| |
Collapse
|
64
|
Luo Q, Luo L, Zhao J, Wang Y, Luo H. Biological potential and mechanisms of Tea's bioactive compounds: An Updated review. J Adv Res 2024; 65:345-363. [PMID: 38056775 PMCID: PMC11519742 DOI: 10.1016/j.jare.2023.12.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 11/28/2023] [Accepted: 12/02/2023] [Indexed: 12/08/2023] Open
Abstract
BACKGROUND Tea (Camellia sinensis) has a rich history and is widely consumed across many countries, and is categorized into green tea, white tea, oolong tea, yellow tea, black tea, and dark tea based on the level of fermentation. Based on a review of previous literature, the commonly recognized bioactive substances in tea include tea polyphenols, amino acids, polysaccharides, alkaloids, terpenoids, macro minerals, trace elements, and vitamins, which have been known to have various potential health benefits, such as anticancer, antioxidant, anti-inflammatory, anti-diabetes, and anti-obesity properties, cardiovascular protection, immune regulation, and control of the intestinal microbiota. Most studies have only pointed out the characteristics of tea's bioactivities, so a comprehensive summary of the pharmacological characteristics and mechanisms of tea's bioactivities and their use risks are vital. AIM OF REVIEW This paper aims to summarize tea's bioactive substances of tea and their pharmacological characteristics and mechanisms, providing a scientific basis for the application of bioactive substances in tea and outlining future research directions for the study of bioactive substances in tea. KEY SCIENTIFIC CONCEPTS OF REVIEW This review summarizes the main biologically active substances, pharmacological effects, and mechanisms and discusses the potential risks. It may help researchers grasp more comprehensive progress in the study of tea bioactive substances to further promote the application of tea as a natural bioactive substance in the medical field.
Collapse
Affiliation(s)
- Qiaoxian Luo
- Macau Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, 999078, PR China
| | - Longbiao Luo
- Macau Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, 999078, PR China
| | - Jinmin Zhao
- College of Pharmacy, Guangxi Medical University, Nanning, 530021, PR China
| | - Yitao Wang
- Macau Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, 999078, PR China.
| | - Hua Luo
- Macau Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, 999078, PR China; College of Pharmacy, Guangxi Medical University, Nanning, 530021, PR China.
| |
Collapse
|
65
|
Chen T, Zhou L, Wang Z, Wu T, Wang G, Zhang H. Assessing the effectiveness of Renzhu Jianwei Granula in managing precancerous lesions of gastric cancer: A meta-analysis of randomized clinical trials. Heliyon 2024; 10:e38814. [PMID: 39506958 PMCID: PMC11538645 DOI: 10.1016/j.heliyon.2024.e38814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 09/26/2024] [Accepted: 09/30/2024] [Indexed: 11/08/2024] Open
Abstract
Background Renzhu Jianwei Granula (RJG) is a traditional Chinese medicine compound initially formulated to address precancerous lesions for gastric cancer. The aim of this study was to assess RJG's efficacy in treating precancerous lesions of gastric cancer through a comprehensive meta-analysis of randomized clinical trials. Methods Two authors separately conducted an exhaustive search across three databases (PubMed, CNKI and Wanfang) without imposing any restrictions on publication year or language. Eligible studies, spanning from the inception of databases to July 18th, 2024, were included. Valid data were summarized and those with a group size of 3 or more were preserved. R software and Cochrane collaboration tools were employed for sensitivity analysis and assessing the quality of the included studies. The data from selected studies were transformed into risk ratios (RRs) and subjected to meta-analysis. This study was prospectively registered in PROSPERO. Results Data from 9 studies encompassing 912 participants revealed that the RJG group exhibited superior clinical efficacy compared to the control group, with an RR of 0.36 (95 % confidence interval (CI): 0.25 to 0.52). RJG demonstrated enhanced efficacy over the control group in both comprehensive efficacy (RR: 0.42, 95 % CI: 0.31 to 0.55) and gastroscopy efficacy (RR: 0.56, 95 % CI: 0.46 to 0.69). Moreover, significant improvements in pathological features such as atrophy (RR: 0.58, 95 % CI: 0.45 to 0.73), dysplasia (RR: 0.41, 95 % CI: 0.27 to 0.61), and intestinal metaplasia (RR: 0.54, 95 % CI: 0.43 to 0.69) in precancerous lesions of gastric cancer were observed following RJG administration. Conclusion This study's synthesized data provide compelling evidence of RJG's substantial therapeutic impact in ameliorating symptoms associated with precancerous lesions of gastric cancer. Trial registration number The study protocol was registered at PROSPERO (CRD42024572606).
Collapse
Affiliation(s)
- Tu Chen
- Clinical Metabolomics Center, China Pharmaceutical University, Nanjing, 211198, China
- Department of Cardiology, Pukou Hospital of Chinese Medicine affiliated to China Pharmaceutical University, Nanjing, 210000, China
| | - Lingling Zhou
- Department of Traditional Chinese Medicine, Children's Hospital of Nanjing Medical University, Nanjing, 210008, China
| | - Zixuan Wang
- Clinical Metabolomics Center, China Pharmaceutical University, Nanjing, 211198, China
| | - Tianhao Wu
- Department of Hematology and Oncology, Children's Hospital of Nanjing Medical University, Nanjing, 210008, China
- Department of Pediatrics, The First People's Hospital of Lianyungang, Lianyungang, 222002, China
| | - Guiling Wang
- Department of Traditional Chinese Medicine, Children's Hospital of Nanjing Medical University, Nanjing, 210008, China
| | - Heng Zhang
- Department of Hematology and Oncology, Children's Hospital of Nanjing Medical University, Nanjing, 210008, China
| |
Collapse
|
66
|
Zhang J, Guo J, Gu B, Wang F, Li Y, Shang L, Jiang W, Ma J, Wu W. Shikonin Induces Autophagy and Apoptosis in Esophageal Cancer EC9706 Cells by Regulating the AMPK/mTOR/ULK Axis. Anal Cell Pathol (Amst) 2024; 2024:7752299. [PMID: 39502521 PMCID: PMC11537739 DOI: 10.1155/2024/7752299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 08/29/2024] [Accepted: 09/18/2024] [Indexed: 11/08/2024] Open
Abstract
Shikonin is a plant medicine extracted from Lithospermum, which dominate influential antioxidant and antitumor effect. Here, we report that shikonin was capable of inducing human esophageal cancer EC9706 cell apoptosis and autophagy, in a time- and dose-dependent manner. Shikonin exposure repressed cell viability and migration and invasion capabilities and caused EC9706 cell autophagy and apoptosis by activating the AMPK/mTOR/ULK axis. Autophagy inhibition secured EC9706 cells against shikonin-induced autophagy and apoptosis and reversed the upregulation of AMPK and ULK phosphorylation and downregulation of mTOR phosphorylation provoked by shikonin. In summary, shikonin instigates EC9706 cell apoptosis and autophagy using the target AMPK/mTOR/ULK signal pathway axis, which provides a potential new target to treat human esophageal cancer.
Collapse
Affiliation(s)
- Junli Zhang
- Bengbu Third People's Hospital Affiliated to Bengbu Medical University, Bengbu 233030, Anhui, China
- Bengbu Medical University Key Laboratory of Cancer Research and Clinical Laboratory Diagnosis, Bengbu Medical University, Bengbu 233030, Anhui, China
| | - Jiayi Guo
- Bengbu Medical University Key Laboratory of Cancer Research and Clinical Laboratory Diagnosis, Bengbu Medical University, Bengbu 233030, Anhui, China
| | - Biao Gu
- Bengbu Third People's Hospital Affiliated to Bengbu Medical University, Bengbu 233030, Anhui, China
| | - Fen Wang
- Bengbu Third People's Hospital Affiliated to Bengbu Medical University, Bengbu 233030, Anhui, China
| | - Yi Li
- Bengbu Third People's Hospital Affiliated to Bengbu Medical University, Bengbu 233030, Anhui, China
| | - Ling Shang
- Bengbu Medical University Key Laboratory of Cancer Research and Clinical Laboratory Diagnosis, Bengbu Medical University, Bengbu 233030, Anhui, China
| | - Wendi Jiang
- Bengbu Medical University Key Laboratory of Cancer Research and Clinical Laboratory Diagnosis, Bengbu Medical University, Bengbu 233030, Anhui, China
| | - Junrao Ma
- Bengbu Medical University Key Laboratory of Cancer Research and Clinical Laboratory Diagnosis, Bengbu Medical University, Bengbu 233030, Anhui, China
| | - Wenjuan Wu
- Department of Biochemistry and Molecular Biology, School of Laboratory Medicine, Bengbu Medical University, Bengbu 233030, Anhui, China
| |
Collapse
|
67
|
Liu C, Wu J, Li Z, Huang X, Xie X, Huang Y. Cinobufotalin inhibits proliferation, migration and invasion in hepatocellular carcinoma by triggering NOX4/NLRP3/GSDMD-dependent pyroptosis. Front Oncol 2024; 14:1438306. [PMID: 39544286 PMCID: PMC11562471 DOI: 10.3389/fonc.2024.1438306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Accepted: 09/11/2024] [Indexed: 11/17/2024] Open
Abstract
Introduction Pyroptosis is an inflammatory form of programmed cell death that plays a significant role in tumorigenesis. Cinobufotalin (CB), a bufadienolide extracted from toad venom, is associated with antitumor effects in various cancers, including liver cancer. However, the role of CB in pyroptosis and its underlying mechanisms have not been well characterized. Methods MTT, Colony formation, EdU, Wound healing and Transwell migration and invasion assays were applied to determine the effects of CB on the proliferation, migration, and invasion ability of hepatocellular carcinoma (HCC) cells in vitro. The subcutaneous xenograft mouse model and pulmonary metastasis model were used to evaluate the effect of CB on HCC cells in vivo. PCR, western blot, immunohistochemistry, immunofluorescence, and ELISA were used to verify the expression of proliferation, migration, pyroptosis, and inflammation related molecules after CB treatment. Using si-RNA and inhibitors to interfere with NOX4 and HLRP3 expression to validate the key signaling pathways of pyroptosis induced by CB treatment. Results In vivo experiments using nude mice with xenografted HCC cells and in vitro experiments with HCC cell lines demonstrated that CB treatment significantly inhibited the proliferation, migration, and invasiveness of HCC cells. CB treatment also showed dose-dependent activation of the NLRP3 inflammasome complex in HCC cells, leading to gasdermin D-induced pyroptosis. However, these effects were abrogated via the pretreatment of HCC cells with VX-765, a caspase-1 inhibitor. Additionally, CB increased the production of reactive oxygen species (ROS) and H₂O₂, along with upregulating NOX4 protein expression in HCC cells. Conversely, NOX4 silencing or pretreatment with VAS2870 (an NOX4 inhibitor) or NAC (an ROS scavenger) suppressed the activation of the NLRP3 inflammasome complex and pyroptosis in CB-treated HCC cells. Discussion Our study demonstrated that CB suppressed the proliferation, migration, and invasiveness of HCC cells by inducing pyroptosis through the activation of the NOX4/NLRP3/GSDMD signaling pathway. Therefore, our results suggest that CB is a promising therapeutic agent for HCC.
Collapse
Affiliation(s)
- Chen Liu
- Department of Oncology, Molecular Oncology Research Institute, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
- Department of Oncology, National Regional Medical Center, Binhai Campus of The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Fujian Key Laboratory of Precision Medicine for Cancer, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Jianmin Wu
- Department of Geriatrics, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
- Clinical Research Center for Geriatric Hypertension Disease of Fujian Province, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Zhiwen Li
- Department of Neurology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Xuanyu Huang
- Department of Neuroscience, IRCCS - Istituto di Ricerche Farmacologiche Mario Negri, Milan, Italy
- Department of Medicine, Section of General Pathology, University of Verona, Verona, Italy
| | - Xianhe Xie
- Department of Oncology, Molecular Oncology Research Institute, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
- Department of Oncology, National Regional Medical Center, Binhai Campus of The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Fujian Key Laboratory of Precision Medicine for Cancer, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Yun Huang
- Department of Geriatrics, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
- Clinical Research Center for Geriatric Hypertension Disease of Fujian Province, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| |
Collapse
|
68
|
Wang M, Jiang N, Xu Y, Chen X, Wang C, Wang C, Wang S, Xu K, Chai S, Yu Q, Zhang Z, Zhang H. CmBr confers fruit bitterness under CPPU treatment in melon. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:2724-2737. [PMID: 38816932 PMCID: PMC11536449 DOI: 10.1111/pbi.14399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 04/06/2024] [Accepted: 05/13/2024] [Indexed: 06/01/2024]
Abstract
Many biotic or abiotic factors such as CPPU (N-(2-chloro-pyridin-4-yl)-N'-phenylurea), a growth regulator of numerous crops, can induce bitterness in cucurbits. In melon, cucurbitacin B is the major compound leading to bitterness. However, the molecular mechanism underlying CuB biosynthesis in response to different conditions remains unclear. Here, we identified a set of genes involved in CPPU-induced CuB biosynthesis in melon fruit and proposed CmBr gene as the major regulator. Using CRISPR/Cas9 gene editing, we confirmed CmBr's role in regulating CuB biosynthesis under CPPU treatment. We further discovered a CPPU-induced MYB-related transcription factor, CmRSM1, which specifically binds to the Myb motif within the CmBr promoter and activates its expression. Moreover, we developed an introgression line by introducing the mutated Cmbr gene into an elite variety and eliminated CPPU-induced bitterness, demonstrating its potential application in breeding. This study offers a valuable tool for breeding high-quality non-bitter melon varieties and provides new insights into the regulation of secondary metabolites under environmental stresses.
Collapse
Affiliation(s)
- Mingyan Wang
- Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, Laboratory of Quality & Safety Risk Assessment for Fruit (Qingdao), Ministry of Agriculture and Rural Affairs, National Technology Centre for Whole Process Quality Control of FSEN Horticultural Products (Qingdao)College of Horticulture, Qingdao Agricultural UniversityQingdao266109China
| | - Naiyu Jiang
- Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, Laboratory of Quality & Safety Risk Assessment for Fruit (Qingdao), Ministry of Agriculture and Rural Affairs, National Technology Centre for Whole Process Quality Control of FSEN Horticultural Products (Qingdao)College of Horticulture, Qingdao Agricultural UniversityQingdao266109China
| | - Yuanchao Xu
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Shenzhen Key Laboratory of Agricultural Synthetic Biology, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at ShenzhenChinese Academy of Agricultural SciencesShenzhen518120China
| | - Xinxiu Chen
- Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, Laboratory of Quality & Safety Risk Assessment for Fruit (Qingdao), Ministry of Agriculture and Rural Affairs, National Technology Centre for Whole Process Quality Control of FSEN Horticultural Products (Qingdao)College of Horticulture, Qingdao Agricultural UniversityQingdao266109China
| | - Cui Wang
- Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, Laboratory of Quality & Safety Risk Assessment for Fruit (Qingdao), Ministry of Agriculture and Rural Affairs, National Technology Centre for Whole Process Quality Control of FSEN Horticultural Products (Qingdao)College of Horticulture, Qingdao Agricultural UniversityQingdao266109China
| | - Chuangjiang Wang
- Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, Laboratory of Quality & Safety Risk Assessment for Fruit (Qingdao), Ministry of Agriculture and Rural Affairs, National Technology Centre for Whole Process Quality Control of FSEN Horticultural Products (Qingdao)College of Horticulture, Qingdao Agricultural UniversityQingdao266109China
| | - Shiqi Wang
- Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, Laboratory of Quality & Safety Risk Assessment for Fruit (Qingdao), Ministry of Agriculture and Rural Affairs, National Technology Centre for Whole Process Quality Control of FSEN Horticultural Products (Qingdao)College of Horticulture, Qingdao Agricultural UniversityQingdao266109China
| | - Kuipeng Xu
- Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, Laboratory of Quality & Safety Risk Assessment for Fruit (Qingdao), Ministry of Agriculture and Rural Affairs, National Technology Centre for Whole Process Quality Control of FSEN Horticultural Products (Qingdao)College of Horticulture, Qingdao Agricultural UniversityQingdao266109China
| | - Sen Chai
- Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, Laboratory of Quality & Safety Risk Assessment for Fruit (Qingdao), Ministry of Agriculture and Rural Affairs, National Technology Centre for Whole Process Quality Control of FSEN Horticultural Products (Qingdao)College of Horticulture, Qingdao Agricultural UniversityQingdao266109China
| | - Qing Yu
- Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, Laboratory of Quality & Safety Risk Assessment for Fruit (Qingdao), Ministry of Agriculture and Rural Affairs, National Technology Centre for Whole Process Quality Control of FSEN Horticultural Products (Qingdao)College of Horticulture, Qingdao Agricultural UniversityQingdao266109China
| | - Zhonghua Zhang
- Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, Laboratory of Quality & Safety Risk Assessment for Fruit (Qingdao), Ministry of Agriculture and Rural Affairs, National Technology Centre for Whole Process Quality Control of FSEN Horticultural Products (Qingdao)College of Horticulture, Qingdao Agricultural UniversityQingdao266109China
| | - Huimin Zhang
- Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, Laboratory of Quality & Safety Risk Assessment for Fruit (Qingdao), Ministry of Agriculture and Rural Affairs, National Technology Centre for Whole Process Quality Control of FSEN Horticultural Products (Qingdao)College of Horticulture, Qingdao Agricultural UniversityQingdao266109China
| |
Collapse
|
69
|
Xu L, Wang T, Xu Y, Jiang C. Investigation of the pharmacological mechanisms of Shenfu injection in acute pancreatitis through network pharmacology and experimental validation. Heliyon 2024; 10:e37491. [PMID: 39309824 PMCID: PMC11415655 DOI: 10.1016/j.heliyon.2024.e37491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 09/04/2024] [Accepted: 09/04/2024] [Indexed: 09/25/2024] Open
Abstract
Background Shenfu Injection (SFI) has emerged as a prevalent therapeutic intervention in clinical practice for the management of acute pancreatitis (AP). The purpose of this research was to investigate and validate the potential mechanisms of SFI in the treatment of AP through network pharmacology. Methods Network pharmacology was adopted to investigate the potential targets and mechanisms of SFI in the treatment of AP. Molecular docking was employed to evaluate the binding affinity between active components and targets. Single-cell transcriptome analysis was conducted to explore the cell types associated with SFI treatment in AP. In vitro and in vivo models of AP were induced by caerulein. The histopathological changes were observed by HE staining. Cell apoptosis was detected using flow cytometry and Tunel staining. Cell viability was assessed using CCK-8 assay. Western blot and ELISA were used to detect the protein expression and inflammatory cytokines, respectively. Results A total of 104 SFI active components were obtained, of which 29 targeted 76 genes. After intersecting with 3370 AP-related genes, 42 SFI treatment AP potential targets were identified. Enrichment analysis revealed that these targets were associated with cell apoptosis, necroptosis, and multiple signal transduction pathways, such as p53, IL-17 and TNF signal pathways, etc. Molecular docking demonstrated that the active components of SFI had good binding affinity with the corresponding targets and the binding ability of NGF and aromadendrene was the strongest. Bioinformatics analysis revealed that SFI treatment in AP is associated with various cell types, including acinar cells, endothelial cells, T cells, dendritic cells, ductal cells, and mesenchymal cells. Furthermore, in vitro experiments demonstrated that SFI induces acinar cell apoptosis in a dose-dependent manner, accompanied by increased expression of cleaved-caspase3/caspase3 and cleaved-caspase8/caspase8 proteins, and inhibition of inflammatory cytokine (TNF-ɑ, IL-1β, and PTGS2) expression. In vivo experiments demonstrated that SFI improved histopathological alterations, reduces inflammation, and promotes apoptosis and the expression of cleaved-casp3 and cleaved-casp8 in AP rats. Conclusions This study elucidated the multi-component, multi-target, and multi-cellular characteristics of SFI in the treatment of AP, and confirmed its mechanism of promoting acinar cell apoptosis.
Collapse
Affiliation(s)
- Liming Xu
- Emergency and Critical Care Center, Department of Emergency Medicine, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, 314408, Zhejiang, China
| | - Tianpeng Wang
- Emergency and Critical Care Center, Department of Emergency Medicine, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, 314408, Zhejiang, China
| | - Yingge Xu
- Emergency and Critical Care Center, Department of Emergency Medicine, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, 314408, Zhejiang, China
| | - Chenghang Jiang
- Emergency and Critical Care Center, Department of Emergency Medicine, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, 314408, Zhejiang, China
| |
Collapse
|
70
|
Liu Y, Liang JM, Guo GX, Qiu YH, Yu LL, Tsim KWK, Qin QW, Chan GKL, Hu WH. Screening of herbal extracts binding with vascular endothelial growth factor by applying HerboChip platform. Chin Med 2024; 19:122. [PMID: 39252102 PMCID: PMC11382504 DOI: 10.1186/s13020-024-00987-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 08/20/2024] [Indexed: 09/11/2024] Open
Abstract
BACKGROUND Traditional Chinese medicine (TCM) has been hailed as a rich source of medicine, but many types of herbs and their functions still need to be rapidly discovered and elucidated. HerboChip, a target-based drug screening platform, is an array of different fractions deriving from herbal extracts. This study was designed to identify effective components from TCM that interact with vascular endothelial growth factor (VEGF) as a target using HerboChip. METHODS Selected TCMs that are traditionally used as remedies for cancer prevention and wound healing were determined and extracted with 50% ethanol. Biotinylated-VEGF was hybridized with over 500 chips coated with different HPLC-separated fractions from TCM extracts and straptavidin-Cy5 was applied to identify plant extracts containing VEGF-binding fractions. Cytotoxicity of selected herbal extracts and their activities on VEGF-mediated angiogenic functions were evaluated. RESULTS Over 500 chips were screened within a week, and ten positive hits were identified. The interaction of the identified herbal extracts with VEGF was confirmed in cultured endothelial cells. The identified herbs promoted or inhibited VEGF-mediated cell proliferation, migration and tube formation. Results from western blotting analysis demonstrated the identified herbal extracts significantly affected VEGF-triggered phosphorylations of eNOS, Akt and Erk. Five TCMs demonstrated potentiating activities on the VEGF response and five TCMs revealed suppressive activities. CONCLUSIONS The current results demonstrated the applicability of the HerboChip platform and systematically elucidated the activity of selected TCMs on angiogenesis and its related signal transduction mechanisms.
Collapse
Affiliation(s)
- Yang Liu
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Jia-Ming Liang
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Guo-Xia Guo
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Yu-Huan Qiu
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
- Nansha-South China Agricultural University Fishery Research Institute, Guangzhou, 511464, China
| | - Le-Le Yu
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Karl Wah-Keung Tsim
- Nansha-South China Agricultural University Fishery Research Institute, Guangzhou, 511464, China
- Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Hong Kong, China
- Gallant Biotechnology Limited, Hong Kong, China
| | - Qi-Wei Qin
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
- Nansha-South China Agricultural University Fishery Research Institute, Guangzhou, 511464, China
| | - Gallant Kar-Lun Chan
- Gallant Biotechnology Limited, Hong Kong, China.
- Yingli (Zhongshan) Biotechnology Limited, Zhongshan, China.
| | - Wei-Hui Hu
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China.
- Nansha-South China Agricultural University Fishery Research Institute, Guangzhou, 511464, China.
| |
Collapse
|
71
|
Xu CS, Shao YL, Li Q, Zhang Y, Wu HW, Yu HL, Su YY, Zhang J, Wang C, Liao ZX. Dentatacid A: An Unprecedented 2, 3- Seco-arbor-2, 3-dioic Triterpenoid from the Invasive Plant Euphorbia dentata, with Cytotoxicity Effect on Colon Cancer. PLANTS (BASEL, SWITZERLAND) 2024; 13:2533. [PMID: 39274018 PMCID: PMC11397642 DOI: 10.3390/plants13172533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/02/2024] [Accepted: 09/05/2024] [Indexed: 09/16/2024]
Abstract
Euphorbia dentata Michx. is an invasive plant species in China, known for its toxicity and potential to reduce crop yields, posing numerous threats. To gain a deeper understanding of this invasive plant, phytochemical methods were employed to isolate 13 terpenoids (1-11, 19, 20) and 7 sterols (12-18) from the ethanol extract of E. dentata, identifying one new compound and 19 known compounds. Within spectroscopic methods such as NMR, HR-ESI-MS, and ECD, the structures and absolute configurations of these compounds were established. Among them, dentatacid A (11) possesses an unprecedented 2, 3-seco-arbor-2, 3-dioic skeleton within the potential biosynthetic pathway proposed. Dentatacid A also exhibited excellent anti-proliferative activity against the HT-29 (human colorectal adenocarcinoma) cell line, with an IC50 value of 2.64 ± 0.78 μM, which was further confirmed through network pharmacology and molecular docking. This study significantly expands the chemical diversity of E. dentata and offers new insights into the resource utilization and management of this invasive plant from the perspective of natural product discovery.
Collapse
Affiliation(s)
- Chen-Sen Xu
- Department of Pharmaceutical Engineering, School of Chemistry and Chemical Engineering and Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing 211189, China
| | - Yuan-Ling Shao
- Department of Pharmaceutical Engineering, School of Chemistry and Chemical Engineering and Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing 211189, China
- Changshu Institute for Products Quality Supervision and Inspection, Changshu Measurement and Testing Center, Suzhou 215500, China
| | - Qing Li
- Department of Pharmaceutical Engineering, School of Chemistry and Chemical Engineering and Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing 211189, China
| | - Yu Zhang
- Department of Pharmaceutical Engineering, School of Chemistry and Chemical Engineering and Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing 211189, China
| | - Hong-Wei Wu
- Department of Pharmaceutical Engineering, School of Chemistry and Chemical Engineering and Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing 211189, China
| | - Hao-Lin Yu
- Department of Pharmaceutical Engineering, School of Chemistry and Chemical Engineering and Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing 211189, China
| | - Yun-Yun Su
- Department of Pharmaceutical Engineering, School of Chemistry and Chemical Engineering and Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing 211189, China
| | - Jing Zhang
- Department of Pharmaceutical Engineering, School of Chemistry and Chemical Engineering and Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing 211189, China
| | - Chao Wang
- Department of Pharmaceutical Engineering, School of Chemistry and Chemical Engineering and Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing 211189, China
| | - Zhi-Xin Liao
- Department of Pharmaceutical Engineering, School of Chemistry and Chemical Engineering and Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing 211189, China
| |
Collapse
|
72
|
Lianou AD, Lianos GD, Schizas D, Machairas N, Mitsis M, Alexiou GA. Natural Compounds and Cancer: Current Evidences. MAEDICA 2024; 19:621-628. [PMID: 39553354 PMCID: PMC11565147 DOI: 10.26574/maedica.2024.19.3.621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Natural compounds are constantly gaining ground in the treatment of various chronic diseases and in cancer research. Recent efforts have been focusing on them due to their special features consisting of low toxicity and high bioavailability. These compounds have already demonstrated important antitumor activity against several cancers in vitro through several mechanisms, including cell viability reduction, suppression of cell proliferation, cell death induction and cell cycle arrest. Herewith, we reviewed natural compounds that can be potentially used for head and neck cancer, glioblastoma and gastrointestinal cancers.
Collapse
Affiliation(s)
| | - Georgios D Lianos
- Department of Surgery, University Hospital of Ioannina, Ioannina, Greece
| | - Dimitrios Schizas
- 1nd Department of Propaedeutic Surgery, General Hospital Laiko, National and Kapodistrian University of Athens, Athens, Greece
| | - Nikolaos Machairas
- 2nd Department of Propaedeutic Surgery, General Hospital Laiko, National and Kapodistrian University of Athens, Athens, Greece
| | - Michail Mitsis
- Department of Surgery, University Hospital of Ioannina, Ioannina, Greece
| | - George A Alexiou
- Department of Neurosurgery, University Hospital of Ioannina, Ioannina, Greece
| |
Collapse
|
73
|
Guo J, Huang M, Hou S, Yuan J, Chang X, Gao S, Zhang Z, Wu Z, Li J. Therapeutic Potential of Terpenoids in Cancer Treatment: Targeting Mitochondrial Pathways. Cancer Rep (Hoboken) 2024; 7:e70006. [PMID: 39234662 PMCID: PMC11375335 DOI: 10.1002/cnr2.70006] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/30/2024] [Accepted: 08/11/2024] [Indexed: 09/06/2024] Open
Abstract
BACKGROUND In recent decades, natural compounds have been considered a significant source of new antitumor medicines due to their unique advantages. Several in vitro and in vivo studies have focused on the effect of terpenoids on apoptosis mediated by mitochondria in malignant cells. RECENT FINDINGS In this review article, we focused on six extensively studied terpenoids, including sesquiterpenes (dihydroartemisinin and parthenolide), diterpenes (oridonin and triptolide), and triterpenes (betulinic acid and oleanolic acid), and their efficacy in targeting mitochondria to induce cell death. Terpenoid-induced mitochondria-related cell death includes apoptosis, pyroptosis, necroptosis, ferroptosis, autophagy, and necrosis caused by mitochondrial permeability transition. Apoptosis and autophagy interact in meaningful ways. In addition, in view of several disadvantages of terpenoids, such as low stability and bioavailability, advances in research on combination chemotherapy and chemical modification were surveyed. CONCLUSION This article deepens our understanding of the association between terpenoids and mitochondrial cell death, presenting a hypothetical basis for the use of terpenoids in anticancer management.
Collapse
Affiliation(s)
- Jianxin Guo
- College of Integrated Chinese and Western Medicine, Hebei Medical University, Shijiazhuang, China
| | - Ming Huang
- College of Integrated Chinese and Western Medicine, Hebei Medical University, Shijiazhuang, China
| | - Shuang Hou
- College of Integrated Chinese and Western Medicine, Hebei Medical University, Shijiazhuang, China
| | - Jianfeng Yuan
- College of Integrated Chinese and Western Medicine, Hebei Medical University, Shijiazhuang, China
| | - Xiaoyue Chang
- College of Integrated Chinese and Western Medicine, Hebei Medical University, Shijiazhuang, China
| | - Shuang Gao
- College of Integrated Chinese and Western Medicine, Hebei Medical University, Shijiazhuang, China
| | - Zhenhan Zhang
- College of Integrated Chinese and Western Medicine, Hebei Medical University, Shijiazhuang, China
| | - Zhongbing Wu
- College of Integrated Chinese and Western Medicine, Hebei Medical University, Shijiazhuang, China
| | - Jing Li
- College of Integrated Chinese and Western Medicine, Hebei Medical University, Shijiazhuang, China
- The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
74
|
Wang J, Wang L, Zhang Y, Pan S, Lin Y, Wu J, Bu M. Design, Synthesis, and Anticancer Activity of Novel Enmein-Type Diterpenoid Derivatives Targeting the PI3K/Akt/mTOR Signaling Pathway. Molecules 2024; 29:4066. [PMID: 39274913 PMCID: PMC11396751 DOI: 10.3390/molecules29174066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 08/25/2024] [Accepted: 08/26/2024] [Indexed: 09/16/2024] Open
Abstract
The enmein-type diterpenoids are a class of anticancer ent-Kaurane diterpnoids that have received much attention in recent years. Herein, a novel 1,14-epoxy enmein-type diterpenoid 4, was reported in this project for the first time. A series of novel enmein-type diterpenoid derivatives were also synthesized and tested for anticancer activities. Among all the derivatives, compound 7h exhibited the most significant inhibitory effect against A549 cells (IC50 = 2.16 µM), being 11.03-folds better than its parental compound 4. Additionally, 7h exhibited relatively weak anti-proliferative activity (IC50 > 100 µM) against human normal L-02 cells, suggesting that it had excellent anti-proliferative selectivity for cancer cells. Mechanism studies suggested that 7h induced G0/G1 arrest and apoptosis in A549 cells by inhibiting the PI3K/AKT/mTOR pathway. This process was associated with elevated intracellular ROS levels and collapsed MMP. In summary, these data identified 7h as a promising lead compound that warrants further investigation of its anticancer properties.
Collapse
Affiliation(s)
- Jiafeng Wang
- College of Pathology, Qiqihar Medical University, Qiqihar 161006, China; (J.W.); (Y.Z.); (S.P.)
| | - Lu Wang
- College of Pharmacy, Qiqihar Medical University, Qiqihar 161006, China; (L.W.); (Y.L.)
| | - Yingbo Zhang
- College of Pathology, Qiqihar Medical University, Qiqihar 161006, China; (J.W.); (Y.Z.); (S.P.)
| | - Siwen Pan
- College of Pathology, Qiqihar Medical University, Qiqihar 161006, China; (J.W.); (Y.Z.); (S.P.)
| | - Yu Lin
- College of Pharmacy, Qiqihar Medical University, Qiqihar 161006, China; (L.W.); (Y.L.)
| | - Jiale Wu
- College of Life and Health, Hainan University, Haikou 570228, China;
| | - Ming Bu
- College of Pharmacy, Qiqihar Medical University, Qiqihar 161006, China; (L.W.); (Y.L.)
| |
Collapse
|
75
|
Rajaram J, Mende LK, Kuthati Y. A Review of the Efficacy of Nanomaterial-Based Natural Photosensitizers to Overcome Multidrug Resistance in Cancer. Pharmaceutics 2024; 16:1120. [PMID: 39339158 PMCID: PMC11434998 DOI: 10.3390/pharmaceutics16091120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/27/2024] [Accepted: 08/20/2024] [Indexed: 09/30/2024] Open
Abstract
Natural photosensitizers (PS) are compounds derived from nature, with photodynamic properties. Natural PSs have a similar action to that of commercial PSs, where cancer cell death occurs by necrosis, apoptosis, and autophagy through ROS generation. Natural PSs have garnered great interest over the last few decades because of their high biocompatibility and good photoactivity. Specific wavelengths could cause phytochemicals to produce harmful ROS for photodynamic therapy (PDT). However, natural PSs have some shortcomings, such as reduced solubility and lower uptake, making them less appropriate for PDT. Nanotechnology offers an opportunity to develop suitable carriers for various natural PSs for PDT applications. Various nanoparticles have been developed to improve the outcome with enhanced solubility, optical adsorption, and tumor targeting. Multidrug resistance (MDR) is a phenomenon in which tumor cells develop resistance to a wide range of structurally and functionally unrelated drugs. Over the last decade, several researchers have extensively studied the effect of natural PS-based photodynamic treatment (PDT) on MDR cells. Though the outcomes of clinical trials for natural PSs were inconclusive, significant advancement is still required before PSs can be used as a PDT agent for treating MDR tumors. This review addresses the increasing literature on MDR tumor progression and the efficacy of PDT, emphasizing the importance of developing new nano-based natural PSs in the fight against MDR that have the required features for an MDR tumor photosensitizing regimen.
Collapse
Affiliation(s)
- Jagadeesh Rajaram
- Department of Biochemistry and Molecular Medicine, National Dong Hwa University, Hualien 974, Taiwan;
| | - Lokesh Kumar Mende
- Department of Anesthesiology, Cathy General Hospital, Taipei 106, Taiwan;
| | - Yaswanth Kuthati
- Department of Anesthesiology, Cathy General Hospital, Taipei 106, Taiwan;
| |
Collapse
|
76
|
Sun L, Lan J, Li Z, Zeng R, Shen Y, Zhang T, Ding Y. Transforming Cancer Treatment with Nanotechnology: The Role of Berberine as a Star Natural Compound. Int J Nanomedicine 2024; 19:8621-8640. [PMID: 39188860 PMCID: PMC11346485 DOI: 10.2147/ijn.s469350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 07/16/2024] [Indexed: 08/28/2024] Open
Abstract
Berberine (BBR), recognized as an oncotherapeutic phytochemical, exhibits its anti-cancer properties via multiple molecular pathways. However, its clinical application is hindered by suboptimal tumor accumulation, rapid systemic elimination, and diminished bioactive concentration owing to extensive metabolic degradation. To circumvent these limitations, the strategic employment of nanocarriers and other drugs in combination with BBR is emerging as a focus to potentiate its anti-cancer efficacy. This review introduced the expansive spectrum of BBR's anti-cancer activities, BBR and other drugs co-loaded nanocarriers for anti-cancer treatments, and evaluated the synergistic augmentation of these amalgamated modalities. The aim is to provide an overview of BBR for cancer treatment based on nano-delivery. Berberine (BBR), recognized as an oncotherapeutic phytochemical, exhibits its anti-cancer properties via multiple molecular pathways. However, its clinical application is hindered by suboptimal tumor accumulation, rapid systemic elimination, and diminished bioactive concentration owing to extensive metabolic degradation. To circumvent these limitations, the strategic employment of nanocarriers and other drugs in combination with BBR is emerging as a focus to potentiate its anti-cancer efficacy. Nano-delivery systems increase drug concentration at the tumor site by improving pharmacological activity and tissue distribution, enhancing drug bioavailability. Organic nanocarriers have advantages for berberine delivery including biocompatibility, encapsulation, and controlled release of the drug. While the advantages of inorganic nanocarriers for berberine delivery mainly lie in their efficient loading ability of the drug and their slow release ability of the drug. This review introduced the expansive spectrum of BBR's anti-cancer activities, BBR and other drugs co-loaded nanocarriers for anti-cancer treatments, and evaluated the synergistic augmentation of these amalgamated modalities. The aim is to provide an overview of BBR for cancer treatment based on nano-delivery.
Collapse
Affiliation(s)
- Liyan Sun
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People’s Republic of China
| | - Jinshuai Lan
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People’s Republic of China
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People’s Republic of China
| | - Zhe Li
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People’s Republic of China
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People’s Republic of China
| | - Ruifeng Zeng
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People’s Republic of China
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People’s Republic of China
| | - Yi Shen
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People’s Republic of China
| | - Tong Zhang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People’s Republic of China
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People’s Republic of China
| | - Yue Ding
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People’s Republic of China
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People’s Republic of China
- National Innovation Platform for Medical Industry-Education Integration, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People’s Republic of China
| |
Collapse
|
77
|
Song D, Chen M, Chen X, Xu J, Wu S, Lyu Y, Zhao Q. Apoptosis induction and inhibition of invasion and migration in gastric cancer cells by Isoorientin studied using network pharmacology. BMC Complement Med Ther 2024; 24:309. [PMID: 39160561 PMCID: PMC11334567 DOI: 10.1186/s12906-024-04605-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 08/05/2024] [Indexed: 08/21/2024] Open
Abstract
BACKGROUND To investigate the effects of Isoorientin on the apoptosis, proliferation, invasion, and migration of human gastric cancer cells (HGC27 cells). METHODS We used network pharmacology to predict the targets of drugs and diseases. The CCK-8 assay was used to determine the effects of Isoorientin on the proliferation of HGC27 cells. Flow cytometry was employed to analyze the effects of Isoorientin on cell apoptosis and cell cycle distribution of HGC27 cells. Scratch test and transwell chamber test were conducted to assess the effects of Isoorientin on invasion and migration, respectively. Additionally, qPCR and western blot were performed to examine the impact of Isoorientin on apoptosis-related genes and protein expression, respectively. RESULTS The Isoorientin significantly inhibited the proliferation, migration, and invasion of HGC27 cells compared to the control group. Furthermore, Isoorientin induced apoptosis in HGC27 cells by upregulating the relative expression of Bax and caspase-3 while downregulating the relative expression of p-PI3K, p-AKT, and Bcl-2 proteins. CONCLUSION The Isoorientin exhibits inhibitory effects on the proliferation, invasion, and migration of HGC27 cells, and induces apoptosis in gastric cancer cells.
Collapse
Affiliation(s)
- Dan Song
- Joint Laboratory for Research on Active Components and Pharmacological Mechanism of Tibetan Materia Medica of Tibetan Medical Research Center of Tibet, School of Medicine, Xizang Minzu University, Xianyang, 712082, China
- Engineering Research Center of Tibetan Medicine Detection Technology, Ministry of Education, Xizang Minzu University, Xianyang, 712082, China
| | - Maosheng Chen
- Joint Laboratory for Research on Active Components and Pharmacological Mechanism of Tibetan Materia Medica of Tibetan Medical Research Center of Tibet, School of Medicine, Xizang Minzu University, Xianyang, 712082, China
| | - Xiangjun Chen
- Joint Laboratory for Research on Active Components and Pharmacological Mechanism of Tibetan Materia Medica of Tibetan Medical Research Center of Tibet, School of Medicine, Xizang Minzu University, Xianyang, 712082, China
| | - Jiaojiao Xu
- Joint Laboratory for Research on Active Components and Pharmacological Mechanism of Tibetan Materia Medica of Tibetan Medical Research Center of Tibet, School of Medicine, Xizang Minzu University, Xianyang, 712082, China
| | - Siqi Wu
- Joint Laboratory for Research on Active Components and Pharmacological Mechanism of Tibetan Materia Medica of Tibetan Medical Research Center of Tibet, School of Medicine, Xizang Minzu University, Xianyang, 712082, China
| | - Yaxin Lyu
- Joint Laboratory for Research on Active Components and Pharmacological Mechanism of Tibetan Materia Medica of Tibetan Medical Research Center of Tibet, School of Medicine, Xizang Minzu University, Xianyang, 712082, China
| | - Qin Zhao
- Joint Laboratory for Research on Active Components and Pharmacological Mechanism of Tibetan Materia Medica of Tibetan Medical Research Center of Tibet, School of Medicine, Xizang Minzu University, Xianyang, 712082, China.
- Engineering Research Center of Tibetan Medicine Detection Technology, Ministry of Education, Xizang Minzu University, Xianyang, 712082, China.
| |
Collapse
|
78
|
He J, Qiu Z, Fan J, Xie X, Sheng Q, Sui X. Drug tolerant persister cell plasticity in cancer: A revolutionary strategy for more effective anticancer therapies. Signal Transduct Target Ther 2024; 9:209. [PMID: 39138145 PMCID: PMC11322379 DOI: 10.1038/s41392-024-01891-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 05/21/2024] [Accepted: 06/03/2024] [Indexed: 08/15/2024] Open
Abstract
Non-genetic mechanisms have recently emerged as important drivers of anticancer drug resistance. Among these, the drug tolerant persister (DTP) cell phenotype is attracting more and more attention and giving a predominant non-genetic role in cancer therapy resistance. The DTP phenotype is characterized by a quiescent or slow-cell-cycle reversible state of the cancer cell subpopulation and inert specialization to stimuli, which tolerates anticancer drug exposure to some extent through the interaction of multiple underlying mechanisms and recovering growth and proliferation after drug withdrawal, ultimately leading to treatment resistance and cancer recurrence. Therefore, targeting DTP cells is anticipated to provide new treatment opportunities for cancer patients, although our current knowledge of these DTP cells in treatment resistance remains limited. In this review, we provide a comprehensive overview of the formation characteristics and underlying drug tolerant mechanisms of DTP cells, investigate the potential drugs for DTP (including preclinical drugs, novel use for old drugs, and natural products) based on different medicine models, and discuss the necessity and feasibility of anti-DTP therapy, related application forms, and future issues that will need to be addressed to advance this emerging field towards clinical applications. Nonetheless, understanding the novel functions of DTP cells may enable us to develop new more effective anticancer therapy and improve clinical outcomes for cancer patients.
Collapse
Affiliation(s)
- Jun He
- Department of Medical Oncology, the Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
| | - Zejing Qiu
- Department of Medical Oncology, the Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
| | - Jingjing Fan
- Department of Medical Oncology, the Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
| | - Xiaohong Xie
- Department of Breast Surgery, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China.
| | - Qinsong Sheng
- Department of Colorectal Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.
| | - Xinbing Sui
- Department of Medical Oncology, the Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China.
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China.
| |
Collapse
|
79
|
Chen X, Sun B, Zeng J, Yu Z, Liu J, Tan Z, Li Y, Peng C. Molecular mechanism of Spatholobi Caulis treatment for cholangiocarcinoma based on network pharmacology, molecular docking, and molecular dynamics simulation. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:5789-5806. [PMID: 38321212 DOI: 10.1007/s00210-024-02985-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 01/28/2024] [Indexed: 02/08/2024]
Abstract
Cholangiocarcinoma (CCA) is a type of malignant tumor originating from the intrahepatic, periportal, or distal biliary system. The treatment means for CCA is limited, and its prognosis is poor. Spatholobi Caulis (SC) is reported to have effects on anti-inflammatory and anti-tumor, but its role in CCA is unclear. First, the potential molecular mechanism of SC for CCA treatment was explored based on network pharmacology, and the core targets were verified by molecular docking and molecular dynamics simulation. Then, we explored the inhibitory effect of SC on the malignant biological behavior of CCA in vitro and in vivo and also explored the related signaling pathways. The effect of combination therapy of SC and cisplatin (DDP) in CCA was also explored. Finally, we conducted a network pharmacological study and simple experimental verification on luteolin, one of the main components of SC. Network pharmacology analysis showed that the core targets of SC on CCA were AKT1, CASP3, MYC, TP53, and VEGFA. Molecular docking and molecular dynamics simulation indicated a good combination between the core target protein and the corresponding active ingredients. In vitro, SC inhibited proliferation, migration, invasion, and epithelial-mesenchymal transition (EMT) of CCA cells. In vivo experiments, the results were consistent with in vitro experiments, and there was no significant hepatorenal toxicity of SC at our dosage. Based on KEGG enrichment analysis, we found PI3K/AKT signaling pathway might be the main signaling pathway of SC action on CCA by using AKT agonist SC79. To explore whether SC was related to the chemotherapy sensitivity of CCA, we found that SC combined with DDP could more effectively inhibit the progression of cholangiocarcinoma. Finally, we found luteolin may inhibit the proliferation and invasion of CCA cells. Our study demonstrates for the first time that SC inhibits the progression of CCA by suppressing EMT through the PI3K-AKT signaling pathway, and SC could enhance the effectiveness of cisplatin therapy for CCA.
Collapse
Affiliation(s)
- Xu Chen
- Department of Hepatobiliary Surgery, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, No. 61 Jiefang West Road, Changsha, 410005, Hunan, People's Republic of China
| | - Bo Sun
- Department of Hepatobiliary Surgery, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, No. 61 Jiefang West Road, Changsha, 410005, Hunan, People's Republic of China
| | - Jia Zeng
- The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, 410007, Hunan, People's Republic of China
| | - Zhangtao Yu
- Department of Hepatobiliary Surgery, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, No. 61 Jiefang West Road, Changsha, 410005, Hunan, People's Republic of China
| | - Jie Liu
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, 730000, Gansu, People's Republic of China
| | - Zhiguo Tan
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, 730000, Gansu, People's Republic of China.
| | - Yuhang Li
- Department of Hepatobiliary Surgery, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, No. 61 Jiefang West Road, Changsha, 410005, Hunan, People's Republic of China.
| | - Chuang Peng
- Department of Hepatobiliary Surgery, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, No. 61 Jiefang West Road, Changsha, 410005, Hunan, People's Republic of China.
| |
Collapse
|
80
|
Tang J, Liu Y, Xue Y, Jiang Z, Chen B, Liu J. Endoperoxide-enhanced self-assembled ROS producer as intracellular prodrugs for tumor chemotherapy and chemodynamic therapy. EXPLORATION (BEIJING, CHINA) 2024; 4:20230127. [PMID: 39175885 PMCID: PMC11335464 DOI: 10.1002/exp.20230127] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 01/16/2024] [Indexed: 08/24/2024]
Abstract
Prodrug-based self-assembled nanoparticles (PSNs) with tailored responses to tumor microenvironments show a significant promise for chemodynamic therapy (CDT) by generating highly toxic reactive oxygen species (ROS). However, the insufficient level of intracellular ROS and the limited drug accumulation remain major challenges for further clinical transformation. In this study, the PSNs for the delivery of artesunate (ARS) are demonstrated by designing the pH-responsive ARS-4-hydroxybenzoyl hydrazide (HBZ)-5-amino levulinic acid (ALA) nanoparticles (AHA NPs) with self-supplied ROS for excellent chemotherapy and CDT. The PSNs greatly improved the loading capacity of artesunate and the ROS generation from endoperoxide bridge using the electron withdrawing group attached directly to C10 site of artesunate. The ALA and ARS-HBZ could be released from AHA NPs under the cleavage of hydrazone bonds triggered by the acidic surroundings. Besides, the ALA increased the intracellular level of heme in mitochondria, further promoting the ROS generation and lipid peroxidation with ARS-HBZ for excellent anti-tumor effects. Our study improved the chemotherapy of ARS through the chemical modification, pointing out the potential applications in the clinical fields.
Collapse
Affiliation(s)
- JunJie Tang
- School of Biomedical EngineeringShenzhen Campus of Sun Yat‐Sen UniversityShenzhenGuangdongPeople's Republic of China
| | - Yadong Liu
- School of Biomedical EngineeringShenzhen Campus of Sun Yat‐Sen UniversityShenzhenGuangdongPeople's Republic of China
| | - Yifan Xue
- School of Biomedical EngineeringShenzhen Campus of Sun Yat‐Sen UniversityShenzhenGuangdongPeople's Republic of China
| | - Zhaozhong Jiang
- Department of Biomedical EngineeringIntegrated Science and Technology CenterYale UniversityWest HavenConnecticutUSA
| | - Baizhu Chen
- School of Biomedical EngineeringShenzhen Campus of Sun Yat‐Sen UniversityShenzhenGuangdongPeople's Republic of China
- Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical InstrumentSun Yat‐Sen UniversityGuangzhouChina
| | - Jie Liu
- School of Biomedical EngineeringShenzhen Campus of Sun Yat‐Sen UniversityShenzhenGuangdongPeople's Republic of China
| |
Collapse
|
81
|
Malla A, Gupta S, Sur R. Inhibition of lactate dehydrogenase A by diclofenac sodium induces apoptosis in HeLa cells through activation of AMPK. FEBS J 2024; 291:3628-3652. [PMID: 38767406 DOI: 10.1111/febs.17158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 03/01/2024] [Accepted: 05/07/2024] [Indexed: 05/22/2024]
Abstract
Cancer cells exhibit a unique metabolic preference for the glycolytic pathway over oxidative phosphorylation for maintaining the tumor microenvironment. Lactate dehydrogenase A (LDHA) is a key enzyme that facilitates glycolysis by converting pyruvate to lactate and has been shown to be upregulated in multiple cancers due to the hypoxic tumor microenvironment. Diclofenac (DCF), a nonsteroidal anti-inflammatory drug, has been shown to exhibit anticancer effects by interfering with the glucose metabolism pathway. However, the specific targets of this drug remain unknown. Using in silico, biochemical, and biophysical studies, we show that DCF binds to LDHA adjacent to the substrate binding site and inhibits its activity in a dose-dependent and allosteric manner in HeLa cells. Thus, DCF inhibits the hypoxic microenvironment and induces apoptosis-mediated cell death. DCF failed to induce cytotoxicity in HeLa cells when LDHA was knocked down, confirming that DCF exerts its antimitotic effects via LDHA inhibition. DCF-induced LDHA inhibition alters pyruvate, lactate, NAD+, and ATP production in cells, and this could be a possible mechanism through which DCF inhibits glucose uptake in cancer cells. DCF-induced ATP deprivation leads to mitochondria-mediated oxidative stress, which results in DNA damage, lipid peroxidation, and apoptosis-mediated cell death. Reduction in intracellular ATP levels additionally activates the sensor kinase, adenosine monophosphate-activated protein kinase (AMPK), which further downregulates phosphorylated ribosomal S6 kinase (p-S6K), leading to apoptosis-mediated cell death. We find that in LDHA knocked down cells, intracellular ATP levels were depleted, resulting in the inhibition of p-S6K, suggesting the involvement of DCF-induced LDHA inhibition in the activation of the AMPK/S6K signaling pathway.
Collapse
Affiliation(s)
- Avirup Malla
- Department of Biophysics, Molecular Biology and Bioinformatics, University of Calcutta, India
| | - Suvroma Gupta
- Khejuri College, Purba Medinipur, West Bengal, India
| | - Runa Sur
- Department of Biophysics, Molecular Biology and Bioinformatics, University of Calcutta, India
| |
Collapse
|
82
|
Chu K, Liu J, Zhang X, Wang M, Yu W, Chen Y, Xu L, Yang G, Zhang N, Zhao T. Herbal Medicine-Derived Exosome-Like Nanovesicles: A Rising Star in Cancer Therapy. Int J Nanomedicine 2024; 19:7585-7603. [PMID: 39081899 PMCID: PMC11287466 DOI: 10.2147/ijn.s477270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 07/18/2024] [Indexed: 08/02/2024] Open
Abstract
Plant-derived exosome-like nanovesicles (PDNVs) are small nanoscale vesicles containing lipids, RNAs, proteins and some plant natural products secreted by plant cells. Over the last decade, PDNVs have garnered significant interest due to its exceptional therapeutic benefits in the treatment of various diseases. Herbal medicine, as a medicinal plant, plays an important role in the treatment of diseases including cancer. Especially in recent years, the function of herbal medicine derived exosome-like nanovesicles (HMDNVs) in the treatment of cancer has been widely concerned, and has become a research hotspot of nanomedicine. In this review, the biological characteristics, functions and the therapeutic advantages of PDNVs are reviewed, as well as the recent achievements and research progress of HMDNVs in cancer treatment, demonstrating its enormous promise as a cancer therapy, and new insights are provided for future research and development of anti-tumor drugs.
Collapse
Affiliation(s)
- Kaifei Chu
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, People’s Republic of China
- College of Life Sciences, Zhejiang Normal University, Jinhua, People’s Republic of China
| | - Jie Liu
- College of Life Sciences, Zhejiang Normal University, Jinhua, People’s Republic of China
| | - Xu Zhang
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, People’s Republic of China
- College of Life Sciences, Zhejiang Normal University, Jinhua, People’s Republic of China
| | - Minran Wang
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, People’s Republic of China
| | - Wanping Yu
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, People’s Republic of China
| | - Yuyue Chen
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, People’s Republic of China
| | - Lingling Xu
- College of Life Sciences, Zhejiang Normal University, Jinhua, People’s Republic of China
| | - Geng Yang
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, People’s Republic of China
| | - Naru Zhang
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, People’s Republic of China
| | - Tiejun Zhao
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, People’s Republic of China
- College of Life Sciences, Zhejiang Normal University, Jinhua, People’s Republic of China
| |
Collapse
|
83
|
Ren L, Peng H, Mu H, Li J, Zhou X, Zhang Y, Xuan Q, Zhang X, Dai X, Chen Y, Fan M, Mo F, Li B, Yan L, Zheng G. 28-day repeated-dose toxicity of orally administered Jinmao Jiedu granule in Sprague-Dawley rats. J Chromatogr B Analyt Technol Biomed Life Sci 2024; 1242:124176. [PMID: 38870606 DOI: 10.1016/j.jchromb.2024.124176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 05/17/2024] [Accepted: 05/25/2024] [Indexed: 06/15/2024]
Abstract
Jinmao Jiedu granule is a Chinese medicine preparation consisting of Actinidia valvata Dunn, Salvia chinensis Benth, Iphigenia indica Kunth, and chicken gizzard. For many years, it has been employed in adjuvant therapy for cancer, especially liver cancer. However, the potential toxicity of the granule has not been reported. The present study aimed to assess the repeated-dose toxicity of orally administered Jinmao Jiedu granules for Sprague-Dawley (SD) rats. SD rats were orally administered Jinmao Jiedu granules at doses of 2.85, 5.70, and 11.40 g/kg in a 28-day subchronic toxicity study. No adverse clinical signs associated with treatment were noted throughout the experiment. There were no treatment-related toxicity alterations in body weight, hematology, clinical biochemistry, urinalysis, necropsy, and histopathology in rats compared with the control group. The No Observed Adverse Effect Level (NOAEL) of the Jinmao Jiedu granule was higher than 11.40 g/kg/day in rats.
Collapse
Affiliation(s)
- Lijun Ren
- Department of Health Toxicology, Faculty of Naval Medicine, Naval Medical University, Shanghai 200433, China
| | - Hao Peng
- Department of Traditional Chinese Medicine, First Affiliated Hospital, Naval Medical University, Shanghai 200433, China
| | - Hui Mu
- Department of Rehabilitation Medicine and Physiotherapy, First Affiliated Hospital, Naval Medical University, Shanghai 200433, China
| | - Jinfeng Li
- Department of Health Toxicology, Faculty of Naval Medicine, Naval Medical University, Shanghai 200433, China
| | - Xibin Zhou
- Department of Traditional Chinese Medicine, First Affiliated Hospital, Naval Medical University, Shanghai 200433, China
| | - Yanhong Zhang
- Shanghai Traditional Chinese Medicine Technology Company Limited, Shanghai 201203, China
| | - Qiwen Xuan
- Department of Traditional Chinese Medicine, First Affiliated Hospital, Naval Medical University, Shanghai 200433, China
| | - Xiayan Zhang
- Department of Pharmacy, First Affiliated Hospital, Naval Medical University, Shanghai 200433, China
| | - Xiaoyu Dai
- Department of Health Toxicology, Faculty of Naval Medicine, Naval Medical University, Shanghai 200433, China
| | - Yun Chen
- Department of Health Toxicology, Faculty of Naval Medicine, Naval Medical University, Shanghai 200433, China
| | - Minwei Fan
- Shanghai Traditional Chinese Medicine Technology Company Limited, Shanghai 201203, China
| | - Fengfeng Mo
- Department of Naval Nutrition and Food Hygiene, Faculty of Naval Medicine, Naval Medical University, Shanghai 200433, China
| | - Bai Li
- Department of Rehabilitation Medicine and Physiotherapy, First Affiliated Hospital, Naval Medical University, Shanghai 200433, China
| | - Lang Yan
- Department of Health Toxicology, Faculty of Naval Medicine, Naval Medical University, Shanghai 200433, China.
| | - Guoyin Zheng
- Department of Traditional Chinese Medicine, First Affiliated Hospital, Naval Medical University, Shanghai 200433, China.
| |
Collapse
|
84
|
Cui Y, Lan L, Lv J, Zhao B, Kong J, Lai Y. Chalcomoracin promotes apoptosis and endoplasmic reticulum stress in hepatocellular carcinoma cells. J Antibiot (Tokyo) 2024; 77:428-435. [PMID: 38724630 DOI: 10.1038/s41429-024-00732-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 04/07/2024] [Accepted: 04/15/2024] [Indexed: 06/28/2024]
Abstract
Chalcomoracin (CMR), a Diels-Alder adduct obtained from mulberry leaves, demonstrated wide-spectrum anti-cancer activity. Herein, we aimed to explore the function of CMR and how it works in hepatocellular carcinoma (HCC). Human HCC cell lines Hep3B and SNU-387 were cultured and treated with various concentrations of CMR (1.5, 3, and 6 µM). Subsequently, the effects of CMR on cell viability, colony formation, apoptosis, migration, and invasion abilities were studied in vitro. Furthermore, the levels of endoplasmic reticulum (ER) stress-related proteins and mitogen-activated protein kinase (MAPK) pathway-related proteins in cells under CMR exposure were detected using western blot. Experiments in vivo were conducted to examine the effects of CMR on tumor growth in HCC. CMR administration inhibited the viability and clonogenic, migration, and invasion abilities, as well as promoted cell apoptosis and ER stress in Hep3B and SNU-387 cells. In addition, CMR treatment reduced the phosphorylation levels of ERK, P38, and JNK in the MAPK pathway. Moreover, an in vivo study showed that CMR administration could inhibit tumorigenesis and MAPK pathway activity in HCC. Our data indicate that CMR has the potential to inhibit the development of HCC, potentially through the inhibition of the MAPK pathway. These findings suggest that CMR may have promising applications as an anticancer agent in future therapeutics for HCC.
Collapse
Affiliation(s)
- Yongliang Cui
- Department of Hepatobiliary Pancreatic Surgery, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, Fujian, 350028, China
| | - Liqin Lan
- Department of Intensive Care Unit, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, Fujian, 350028, China
| | - Jiahui Lv
- Department of Hepatobiliary Pancreatic Surgery, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, Fujian, 350028, China
| | - Bixing Zhao
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, Fujian, 350028, China
| | - Jinfeng Kong
- Department of Liver Disease, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, Fujian, 350028, China.
| | - Yongping Lai
- Department of Hepatobiliary Pancreatic Surgery, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, Fujian, 350028, China.
| |
Collapse
|
85
|
Zhang G, Hu J, Li A, Zhang H, Guo Z, Li X, You Z, Wang Y, Jing Z. Ginsenoside Rg5 inhibits glioblastoma by activating ferroptosis via NR3C1/HSPB1/NCOA4. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 129:155631. [PMID: 38640858 DOI: 10.1016/j.phymed.2024.155631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 03/02/2024] [Accepted: 04/11/2024] [Indexed: 04/21/2024]
Abstract
BACKGROUND The utilization of Chinese medicine as an adjunctive therapy for cancer has recently gained significant attention. Ferroptosis, a newly regulated cell death process depending on the ferrous ions, has been proved to be participated in glioma stem cells inactivation. PURPOSE We aim to study whether ginsenoside Rg5 exerted inhibitory effects on crucial aspects of glioma stem cells, including cell viability, tumor initiation, invasion, self-renewal ability, neurosphere formation, and stemness. METHODS Through comprehensive sequencing analysis, we identified a compelling association between ginsenoside Rg5 and the ferroptosis pathway, which was further validated through subsequent experiments demonstrating its ability to activate this pathway. RESULTS To elucidate the precise molecular targets affected by ginsenoside Rg5 in gliomas, we conducted an intersection analysis between differentially expressed genes obtained from sequencing and a database-predicted list of transcription factors and potential targets of ginsenoside Rg5. This rigorous approach led us to unequivocally confirm NR3C1 (Nuclear Receptor Subfamily 3 Group C Member 1) as a direct target of ginsenoside Rg5, a finding consistently supported by subsequent experimental investigations. Moreover, we uncovered NR3C1's capacity to transcriptionally regulate ferroptosis -related genes HSPB1 and NCOA4. Strikingly, ginsenoside Rg5 induced notable alterations in the expression levels of both HSPB1 (Heat Shock Protein Family B Member 1) and NCOA4 (Nuclear Receptor Coactivator 4). Finally, our intracranial xenograft assays served to reaffirm the inhibitory effect of ginsenoside Rg5 on the malignant progression of glioblastoma. CONCLUSION These collective findings strongly suggest that ginsenoside Rg5 hampers glioblastoma progression by activating ferroptosis through NR3C1, which subsequently modulates HSPB1 and NCOA4. Importantly, this novel therapeutic direction holds promise for advancing the treatment of glioblastoma.
Collapse
Affiliation(s)
- Guoqing Zhang
- Department of Neurosurgery, the First Hospital of China Medical University, No. 155 North Nanjing Street, Shenyang, 110001, China
| | - Jinpeng Hu
- Department of Neurosurgery, the First Hospital of China Medical University, No. 155 North Nanjing Street, Shenyang, 110001, China
| | - Ao Li
- Emergency department, Liaoning Provincial People Hospital, Shenyang, 110016, China
| | - Haiying Zhang
- International Education College, Liaoning University of Traditional Chinese Medicine, No. 79 Chongshan East Road, Shenyang, Liaoning, 110042, China
| | - Zhengting Guo
- Department of Neurosurgery, the First Hospital of China Medical University, No. 155 North Nanjing Street, Shenyang, 110001, China
| | - Xinqiao Li
- Department of Neurosurgery, the First Hospital of China Medical University, No. 155 North Nanjing Street, Shenyang, 110001, China
| | - Zinan You
- Department of Neurosurgery, the First Hospital of China Medical University, No. 155 North Nanjing Street, Shenyang, 110001, China
| | - Yongfeng Wang
- Department of Radiology, the First Hospital of China Medical University, No. 155 North Nanjing Street, Shenyang, 110001, PR China.
| | - Zhitao Jing
- Department of Neurosurgery, the First Hospital of China Medical University, No. 155 North Nanjing Street, Shenyang, 110001, China.
| |
Collapse
|
86
|
Morang S, Bisht M, Upadhyay V, Thapliyal S, Handu S. S1P Signaling Genes as Prominent Drivers of BCR-ABL1-Independent Imatinib Resistance and Six Herbal Compounds as Potential Drugs for Chronic Myeloid Leukemia. OMICS : A JOURNAL OF INTEGRATIVE BIOLOGY 2024; 28:367-376. [PMID: 38986084 DOI: 10.1089/omi.2024.0074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
Imatinib (IM), a breakthrough in chronic myeloid leukemia (CML) treatment, is accompanied by discontinuation challenges owing to drug intolerance. Although BCR-ABL1 mutation is a key cause of CML resistance, understanding mechanisms independent of BCR-ABL1 is also important. This study investigated the sphingosine-1-phosphate (S1P) signaling-associated genes (SphK1 and S1PRs) and their role in BCR-ABL1-independent resistant CML, an area currently lacking investigation. Through comprehensive transcriptomic analysis of IM-sensitive and IM-resistant CML groups, we identified the differentially expressed genes and found a notable upregulation of SphK1, S1PR2, and S1PR5 in IM-resistant CML. Functional annotation revealed their roles in critical cellular processes such as proliferation and GPCR activity. Their network analysis uncovered significant clusters, emphasizing the interconnectedness of the S1P signaling genes. Further, we identified interactors such as BIRC3, TRAF6, and SRC genes, with potential implications for IM resistance. Additionally, receiver operator characteristic curve analysis suggested these genes' potential as biomarkers for predicting IM resistance. Network pharmacology analysis identified six herbal compounds-ampelopsin, ellagic acid, colchicine, epigallocatechin-3-gallate, cucurbitacin B, and evodin-as potential drug candidates targeting the S1P signaling genes. In summary, this study contributes to efforts to better understand the molecular mechanisms underlying BCR-ABL1-independent CML resistance. Moreover, the S1P signaling genes are promising therapeutic targets and plausible new innovation avenues to combat IM resistance in cancer clinical care in the future.
Collapse
MESH Headings
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism
- Humans
- Drug Resistance, Neoplasm/genetics
- Drug Resistance, Neoplasm/drug effects
- Imatinib Mesylate/pharmacology
- Imatinib Mesylate/therapeutic use
- Fusion Proteins, bcr-abl/genetics
- Fusion Proteins, bcr-abl/metabolism
- Signal Transduction/drug effects
- Lysophospholipids/metabolism
- Gene Expression Profiling/methods
- Antineoplastic Agents/pharmacology
- Antineoplastic Agents/therapeutic use
- Female
- Sphingosine/analogs & derivatives
Collapse
Affiliation(s)
- Sikha Morang
- Department of Pharmacology, All India Institute of Medical Sciences, Rishikesh, India
| | - Manisha Bisht
- Department of Pharmacology, All India Institute of Medical Sciences, Rishikesh, India
| | - Vikas Upadhyay
- Department of AYUSH, All India Institute of Medical Sciences, Rishikesh, India
| | | | - Shailendra Handu
- Department of Pharmacology, All India Institute of Medical Sciences, Rishikesh, India
| |
Collapse
|
87
|
Dong Q, Fu H, Jiang H. The role of exosome-shuttled miRNAs in heavy metal-induced peripheral tissues and neuroinflammation in Alzheimer's disease. Biomed Pharmacother 2024; 176:116880. [PMID: 38850652 DOI: 10.1016/j.biopha.2024.116880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 05/11/2024] [Accepted: 06/03/2024] [Indexed: 06/10/2024] Open
Abstract
Heavy metal-induced neuroinflammation is a significant pathophysiologic mechanism in Alzheimer's disease (AD). Microglia-mediated neuroinflammation plays a crucial role in the pathogenesis of AD. Multiple miRNAs are differentially expressed in peripheral tissues after heavy metal exposure, and increasing evidence suggests that they are involved in AD progression by regulating microglial homeostasis. Exosomes, which are capable of loading miRNAs and crossing the bloodbrain barrier, serve as mediators of communication between peripheral tissues and the brain. In this review, we summarize the current evidence on the link between miRNAs in peripheral tissues and neuroinflammation in AD after heavy metal exposure and propose a role for miRNAs in the microglial neurodegenerative phenotype (MGnD) of AD. This study will help to elucidate the link between peripheral tissue damage and MGnD-mediated neuroinflammation in AD after heavy metal exposure. Additionally, we summarize the regulatory effects of natural compounds on peripheral tissue-derived miRNAs, which could be potential therapeutic targets for natural compounds to regulate peripheral tissue-derived exosomal miRNAs to ameliorate heavy metal-induced MGnD-mediated neuroinflammation in patients with AD after heavy metal exposure.
Collapse
Affiliation(s)
- Qing Dong
- Department of Health Laboratory Technology, School of Public Health, China Medical University, Shenyang, Liaoning 110122, China.
| | - Huanyong Fu
- Department of Health Laboratory Technology, School of Public Health, China Medical University, Shenyang, Liaoning 110122, China.
| | - Hong Jiang
- Key Laboratory of Environmental Stress and Chronic Disease Control and Prevention, Ministry of Education, China Medical University, Shenyang, Liaoning 110122, China; The Key Laboratory of Liaoning Province on Toxic and Biological Effects of Arsenic, Shenyang, Liaoning 110122, China; Department of Health Laboratory Technology, School of Public Health, China Medical University, Shenyang, Liaoning 110122, China.
| |
Collapse
|
88
|
Zhang D, Qin H, Chen W, Xiang J, Jiang M, Zhang L, Zhou K, Hu Y. Utilizing network pharmacology, molecular docking, and animal models to explore the therapeutic potential of the WenYang FuYuan recipe for cerebral ischemia-reperfusion injury through AGE-RAGE and NF-κB/p38MAPK signaling pathway modulation. Exp Gerontol 2024; 191:112448. [PMID: 38697555 DOI: 10.1016/j.exger.2024.112448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 04/13/2024] [Accepted: 04/29/2024] [Indexed: 05/05/2024]
Abstract
BACKGROUND Stroke is a debilitating condition with high morbidity, disability, and mortality that significantly affects the quality of life of patients. In China, the WenYang FuYuan recipe is widely used to treat ischemic stroke. However, the underlying mechanism remains unknown, so exploring the potential mechanism of action of this formula is of great practical significance for stroke treatment. OBJECTIVE This study employed network pharmacology, molecular docking, and in vivo experiments to clarify the active ingredients, potential targets, and molecular mechanisms of the WenYang FuYuan recipe in cerebral ischemia-reperfusion injury, with a view to providing a solid scientific foundation for the subsequent study of this recipe. MATERIALS AND METHODS Active ingredients of the WenYang FuYuan recipe were screened using the traditional Chinese medicine systems pharmacology database and analysis platform. Network pharmacology approaches were used to explore the potential targets and mechanisms of action of the WenYang FuYuan recipe for the treatment of cerebral ischemia-reperfusion injury. The Middle Cerebral Artery Occlusion/Reperfusion 2 h Sprague Dawley rat model was prepared, and TTC staining and modified neurological severity score were applied to examine the neurological deficits in rats. HE staining and Nissl staining were applied to examine the pathological changes in rats. Immunofluorescence labeling and Elisa assay were applied to examine the expression levels of certain proteins and associated factors, while qRT-PCR and Western blotting were applied to examine the expression levels of linked proteins and mRNAs in disease-related signaling pathways. RESULTS We identified 62 key active ingredients in the WenYang FuYuan recipe, with 222 highly significant I/R targets, forming 138 pairs of medication components and component-targets, with the top five being Quercetin, Kaempferol, Luteolin, β-sitosterol, and Stigmasterol. The key targets included TP53, RELA, TNF, STAT1, and MAPK14 (p38MAPK). Targets related to cerebral ischemia-reperfusion injury were enriched in chemical responses, enzyme binding, endomembrane system, while enriched pathways included lipid and atherosclerosis, fluid shear stress and atherosclerosis, AGE-RAGE signaling in diabetic complications. In addition, the main five active ingredients and targets in the WenYang FuYuan recipe showed high binding affinity (e.g. Stigmasterol and MAPK14, total energy <-10.5 Kcal/mol). In animal experiments, the WenYang FuYuan recipe reduced brain tissue damage, increased the number of surviving neurons, and down-regulated S100β and RAGE protein expression. Moreover, the relative expression levels of key targets such as TP53, RELA and p38MAPK mRNA were significantly down-regulated in the WenYang FuYuan recipe group, and serum IL-6 and TNF-a factor levels were reduced. After WenYang FuYuan recipe treatment, the AGE-RAGE signaling pathway and downstream NF-kB/p38MAPK signaling pathway-related proteins were significantly modulated. CONCLUSION This study utilized network pharmacology, molecular docking, and animal experiments to identify the potential mechanism of the WenYang FuYuan recipe, which may be associated with the regulation of the AGE-RAGE signaling pathway and the inhibition of target proteins and mRNAs in the downstream NF-kB/p38MAPK pathway.
Collapse
Affiliation(s)
- Ding Zhang
- Guangxi University of Chinese Medicine, Nanning, China
| | - Hongling Qin
- Guangxi University of Chinese Medicine First Affiliated Hospital, Nanning, China
| | - Wei Chen
- Guangxi University of Chinese Medicine First Affiliated Hospital, Nanning, China
| | - Junjun Xiang
- Guangxi University of Chinese Medicine, Nanning, China
| | - Minghe Jiang
- Guangxi University of Chinese Medicine, Nanning, China
| | - Ling Zhang
- Guangxi University of Chinese Medicine, Nanning, China
| | - Keqing Zhou
- Guangxi University of Chinese Medicine, Nanning, China
| | - Yueqiang Hu
- Guangxi University of Chinese Medicine First Affiliated Hospital, Nanning, China.
| |
Collapse
|
89
|
Luo Y, Zhang G, Hu C, Huang L, Wang D, Chen Z, Wang Y. The Role of Natural Products from Herbal Medicine in TLR4 Signaling for Colorectal Cancer Treatment. Molecules 2024; 29:2727. [PMID: 38930793 PMCID: PMC11206024 DOI: 10.3390/molecules29122727] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 05/24/2024] [Accepted: 06/05/2024] [Indexed: 06/28/2024] Open
Abstract
The toll-like receptor 4 (TLR4) signaling pathway constitutes an intricate network of protein interactions primarily involved in inflammation and cancer. This pathway triggers intracellular signaling cascades, modulating transcription factors that regulate gene expression related to immunity and malignancy. Previous studies showed that colon cancer patients with low TLR4 expression exhibit extended survival times and the TLR4 signaling pathway holds a significant role in CRC pathogenesis. In recent years, traditional Chinese medicines (TCMs) have garnered substantial attention as an alternative therapeutic modality for CRC, primarily due to their multifaceted composition and ability to target multiple pathways. Emerging evidence indicates that specific TCM products, such as andrographolide, rosmarinic acid, baicalin, etc., have the potential to impede CRC development through the TLR4 signaling pathway. Here, we review the role and biochemical processes of the TLR4 signaling pathway in CRC, and natural products from TCMs affecting the TLR4 pathway. This review sheds light on potential treatment strategies utilizing natural TLR4 inhibitors for CRC, which contributes to the advancement of research and accelerates their clinical integration into CRC treatment.
Collapse
Affiliation(s)
- Yan Luo
- School of Basic Medical Sciences, State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (Y.L.); (G.Z.); (L.H.); (D.W.)
| | - Guochen Zhang
- School of Basic Medical Sciences, State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (Y.L.); (G.Z.); (L.H.); (D.W.)
| | - Chao Hu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China;
| | - Lijun Huang
- School of Basic Medical Sciences, State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (Y.L.); (G.Z.); (L.H.); (D.W.)
| | - Dong Wang
- School of Basic Medical Sciences, State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (Y.L.); (G.Z.); (L.H.); (D.W.)
| | - Zhejie Chen
- Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine (IMM), Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Yumei Wang
- School of Basic Medical Sciences, State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (Y.L.); (G.Z.); (L.H.); (D.W.)
| |
Collapse
|
90
|
Gao X, Zuo X, Min T, Wan Y, He Y, Jiang B. Traditional Chinese medicine for acute myelocytic leukemia therapy: exploiting epigenetic targets. Front Pharmacol 2024; 15:1388903. [PMID: 38895633 PMCID: PMC11183326 DOI: 10.3389/fphar.2024.1388903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 05/14/2024] [Indexed: 06/21/2024] Open
Abstract
Acute myeloid leukemia (AML) is a heterogeneous hematological malignancy with historically high mortality rates. The treatment strategies for AML is still internationally based on anthracyclines and cytarabine, which remained unchanged for decades. With the rapid advance on sequencing technology, molecular targets of leukemogenesis and disease progression related to epigenetics are constantly being discovered, which are important for the prognosis and treatment of AML. Traditional Chinese medicine (TCM) is characterized by novel pharmacological mechanisms, low toxicity and limited side effects. Several biologically active ingredients of TCM are effective against AML. This review focuses on bioactive compounds in TCM targeting epigenetic mechanisms to address the complexities and heterogeneity of AML.
Collapse
Affiliation(s)
- Xinlong Gao
- Naval Medical Center of PLA, Shanghai, China
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Xu Zuo
- Naval Medical Center of PLA, Shanghai, China
| | | | - Yu Wan
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Ying He
- Naval Medical Center of PLA, Shanghai, China
| | - Beier Jiang
- Naval Medical Center of PLA, Shanghai, China
| |
Collapse
|
91
|
Abdulkareem SJ, Jafari-Gharabaghlou D, Farhoudi-Sefidan-Jadid M, Salmani-Javan E, Toroghi F, Zarghami N. Co-delivery of artemisinin and metformin via PEGylated niosomal nanoparticles: potential anti-cancer effect in treatment of lung cancer cells. Daru 2024; 32:133-144. [PMID: 38168007 PMCID: PMC11087397 DOI: 10.1007/s40199-023-00495-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 12/05/2023] [Indexed: 01/05/2024] Open
Abstract
PURPOSE Despite the advances in treatment, lung cancer is a global concern and necessitates the development of new treatments. Biguanides like metformin (MET) and artemisinin (ART) have recently been discovered to have anti-cancer properties. As a consequence, in the current study, the anti-cancer effect of MET and ART co-encapsulated in niosomal nanoparticles on lung cancer cells was examined to establish an innovative therapy technique. METHODS Niosomal nanoparticles (Nio-NPs) were synthesized by thin-film hydration method, and their physicochemical properties were assessed by FTIR. The morphology of Nio-NPs was evaluated with FE-SEM and AFM. The MTT assay was applied to evaluate the cytotoxic effects of free MET, free ART, their encapsulated form with Nio-NPs, as well as their combination, on A549 cells. Apoptosis assay was utilized to detect the biological processes involved with programmed cell death. The arrest of cell cycle in response to drugs was assessed using a cell cycle assay. Following a 48-h drug treatment, the expression level of hTERT, Cyclin D1, BAX, BCL-2, Caspase 3, and 7 genes were assessed using the qRT-PCR method. RESULTS Both MET and ART reduced the survival rate of lung cancer cells in the dose-dependent manner. The IC50 values of pure ART and MET were 195.2 μM and 14.6 mM, respectively while in nano formulated form their IC50 values decreased to 56.7 μM and 78.3 μM, respectively. The combination of MET and ART synergistically decreased the proliferation of lung cancer cells, compared to the single treatments. Importantly, the combination of MET and ART had a higher anti-proliferative impact against A549 lung cancer cells, with lower IC50 values. According to the result of Real-time PCR, hTERT, Cyclin D1, BAX, BCL-2, Caspase 3, and Caspase 7 genes expression were considerably altered in treated with combination of nano formulated MET and ART compared to single therapies. CONCLUSION The results of this study showed that the combination of MET and ART encapsulated in Nio-NPs could be useful for the treatment of lung cancer and can increase the efficiency of lung cancer treatment.
Collapse
Affiliation(s)
- Salah Jaafar Abdulkareem
- Department of Clinical Biochemistry and Laboratory Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Davoud Jafari-Gharabaghlou
- Department of Clinical Biochemistry and Laboratory Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahdi Farhoudi-Sefidan-Jadid
- Department of Clinical Biochemistry and Laboratory Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Elnaz Salmani-Javan
- Department of Clinical Biochemistry and Laboratory Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fatemeh Toroghi
- Research Center for Molecular Medicine, Hamedan University of Medical Science, Hamedan, Iran
| | - Nosratollah Zarghami
- Department of Clinical Biochemistry and Laboratory Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
- Department of Medical Biochemistry, Faculty of Medicine, Istanbul Aydin University, Istanbul, Turkey.
| |
Collapse
|
92
|
Hu L, Zhang Z, Zhu F, Li X, Zou M, Yang R. Schizandrin A enhances the sensitivity of gastric cancer cells to 5-FU by promoting ferroptosis. Cytotechnology 2024; 76:329-340. [PMID: 38736724 PMCID: PMC11082097 DOI: 10.1007/s10616-024-00623-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 02/14/2024] [Indexed: 05/14/2024] Open
Abstract
Schizandrin A (Sch A) exert anticancer and multidrug resistance-reversing effects in a variety of tumors, but its effect on 5-fluorouracil (5-Fu) in gastric cancer (GC) cells remains unclear. The aim of the present study was to examine the resistance-reversing effect of Schizandrin A and assess its mechanisms in 5-Fu-resistant GC cells.5-Fu-sensitive GC cells were treated with 5-Fu and 5-Fu-resistant GC cells AGS/5-Fu and SGC7901/5-Fu were were established. These cells were stimulated with Schizandrin A alone or co-treated with 5-Fu and their effect on tumor cell growth, proliferation, migration, invasion and ferroptosis-related metabolism were investigated both in vitro and in vivo. A number of additional experiments were conducted in an attempt to elucidate the molecular mechanism of increased ferroptosis. The results of our study suggest that Schizandrin A in combination with 5-Fu might be useful in treating GC by reverse drug resistance. It was shown that Schizandrin A coadministration suppressed metastasis and chemotherapy resistance in 5-Fu-resistant GC cells through facilitating the onset of ferroptosis, which is an iron-dependent form of cell death, which was further demonstrated in a xenograft nude mouse model. Mechanistically, Schizandrin A co-administration synergistically increased the expression of transferin receptor, thus iron accumulates within cells, leading to lipid peroxidation, which ultimately results in 5-Fu-resistant GC cells death. The results of this study have provided a novel strategy for increasing GC chemosensitivity, indicating Schizandrin A as a novel ferroptosis regulator. Mechanistically, ferroptosis is induced by Schizandrin A coadministration via increasing transferrin receptor expression.
Collapse
Affiliation(s)
- Liye Hu
- Department of Pharmacy, Affiliated Hospital of Jinggangshan University, Ji’an, 343009 Jiangxi China
| | - Zhongyuan Zhang
- Department of Pharmacy, Wuhan Red Cross Hospital, Wuhan, 430024 Hubei China
| | - Feng Zhu
- Department of Endocrinology, Affiliated Hospital of Jinggangshan University, Ji’an, 343009 Jiangxi China
| | - Xin Li
- Computer Center, Ezhou Central Hospital, Ezhou, 436099 Hubei China
| | - Min Zou
- Department of Endocrinology, Affiliated Hospital of Jinggangshan University, Ji’an, 343009 Jiangxi China
| | - Rui Yang
- Department of Pharmacy, Huazhong University of Science and Technology Hospital, Wuhan, 430074 Hubei China
| |
Collapse
|
93
|
Deng L, Tian W, Luo L. Application of natural products in regulating ferroptosis in human diseases. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 128:155384. [PMID: 38547620 DOI: 10.1016/j.phymed.2024.155384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 01/05/2024] [Accepted: 01/23/2024] [Indexed: 05/01/2024]
Abstract
BACKGROUND Ferroptosis is a type of cell death caused by excessive iron-induced peroxidation. It has been found to be involved in a variety of diseases, and natural products can be used to target ferroptosis in treatments. Natural products are biologically active compounds extracted or synthesized from nature. It is an important resource for the discovery of skeletons with a high degree of structural diversity and a wide range of bioactivities, which can be developed directly or used as a starting point for the optimization of new drugs. PURPOSE In this review, we aim to discuss the interactions between natural products and ferroptosis in the treatment of human diseases. METHODS Literature was searched in Pubmed, Science Direct, and Web of Science databases for the 11-year period from 2012 to 2023 using the search terms "natural products", "ferroptosis", "human disease", "neurodegenerative disease", "cardiovascular disease", and "cancer". RESULTS In this research, the roles of natural products and ferroptosis were investigated. We suggest that natural products, such as terpenoids, flavonoids, polyphenols, alkaloids, and saponins, can be used in therapeutic applications for human diseases, as well as in ferroptosis. Additionally, the main mechanisms of ferroptosis were summarized and discussed. Furthermore, we propose that natural products can be utilized to enhance the sensitivity of cancer cells to ferroptosis, thus helping to overcome drug resistance and inhibit metastasis. Moreover, natural products have the potential to modulate the expression levels of ferroptosis-related factors. Finally, the future directions of this field were highlighted. CONCLUSION The potential of natural products which focus on ferroptosis to treat human illnesses, particularly cancer, is very encouraging for human wellbeing.
Collapse
Affiliation(s)
- Liyan Deng
- The First Clinical College, Guangdong Medical University, Zhanjiang 524023, Guangdong, China
| | - Wen Tian
- The First Clinical College, Guangdong Medical University, Zhanjiang 524023, Guangdong, China
| | - Lianxiang Luo
- The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang 524023, Guangdong, China; The Marine Biomedical Research Institute of Guangdong Zhanjiang, Zhanjiang 524023, Guangdong, China
| |
Collapse
|
94
|
Abbas Z, Tong Y, Wang J, Zhang J, Wei X, Si D, Zhang R. Potential Role and Mechanism of Mulberry Extract in Immune Modulation: Focus on Chemical Compositions, Mechanistic Insights, and Extraction Techniques. Int J Mol Sci 2024; 25:5333. [PMID: 38791372 PMCID: PMC11121110 DOI: 10.3390/ijms25105333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/05/2024] [Accepted: 05/08/2024] [Indexed: 05/26/2024] Open
Abstract
Mulberry is a rapidly growing plant that thrives in diverse climatic, topographical, and soil types, spanning temperature and temperate countries. Mulberry plants are valued as functional foods for their abundant chemical composition, serving as a significant reservoir of bioactive compounds like proteins, polysaccharides, phenolics, and flavonoids. Moreover, these compounds displayed potent antioxidant activity by scavenging free radicals, inhibiting reactive oxygen species generation, and restoring elevated nitric oxide production induced by LPS stimulation through the downregulation of inducible NO synthase expression. Active components like oxyresveratrol found in Morus demonstrated anti-inflammatory effects by inhibiting leukocyte migration through the MEK/ERK signaling pathway. Gallic and chlorogenic acids in mulberry leaves (ML) powder-modulated TNF, IL-6, and IRS1 proteins, improving various inflammatory conditions by immune system modulation. As we delve deeper into understanding its anti-inflammatory potential and how it works therapeutically, it is crucial to refine the extraction process to enhance the effectiveness of its bioactive elements. Recent advancements in extraction techniques, such as solid-liquid extraction, pressurized liquid extraction, superficial fluid extraction, microwave-assisted extraction, and ultrasonic-assisted extraction, are being explored. Among the extraction methods tested, including Soxhlet extraction, maceration, and ultrasound-assisted extraction (UAE), UAE demonstrated superior efficiency in extracting bioactive compounds from mulberry leaves. Overall, this comprehensive review sheds light on the potential of mulberry as a natural immunomodulatory agent and provides insights into its mechanisms of action for future research and therapeutic applications.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Rijun Zhang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (Z.A.); (Y.T.); (J.W.); (J.Z.); (X.W.); (D.S.)
| |
Collapse
|
95
|
Wang M, Sun Y, Gu R, Tang Y, Han G, Zhao S. Shikonin reduces M2 macrophage population in ovarian cancer by repressing exosome production and the exosomal galectin 3-mediated β-catenin activation. J Ovarian Res 2024; 17:101. [PMID: 38745186 PMCID: PMC11092256 DOI: 10.1186/s13048-024-01430-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 05/02/2024] [Indexed: 05/16/2024] Open
Abstract
BACKGROUND Shikonin (SK), a naphthoquinone with anti-tumor effects, has been found to decrease production of tumor-associated exosomes (exo). This study aims to verify the treatment effect of SK on ovarian cancer (OC) cells, especially on the production of exo and their subsequent effect on macrophage polarization. METHODS OC cells SKOV3 and A2780 were treated with SK. The exo were isolated from OC cells with or without SK treatment, termed OC exo and SK OC exo, respectively. These exo were used to treat PMA-induced THP-1 cells (M0 macrophages). M2 polarization of macrophages was determined by measuring the M2 specific cell surface markers CD163 and CD206 as well as the secretion of M2 cytokine IL-10. The functions of galectin 3 (LGALS3/GAL3) and β-catenin in macrophage polarization were determined by gain- or loss-of-function assays. CB-17 SCID mice were subcutaneously injected with SKOV3 cells to generate xenograft tumors, followed by OC exo or SK OC exo treatment for in vivo experiments. RESULTS SK suppressed viability, migration and invasion, and apoptosis resistance of OC cells in vitro. Compared to OC exo, SK OC exo reduced the M2 polarization of macrophages. Regarding the mechanism, SK reduced exo production in cancer cells, and it decreased the protein level of GAL3 in exo and recipient macrophages, leading to decreased β-catenin activation. M2 polarization of macrophages was restored by LGALS3 overexpression but decreased again by the β-catenin inhibitor FH535. Compared to OC exo, the SK OC exo treatment reduced the xenograft tumor growth in mice, and it decreased the M2 macrophage infiltration within tumor tissues. CONCLUSION This study suggests that SK reduces M2 macrophage population in OC by repressing exo production and blocking exosomal GAL3-mediated β-catenin activation.
Collapse
Affiliation(s)
- Min Wang
- Department of Gynaecology and Obstetrics, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, No.1, Zhongfu Road, Nanjing, Jiangsu, 210003, P.R. China
- Department of Gynaecology, Wuxi Maternity and Child Health Care Hospital, Affiliated Women's Hospital of Jiangnan University, No. 48, Huaishu Lane, Liangxi District, Wuxi, Jiangsu, 214000, P.R. China
| | - Yangyan Sun
- Department of Gynecology, Jiangyin People's Hospital, Wuxi, Jiangsu, 214400, P.R. China
| | - Rui Gu
- Department of Gynaecology, Wuxi Maternity and Child Health Care Hospital, Affiliated Women's Hospital of Jiangnan University, No. 48, Huaishu Lane, Liangxi District, Wuxi, Jiangsu, 214000, P.R. China
| | - Yan Tang
- Department of Gynaecology, Wuxi Maternity and Child Health Care Hospital, Affiliated Women's Hospital of Jiangnan University, No. 48, Huaishu Lane, Liangxi District, Wuxi, Jiangsu, 214000, P.R. China
| | - Guorong Han
- Department of Gynaecology and Obstetrics, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, No.1, Zhongfu Road, Nanjing, Jiangsu, 210003, P.R. China.
| | - Shaojie Zhao
- Department of Gynaecology, Wuxi Maternity and Child Health Care Hospital, Affiliated Women's Hospital of Jiangnan University, No. 48, Huaishu Lane, Liangxi District, Wuxi, Jiangsu, 214000, P.R. China.
| |
Collapse
|
96
|
Ma Y, Cui Q, Zhu W, Wang M, Zhai L, Hu W, Liu D, Liu M, Li Y, Li M, Han W. A Novel Tetramethylpyrazine Chalcone Hybrid- HCTMPPK, as a Potential Anti-Lung Cancer Agent by Downregulating MELK. Drug Des Devel Ther 2024; 18:1531-1546. [PMID: 38737331 PMCID: PMC11088378 DOI: 10.2147/dddt.s449139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 04/30/2024] [Indexed: 05/14/2024] Open
Abstract
Purpose Lung adenocarcinoma currently ranks the leading causes of cancer-related mortality worldwide. Many anti-inflammation herbs, like tetramethylpyrazine, have shown their anti-tumor potentials. Here, we evaluated the role of a novel chalcone derivative of tetramethylpyrazine ((E) -1- (E) -1- (2-hydroxy-5-chlorophenyl) -3- (3,5,6-trimethylpyrazin-2-yl) -2-propen-1, HCTMPPK) in lung adenocarcinoma. Methods The effects of HCTMPPK on cell proliferation, apoptosis, and invasion were investigated by in-vitro assays, including CCK-8, colony formation assay, flow cytometry, transwell assay, and wound-healing assay. The therapeutic potential of HCTMPPK in vivo was evaluated in xenograft mice. To figure out the target molecules of HCTMPPK, a network pharmacology approach and molecular docking studies were employed, and subsequent experiments were conducted to confirm these candidate molecules. Results HCTMPPK effectively suppressed the proliferative activity and migration, as well as enhanced the apoptosis of A549 cells in a concentration-dependent manner. Consistent with this, tumor growth was inhibited by HCTMPPK significantly in vivo. Regarding the mechanisms, HCTMPPK down-regulated Bcl-2 and MMP-9 and up-regulating Bax and cleaved-caspase-3. Subsequently, we identified 601 overlapping DEGs from LUAD patients in TCGA and GEO database. Then, 15 hub genes were identified by PPI network and CytoHubba. Finally, MELK was verified to be the HCTMPPK targeted site, through the molecular docking studies and validation experiments. Conclusion Overall, our study indicates HCTMPPK as a potential MELK inhibitor and may be a promising candidate for the therapy of lung cancer.
Collapse
Affiliation(s)
- Yan Ma
- Qingdao Key Laboratory of Common Diseases, Qingdao Municipal Hospital, School of Medicine and Pharmacy, Ocean University of China, Qingdao, Shandong, 260071, People’s Republic of China
- Department of Respiratory and Critical Care Medicine, Qingdao Municipal Hospital, University of Health and Rehabilitation Sciences, Qingdao, 266071, People’s Republic of China
| | - Qian Cui
- Department of Respiratory and Critical Care Medicine, Shenzhen Luohu People’s Hospital, Shenzhen, 518000, People’s Republic of China
| | - Wenjing Zhu
- Qingdao Key Laboratory of Common Diseases, Qingdao Municipal Hospital, School of Medicine and Pharmacy, Ocean University of China, Qingdao, Shandong, 260071, People’s Republic of China
- NMPA Key Laboratory for Quality Research and Evaluation of Traditional Marine Chinese Medicine, Qingdao, 266071, People’s Republic of China
| | - Mei Wang
- Qingdao Key Laboratory of Common Diseases, Qingdao Municipal Hospital, School of Medicine and Pharmacy, Ocean University of China, Qingdao, Shandong, 260071, People’s Republic of China
- Department of Respiratory and Critical Care Medicine, Qingdao Municipal Hospital, University of Health and Rehabilitation Sciences, Qingdao, 266071, People’s Republic of China
| | - Li Zhai
- Department of Pharmacy, Qingdao Municipal Hospital, University of Health and Rehabilitation Sciences, Qingdao, 266071, People’s Republic of China
| | - Wenmin Hu
- Qingdao Key Laboratory of Common Diseases, Qingdao Municipal Hospital, School of Medicine and Pharmacy, Ocean University of China, Qingdao, Shandong, 260071, People’s Republic of China
- Department of Respiratory and Critical Care Medicine, Qingdao Municipal Hospital, University of Health and Rehabilitation Sciences, Qingdao, 266071, People’s Republic of China
| | - Dongdong Liu
- Department of Respiratory and Critical Care Medicine, Shanting District People’s Hospital, Zaozhuang, 277200, People’s Republic of China
| | - Min Liu
- Department of Pharmacy, Qingdao Municipal Hospital, University of Health and Rehabilitation Sciences, Qingdao, 266071, People’s Republic of China
| | - Yongchun Li
- Department of Respiratory and Critical Care Medicine, Qingdao Municipal Hospital, University of Health and Rehabilitation Sciences, Qingdao, 266071, People’s Republic of China
| | - Meng Li
- Department of Respiratory and Critical Care Medicine, Qingdao Municipal Hospital, University of Health and Rehabilitation Sciences, Qingdao, 266071, People’s Republic of China
| | - Wei Han
- Qingdao Key Laboratory of Common Diseases, Qingdao Municipal Hospital, School of Medicine and Pharmacy, Ocean University of China, Qingdao, Shandong, 260071, People’s Republic of China
- Department of Respiratory and Critical Care Medicine, Qingdao Municipal Hospital, University of Health and Rehabilitation Sciences, Qingdao, 266071, People’s Republic of China
| |
Collapse
|
97
|
Wei S, Xiao J, Ju F, Liu J, Hu Z. A review on the pharmacology, pharmacokinetics and toxicity of sophocarpine. Front Pharmacol 2024; 15:1353234. [PMID: 38746009 PMCID: PMC11092382 DOI: 10.3389/fphar.2024.1353234] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 04/10/2024] [Indexed: 05/16/2024] Open
Abstract
Sophocarpine is a natural compound that belongs to the quinolizidine alkaloid family, and has a long history of use and widespread distribution in traditional Chinese herbal medicines such as Sophora alopecuroides L., Sophora flavescens Ait., and Sophora subprostrata. This article aims to summarize the pharmacology, pharmacokinetics, and toxicity of sophocarpine, evaluate its potential pharmacological effects in various diseases, and propose the necessity for further research and evaluation to promote its clinical application. A large number of studies have shown that it has anti-inflammatory, analgesic, antiviral, antiparasitic, anticancer, endocrine regulatory, and organ-protective effects as it modulates various signaling pathways, such as the NF-κB, MAPK, PI3K/AKT, and AMPK pathways. The distribution of sophocarpine in the body conforms to a two-compartment model, and sophocarpine can be detected in various tissues with a relatively short half-life. Although the pharmacological effects of sophocarpine have been confirmed, toxicity and safety assessments and reports on molecular mechanisms of its pharmacological actions have been limited. Given its significant pharmacological effects and potential clinical value, further research and evaluation are needed to promote the clinical application of sophocarpine.
Collapse
Affiliation(s)
- Shichao Wei
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Junshen Xiao
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Feng Ju
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jin Liu
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Zhaoyang Hu
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
98
|
Bao S, Yi M, Xiang B, Chen P. Antitumor mechanisms and future clinical applications of the natural product triptolide. Cancer Cell Int 2024; 24:150. [PMID: 38678240 PMCID: PMC11055311 DOI: 10.1186/s12935-024-03336-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 04/18/2024] [Indexed: 04/29/2024] Open
Abstract
Triptolide (TPL) is a compound sourced from Tripterygium wilfordii Hook. F., a traditional Chinese medicinal herb recognized for its impressive anti-inflammatory, anti-angiogenic, immunosuppressive, and antitumor qualities. Notwithstanding its favorable attributes, the precise mechanism through which TPL influences tumor cells remains enigmatic. Its toxicity and limited water solubility significantly impede the clinical application of TPL. We offer a comprehensive overview of recent research endeavors aimed at unraveling the antitumor mechanism of TPL in this review. Additionally, we briefly discuss current strategies to effectively manage the challenges associated with TPL in future clinical applications. By compiling this information, we aim to enhance the understanding of the underlying mechanisms involved in TPL and identify potential avenues for further advancement in antitumor therapy.
Collapse
Affiliation(s)
- Shiwei Bao
- NHC Key Laboratory of Carcinogenesis, Hunan Provincial Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, School of Basic Medical Sciences, Central South University, Changsha, 410078, Hunan, China
- FuRong Laboratory, Changsha, 410078, Hunan, China
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
| | - Mei Yi
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Bo Xiang
- NHC Key Laboratory of Carcinogenesis, Hunan Provincial Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China.
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, School of Basic Medical Sciences, Central South University, Changsha, 410078, Hunan, China.
- FuRong Laboratory, Changsha, 410078, Hunan, China.
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China.
| | - Pan Chen
- NHC Key Laboratory of Carcinogenesis, Hunan Provincial Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China.
| |
Collapse
|
99
|
Pan Y, Zhang YR, Wang LY, Wu LN, Ma YQ, Fang Z, Li SB. Construction of CDKN2A-related competitive endogenous RNA network and identification of GAS5 as a prognostic indicator for hepatocellular carcinoma. World J Gastrointest Oncol 2024; 16:1514-1531. [PMID: 38660664 PMCID: PMC11037068 DOI: 10.4251/wjgo.v16.i4.1514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/16/2024] [Accepted: 02/04/2024] [Indexed: 04/10/2024] Open
Abstract
BACKGROUND Competitive endogenous RNA (ceRNA) is an innovative way of gene expression modulation, which plays a crucial part in neoplasia. However, the intricacy and behavioral characteristics of the ceRNA network in hepatocellular carcinoma (HCC) remain dismal. AIM To establish a cyclin dependent kinase inhibitor 2A (CDKN2A)-related ceRNA network and recognize potential prognostic indicators for HCC. METHODS The mutation landscape of CDKN2A in HCC was first explored using the cBioPortal database. Differential expression analysis was implemented between CDKN2Ahigh and CDKN2Alow expression HCC samples. The targeted microRNAs were predicted by lncBasev3.0, and the targeted mRNAs were predicted by miRDB, and Targetscan database. The univariate and multivariate analysis were utilized to identify independent prognostic indicators. RESULTS CDKN2A was frequently mutated and deleted in HCC. The single-cell RNA-sequencing analysis revealed that CDKN2A participated in cell cycle pathways. The CDKN2A-related ceRNA network-growth arrest specific 5 (GAS5)/miR-25-3p/SRY-box transcription factor 11 (SOX11) was successfully established. GAS5 was recognized as an independent prognostic biomarker, whose overexpression was correlated with a poor prognosis in HCC patients. The association between GAS5 expression and methylation, immune infiltration was explored. Besides, traditional Chinese medicine effective components targeting GAS5 were obtained. CONCLUSION This CDKN2A-related ceRNA network provides innovative insights into the molecular mechanism of HCC formation and progression. Moreover, GAS5 might be a significant prognostic biomarker and therapeutic target in HCC.
Collapse
Affiliation(s)
- Yong Pan
- Department of Infectious Disease, Zhoushan Hospital, Wenzhou Medical University, Zhoushan 316021, Zhejiang Province, China
| | - Yi-Ru Zhang
- Department of Infectious Disease, Zhoushan Hospital, Wenzhou Medical University, Zhoushan 316021, Zhejiang Province, China
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital of Zhejiang University, Hangzhou 310003, Zhejiang Province, China
| | - Ling-Yun Wang
- Department of Infectious Disease, Zhoushan Hospital, Wenzhou Medical University, Zhoushan 316021, Zhejiang Province, China
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital of Zhejiang University, Hangzhou 310003, Zhejiang Province, China
| | - Li-Na Wu
- Department of Infectious Disease, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325035, Zhejiang Province, China
| | - Ying-Qiu Ma
- Department of Infectious Disease, Zhoushan Hospital, Wenzhou Medical University, Zhoushan 316021, Zhejiang Province, China
| | - Zhou Fang
- Department of Infectious Disease, Zhoushan Hospital, Wenzhou Medical University, Zhoushan 316021, Zhejiang Province, China
| | - Shi-Bo Li
- Department of Infectious Disease, Zhoushan Hospital, Wenzhou Medical University, Zhoushan 316021, Zhejiang Province, China
| |
Collapse
|
100
|
Feng Y, Yi H, Zheng X, Liu X, Gong T, Wu D, Song Z, Zheng Z. Quercetin inhibition of porcine intestinal alpha coronavirus in vitro and in vivo. BMC Vet Res 2024; 20:134. [PMID: 38570774 PMCID: PMC10988794 DOI: 10.1186/s12917-024-03984-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 03/21/2024] [Indexed: 04/05/2024] Open
Abstract
BACKGROUND Porcine acute diarrhea syndrome coronavirus (SADS-CoV) is one of the novel pathogens responsible for piglet diarrhea, contributing to substantial economic losses in the farming sector. The broad host range of SADS-CoV raises concerns regarding its potential for cross-species transmission. Currently, there are no effective means of preventing or treating SADS-CoV infection, underscoring the urgent need for identifying efficient antiviral drugs. This study focuses on evaluating quercetin as an antiviral agent against SADS-CoV. RESULTS In vitro experiments showed that quercetin inhibited SADS-CoV proliferation in a concentration-dependent manner, targeting the adsorption and replication stages of the viral life cycle. Furthermore, quercetin disrupts the regulation of the P53 gene by the virus and inhibits host cell cycle progression induced by SADS-CoV infection. In vivo experiments revealed that quercetin effectively alleviated the clinical symptoms and intestinal pathological damage caused by SADS-CoV-infected piglets, leading to reduced expression levels of inflammatory factors such as TLR3, IL-6, IL-8, and TNF-α. CONCLUSIONS Therefore, this study provides compelling evidence that quercetin has great potential and promising applications for anti- SADS-CoV action.
Collapse
Affiliation(s)
- Yongzhi Feng
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
- Key Laboratory of Animal Vaccine Development, Ministry of Agriculture and Rural Affairs, Guangzhou, 510000, China
| | - Heyou Yi
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
- Key Laboratory of Animal Vaccine Development, Ministry of Agriculture and Rural Affairs, Guangzhou, 510000, China
| | - Xiaoyu Zheng
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
- National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, PR China
| | - Xing Liu
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
- National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, PR China
| | - Ting Gong
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
- National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, PR China
| | - Dongdong Wu
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
- National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, PR China
| | - Zebu Song
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
- National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, PR China
| | - Zezhong Zheng
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China.
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming, 525000, China.
- National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, PR China.
| |
Collapse
|