51
|
Combination Blockade of the IL6R/STAT-3 Axis with TIGIT and Its Impact on the Functional Activity of NK Cells against Prostate Cancer Cells. J Immunol Res 2022; 2022:1810804. [PMID: 35465350 PMCID: PMC9020142 DOI: 10.1155/2022/1810804] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 03/15/2022] [Indexed: 02/07/2023] Open
Abstract
Background/Aims. Prostate cancer (PCa) is one of the neoplasms with the highest incidence and mortality rate in men worldwide. Advanced stages of the disease are usually very aggressive, and most are treated with chemotherapeutic drugs that generally cause side effects in these patients. However, additional therapeutic targets such as the IL6R/STAT-3 axis and TIGIT have been proposed, mainly due to their relevance in the development of PCa and regulation of NK cell-mediated cytotoxicity. Here, we evaluate the effect of inhibitors directed against these therapeutic targets primarily via an analysis of NK cell function versus prostate cancer cells. Methods. We analyzed the secretion of cytokines, chemokines, and growth factors in 22Rv1, LNCaP, and DU145 cells. In these cells, we also evaluated the expression of NK ligands, IL6R, STAT-3, and phosporylated STAT-3. In NK-92 cells, we evaluated the effects of Stattic (Stt) and tocilizumab (Tcz) on NK receptors. In addition, we assessed if the disruption of the IL6R/STAT-3 pathway and blockade of TIGIT potentiated the cytotoxicity of NK-92 cells versus DU145 cells. Results. DU145 abundantly secretes M-CSF, VEGF, IL-6, CXCL8, and TGF-β. Furthermore, the expression of CD155 was found to increase in accordance with aggressiveness and metastatic status in the prostate cancer cells. Stt and Tcz induce a decrease in STAT-3 phosphorylation in the DU145 cells and, in turn, induce an increase of NKp46 and a decrease of TIGIT expression in NK-92 cells. Finally, the disruption of the IL6R/STAT-3 axis in prostate cancer cells and the blocking of TIGIT on NK-92 were observed to increase the cytotoxicity of NK-92 cells against DU145 cells through an increase in sFasL, granzyme A, granzyme B, and granulysin. Conclusions. Our results reveal that the combined use of inhibitors directed against the IL6R/STAT-3 axis and TIGIT enhances the functional activity of NK cells against castration-resistant prostate cancer cells.
Collapse
|
52
|
Lechpammer M, Rao R, Shah S, Mirheydari M, Bhattacharya D, Koehler A, Toukam DK, Haworth KJ, Pomeranz Krummel D, Sengupta S. Advances in Immunotherapy for the Treatment of Adult Glioblastoma: Overcoming Chemical and Physical Barriers. Cancers (Basel) 2022; 14:1627. [PMID: 35406398 PMCID: PMC8997081 DOI: 10.3390/cancers14071627] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/18/2022] [Accepted: 03/22/2022] [Indexed: 02/07/2023] Open
Abstract
Glioblastoma, or glioblastoma multiforme (GBM, WHO Grade IV), is a highly aggressive adult glioma. Despite extensive efforts to improve treatment, the current standard-of-care (SOC) regimen, which consists of maximal resection, radiotherapy, and temozolomide (TMZ), achieves only a 12-15 month survival. The clinical improvements achieved through immunotherapy in several extracranial solid tumors, including non-small-cell lung cancer, melanoma, and non-Hodgkin lymphoma, inspired investigations to pursue various immunotherapeutic interventions in adult glioblastoma patients. Despite some encouraging reports from preclinical and early-stage clinical trials, none of the tested agents have been convincing in Phase III clinical trials. One, but not the only, factor that is accountable for the slow progress is the blood-brain barrier, which prevents most antitumor drugs from reaching the target in appreciable amounts. Herein, we review the current state of immunotherapy in glioblastoma and discuss the significant challenges that prevent advancement. We also provide thoughts on steps that may be taken to remediate these challenges, including the application of ultrasound technologies.
Collapse
Affiliation(s)
- Mirna Lechpammer
- Foundation Medicine, Inc., Cambridge, MA 02141, USA;
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Rohan Rao
- Department of Neurology and Rehabilitation Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA; (R.R.); (D.B.); (A.K.); (D.K.T.)
| | - Sanjit Shah
- Department of Neurosurgery, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA;
| | - Mona Mirheydari
- Department of Internal Medicine, Division of Cardiovascular Health and Disease, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA; (M.M.); (K.J.H.)
| | - Debanjan Bhattacharya
- Department of Neurology and Rehabilitation Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA; (R.R.); (D.B.); (A.K.); (D.K.T.)
| | - Abigail Koehler
- Department of Neurology and Rehabilitation Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA; (R.R.); (D.B.); (A.K.); (D.K.T.)
| | - Donatien Kamdem Toukam
- Department of Neurology and Rehabilitation Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA; (R.R.); (D.B.); (A.K.); (D.K.T.)
| | - Kevin J. Haworth
- Department of Internal Medicine, Division of Cardiovascular Health and Disease, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA; (M.M.); (K.J.H.)
| | - Daniel Pomeranz Krummel
- Department of Neurology and Rehabilitation Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA; (R.R.); (D.B.); (A.K.); (D.K.T.)
| | - Soma Sengupta
- Department of Neurology and Rehabilitation Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA; (R.R.); (D.B.); (A.K.); (D.K.T.)
| |
Collapse
|
53
|
Identification of an IL-4-Related Gene Risk Signature for Malignancy, Prognosis and Immune Phenotype Prediction in Glioma. Brain Sci 2022; 12:brainsci12020181. [PMID: 35203944 PMCID: PMC8870251 DOI: 10.3390/brainsci12020181] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 01/24/2022] [Accepted: 01/27/2022] [Indexed: 01/27/2023] Open
Abstract
Background: Emerging molecular and genetic biomarkers have been introduced to classify gliomas in the past decades. Here, we introduced a risk signature based on the cellular response to the IL-4 gene set through Least Absolute Shrinkage and Selection Operator (LASSO) regression analysis. Methods: In this study, we provide a bioinformatic profiling of our risk signature for the malignancy, prognosis and immune phenotype of glioma. A cohort of 325 patients with whole genome RNA-seq expression data from the Chinese Glioma Genome Atlas (CGGA) dataset was used as the training set, while another cohort of 667 patients from The Cancer Genome Atlas (TCGA) dataset was used as the validating set. The LASSO model identified a 10-gene signature which was considered as the optimal model. Results: The signature was confirmed to be a good predictor of clinical and molecular features involved in the malignancy of gliomas. We also identified that our risk signature could serve as an independently prognostic biomarker in patients with gliomas (p < 0.0001). Correlation analysis showed that our risk signature was strongly correlated with the Tregs, M0 macrophages and NK cells infiltrated in the microenvironment of glioma, which might be a supplement to the existing incomplete innate immune mechanism of glioma phenotypes. Conclusions: Our IL-4-related gene signature was associated with more aggressive and immunosuppressive phenotypes of gliomas. The risk score could predict prognosis independently in glioma, which might provide a new insight for understanding the IL-4 involved mechanism of gliomas.
Collapse
|
54
|
Lin YZ, Liu SH, Wu WR, Shen YC, Wang YL, Liao CC, Lin PL, Chang H, Liu LC, Cheng WC, Wang SC. miR-4759 suppresses breast cancer through immune checkpoint blockade. Comput Struct Biotechnol J 2022; 20:241-251. [PMID: 35024096 PMCID: PMC8718579 DOI: 10.1016/j.csbj.2021.12.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 12/02/2021] [Accepted: 12/12/2021] [Indexed: 12/24/2022] Open
Abstract
Programmed cell death protein 1 (PD-1)/ programmed cell death protein ligand 1 (PD-L1) is the key immune checkpoint governing evasion of advanced cancer from immune surveillance. Immuno-oncology (IO) therapy targeting PD-1/PD-L1 with traditional antibodies is a promising approach to multiple cancer types but to which the response rate remains moderate in breast cancer, calling for the need of exploring alternative IO targeting approaches. A miRNA-gene network was integrated by a bioinformatics approach and corroborated with The Cancer Genome Atlas (TCGA) to screen miRNAs regulating immune checkpoint genes and associated with patient survival. Here we show the identification of a novel microRNA miR-4759 which repressed RNA expression of the PD-L1 gene. miR-4759 targeted the PD-L1 gene through two binding motifs in the 3′ untranslated region (3′-UTR) of PD-L1. Reconstitution of miR-4759 inhibited PD-L1 expression and sensitized breast cancer cells to killing by immune cells. Treatment with miR-4759 suppressed tumor growth of orthotopic xenografts and promoted tumor infiltration of CD8+ T lymphocytes in immunocompetent mice. In contrast, miR-4759 had no effect to tumor growth in immunodeficient mice. In patients with breast cancer, expression of miR-4759 was preferentially downregulated in tumors compared to normal tissues and was associated with poor overall survival. Together, our results demonstrated miR-4759 as a novel non-coding RNA which promotes anti-tumor immunity of breast cancer.
Collapse
Affiliation(s)
- You-Zhe Lin
- Graduate Institute of Biomedical Sciences, College of Medicine, China Medical University, Taichung 40402, Taiwan
| | - Shu-Hsuan Liu
- Research Center for Cancer Biology, China Medical University, Taichung 40402, Taiwan
| | - Wan-Rong Wu
- Graduate Institute of Biomedical Sciences, College of Medicine, China Medical University, Taichung 40402, Taiwan
| | - Yi-Chun Shen
- Graduate Institute of Biomedical Sciences, College of Medicine, China Medical University, Taichung 40402, Taiwan
| | - Yuan-Liang Wang
- Graduate Institute of Biomedical Sciences, College of Medicine, China Medical University, Taichung 40402, Taiwan.,Center for Molecular Medicine, China Medical University Hospital, Taichung 40447, Taiwan
| | - Chien-Ching Liao
- Graduate Institute of Biomedical Sciences, College of Medicine, China Medical University, Taichung 40402, Taiwan
| | - Pei-Le Lin
- Graduate Institute of Biomedical Sciences, College of Medicine, China Medical University, Taichung 40402, Taiwan
| | - Han Chang
- Division of Molecular Pathology, Department of Pathology, China Medical University Hospital, Taichung 40447, Taiwan
| | - Liang-Chih Liu
- Department of Surgery, China Medical University Hospital, Taichung 40447, Taiwan
| | - Wei-Chung Cheng
- Graduate Institute of Biomedical Sciences, College of Medicine, China Medical University, Taichung 40402, Taiwan.,Research Center for Cancer Biology, China Medical University, Taichung 40402, Taiwan.,Cancer Biology and Drug Discovery Ph.D. Program, China Medical University, Taichung 40402, Taiwan
| | - Shao-Chun Wang
- Graduate Institute of Biomedical Sciences, College of Medicine, China Medical University, Taichung 40402, Taiwan.,Center for Molecular Medicine, China Medical University Hospital, Taichung 40447, Taiwan.,Center for Molecular Medicine, China Medical University Hospital, Taichung 40447, Taiwan.,Department of Cancer Biology, University of Cincinnati, Cincinnati, OH 45267, USA.,Cancer Biology and Drug Discovery Ph.D. Program, China Medical University, Taichung 40402, Taiwan.,Department of Biotechnology, Asia University, Taichung 41354, Taiwan
| |
Collapse
|
55
|
Sun R, Kim AH. The multifaceted mechanisms of malignant glioblastoma progression and clinical implications. Cancer Metastasis Rev 2022; 41:871-898. [PMID: 35920986 PMCID: PMC9758111 DOI: 10.1007/s10555-022-10051-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 07/20/2022] [Indexed: 02/06/2023]
Abstract
With the application of high throughput sequencing technologies at single-cell resolution, studies of the tumor microenvironment in glioblastoma, one of the most aggressive and invasive of all cancers, have revealed immense cellular and tissue heterogeneity. A unique extracellular scaffold system adapts to and supports progressive infiltration and migration of tumor cells, which is characterized by altered composition, effector delivery, and mechanical properties. The spatiotemporal interactions between malignant and immune cells generate an immunosuppressive microenvironment, contributing to the failure of effective anti-tumor immune attack. Among the heterogeneous tumor cell subpopulations of glioblastoma, glioma stem cells (GSCs), which exhibit tumorigenic properties and strong invasive capacity, are critical for tumor growth and are believed to contribute to therapeutic resistance and tumor recurrence. Here we discuss the role of extracellular matrix and immune cell populations, major components of the tumor ecosystem in glioblastoma, as well as signaling pathways that regulate GSC maintenance and invasion. We also highlight emerging advances in therapeutic targeting of these components.
Collapse
Affiliation(s)
- Rui Sun
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO 63110 USA
| | - Albert H. Kim
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO 63110 USA ,The Brain Tumor Center, Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO 63110 USA
| |
Collapse
|
56
|
Kibler KV, Szczerba M, Lake D, Roeder AJ, Rahman M, Hogue BG, Roy Wong LY, Perlman S, Li Y, Jacobs BL. Intranasal immunization with a vaccinia virus vaccine vector expressing pre-fusion stabilized SARS-CoV-2 spike fully protected mice against lethal challenge with the heavily mutated mouse-adapted SARS2-N501Y MA30 strain of SARS-CoV-2. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021. [PMID: 34909775 DOI: 10.1101/2021.07.28.454201] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/30/2023]
Abstract
The Omicron SARS-CoV-2 variant has been designated a variant of concern because its spike protein is heavily mutated. In particular, Omicron spike is mutated at 5 positions (K417, N440, E484, Q493 and N501) that have been associated with escape from neutralizing antibodies induced by either infection with or immunization against the early Washington strain of SARS-CoV-2. The mouse-adapted strain of SARS-CoV-2, SARS2-N501Y MA30 , contains a spike that is also heavily mutated, with mutations at 4 of the 5 positions in Omicron spike associated with neutralizing antibody escape (K417, E484, Q493 and N501). In this manuscript we show that intranasal immunization with a pre-fusion stabilized Washington strain spike, expressed from a highly attenuated, replication-competent vaccinia virus construct, NYVAC-KC, fully protected mice against disease and death from SARS2-N501Y MA30 . Similarly, immunization by scarification on the skin fully protected against death, but not from mild disease. This data demonstrates that Washington strain spike, when expressed from a highly attenuated, replication-competent poxvirus, administered without parenteral injection can fully protect against the heavily mutated mouse-adapted SARS2-N501Y MA30 .
Collapse
Affiliation(s)
- Karen V Kibler
- Biodesign Center for Immunotherapy, Vaccines and Virotherapy, Arizona State University, Tempe, AZ, USA
| | - Mateusz Szczerba
- Biodesign Center for Immunotherapy, Vaccines and Virotherapy, Arizona State University, Tempe, AZ, USA
| | - Douglas Lake
- School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - Alexa J Roeder
- School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - Masmudur Rahman
- Biodesign Center for Immunotherapy, Vaccines and Virotherapy, Arizona State University, Tempe, AZ, USA
| | - Brenda G Hogue
- Biodesign Center for Immunotherapy, Vaccines and Virotherapy, Arizona State University, Tempe, AZ, USA
- School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - Lok-Yin Roy Wong
- Department of Microbiology and Immunology, University of Iowa, Iowa City, Iowa, USA
| | - Stanley Perlman
- Department of Microbiology and Immunology, University of Iowa, Iowa City, Iowa, USA
- Department of Pediatrics, University of Iowa, Iowa City, Iowa, USA
| | - Yize Li
- Biodesign Center for Immunotherapy, Vaccines and Virotherapy, Arizona State University, Tempe, AZ, USA
- School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - Bertram L Jacobs
- Biodesign Center for Immunotherapy, Vaccines and Virotherapy, Arizona State University, Tempe, AZ, USA
- School of Life Sciences, Arizona State University, Tempe, AZ, USA
| |
Collapse
|
57
|
Triki H, Declerck K, Charfi S, Ben Kridis W, Chaabane K, Ben Halima S, Sellami T, Rebai A, Berghe WV, Cherif B. Immune checkpoint CD155 promoter methylation profiling reveals cancer-associated behaviors within breast neoplasia. Cancer Immunol Immunother 2021; 71:1139-1155. [PMID: 34608548 DOI: 10.1007/s00262-021-03064-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Accepted: 09/23/2021] [Indexed: 12/29/2022]
Abstract
BACKGROUND CD155 immune checkpoint has recently emerged as a compelling immunotherapeutic target. Epigenetic DNA methylation changes are recognized as key molecular mechanisms in cancer development. Hence, the identification of methylation markers that are sensitive and specific for breast cancer may improve early detection and predict prognosis. We speculate that CD155 promoter methylation can be a valuable epigenetic biomarker, based upon strong indications for its immunoregulatory functions. METHODS Methylation analyses were conducted on 14 CpGs sites in the CD155 promoter region by bisulfite pyrosequencing. To elucidate the related gene expression changes, a transcriptional study using RT-qPCR was performed. Statistical analyses were performed to evaluate correlations of CD155 methylation profiles with mRNA expression together with clinical-pathological features, prognosis and immune infiltrate. RESULTS CD155 promoter methylation profile was significantly associated with SBR grade, tumor size, molecular subgroups, HER2 and hormonal receptors expression status. Low CD155 methylation rates correlated with better prognosis in univariate cox proportional hazard analysis and appeared as an independent survival predictor in cox-regression multivariate analysis. Further, methylation changes at CD155 specific CpG sites were consistent with CD155 membranous mRNA isoform expression status. Statistical analyses also showed a significant association with immune Natural Killer cell infiltrate when looking at the CpG7, CpG8, CpG9 and CpG11 sites. CONCLUSION Altogether, our results contribute to a better understanding of the impact of CD155 immune checkpoint modality expression in breast tumors, revealing for the first time that specific CpG sites from CD155 promoter may be a potential biomarker in breast cancer monitoring.
Collapse
Affiliation(s)
- Hana Triki
- Laboratory of Molecular and Cellular Screening Processes, Centre de Biotechnologie de Sfax, University of Sfax, B.P 1177, 3018, Sfax, Tunisia
| | - Ken Declerck
- Laboratory of Protein Chemistry, Proteomics and Epigenetic Signaling (PPES) and Integrated Personalizedand Precision Oncology Network (IPPON), Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Slim Charfi
- Department of Pathology, University Hospital Habib Bourguiba, Sfax, Tunisia
| | - Wala Ben Kridis
- Department of Medical Oncology, University Hospital Habib Bourguiba, Sfax, Tunisia
| | - Kais Chaabane
- Department of Gynecology, University Hospital Hédi Chaker, Sfax, Tunisia
| | - Sawssan Ben Halima
- Department of Gynecology, University Hospital Hédi Chaker, Sfax, Tunisia
| | - Tahya Sellami
- Department of Pathology, University Hospital Habib Bourguiba, Sfax, Tunisia
| | - Ahmed Rebai
- Laboratory of Molecular and Cellular Screening Processes, Centre de Biotechnologie de Sfax, University of Sfax, B.P 1177, 3018, Sfax, Tunisia
| | - Wim Vanden Berghe
- Laboratory of Protein Chemistry, Proteomics and Epigenetic Signaling (PPES) and Integrated Personalizedand Precision Oncology Network (IPPON), Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Boutheina Cherif
- Laboratory of Molecular and Cellular Screening Processes, Centre de Biotechnologie de Sfax, University of Sfax, B.P 1177, 3018, Sfax, Tunisia.
| |
Collapse
|
58
|
Ex Vivo Expanded and Activated Natural Killer Cells Prolong the Overall Survival of Mice with Glioblastoma-like Cell-Derived Tumors. Int J Mol Sci 2021; 22:ijms22189975. [PMID: 34576141 PMCID: PMC8472834 DOI: 10.3390/ijms22189975] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 09/09/2021] [Accepted: 09/13/2021] [Indexed: 12/13/2022] Open
Abstract
Glioblastoma (GBM) is the leading malignant intracranial tumor and is associated with a poor prognosis. Highly purified, activated natural killer (NK) cells, designated as genuine induced NK cells (GiNKs), represent a promising immunotherapy for GBM. We evaluated the anti-tumor effect of GiNKs in association with the programmed death 1(PD-1)/PD-ligand 1 (PD-L1) immune checkpoint pathway. We determined the level of PD-1 expression, a receptor known to down-regulate the immune response against malignancy, on GiNKs. PD-L1 expression on glioma cell lines (GBM-like cell line U87MG, and GBM cell line T98G) was also determined. To evaluate the anti-tumor activity of GiNKs in vivo, we used a xenograft model of subcutaneously implanted U87MG cells in immunocompromised NOG mice. The GiNKs expressed very low levels of PD-1. Although PD-L1 was expressed on U87MG and T98G cells, the expression levels were highly variable. Our xenograft model revealed that the retro-orbital administration of GiNKs and interleukin-2 (IL-2) prolonged the survival of NOG mice bearing subcutaneous U87MG-derived tumors. PD-1 blocking antibodies did not have an additive effect with GiNKs for prolonging survival. GiNKs may represent a promising cell-based immunotherapy for patients with GBM and are minimally affected by the PD-1/PD-L1 immune evasion axis in GBM.
Collapse
|
59
|
Zeng T, Cao Y, Jin T, Tian Y, Dai C, Xu F. The CD112R/CD112 axis: a breakthrough in cancer immunotherapy. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2021; 40:285. [PMID: 34507594 PMCID: PMC8431939 DOI: 10.1186/s13046-021-02053-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 07/27/2021] [Indexed: 01/05/2023]
Abstract
The recent discovery of immune checkpoint inhibitors is a significant milestone in cancer immunotherapy research. However, some patients with primary or adaptive drug resistance might not benefit from the overall therapeutic potential of immunotherapy in oncology. Thus, it is becoming increasingly critical for oncologists to explore the availability of new immune checkpoint inhibitors. An emerging co-inhibitory receptor, CD112R (also called PVRIG), is most commonly expressed on natural killer (NK) and T cells. It binds to its ligand (CD112 or PVRL2/nectin-2) and inhibits the strength with which T cells and NK cells respond to cancer. Therefore, CD112R is being presented as a new immune checkpoint inhibitor with high potential in cancer immunotherapy. CD112 is easily detectable on antigen-presenting or tumor cells, and its high level of expression has been linked with tumor progression and poor outcomes in most cancer patients. This review explores the molecular and functional relationship between CD112R, TIGIT, CD96, and CD226 in T cell responses. In addition, this review comprehensively discusses the recent developments of CD112R/CD112 immune checkpoints in cancer immunotherapy and prognosis.
Collapse
Affiliation(s)
- Taofei Zeng
- Department of General Surgery, Shengjing Hospital of China Medical University, 36 Sanhao Street, Heping District, Shenyang, 110004, China
| | - Yuqing Cao
- Department of General Surgery, Shengjing Hospital of China Medical University, 36 Sanhao Street, Heping District, Shenyang, 110004, China
| | - Tianqiang Jin
- Department of General Surgery, Shengjing Hospital of China Medical University, 36 Sanhao Street, Heping District, Shenyang, 110004, China
| | - Yu Tian
- Department of General Surgery, Shengjing Hospital of China Medical University, 36 Sanhao Street, Heping District, Shenyang, 110004, China
| | - Chaoliu Dai
- Department of General Surgery, Shengjing Hospital of China Medical University, 36 Sanhao Street, Heping District, Shenyang, 110004, China
| | - Feng Xu
- Department of General Surgery, Shengjing Hospital of China Medical University, 36 Sanhao Street, Heping District, Shenyang, 110004, China.
| |
Collapse
|
60
|
Marofi F, Al-Awad AS, Sulaiman Rahman H, Markov A, Abdelbasset WK, Ivanovna Enina Y, Mahmoodi M, Hassanzadeh A, Yazdanifar M, Stanley Chartrand M, Jarahian M. CAR-NK Cell: A New Paradigm in Tumor Immunotherapy. Front Oncol 2021; 11:673276. [PMID: 34178661 PMCID: PMC8223062 DOI: 10.3389/fonc.2021.673276] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 05/14/2021] [Indexed: 12/15/2022] Open
Abstract
The tumor microenvironment (TME) is greatly multifaceted and immune escape is an imperative attribute of tumors fostering tumor progression and metastasis. Based on reports, the restricted achievement attained by T cell immunotherapy reflects the prominence of emerging other innovative immunotherapeutics, in particular, natural killer (NK) cells-based treatments. Human NK cells act as the foremost innate immune effector cells against tumors and are vastly heterogeneous in the TME. Currently, there exists a rapidly evolving interest in the progress of chimeric antigen receptor (CAR)-engineered NK cells for tumor immunotherapy. CAR-NK cells superiorities over CAR-T cells in terms of better safety (e.g., absence or minimal cytokine release syndrome (CRS) and graft-versus-host disease (GVHD), engaging various mechanisms for stimulating cytotoxic function, and high feasibility for 'off-the-shelf' manufacturing. These effector cells could be modified to target various antigens, improve proliferation and persistence in vivo, upturn infiltration into tumors, and defeat resistant TME, which in turn, result in a desired anti-tumor response. More importantly, CAR-NK cells represent antigen receptors against tumor-associated antigens (TAAs), thereby redirecting the effector NK cells and supporting tumor-related immunosurveillance. In the current review, we focus on recent progress in the therapeutic competence of CAR-NK cells in solid tumors and offer a concise summary of the present hurdles affecting therapeutic outcomes of CAR-NK cell-based tumor immunotherapies.
Collapse
Affiliation(s)
- Faroogh Marofi
- Immunology Research Center (IRC), Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Heshu Sulaiman Rahman
- College of Medicine, University of Sulaimani, Sulaymaniyah, Iraq
- Department of Medical Laboratory Sciences, Komar University of Science and Technology, Sulaymaniyah, Iraq
| | - Alexander Markov
- Tyumen State Medical University, Tyumen, Russia
- Tyumen Industrial University, Tyumen, Russia
| | - Walid Kamal Abdelbasset
- Department of Health and Rehabilitation Sciences, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al Kharj, Saudi Arabia
- Department of Physical Therapy, Kasr Al-Aini Hospital, Cairo University, Giza, Egypt
| | | | - Mahnaz Mahmoodi
- Department of Biology, School of Basic Science, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Ali Hassanzadeh
- Department of Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahboubeh Yazdanifar
- Stem Cell Transplantation and Regenerative Medicine, Department of Pediatrics, Stanford University School of Medicine, Palo Alto, CA, United States
| | | | - Mostafa Jarahian
- German Cancer Research Center, Toxicology and Chemotherapy Unit (G401), Heidelberg, Germany
| |
Collapse
|
61
|
Burster T, Gärtner F, Bulach C, Zhanapiya A, Gihring A, Knippschild U. Regulation of MHC I Molecules in Glioblastoma Cells and the Sensitizing of NK Cells. Pharmaceuticals (Basel) 2021; 14:ph14030236. [PMID: 33800301 PMCID: PMC7998501 DOI: 10.3390/ph14030236] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 03/03/2021] [Accepted: 03/04/2021] [Indexed: 12/22/2022] Open
Abstract
Immunotherapy has been established as an important area in the therapy of malignant diseases. Immunogenicity sufficient for immune recognition and subsequent elimination can be bypassed by tumors through altered and/or reduced expression levels of major histocompatibility complex class I (MHC I) molecules. Natural killer (NK) cells can eliminate tumor cells in a MHC I antigen presentation-independent manner by an array of activating and inhibitory receptors, which are promising candidates for immunotherapy. Here we summarize the latest findings in recognizing and regulating MHC I molecules that affect NK cell surveillance of glioblastoma cells.
Collapse
Affiliation(s)
- Timo Burster
- Department of Biology, School of Sciences and Humanities, Nazarbayev University, Kabanbay Batyr Ave. 53, 010000 Nur-Sultan, Kazakhstan;
- Correspondence: ; Tel.: +7-(7172)-70-66-75
| | - Fabian Gärtner
- Department of General and Visceral Surgery, Surgery Center, Ulm University Hospital, Albert-Einstein-Allee 23, 89081 Ulm, Germany; (F.G.); (C.B.); (A.G.); (U.K.)
| | - Christiane Bulach
- Department of General and Visceral Surgery, Surgery Center, Ulm University Hospital, Albert-Einstein-Allee 23, 89081 Ulm, Germany; (F.G.); (C.B.); (A.G.); (U.K.)
| | - Anuar Zhanapiya
- Department of Biology, School of Sciences and Humanities, Nazarbayev University, Kabanbay Batyr Ave. 53, 010000 Nur-Sultan, Kazakhstan;
| | - Adrian Gihring
- Department of General and Visceral Surgery, Surgery Center, Ulm University Hospital, Albert-Einstein-Allee 23, 89081 Ulm, Germany; (F.G.); (C.B.); (A.G.); (U.K.)
| | - Uwe Knippschild
- Department of General and Visceral Surgery, Surgery Center, Ulm University Hospital, Albert-Einstein-Allee 23, 89081 Ulm, Germany; (F.G.); (C.B.); (A.G.); (U.K.)
| |
Collapse
|
62
|
Greisen SR, Deleuran B. Checkpoint Molecules in Rheumatology-or the Benefits of Being Exhausted. Curr Rheumatol Rep 2021; 23:22. [PMID: 33651184 DOI: 10.1007/s11926-021-00991-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/20/2021] [Indexed: 12/18/2022]
Abstract
PURPOSE OF REVIEW This review will focus on the most common co-inhibitory molecules, emphasizing the importance of these in relation to rheumatic disease. RECENT FINDINGS Checkpoint molecules are pivotal in determining the outcome of antigen activation. Checkpoint molecules consist of co-stimulatory and co-inhibitory molecules, where the first activates and the latter inhibits the antigen presentation process. Studies show that increased activity of co-inhibitory molecules is associated with a good prognosis in rheumatic diseases. Opposite, when cancer patients are treated with antibodies blocking the inhibitory pathways, autoimmune diseases, including arthritis, develop as immune-related adverse events (IrAE). This emphasizes the importance of these pathways in autoimmune disease. Co-inhibitory molecules are becoming increasingly interesting as future treatment targets in rheumatic conditions. Treatments with antibodies blocking these pathways result in IrAE, often manifesting as autoimmune rheumatic diseases. Therefore, a need to get acquainted with these molecules is growing so we can cope with future challenges in rheumatic diseases.
Collapse
Affiliation(s)
- Stinne Ravn Greisen
- Department of Biomedicine, Aarhus University, Skou-building, C.F. Møllers Alle 6, DK-8000, Aarhus C, Denmark. .,Department of Rheumatology, Aarhus University Hospital, Aarhus, Denmark.
| | - Bent Deleuran
- Department of Biomedicine, Aarhus University, Skou-building, C.F. Møllers Alle 6, DK-8000, Aarhus C, Denmark.,Department of Rheumatology, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
63
|
Zhang H, Yang Z, Du G, Cao L, Tan B. CD155-Prognostic and Immunotherapeutic Implications Based on Multiple Analyses of Databases Across 33 Human Cancers. Technol Cancer Res Treat 2021; 20:1533033820980088. [PMID: 33576304 PMCID: PMC7887689 DOI: 10.1177/1533033820980088] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Growing evidence has suggested that CD155 participates in the regulation of many biological processes ranging cell growth, invasion, and migration from regulation of immune responses in most malignances. However, the impact of prognostic value and CD115-related immune response on the survival in multiple cancers remains incompletely clear. In our study, we assessed the prognostic significance and immune-associated mechanism of CD155 based on data from multiple databases and methods, including UCSC Xena, Oncomine, PrognoScan. We identified that CD155 was commonly upregulated in most human cancers, and High expression of CD155 was closely correlated with unfavorable clinical outcomes in 10/33 of human cancers, while CD155 at low level was responsible for better survival in KICH and PAAD. More intriguingly, CD155 expression had a significant interaction with immune function in several tumors by analyzing Tumor mutational burden and microsatellite in stability, immune score and stromal score. The correlation between immune infiltration and CD155 expression also indicated that CD155 expression positively correlated with CD4+ T cells in Head and Neck squamous cell carcinoma, Lung adenocarcinoma and Colon adenocarcinoma, while had inversely interaction with CD8+ T in Kidney renal clear cell carcinoma and Head and Neck squamous cell carcinoma as well as Tregs in Skin Cutaneous Melanoma, Head and Neck squamous cell carcinoma and Bladder Urothelial Carcinoma. These findings indicate CD155 correlates with cancer immunotherapy function. In conclusions, our observations revealed CD155 might function as immune-associated system in the development of human cancers, and acted as a promising prognostic and therapeutic target against human cancers.
Collapse
Affiliation(s)
- Hongpan Zhang
- Department of Oncology, 117913Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, People's Republic of China
| | - Zhihao Yang
- BaoTou Medical College, Inner Mongolia University of Science and Technology, Baotou, People's Republic of China
| | - Guobo Du
- Department of Oncology, 117913Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, People's Republic of China
| | - Lu Cao
- Department of Oncology, 117913Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, People's Republic of China
| | - BangXian Tan
- Department of Oncology, 117913Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, People's Republic of China
| |
Collapse
|
64
|
Zhao K, Ma L, Feng L, Huang Z, Meng X, Yu J. CD155 Overexpression Correlates With Poor Prognosis in Primary Small Cell Carcinoma of the Esophagus. Front Mol Biosci 2021; 7:608404. [PMID: 33490104 PMCID: PMC7817973 DOI: 10.3389/fmolb.2020.608404] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 12/07/2020] [Indexed: 12/15/2022] Open
Abstract
CD155/TIGIT overexpression has been detected in various human malignancies; however, its expression status in primary small cell carcinoma of the esophagus (PSCCE) and its prognostic significance remain unclear. In this study, we aimed to explore the expression and prognostic value of CD155 and TIGIT in PSCCE. We detected CD155 and TIGIT expression in 114 cases of PSCCE using immunohistochemistry (IHC) and evaluated their relationship with the clinicopathological characteristics and survival of the patients. Survival analyses were performed using the Kaplan-Meier method and Cox proportional hazards model. Nomogram performance was assessed via the concordance index (C-index) and calibration plots. Decision curve analysis (DCA) was performed to evaluate the net benefit of the nomogram. We found that CD155 and TIGIT were overexpressed in PSCCE tissues, CD155 expression correlated positively with TIGIT (p < 0.001) and was significantly associated with tumor size, T stage, distant metastasis, TNM stage, and Ki-67 score. TIGIT expression was also significantly associated with T stage, distant metastasis, and TNM stage. Patients with high CD155 and TIGIT expression had a significantly shorter overall survival (OS) and progression-free survival (PFS), while the multivariate model showed that CD155 expression and the therapeutic strategy are independent prognostic factors for PSCCE. In the validation step, OS was shown to be well-calibrated (C-index = 0.724), and a satisfactory clinical utility was proven by DCA. In conclusion, our findings revealed that CD155 and TIGIT are highly expressed in patients with PSCCE and are associated with shorter OS and PFS, supporting their role as prognostic biomarker.
Collapse
Affiliation(s)
- Kaikai Zhao
- Department of Radiation Oncology, The First Affiliated Hospital of China Medical University, Shenyang, China.,Department of Radiation Oncology, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, China
| | - Lin Ma
- Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Lei Feng
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Zhaoqin Huang
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Xiangjiao Meng
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Jinming Yu
- Department of Radiation Oncology, The First Affiliated Hospital of China Medical University, Shenyang, China
| |
Collapse
|
65
|
Yu X, Zhu L, Liu J, Xie M, Chen J, Li J. Emerging Role of Immunotherapy for Colorectal Cancer with Liver Metastasis. Onco Targets Ther 2020; 13:11645-11658. [PMID: 33223838 PMCID: PMC7671511 DOI: 10.2147/ott.s271955] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 10/29/2020] [Indexed: 02/05/2023] Open
Abstract
Colorectal cancer (CRC) is the third most common malignant tumor in the world and the second leading cause of cancer-related deaths, with the liver as the most common site of distant metastasis. The prognosis of CRC with liver metastasis is poor, and most patients cannot undergo surgery. In addition, conventional antitumor approaches such as chemotherapy, radiotherapy, targeted therapy, and surgery result in unsatisfactory outcomes. In recent years, immunotherapy has shown good prospects in the treatment of assorted tumors by enhancing the host's antitumor immune function, and it may become a new effective treatment for liver metastasis of CRC. However, challenges remain in applying immunotherapy to CRC with liver metastasis. This review examines how the microenvironment and immunosuppressive landscape of the liver favor tumor progression. It also highlights the latest research advances in immunotherapy for colorectal liver metastasis and identifies immunotherapy as a treatment regimen with a promising future in clinical applications.
Collapse
Affiliation(s)
- Xianzhe Yu
- Gastrointestinal Department, The Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou Province, People’s Republic of China
| | - Lingling Zhu
- Lung Cancer Center, West China Hospital of Sichuan University, Chengdu, Sichuan Province, People’s Republic of China
| | - Jiewei Liu
- Lung Cancer Center, West China Hospital of Sichuan University, Chengdu, Sichuan Province, People’s Republic of China
| | - Ming Xie
- Gastrointestinal Department, The Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou Province, People’s Republic of China
| | - Jiang Chen
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, Zhejiang Province, People’s Republic of China
| | - Jianguo Li
- Gastrointestinal Department, The Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou Province, People’s Republic of China
| |
Collapse
|
66
|
Cao Y, Wang X, Jin T, Tian Y, Dai C, Widarma C, Song R, Xu F. Immune checkpoint molecules in natural killer cells as potential targets for cancer immunotherapy. Signal Transduct Target Ther 2020; 5:250. [PMID: 33122640 PMCID: PMC7596531 DOI: 10.1038/s41392-020-00348-8] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 09/13/2020] [Accepted: 09/21/2020] [Indexed: 12/12/2022] Open
Abstract
Recent studies have demonstrated the potential of natural killer (NK) cells in immunotherapy to treat multiple types of cancer. NK cells are innate lymphoid cells that play essential roles in tumor surveillance and control that efficiently kill the tumor and do not require the major histocompatibility complex. The discovery of the NK's potential as a promising therapeutic target for cancer is a relief to oncologists as they face the challenge of increased chemo-resistant cancers. NK cells show great potential against solid and hematologic tumors and have progressively shown promise as a therapeutic target for cancer immunotherapy. The effector role of these cells is reliant on the balance of inhibitory and activating signals. Understanding the role of various immune checkpoint molecules in the exhaustion and impairment of NK cells when their inhibitory receptors are excessively expressed is particularly important in cancer immunotherapy studies and clinical implementation. Emerging immune checkpoint receptors and molecules have been found to mediate NK cell dysfunction in the tumor microenvironment; this has brought up the need to explore further additional NK cell-related immune checkpoints that may be exploited to enhance the immune response to refractory cancers. Accordingly, this review will focus on the recent findings concerning the roles of immune checkpoint molecules and receptors in the regulation of NK cell function, as well as their potential application in tumor immunotherapy.
Collapse
Affiliation(s)
- Yuqing Cao
- Department of General Surgery, Shengjing Hospital of China Medical University, 110004, Shenyang, China
| | - Xiaoyu Wang
- College of Life and Health Science, Northeastern University, 110819, Shenyang, China
| | - Tianqiang Jin
- Department of General Surgery, Shengjing Hospital of China Medical University, 110004, Shenyang, China
| | - Yu Tian
- Department of General Surgery, Shengjing Hospital of China Medical University, 110004, Shenyang, China
| | - Chaoliu Dai
- Department of General Surgery, Shengjing Hospital of China Medical University, 110004, Shenyang, China
| | - Crystal Widarma
- Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, 92350, USA
| | - Rui Song
- Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, 92350, USA.
| | - Feng Xu
- Department of General Surgery, Shengjing Hospital of China Medical University, 110004, Shenyang, China.
| |
Collapse
|