51
|
De Lazzari G, Opattova A, Arena S. Novel frontiers in urogenital cancers: from molecular bases to preclinical models to tailor personalized treatments in ovarian and prostate cancer patients. J Exp Clin Cancer Res 2024; 43:146. [PMID: 38750579 PMCID: PMC11094891 DOI: 10.1186/s13046-024-03065-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 05/08/2024] [Indexed: 05/19/2024] Open
Abstract
Over the last few decades, the incidence of urogenital cancers has exhibited diverse trends influenced by screening programs and geographical variations. Among women, there has been a consistent or even increased occurrence of endometrial and ovarian cancers; conversely, prostate cancer remains one of the most diagnosed malignancies, with a rise in reported cases, partly due to enhanced and improved screening efforts.Simultaneously, the landscape of cancer therapeutics has undergone a remarkable evolution, encompassing the introduction of targeted therapies and significant advancements in traditional chemotherapy. Modern targeted treatments aim to selectively address the molecular aberrations driving cancer, minimizing adverse effects on normal cells. However, traditional chemotherapy retains its crucial role, offering a broad-spectrum approach that, despite its wider range of side effects, remains indispensable in the treatment of various cancers, often working synergistically with targeted therapies to enhance overall efficacy.For urogenital cancers, especially ovarian and prostate cancers, DNA damage response inhibitors, such as PARP inhibitors, have emerged as promising therapeutic avenues. In BRCA-mutated ovarian cancer, PARP inhibitors like olaparib and niraparib have demonstrated efficacy, leading to their approval for specific indications. Similarly, patients with DNA damage response mutations have shown sensitivity to these agents in prostate cancer, heralding a new frontier in disease management. Furthermore, the progression of ovarian and prostate cancer is intricately linked to hormonal regulation. Ovarian cancer development has also been associated with prolonged exposure to estrogen, while testosterone and its metabolite dihydrotestosterone, can fuel the growth of prostate cancer cells. Thus, understanding the interplay between hormones, DNA damage and repair mechanisms can hold promise for exploring novel targeted therapies for ovarian and prostate tumors.In addition, it is of primary importance the use of preclinical models that mirror as close as possible the biological and genetic features of patients' tumors in order to effectively translate novel therapeutic findings "from the bench to the bedside".In summary, the complex landscape of urogenital cancers underscores the need for innovative approaches. Targeted therapy tailored to DNA repair mechanisms and hormone regulation might offer promising avenues for improving the management and outcomes for patients affected by ovarian and prostate cancers.
Collapse
Affiliation(s)
- Giada De Lazzari
- Candiolo Cancer Institute, FPO - IRCCS, Laboratory of Translational Cancer Genetics, Strada Provinciale 142, Km 3.95, Candiolo, TO, ZIP 10060, Italy
| | - Alena Opattova
- Candiolo Cancer Institute, FPO - IRCCS, Laboratory of Translational Cancer Genetics, Strada Provinciale 142, Km 3.95, Candiolo, TO, ZIP 10060, Italy
| | - Sabrina Arena
- Candiolo Cancer Institute, FPO - IRCCS, Laboratory of Translational Cancer Genetics, Strada Provinciale 142, Km 3.95, Candiolo, TO, ZIP 10060, Italy.
- Department of Oncology, University of Torino, Strada Provinciale 142, Km 3.95, Candiolo, TO, ZIP 10060, Italy.
| |
Collapse
|
52
|
El Dosoky W, Aref S, El Menshawy N, Ramez A, Abou Zaid T, Aref M, Atia D. Prognostic effect of CTLA4/LAG3 Expression by T-Cells Subsets on Acute Myeloid Leukemia Patients. Asian Pac J Cancer Prev 2024; 25:1777-1785. [PMID: 38809650 PMCID: PMC11318815 DOI: 10.31557/apjcp.2024.25.5.1777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 05/18/2024] [Indexed: 05/31/2024] Open
Abstract
BACKGROUND Deregulation of immune checkpoint is an important point in cancer evolution as well as patients outcome. T-cells is an important arm in immunity against cancer. This study aimed to assess CTLA4/LAG3 expression on different T-cell subsets and its effect on disease outcome. METHODS This study included 81 newly diagnosed Egyptian adult AML patients. For each one of the patients CTLA4/ LAG3 expression on T-cell subsets was identified by flowcytometry before start of induction chemotherapy. RESULTS Total CD3 count in AML patients was lower than control. LAG3 expression were significantly higher in total CD3, T-cell subsets (CD4, CD8) as compared to healthy control. Moreover, co-expression of LAG3/CTLA4 on T-cell subsets were significantly higher in AML as compared to healthy control . NPM-/ FLT3+ was significantly associated with high LAG3 expression in T-cells subsets as compared to other molecular subtypes. Shorter OS, DFS were significantly associated with higher expression of LAG3 on T-cells subsets as compared to patients harbor low expression. COX regression analysis revealed that high expression of CD3/LAG3, CD4/LAG3, CD8/LAG4, CD3/CTLA4/LAG3 were considered a poor prognostic risk factor. CONCLUSION High LAG3/CTLA4 expression could predict AML Patients' outcome Conclusion: Our findings indicated that high expression of LAG3/CTL4 on T cells subsets identify a subgroup of AML patients with poor prognosis.
Collapse
Affiliation(s)
- Wesam El Dosoky
- Hematology Unit, Mansoura University Oncology Center, Mansoura University, Egypt.
| | - Salah Aref
- Hematology Unit, Mansoura University Oncology Center, Mansoura University, Egypt.
| | - Nadia El Menshawy
- Hematology Unit, Mansoura University Oncology Center, Mansoura University, Egypt.
| | - Ahmed Ramez
- Mansoura University Oncology Center, Mansoura University, Egypt.
| | - Tarek Abou Zaid
- Mansoura University Oncology Center, Mansoura Faculty of Medicine, Mansoura University, Egypt.
| | - Mohamed Aref
- Mansoura University Oncology Center, Mansoura Faculty of Medicine, Mansoura University, Egypt.
| | - Doaa Atia
- Mansoura University Oncology Center, Mansoura Faculty of Medicine, Mansoura University, Egypt.
| |
Collapse
|
53
|
Zhang W, Zhang K, Shi J, Qiu H, Kan C, Ma Y, Hou N, Han F, Sun X. The impact of the senescent microenvironment on tumorigenesis: Insights for cancer therapy. Aging Cell 2024; 23:e14182. [PMID: 38650467 PMCID: PMC11113271 DOI: 10.1111/acel.14182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 04/11/2024] [Accepted: 04/15/2024] [Indexed: 04/25/2024] Open
Abstract
The growing global burden of cancer, especially among people aged 60 years and over, has become a key public health issue. This trend suggests the need for a deeper understanding of the various cancer types in order to develop universally effective treatments. A prospective area of research involves elucidating the interplay between the senescent microenvironment and tumor genesis. Currently, most oncology research focuses on adulthood and tends to ignore the potential role of senescent individuals on tumor progression. Senescent cells produce a senescence-associated secretory phenotype (SASP) that has a dual role in the tumor microenvironment (TME). While SASP components can remodel the TME and thus hinder tumor cell proliferation, they can also promote tumorigenesis and progression via pro-inflammatory and pro-proliferative mechanisms. To address this gap, our review seeks to investigate the influence of senescent microenvironment changes on tumor development and their potential implications for cancer therapies.
Collapse
Affiliation(s)
- Wenqiang Zhang
- Department of Endocrinology and Metabolism, Clinical Research Center, Shandong Provincial Key Medical and Health Discipline of EndocrinologyAffiliated Hospital of Shandong Second Medical UniversityWeifangChina
- Department of PathologyAffiliated Hospital of Shandong Second Medical UniversityWeifangChina
| | - Kexin Zhang
- Department of Endocrinology and Metabolism, Clinical Research Center, Shandong Provincial Key Medical and Health Discipline of EndocrinologyAffiliated Hospital of Shandong Second Medical UniversityWeifangChina
| | - Junfeng Shi
- Department of Endocrinology and Metabolism, Clinical Research Center, Shandong Provincial Key Medical and Health Discipline of EndocrinologyAffiliated Hospital of Shandong Second Medical UniversityWeifangChina
| | - Hongyan Qiu
- Department of Endocrinology and Metabolism, Clinical Research Center, Shandong Provincial Key Medical and Health Discipline of EndocrinologyAffiliated Hospital of Shandong Second Medical UniversityWeifangChina
| | - Chengxia Kan
- Department of Endocrinology and Metabolism, Clinical Research Center, Shandong Provincial Key Medical and Health Discipline of EndocrinologyAffiliated Hospital of Shandong Second Medical UniversityWeifangChina
| | - Yujie Ma
- Department of Endocrinology and Metabolism, Clinical Research Center, Shandong Provincial Key Medical and Health Discipline of EndocrinologyAffiliated Hospital of Shandong Second Medical UniversityWeifangChina
| | - Ningning Hou
- Department of Endocrinology and Metabolism, Clinical Research Center, Shandong Provincial Key Medical and Health Discipline of EndocrinologyAffiliated Hospital of Shandong Second Medical UniversityWeifangChina
| | - Fang Han
- Department of Endocrinology and Metabolism, Clinical Research Center, Shandong Provincial Key Medical and Health Discipline of EndocrinologyAffiliated Hospital of Shandong Second Medical UniversityWeifangChina
- Department of PathologyAffiliated Hospital of Shandong Second Medical UniversityWeifangChina
| | - Xiaodong Sun
- Department of Endocrinology and Metabolism, Clinical Research Center, Shandong Provincial Key Medical and Health Discipline of EndocrinologyAffiliated Hospital of Shandong Second Medical UniversityWeifangChina
| |
Collapse
|
54
|
Bracamonte-Baran W, Kim ST. The Current and Future of Biomarkers of Immune Related Adverse Events. Rheum Dis Clin North Am 2024; 50:201-227. [PMID: 38670721 PMCID: PMC11232920 DOI: 10.1016/j.rdc.2024.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2024]
Abstract
With their groundbreaking clinical responses, immune checkpoint inhibitors (ICIs) have ushered in a new chapter in cancer therapeutics. However, they are often associated with life-threatening or organ-threatening autoimmune/autoinflammatory phenomena, collectively termed immune-related adverse events (irAEs). In this review, we will first describe the mechanisms of action of ICIs as well as irAEs. Next, we will review biomarkers for predicting the development of irAEs or stratifying risks.
Collapse
Affiliation(s)
- William Bracamonte-Baran
- Department of Rheumatology, Allergy & Immunology, Yale University, 300 Cedar Street, TAC S541, New Haven, CT 06520, USA
| | - Sang T Kim
- Department of Rheumatology, Allergy & Immunology, Yale University, 300 Cedar Street, TAC S541, New Haven, CT 06520, USA.
| |
Collapse
|
55
|
Mitra A, Kumar A, Amdare NP, Pathak R. Current Landscape of Cancer Immunotherapy: Harnessing the Immune Arsenal to Overcome Immune Evasion. BIOLOGY 2024; 13:307. [PMID: 38785789 PMCID: PMC11118874 DOI: 10.3390/biology13050307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 04/24/2024] [Accepted: 04/24/2024] [Indexed: 05/25/2024]
Abstract
Cancer immune evasion represents a leading hallmark of cancer, posing a significant obstacle to the development of successful anticancer therapies. However, the landscape of cancer treatment has significantly evolved, transitioning into the era of immunotherapy from conventional methods such as surgical resection, radiotherapy, chemotherapy, and targeted drug therapy. Immunotherapy has emerged as a pivotal component in cancer treatment, harnessing the body's immune system to combat cancer and offering improved prognostic outcomes for numerous patients. The remarkable success of immunotherapy has spurred significant efforts to enhance the clinical efficacy of existing agents and strategies. Several immunotherapeutic approaches have received approval for targeted cancer treatments, while others are currently in preclinical and clinical trials. This review explores recent progress in unraveling the mechanisms of cancer immune evasion and evaluates the clinical effectiveness of diverse immunotherapy strategies, including cancer vaccines, adoptive cell therapy, and antibody-based treatments. It encompasses both established treatments and those currently under investigation, providing a comprehensive overview of efforts to combat cancer through immunological approaches. Additionally, the article emphasizes the current developments, limitations, and challenges in cancer immunotherapy. Furthermore, by integrating analyses of cancer immunotherapy resistance mechanisms and exploring combination strategies and personalized approaches, it offers valuable insights crucial for the development of novel anticancer immunotherapeutic strategies.
Collapse
Affiliation(s)
- Ankita Mitra
- Laura and Isaac Perlmutter Cancer Center, New York University Langone Medical Center, New York, NY 10016, USA
| | - Anoop Kumar
- Molecular Diagnostic Laboratory, National Institute of Biologicals, Noida 201309, Uttar Pradesh, India
| | - Nitin P. Amdare
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA
| | - Rajiv Pathak
- Department of Genetics, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA
| |
Collapse
|
56
|
Yang S, Wang X, Huan R, Deng M, Kong Z, Xiong Y, Luo T, Jin Z, Liu J, Chu L, Han G, Zhang J, Tan Y. Machine learning unveils immune-related signature in multicenter glioma studies. iScience 2024; 27:109317. [PMID: 38500821 PMCID: PMC10946333 DOI: 10.1016/j.isci.2024.109317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 01/11/2024] [Accepted: 02/17/2024] [Indexed: 03/20/2024] Open
Abstract
In glioma molecular subtyping, existing biomarkers are limited, prompting the development of new ones. We present a multicenter study-derived consensus immune-related and prognostic gene signature (CIPS) using an optimal risk score model and 101 algorithms. CIPS, an independent risk factor, showed stable and powerful predictive performance for overall and progression-free survival, surpassing traditional clinical variables. The risk score correlated significantly with the immune microenvironment, indicating potential sensitivity to immunotherapy. High-risk groups exhibited distinct chemotherapy drug sensitivity. Seven signature genes, including IGFBP2 and TNFRSF12A, were validated by qRT-PCR, with higher expression in tumors and prognostic relevance. TNFRSF12A, upregulated in GBM, demonstrated inhibitory effects on glioma cell proliferation, migration, and invasion. CIPS emerges as a robust tool for enhancing individual glioma patient outcomes, while IGFBP2 and TNFRSF12A pose as promising tumor markers and therapeutic targets.
Collapse
Affiliation(s)
- Sha Yang
- Guizhou University Medical College, Guiyang 550025, Guizhou Province, China
| | - Xiang Wang
- Department of Neurosurgery, the Affiliated Hospital of Guizhou Medical University, Guiyang 550004, China
| | - Renzheng Huan
- Department of Neurosurgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Mei Deng
- Department of Neurosurgery, Guizhou Provincial People’s Hospital, Guiyang, China
| | - Zhuo Kong
- Department of Neurosurgery, Guizhou Provincial People’s Hospital, Guiyang, China
| | - Yunbiao Xiong
- Department of Neurosurgery, Guizhou Provincial People’s Hospital, Guiyang, China
| | - Tao Luo
- Department of Neurosurgery, Guizhou Provincial People’s Hospital, Guiyang, China
| | - Zheng Jin
- Department of Neurosurgery, Guizhou Provincial People’s Hospital, Guiyang, China
| | - Jian Liu
- Guizhou University Medical College, Guiyang 550025, Guizhou Province, China
- Department of Neurosurgery, Guizhou Provincial People’s Hospital, Guiyang, China
| | - Liangzhao Chu
- Department of Neurosurgery, the Affiliated Hospital of Guizhou Medical University, Guiyang 550004, China
| | - Guoqiang Han
- Department of Neurosurgery, Guizhou Provincial People’s Hospital, Guiyang, China
| | - Jiqin Zhang
- Department of Anesthesiology, Guizhou Provincial People’s Hospital, Guiyang, China
| | - Ying Tan
- Department of Neurosurgery, Guizhou Provincial People’s Hospital, Guiyang, China
| |
Collapse
|
57
|
Yang D, Hu Y, Yang J, Tao L, Su Y, Wu Y, Yao Y, Wang S, Ye S, Xu T. Research Progress on the Correlation between Acetaldehyde Dehydrogenase 2 and Hepatocellular Carcinoma Development. J Pharmacol Exp Ther 2024; 389:163-173. [PMID: 38453527 DOI: 10.1124/jpet.123.001898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 02/03/2024] [Accepted: 02/23/2024] [Indexed: 03/09/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is the predominant pathologic type of primary liver cancer. It is a malignant tumor of liver epithelial cells. There are many ways to treat HCC, but the survival rate for HCC patients remains low. Therefore, understanding the underlying mechanisms by which HCC occurs and develops is critical to explore new therapeutic targets. Aldehyde dehydrogenase 2 (ALDH2) is an important player in the redox reaction of ethanol with endogenous aldehyde products released by lipid peroxidation. Increasing evidence suggests that ALDH2 is a crucial regulator of human tumor development, including HCC. Therefore, clarifying the relationship between ALDH2 and HCC is helpful for formulating rational treatment strategies. This review highlights the regulatory roles of ALDH2 in the development of HCC, elucidates the multiple potential mechanisms by which ALDH2 regulates the development of HCC, and summarizes the progress of research on ALDH2 gene polymorphisms and HCC susceptibility. Meanwhile, we envision viable strategies for targeting ALDH2 in the treatment of HCC SIGNIFICANCE STATEMENT: Numerous studies have aimed to explore novel therapeutic targets for HCC, and ALDH2 has been reported to be a critical regulator of HCC progression. This review discusses the functions, molecular mechanisms, and clinical significance of ALDH2 in the development of HCC and examines the prospects of ALDH2-based therapy for HCC.
Collapse
Affiliation(s)
- Dashuai Yang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei, Anhui, China (D.Y., L.T., Y.W., Y.Y., S.W., T.X.); Institute for Liver Diseases of Anhui Medical University, Hefei, Anhui, China (D.Y., L.T., Y.W., Y.Y., S.W., T.X.); State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China (Y.H.); Department of Pediatric orthopedics, Anhui Children's Hospital, Hefei, China (J.Y.); Bengbu Medical University, Bengbu, Anhui, China (Y.S.); and School of Materials and Chemistry and School of Plant Protection, Anhui Agricultural University, Hefei, Anhui, China (S.Y.)
| | - Ying Hu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei, Anhui, China (D.Y., L.T., Y.W., Y.Y., S.W., T.X.); Institute for Liver Diseases of Anhui Medical University, Hefei, Anhui, China (D.Y., L.T., Y.W., Y.Y., S.W., T.X.); State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China (Y.H.); Department of Pediatric orthopedics, Anhui Children's Hospital, Hefei, China (J.Y.); Bengbu Medical University, Bengbu, Anhui, China (Y.S.); and School of Materials and Chemistry and School of Plant Protection, Anhui Agricultural University, Hefei, Anhui, China (S.Y.)
| | - Junfa Yang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei, Anhui, China (D.Y., L.T., Y.W., Y.Y., S.W., T.X.); Institute for Liver Diseases of Anhui Medical University, Hefei, Anhui, China (D.Y., L.T., Y.W., Y.Y., S.W., T.X.); State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China (Y.H.); Department of Pediatric orthopedics, Anhui Children's Hospital, Hefei, China (J.Y.); Bengbu Medical University, Bengbu, Anhui, China (Y.S.); and School of Materials and Chemistry and School of Plant Protection, Anhui Agricultural University, Hefei, Anhui, China (S.Y.)
| | - Liangsong Tao
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei, Anhui, China (D.Y., L.T., Y.W., Y.Y., S.W., T.X.); Institute for Liver Diseases of Anhui Medical University, Hefei, Anhui, China (D.Y., L.T., Y.W., Y.Y., S.W., T.X.); State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China (Y.H.); Department of Pediatric orthopedics, Anhui Children's Hospital, Hefei, China (J.Y.); Bengbu Medical University, Bengbu, Anhui, China (Y.S.); and School of Materials and Chemistry and School of Plant Protection, Anhui Agricultural University, Hefei, Anhui, China (S.Y.)
| | - Yue Su
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei, Anhui, China (D.Y., L.T., Y.W., Y.Y., S.W., T.X.); Institute for Liver Diseases of Anhui Medical University, Hefei, Anhui, China (D.Y., L.T., Y.W., Y.Y., S.W., T.X.); State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China (Y.H.); Department of Pediatric orthopedics, Anhui Children's Hospital, Hefei, China (J.Y.); Bengbu Medical University, Bengbu, Anhui, China (Y.S.); and School of Materials and Chemistry and School of Plant Protection, Anhui Agricultural University, Hefei, Anhui, China (S.Y.)
| | - Yincui Wu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei, Anhui, China (D.Y., L.T., Y.W., Y.Y., S.W., T.X.); Institute for Liver Diseases of Anhui Medical University, Hefei, Anhui, China (D.Y., L.T., Y.W., Y.Y., S.W., T.X.); State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China (Y.H.); Department of Pediatric orthopedics, Anhui Children's Hospital, Hefei, China (J.Y.); Bengbu Medical University, Bengbu, Anhui, China (Y.S.); and School of Materials and Chemistry and School of Plant Protection, Anhui Agricultural University, Hefei, Anhui, China (S.Y.)
| | - Yan Yao
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei, Anhui, China (D.Y., L.T., Y.W., Y.Y., S.W., T.X.); Institute for Liver Diseases of Anhui Medical University, Hefei, Anhui, China (D.Y., L.T., Y.W., Y.Y., S.W., T.X.); State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China (Y.H.); Department of Pediatric orthopedics, Anhui Children's Hospital, Hefei, China (J.Y.); Bengbu Medical University, Bengbu, Anhui, China (Y.S.); and School of Materials and Chemistry and School of Plant Protection, Anhui Agricultural University, Hefei, Anhui, China (S.Y.)
| | - Shuxian Wang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei, Anhui, China (D.Y., L.T., Y.W., Y.Y., S.W., T.X.); Institute for Liver Diseases of Anhui Medical University, Hefei, Anhui, China (D.Y., L.T., Y.W., Y.Y., S.W., T.X.); State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China (Y.H.); Department of Pediatric orthopedics, Anhui Children's Hospital, Hefei, China (J.Y.); Bengbu Medical University, Bengbu, Anhui, China (Y.S.); and School of Materials and Chemistry and School of Plant Protection, Anhui Agricultural University, Hefei, Anhui, China (S.Y.)
| | - Sheng Ye
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei, Anhui, China (D.Y., L.T., Y.W., Y.Y., S.W., T.X.); Institute for Liver Diseases of Anhui Medical University, Hefei, Anhui, China (D.Y., L.T., Y.W., Y.Y., S.W., T.X.); State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China (Y.H.); Department of Pediatric orthopedics, Anhui Children's Hospital, Hefei, China (J.Y.); Bengbu Medical University, Bengbu, Anhui, China (Y.S.); and School of Materials and Chemistry and School of Plant Protection, Anhui Agricultural University, Hefei, Anhui, China (S.Y.)
| | - Tao Xu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei, Anhui, China (D.Y., L.T., Y.W., Y.Y., S.W., T.X.); Institute for Liver Diseases of Anhui Medical University, Hefei, Anhui, China (D.Y., L.T., Y.W., Y.Y., S.W., T.X.); State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China (Y.H.); Department of Pediatric orthopedics, Anhui Children's Hospital, Hefei, China (J.Y.); Bengbu Medical University, Bengbu, Anhui, China (Y.S.); and School of Materials and Chemistry and School of Plant Protection, Anhui Agricultural University, Hefei, Anhui, China (S.Y.)
| |
Collapse
|
58
|
Lou H, Cai H, Huang X, Li G, Wang L, Liu F, Qin W, Liu T, Liu W, Wang ZM, Li B, Xia Y, Wang J. Cadonilimab Combined with Chemotherapy with or without Bevacizumab as First-Line Treatment in Recurrent or Metastatic Cervical Cancer (COMPASSION-13): A Phase 2 Study. Clin Cancer Res 2024; 30:1501-1508. [PMID: 38372727 PMCID: PMC11016896 DOI: 10.1158/1078-0432.ccr-23-3162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/04/2023] [Accepted: 02/15/2024] [Indexed: 02/20/2024]
Abstract
PURPOSE Immune checkpoint inhibitors (ICI) have been a potential treatment option for patients with cervical cancer in several clinical studies. We investigated the safety and efficacy of cadonilimab, a bispecific antibody targeting PD-1 and CTLA-4, plus standard therapy for the first-line treatment of R/M CC (recurrent and/or metastatic cervical cancer). PATIENTS AND METHODS Eligible patients were assigned to 3 cohorts: cohort A-15 (cadonilimab 15 mg/kg every 3 weeks (Q3W) plus chemotherapy), cohort A-10 (cadonilimb 10 mg/kg Q3W plus chemotherapy), and cohort B-10 (cadonilimab 10 mg/kg Q3W plus chemotherapy and bevacizumab). They received the corresponding treatments until disease progression, unacceptable toxicity, withdrawal of consent, or investigator decision. The primary objective was safety; the secondary endpoints included objective overall response (ORR), duration of response, disease control rate, progression-free survival, and overall survival. This study is registered with ClinicalTrials.gov (NCT04868708). RESULTS As of February 13, 2023, treatment-related adverse events (TRAE) occurred in 45 (100.0%) patients. Grade ≥3 TRAEs were reported in 33 (73.3%) patients. Immune-related adverse events (irAE) occurred in 29 (64.4%) patients and grade ≥3 irAEs were observed in 9 (20.0%) patients. Seven (15.6%) of 45 patients permanently discontinued cadonilimab treatment due to TRAEs. One death due to hemorrhagic shock occurred in cohort B-10. Among 44 patients who underwent at least one post-baseline tumor assessment, the ORR was 66.7% in cohort A-15, 68.8% in cohort A-10, 92.3% in cohort B-10, and 79.3% in cohorts A-10 and B-10 combined. CONCLUSIONS Cadonilimab combined with standard therapy was acceptable, with encouraging antitumor activity in patients with R/M CC.
Collapse
Affiliation(s)
- Hanmei Lou
- Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, China
| | - Hongbing Cai
- Department of Gynecological Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Xin Huang
- Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Guiling Li
- Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Li Wang
- Henan Cancer Hospital, Zhengzhou, China
| | - Fei Liu
- Akeso Biopharma Inc., Zhongshan, China
| | | | - Ting Liu
- Akeso Biopharma Inc., Zhongshan, China
| | - Wei Liu
- Akeso Biopharma Inc., Zhongshan, China
| | | | | | - Yu Xia
- Akeso Biopharma Inc., Zhongshan, China
| | - Jing Wang
- Hunan Cancer Hospital, Changsha, China
| |
Collapse
|
59
|
Gao F, You X, Yang L, Zou X, Sui B. Boosting immune responses in lung tumor immune microenvironment: A comprehensive review of strategies and adjuvants. Int Rev Immunol 2024; 43:280-308. [PMID: 38525925 DOI: 10.1080/08830185.2024.2333275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 02/12/2024] [Accepted: 03/15/2024] [Indexed: 03/26/2024]
Abstract
The immune system has a substantial impact on the growth and expansion of lung malignancies. Immune cells are encompassed by a stroma comprising an extracellular matrix (ECM) and different cells like stromal cells, which are known as the tumor immune microenvironment (TIME). TME is marked by the presence of immunosuppressive factors, which inhibit the function of immune cells and expand tumor growth. In recent years, numerous strategies and adjuvants have been developed to extend immune responses in the TIME, to improve the efficacy of immunotherapy. In this comprehensive review, we outline the present knowledge of immune evasion mechanisms in lung TIME, explain the biology of immune cells and diverse effectors on these components, and discuss various approaches for overcoming suppressive barriers. We highlight the potential of novel adjuvants, including toll-like receptor (TLR) agonists, cytokines, phytochemicals, nanocarriers, and oncolytic viruses, for enhancing immune responses in the TME. Ultimately, we provide a summary of ongoing clinical trials investigating these strategies and adjuvants in lung cancer patients. This review also provides a broad overview of the current state-of-the-art in boosting immune responses in the TIME and highlights the potential of these approaches for improving outcomes in lung cancer patients.
Collapse
Affiliation(s)
- Fei Gao
- Department of Oncology, The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang Province, China
| | - Xiaoqing You
- Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang Province, China
| | - Liu Yang
- Department of Oncology, Da Qing Long Nan Hospital, Daqing, Heilongjiang Province, China
| | - Xiangni Zou
- Department of Nursing, The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang Province, China
| | - Bowen Sui
- Department of Oncology, The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang Province, China
| |
Collapse
|
60
|
Gao F, Zhang M, Ying Z, Li W, Lu D, Wang X, Sha O. A PANoptosis pattern to predict prognosis and immunotherapy response in head and neck squamous cell carcinoma. Heliyon 2024; 10:e27162. [PMID: 38463811 PMCID: PMC10920724 DOI: 10.1016/j.heliyon.2024.e27162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 02/20/2024] [Accepted: 02/26/2024] [Indexed: 03/12/2024] Open
Abstract
Individuals diagnosed with head and neck squamous cell carcinoma (HNSCC) experience a significant occurrence rate and are susceptible to premature spreading, resulting in a bleak outlook. Therapeutic approaches, such as chemotherapy, targeted therapy, and immunotherapy, may exhibit primary and acquired resistance during the advanced phases of HNSCC. There is currently no viable solution to tackle this issue. PANoptosis-a type of non-apoptotic cell death-is a recently identified mechanism of cellular demise that entails communication and synchronization among thermal apoptosis, apoptosis, and necrosis mechanisms. However, the extent to which PANoptosis-associated genes (PRG) contribute to the forecast and immune reaction of HNSCC remains mostly undisclosed. The present study aimed to thoroughly analyze the potential importance of PRG in HNSCC and report our discoveries. We systematically analyzed 19 PRG from previous studies and clinical data from HNSCC patients to establish a PAN-related signature and assess its prognostic, predictive potential. Afterward, the patient information was separated into two gene patterns that corresponded to each other, and the analysis focused on the connection between patient prognosis, immune status, and cancer immunotherapy. The PAN score was found to correlate with survival rates, immune systems, and cancer-related pathways. We then validated the malignant role of CD27 among them in HNSCC. In summary, we demonstrated the effectiveness of PAN.Score-based molecular clustering and prognostic features in predicting the outcome of HNSCC. The discovery we made could enhance our comprehension of the significance of PAN.Score in HNSCC and facilitate the development of more effective treatment approaches.
Collapse
Affiliation(s)
- Feng Gao
- School of Dentistry, Institute of Stomatological Research, Shenzhen University Medical School, Shenzhen University, Shenzhen, China
| | - Minghuan Zhang
- Shenzhen University Medical School, Shenzhen University, Shenzhen, China
| | - Zhenguang Ying
- Shenzhen University Medical School, Shenzhen University, Shenzhen, China
| | - Wanqiu Li
- Shenzhen University Medical School, Shenzhen University, Shenzhen, China
| | - Desheng Lu
- Shenzhen University Medical School, Shenzhen University, Shenzhen, China
| | - Xia Wang
- Shenzhen University Medical School, Shenzhen University, Shenzhen, China
| | - Ou Sha
- School of Dentistry, Institute of Stomatological Research, Shenzhen University Medical School, Shenzhen University, Shenzhen, China
| |
Collapse
|
61
|
Larson AC, Knoche SM, Brumfield GL, Doty KR, Gephart BD, Moore-Saufley PR, Solheim JC. Gemcitabine Modulates HLA-I Regulation to Improve Tumor Antigen Presentation by Pancreatic Cancer Cells. Int J Mol Sci 2024; 25:3211. [PMID: 38542184 PMCID: PMC10970070 DOI: 10.3390/ijms25063211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 02/25/2024] [Accepted: 03/04/2024] [Indexed: 04/26/2024] Open
Abstract
Pancreatic cancer is a lethal disease, harboring a five-year overall survival rate of only 13%. Current treatment approaches thus require modulation, with attention shifting towards liberating the stalled efficacy of immunotherapies. Select chemotherapy drugs which possess inherent immune-modifying behaviors could revitalize immune activity against pancreatic tumors and potentiate immunotherapeutic success. In this study, we characterized the influence of gemcitabine, a chemotherapy drug approved for the treatment of pancreatic cancer, on tumor antigen presentation by human leukocyte antigen class I (HLA-I). Gemcitabine increased pancreatic cancer cells' HLA-I mRNA transcripts, total protein, surface expression, and surface stability. Temperature-dependent assay results indicated that the increased HLA-I stability may be due to reduced binding of low affinity peptides. Mass spectrometry analysis confirmed changes in the HLA-I-presented peptide pool post-treatment, and computational predictions suggested improved affinity and immunogenicity of peptides displayed solely by gemcitabine-treated cells. Most of the gemcitabine-exclusive peptides were derived from unique source proteins, with a notable overrepresentation of translation-related proteins. Gemcitabine also increased expression of select immunoproteasome subunits, providing a plausible mechanism for its modulation of the HLA-I-bound peptidome. Our work supports continued investigation of immunotherapies, including peptide-based vaccines, to be used with gemcitabine as new combination treatment modalities for pancreatic cancer.
Collapse
Affiliation(s)
- Alaina C. Larson
- Eppley Institute for Research in Cancer & Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Shelby M. Knoche
- Eppley Institute for Research in Cancer & Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Gabrielle L. Brumfield
- Eppley Institute for Research in Cancer & Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Kenadie R. Doty
- Eppley Institute for Research in Cancer & Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Benjamin D. Gephart
- Eppley Institute for Research in Cancer & Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | | | - Joyce C. Solheim
- Eppley Institute for Research in Cancer & Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
62
|
Ayass MA, Tripathi T, Griko N, Okyay T, Ramankutty Nair R, Zhang J, Zhu K, Melendez K, Pashkov V, Abi-Mosleh L. Dual Checkpoint Aptamer Immunotherapy: Unveiling Tailored Cancer Treatment Targeting CTLA-4 and NKG2A. Cancers (Basel) 2024; 16:1041. [PMID: 38473398 DOI: 10.3390/cancers16051041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 02/13/2024] [Accepted: 02/28/2024] [Indexed: 03/14/2024] Open
Abstract
Recent strides in immunotherapy have illuminated the crucial role of CTLA-4 and PD-1/PD-L1 pathways in contemporary oncology, presenting both promises and challenges in response rates and adverse effects. This study employs a computational biology tool (in silico approach) to craft aptamers capable of binding to dual receptors, namely, inhibitory CTLA4 and NKG2A, thereby unleashing both T and NK cells and enhancing CD8+ T and NK cell functions for tumor cell lysis. Computational analysis highlighted AYA22T-R2-13 with HADDOCK scores of -78.2 ± 10.2 (with CTLA4), -60.0 ± 4.2 (with NKG2A), and -77.5 ± 5.6 (with CD94/NKG2A). Confirmation of aptamer binding to targeted proteins was attained via ELISA and flow cytometry methods. In vitro biological functionality was assessed using lactate dehydrogenase (LDH) cytotoxicity assay. Direct and competitive assays using ELISA and flow cytometry demonstrated the selective binding of AYA22T-R2-13 to CTLA4 and NKG2A proteins, as well as to the cell surface receptors of IL-2-stimulated T cells and NK cells. This binding was inhibited in the presence of competition from CTLA4 or NKG2A proteins. Remarkably, the blockade of CTLA4 or NKG2A by AYA22T-R2-13 augmented human CD8 T cell- and NK cell-mediated tumor cell lysis in vitro. Our findings highlight the precise binding specificity of AYA22T-R2-13 for CTLA4-B7-1/B7-2 (CD80/CD86) or CD94/NKG2A-HLA-E interactions, positioning it as a valuable tool for immune checkpoint blockade aptamer research in murine tumor models. These in vitro studies establish a promising foundation for further enhancing binding capacity and establishing efficacy and safety in animal models. Consequently, our results underscore the potential of AYA22T-R2-13 in cancer immunotherapy, offering high specificity, low toxicity, and the potential for cost-effective production.
Collapse
Affiliation(s)
| | | | - Natalya Griko
- Ayass Bioscience LLC, 8501 Wade Blvd, Bld 9, Frisco, TX 75034, USA
| | - Tutku Okyay
- Ayass Bioscience LLC, 8501 Wade Blvd, Bld 9, Frisco, TX 75034, USA
| | | | - Jin Zhang
- Ayass Bioscience LLC, 8501 Wade Blvd, Bld 9, Frisco, TX 75034, USA
| | - Kevin Zhu
- Ayass Bioscience LLC, 8501 Wade Blvd, Bld 9, Frisco, TX 75034, USA
| | - Kristen Melendez
- Ayass Bioscience LLC, 8501 Wade Blvd, Bld 9, Frisco, TX 75034, USA
| | - Victor Pashkov
- Ayass Bioscience LLC, 8501 Wade Blvd, Bld 9, Frisco, TX 75034, USA
| | - Lina Abi-Mosleh
- Ayass Bioscience LLC, 8501 Wade Blvd, Bld 9, Frisco, TX 75034, USA
| |
Collapse
|
63
|
Ye X, Yu Y, Zheng X, Ma H. Clinical immunotherapy in pancreatic cancer. Cancer Immunol Immunother 2024; 73:64. [PMID: 38430289 PMCID: PMC10908626 DOI: 10.1007/s00262-024-03632-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 01/09/2024] [Indexed: 03/03/2024]
Abstract
Pancreatic cancer remains a challenging disease with limited treatment options, resulting in high mortality rates. The predominant approach to managing pancreatic cancer patients continues to be systemic cytotoxic chemotherapy. Despite substantial advancements in immunotherapy strategies for various cancers, their clinical utility in pancreatic cancer has proven less effective and durable. Whether administered as monotherapy, employing immune checkpoint inhibitors, tumor vaccines, chimeric antigen receptors T cells, or in combination with conventional chemoradiotherapy, the clinical outcomes remain underwhelming. Extensive preclinical experiments and clinical trials in the realm of pancreatic cancer have provided valuable insights into the complexities of immunotherapy. Chief among the hurdles are the immunosuppressive tumor microenvironment, limited immunogenicity, and the inherent heterogeneity of pancreatic cancer. In this comprehensive review, we provide an overview and critical analysis of current clinical immunotherapy strategies for pancreatic cancer, emphasizing their endeavors to overcome immunotherapy resistance. Particular focus is placed on strategies aimed at reshaping the immunosuppressive microenvironment and enhancing T cell-mediated tumor cell killing. Ultimately, through deeper elucidation of the underlying pathogenic mechanisms of pancreatic cancer and the refinement of therapeutic approaches, we anticipate breakthroughs that will pave the way for more effective treatments in this challenging disease.
Collapse
Affiliation(s)
- Xiaorong Ye
- Department of Gastroenterology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui Province, People's Republic of China
| | - Yue Yu
- Department of Gastroenterology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui Province, People's Republic of China.
| | - Xiaohu Zheng
- Department of Neurosurgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui Province, People's Republic of China.
- Hefei National Research Center for Physical Sciences at Microscale, The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, People's Republic of China.
- Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, People's Republic of China.
| | - Hongdi Ma
- Hefei National Research Center for Physical Sciences at Microscale, The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, People's Republic of China.
- Department of Pediatrics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui Province, People's Republic of China.
| |
Collapse
|
64
|
Huang S, Zhang X, Wei Y, Xiao Y. Checkpoint CD24 function on tumor and immunotherapy. Front Immunol 2024; 15:1367959. [PMID: 38487533 PMCID: PMC10937401 DOI: 10.3389/fimmu.2024.1367959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 02/12/2024] [Indexed: 03/17/2024] Open
Abstract
CD24 is a protein found on the surface of cells that plays a crucial role in the proliferation, invasion, and spread of cancer cells. It adheres to cell membranes through glycosylphosphatidylinositol (GPI) and is associated with the prognosis and survival rate of cancer patients. CD24 interacts with the inhibitory receptor Siglec-10 that is present on immune cells like natural killer cells and macrophages, leading to the inhibition of natural killer cell cytotoxicity and macrophage-mediated phagocytosis. This interaction helps tumor cells escape immune detection and attack. Although the use of CD24 as a immune checkpoint receptor target for cancer immunotherapy is still in its early stages, clinical trials have shown promising results. Monoclonal antibodies targeting CD24 have been found to be well-tolerated and safe. Other preclinical studies are exploring the use of chimeric antigen receptor (CAR) T cells, antibody-drug conjugates, and gene therapy to target CD24 and enhance the immune response against tumors. In summary, this review focuses on the role of CD24 in the immune system and provides evidence for CD24 as a promising immune checkpoint for cancer immunotherapy.
Collapse
Affiliation(s)
- Shiming Huang
- Department of Radiology, First Medical Center, Chinese People’s Liberation Army General Hospital, Beijing, China
- Graduate School, Chinese PLA Medical School, Beijing, China
- Department of Nuclear Medicine, Characteristic Medical Center of the Chinese People’s Armed Police Force, Tianjin, China
| | - Xiaobo Zhang
- Department of Radiology, First Medical Center, Chinese People’s Liberation Army General Hospital, Beijing, China
| | - Yingtian Wei
- Department of Radiology, First Medical Center, Chinese People’s Liberation Army General Hospital, Beijing, China
| | - Yueyong Xiao
- Department of Radiology, First Medical Center, Chinese People’s Liberation Army General Hospital, Beijing, China
| |
Collapse
|
65
|
Zhang ZH, Du Y, Wei S, Pei W. Multilayered insights: a machine learning approach for personalized prognostic assessment in hepatocellular carcinoma. Front Oncol 2024; 13:1327147. [PMID: 38486931 PMCID: PMC10937467 DOI: 10.3389/fonc.2023.1327147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 12/08/2023] [Indexed: 03/17/2024] Open
Abstract
Background Hepatocellular carcinoma (HCC) is a complex malignancy, and precise prognosis assessment is vital for personalized treatment decisions. Objective This study aimed to develop a multi-level prognostic risk model for HCC, offering individualized prognosis assessment and treatment guidance. Methods By utilizing data from The Cancer Genome Atlas (TCGA) and the Surveillance, Epidemiology, and End Results (SEER) database, we performed differential gene expression analysis to identify genes associated with survival in HCC patients. The HCC Differential Gene Prognostic Model (HCC-DGPM) was developed through multivariate Cox regression. Clinical indicators were incorporated into the HCC-DGPM using Cox regression, leading to the creation of the HCC Multilevel Prognostic Model (HCC-MLPM). Immune function was evaluated using single-sample Gene Set Enrichment Analysis (ssGSEA), and immune cell infiltration was assessed. Patient responsiveness to immunotherapy was evaluated using the Immunophenoscore (IPS). Clinical drug responsiveness was investigated using drug-related information from the TCGA database. Cox regression, Kaplan-Meier analysis, and trend association tests were conducted. Results Seven differentially expressed genes from the TCGA database were used to construct the HCC-DGPM. Additionally, four clinical indicators associated with survival were identified from the SEER database for model adjustment. The adjusted HCC-MLPM showed significantly improved discriminative capacity (AUC=0.819 vs. 0.724). External validation involving 153 HCC patients from the International Cancer Genome Consortium (ICGC) database verified the performance of the HCC-MLPM (AUC=0.776). Significantly, the HCC-MLPM exhibited predictive capacity for patient response to immunotherapy and clinical drug efficacy (P < 0.05). Conclusion This study offers comprehensive insights into HCC prognosis and develops predictive models to enhance patient outcomes. The evaluation of immune function, immune cell infiltration, and clinical drug responsiveness enhances our comprehension and management of HCC.
Collapse
Affiliation(s)
| | - Yunxiang Du
- Department of Oncology, Huai’an 82 Hospital, China RongTong Medical Healthcare Group Co., Ltd., Chengdu, China
| | - Shuzhen Wei
- Department of Oncology, Huai’an 82 Hospital, China RongTong Medical Healthcare Group Co., Ltd., Chengdu, China
| | - Weidong Pei
- Department of Discipline Development, China RongTong Medical Healthcare Group Co., Ltd., Chengdu, China
| |
Collapse
|
66
|
Wei DD, Fang JM, Wang HZ, Chen J, Kong S, Jiang YY, Jiang Y. Perioperative immunotherapy for esophageal squamous cell carcinoma. Front Immunol 2024; 15:1330785. [PMID: 38440724 PMCID: PMC10910041 DOI: 10.3389/fimmu.2024.1330785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 01/31/2024] [Indexed: 03/06/2024] Open
Abstract
Esophageal squamous cell carcinoma (ESCC) is the main prevalent histological subtype and accounts for 85% of esophageal cancer cases worldwide. Traditional treatment for ESCC involves chemotherapy, radiotherapy, and surgery. However, the overall prognosis remains unfavorable. Recently, immune checkpoint blockade (ICB) therapy using anti-programmed cell death-1 (PD-1)/PD-1 ligand (PD-L1) antibodies have not only achieved remarkable benefits in the clinical management of ESCC but have also completely changed the treatment approach for this cancer. In just a few years, ICB therapy has rapidly advanced and been added to standard first-line treatment regimen in patients with ESCC. However, preoperative immunotherapy is yet to be approved. In this review, we summarize the ICB antibodies commonly used in clinical immunotherapy of ESCC, and discuss the advances of immunotherapy combined with chemotherapy and radiotherapy in the perioperative treatment of ESCC, aiming to provide reference for clinical management of ESCC patients across the whole course of treatment.
Collapse
Affiliation(s)
- Dan D. Wei
- Esophageal and Gastrointestinal Tumor Center, Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, China
- Anhui Province Key Laboratory of Medical Physics and Technology; Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China
- Science Island Branch of Graduate School, University of Science and Technology of China, Hefei, China
| | - Jin M. Fang
- Esophageal and Gastrointestinal Tumor Center, Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, China
- Science Island Branch of Graduate School, University of Science and Technology of China, Hefei, China
| | - Huan Z. Wang
- Esophageal and Gastrointestinal Tumor Center, Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, China
| | - Jian Chen
- Anhui Province Key Laboratory of Medical Physics and Technology; Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China
| | - Shuai Kong
- Anhui Province Key Laboratory of Medical Physics and Technology; Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China
- Science Island Branch of Graduate School, University of Science and Technology of China, Hefei, China
| | - Yan-Yi Jiang
- Anhui Province Key Laboratory of Medical Physics and Technology; Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China
- Science Island Branch of Graduate School, University of Science and Technology of China, Hefei, China
| | - Yuan Jiang
- Anhui Province Key Laboratory of Medical Physics and Technology; Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China
- Science Island Branch of Graduate School, University of Science and Technology of China, Hefei, China
| |
Collapse
|
67
|
Xu X, Han Y, Zhang B, Ren Q, Ma J, Liu S. Understanding immune microenvironment alterations in the brain to improve the diagnosis and treatment of diverse brain diseases. Cell Commun Signal 2024; 22:132. [PMID: 38368403 PMCID: PMC10874090 DOI: 10.1186/s12964-024-01509-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 02/01/2024] [Indexed: 02/19/2024] Open
Abstract
Abnormal inflammatory states in the brain are associated with a variety of brain diseases. The dynamic changes in the number and function of immune cells in cerebrospinal fluid (CSF) are advantageous for the early prediction and diagnosis of immune diseases affecting the brain. The aggregated factors and cells in inflamed CSF may represent candidate targets for therapy. The physiological barriers in the brain, such as the blood‒brain barrier (BBB), establish a stable environment for the distribution of resident immune cells. However, the underlying mechanism by which peripheral immune cells migrate into the brain and their role in maintaining immune homeostasis in CSF are still unclear. To advance our understanding of the causal link between brain diseases and immune cell status, we investigated the characteristics of immune cell changes in CSF and the molecular mechanisms involved in common brain diseases. Furthermore, we summarized the diagnostic and treatment methods for brain diseases in which immune cells and related cytokines in CSF are used as targets. Further investigations of the new immune cell subtypes and their contributions to the development of brain diseases are needed to improve diagnostic specificity and therapy.
Collapse
Affiliation(s)
- Xiaotong Xu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Yi Han
- Guang'an Men Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, People's Republic of China.
| | - Binlong Zhang
- Guang'an Men Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, People's Republic of China
| | - Quanzhong Ren
- JST Sarcopenia Research Centre, National Center for Orthopaedics, Beijing Research Institute of Traumatology and Orthopaedics, Beijing Jishuitan Hospital, Capital Medical University, Beijing, 100035, People's Republic of China
| | - Juan Ma
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, People's Republic of China.
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China.
| | - Sijin Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, People's Republic of China
| |
Collapse
|
68
|
Ma Y, Chen H, Li H, Zhao Z, An Q, Shi C. Targeting monoamine oxidase A: a strategy for inhibiting tumor growth with both immune checkpoint inhibitors and immune modulators. Cancer Immunol Immunother 2024; 73:48. [PMID: 38349393 PMCID: PMC10864517 DOI: 10.1007/s00262-023-03622-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 12/22/2023] [Indexed: 02/15/2024]
Abstract
Monoamine oxidase A (MAOA) is a membrane-bound mitochondrial enzyme present in almost all vertebrate tissues that catalyzes the degradation of biogenic and dietary-derived monoamines. MAOA is known for regulating neurotransmitter metabolism and has been implicated in antitumor immune responses. In this review, we retrospect that MAOA inhibits the activities of various types of tumor-associated immune cells (such as CD8+ T cells and tumor-associated macrophages) by regulating their intracellular monoamines and metabolites. Developing novel MAOA inhibitor drugs and exploring multidrug combination strategies may enhance the efficacy of immune governance. Thus, MAOA may act as a novel immune checkpoint or immunomodulator by influencing the efficacy and effectiveness of immunotherapy. In conclusion, MAOA is a promising immune target that merits further in-depth exploration in preclinical and clinical settings.
Collapse
Affiliation(s)
- Yifan Ma
- Division of Cancer Biology, Laboratory Animal Center, Fourth Military Medical University, Xi'an, 710032, Shaanxi, People's Republic of China
- Gansu University of Traditional Chinese Medicine, Lanzhou, 730030, Gansu, People's Republic of China
| | - Hanmu Chen
- Division of Cancer Biology, Laboratory Animal Center, Fourth Military Medical University, Xi'an, 710032, Shaanxi, People's Republic of China
- School of Basic Medical Sciences, Medical College of Yan'an University, 580 Bao-Ta Street, Yanan, 716000, Shaanxi, People's Republic of China
| | - Hui Li
- Division of Cancer Biology, Laboratory Animal Center, Fourth Military Medical University, Xi'an, 710032, Shaanxi, People's Republic of China
| | - Zhite Zhao
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shaanxi, People's Republic of China
| | - Qingling An
- Division of Cancer Biology, Laboratory Animal Center, Fourth Military Medical University, Xi'an, 710032, Shaanxi, People's Republic of China
| | - Changhong Shi
- Division of Cancer Biology, Laboratory Animal Center, Fourth Military Medical University, Xi'an, 710032, Shaanxi, People's Republic of China.
| |
Collapse
|
69
|
Garrone O, La Porta CAM. Artificial Intelligence for Precision Oncology of Triple-Negative Breast Cancer: Learning from Melanoma. Cancers (Basel) 2024; 16:692. [PMID: 38398083 PMCID: PMC10887240 DOI: 10.3390/cancers16040692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/18/2024] [Accepted: 01/25/2024] [Indexed: 02/25/2024] Open
Abstract
Thanks to new technologies using artificial intelligence (AI) and machine learning, it is possible to use large amounts of data to try to extract information that can be used for personalized medicine. The great challenge of the future is, on the one hand, to acquire masses of biological data that nowadays are still limited and, on the other hand, to develop innovative strategies to extract information that can then be used for the development of predictive models. From this perspective, we discuss these aspects in the context of triple-negative breast cancer, a tumor where a specific treatment is still lacking and new therapies, such as immunotherapy, are under investigation. Since immunotherapy is already in use for other tumors such as melanoma, we discuss the strengths and weaknesses identified in the use of immunotherapy with melanoma to try to find more successful strategies. It is precisely in this context that AI and predictive tools can be extremely valuable. Therefore, the discoveries and advancements in immunotherapy for melanoma provide a foundation for developing effective immunotherapies for triple-negative breast cancer. Shared principles, such as immune system activation, checkpoint inhibitors, and personalized treatment, can be applied to TNBC to improve patient outcomes and offer new hope for those with aggressive, hard-to-treat breast cancer.
Collapse
Affiliation(s)
- Ornella Garrone
- Medical Oncology, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy;
| | - Caterina A. M. La Porta
- Department of Environmental Science and Policy, University of Milan, 20133 Milan, Italy
- Center for Complexity and Biosystems, University of Milan, 20133 Milan, Italy
| |
Collapse
|
70
|
Xiao F, Zhu H, Guo Y, Zhang Z, Sun G, Xiao Y, Hu G, Huang K, Guo H. CIA-II is associated with lower-grade glioma survival and cell proliferation. CNS Neurosci Ther 2024; 30:e14340. [PMID: 37452510 PMCID: PMC10848044 DOI: 10.1111/cns.14340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 06/09/2023] [Accepted: 06/24/2023] [Indexed: 07/18/2023] Open
Abstract
BACKGROUND The role of CIA-II has been clarified in several types of tumors; however, whether dysregulated CIA-II expression is also involved in the pathophysiology of lower-grade glioma (LGG) remains undisclosed. METHODS A comprehensive pan-cancer analysis of the expression patterns and prognostic significance of CIA-II in miscellaneous tumors was undertaken. Subsequently, a detailed bioinformatics analysis was executed to identify putative correlations between CIA-II expression and clinical features, prognosis, biological functions, immunological characteristics, genomic alterations, and chemotherapeutics in LGG. In vitro studies were implemented to examine the potential roles of CIA-II in LGG. RESULTS CIA-II expression was found to be abnormally elevated in a variety of tumors, including LGG. Additionally, patients with LGG with higher CIA-II expression owned worse prognosis. Importantly, the results declared that CIA-II expression was an independent prognostic indicator for LGG. Moreover, the expression of CIA-II was tightly interrelated with immune cell infiltration, gene mutations, and chemotherapeutics in LGG. In vitro studies revealed that CIA-II was increased and strongly related to the cell proliferation in LGG. CONCLUSION CIA-II may be an independent prognostic factor and a serviceable therapeutic target in LGG.
Collapse
Affiliation(s)
- Feng Xiao
- Department of NeurosurgeryThe Second Affiliated Hospital of Nanchang UniversityNanchangChina
- Jiangxi Key Laboratory of Neurological Tumors and Cerebrovascular DiseasesNanchangChina
- Jiangxi Health Commission Key Laboratory of Neurological MedicineNanchangChina
- Institute of NeuroscienceNanchang UniversityNanchangChina
| | - Hong Zhu
- Department of NeurosurgeryThe Second Affiliated Hospital of Nanchang UniversityNanchangChina
- Jiangxi Key Laboratory of Neurological Tumors and Cerebrovascular DiseasesNanchangChina
- Jiangxi Health Commission Key Laboratory of Neurological MedicineNanchangChina
- Institute of NeuroscienceNanchang UniversityNanchangChina
| | - Yun Guo
- Department of NeurosurgeryThe Second Affiliated Hospital of Nanchang UniversityNanchangChina
- Jiangxi Key Laboratory of Neurological Tumors and Cerebrovascular DiseasesNanchangChina
- Jiangxi Health Commission Key Laboratory of Neurological MedicineNanchangChina
- Institute of NeuroscienceNanchang UniversityNanchangChina
| | - Zhe Zhang
- Department of NeurosurgeryThe Second Affiliated Hospital of Nanchang UniversityNanchangChina
- Jiangxi Key Laboratory of Neurological Tumors and Cerebrovascular DiseasesNanchangChina
- Jiangxi Health Commission Key Laboratory of Neurological MedicineNanchangChina
- Institute of NeuroscienceNanchang UniversityNanchangChina
| | - Gufeng Sun
- Department of NeurosurgeryThe Second Affiliated Hospital of Nanchang UniversityNanchangChina
- Jiangxi Key Laboratory of Neurological Tumors and Cerebrovascular DiseasesNanchangChina
- Jiangxi Health Commission Key Laboratory of Neurological MedicineNanchangChina
- Institute of NeuroscienceNanchang UniversityNanchangChina
| | - Yao Xiao
- Department of NeurosurgeryThe Second Affiliated Hospital of Nanchang UniversityNanchangChina
- Jiangxi Key Laboratory of Neurological Tumors and Cerebrovascular DiseasesNanchangChina
- Jiangxi Health Commission Key Laboratory of Neurological MedicineNanchangChina
- Institute of NeuroscienceNanchang UniversityNanchangChina
| | - Guowen Hu
- Department of NeurosurgeryThe Second Affiliated Hospital of Nanchang UniversityNanchangChina
| | - Kai Huang
- Department of NeurosurgeryThe Second Affiliated Hospital of Nanchang UniversityNanchangChina
- Jiangxi Key Laboratory of Neurological Tumors and Cerebrovascular DiseasesNanchangChina
- Jiangxi Health Commission Key Laboratory of Neurological MedicineNanchangChina
- Institute of NeuroscienceNanchang UniversityNanchangChina
| | - Hua Guo
- Department of NeurosurgeryThe Second Affiliated Hospital of Nanchang UniversityNanchangChina
- Jiangxi Key Laboratory of Neurological Tumors and Cerebrovascular DiseasesNanchangChina
- Jiangxi Health Commission Key Laboratory of Neurological MedicineNanchangChina
- Institute of NeuroscienceNanchang UniversityNanchangChina
| |
Collapse
|
71
|
Feng S, Zhang Y, Zhu H, Jian Z, Zeng Z, Ye Y, Li Y, Smerin D, Zhang X, Zou N, Gu L, Xiong X. Cuproptosis facilitates immune activation but promotes immune escape, and a machine learning-based cuproptosis-related signature is identified for predicting prognosis and immunotherapy response of gliomas. CNS Neurosci Ther 2024; 30:e14380. [PMID: 37515314 PMCID: PMC10848101 DOI: 10.1111/cns.14380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 06/27/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023] Open
Abstract
AIMS Cell death, except for cuproptosis, in gliomas has been extensively studied, providing novel targets for immunotherapy by reshaping the tumor immune microenvironment through multiple mechanisms. This study aimed to explore the effect of cuproptosis on the immune microenvironment and its predictive power in prognosis and immunotherapy response. METHODS Eight glioma cohorts were included in this study. We employed the unsupervised clustering algorithm to identify novel cuproptosis clusters and described their immune microenvironmental characteristics, mutation landscape, and altered signaling pathways. We verified the correlation among FDX1, SLC31A1, and macrophage infiltration in 56 glioma tissues. Next, based on multicenter cohorts and 10 machine learning algorithms, we constructed an artificial intelligence-driven cuproptosis-related signature named CuproScore. RESULTS Our findings suggested that glioma patients with high levels of cuproptosis had a worse prognosis owing to immunosuppression caused by unique immune escape mechanisms. Meanwhile, we experimentally validated the positive association between cuproptosis and macrophages and its tumor-promoting mechanism in vitro. Furthermore, our CuproScore exhibited powerful and robust prognostic predictive ability. It was also capable of predicting response to immunotherapy and chemotherapy drug sensitivity. CONCLUSIONS Cuproptosis facilitates immune activation but promotes immune escape. The CuproScore could predict prognosis and immunotherapy response in gliomas.
Collapse
Affiliation(s)
- Shi Feng
- Department of NeurosurgeryRenmin Hospital of Wuhan UniversityWuhanChina
| | - Yonggang Zhang
- Department of NeurosurgeryRenmin Hospital of Wuhan UniversityWuhanChina
| | - Hua Zhu
- Department of NeurosurgeryRenmin Hospital of Wuhan UniversityWuhanChina
| | - Zhihong Jian
- Department of NeurosurgeryRenmin Hospital of Wuhan UniversityWuhanChina
| | - Zhi Zeng
- Department of PathologyRenmin Hospital of Wuhan UniversityWuhanChina
| | - Yingze Ye
- Department of NeurosurgeryRenmin Hospital of Wuhan UniversityWuhanChina
| | - Yina Li
- Department of AnesthesiologyRenmin Hospital of Wuhan UniversityWuhanChina
| | - Daniel Smerin
- Department of NeurosurgeryUniversity of Texas Health Science Center at San AntonioSan AntonioTexasUSA
| | - Xu Zhang
- Department of NeurosurgeryRenmin Hospital of Wuhan UniversityWuhanChina
| | - Ning Zou
- Department of Radiation Oncology, Hubei Cancer Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Lijuan Gu
- Department of AnesthesiologyRenmin Hospital of Wuhan UniversityWuhanChina
- Central LaboratoryRenmin Hospital of Wuhan UniversityWuhanChina
| | - Xiaoxing Xiong
- Department of NeurosurgeryRenmin Hospital of Wuhan UniversityWuhanChina
| |
Collapse
|
72
|
Eteghadi A, Ebrahimi M, Keshel SH. New immunotherapy approaches as the most effective treatment for uveal melanoma. Crit Rev Oncol Hematol 2024; 194:104260. [PMID: 38199429 DOI: 10.1016/j.critrevonc.2024.104260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 11/26/2023] [Accepted: 01/04/2024] [Indexed: 01/12/2024] Open
Abstract
Uveal melanoma (UM) is the most common primary intraocular malignancy in adults. Conventional methods of UM treatment are based on chemotherapy and radiotherapy, which have been able to control tumor growth in a limited way. But due to the inadequacy and many side effects of these treatments, many UM patients die during treatment, and approximately 50% of patients develop metastasis. Meanwhile, the 2-year survival rate of these patients from the time of metastasis is 8%. Since immunotherapy has the potential to be the most specific and efficient method in the treatment of tumors, it is considered an attractive and promising research field in the treatment of UM. This review highlights recent advances in UM immunotherapy and provides new immunological approaches on how to overcome the challenges of UM immunotherapy.
Collapse
Affiliation(s)
- Atefeh Eteghadi
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Ebrahimi
- Medical Nanotechnology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Saeed Heidari Keshel
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Medical Nanotechnology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
73
|
Santry LA, van Vloten JP, AuYeung AWK, Mould RC, Yates JGE, McAusland TM, Petrik JJ, Major PP, Bridle BW, Wootton SK. Recombinant Newcastle disease viruses expressing immunological checkpoint inhibitors induce a pro-inflammatory state and enhance tumor-specific immune responses in two murine models of cancer. Front Microbiol 2024; 15:1325558. [PMID: 38328418 PMCID: PMC10847535 DOI: 10.3389/fmicb.2024.1325558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 01/02/2024] [Indexed: 02/09/2024] Open
Abstract
Introduction Tumor microenvironments are immunosuppressive due to progressive accumulation of mutations in cancer cells that can drive expression of a range of inhibitory ligands and cytokines, and recruitment of immunomodulatory cells, including myeloid-derived suppressor cells (MDSC), tumor-associated macrophages, and regulatory T cells (Tregs). Methods To reverse this immunosuppression, we engineered mesogenic Newcastle disease virus (NDV) to express immunological checkpoint inhibitors anti-cytotoxic T lymphocyte antigen-4 and soluble programmed death protein-1. Results Intratumoral administration of recombinant NDV (rNDV) to mice bearing intradermal B16-F10 melanomas or subcutaneous CT26LacZ colon carcinomas led to significant changes in the tumor-infiltrating lymphocyte profiles. Vectorizing immunological checkpoint inhibitors in NDV increased activation of intratumoral natural killer cells and cytotoxic T cells and decreased Tregs and MDSCs, suggesting induction of a pro-inflammatory state with greater infiltration of activated CD8+ T cells. These notable changes translated to higher ratios of activated effector/suppressor tumor-infiltrating lymphocytes in both cancer models, which is a promising prognostic marker. Whereas all rNDV-treated groups showed evidence of tumor regression and increased survival in the CT26LacZ and B16-F10, only treatment with NDV expressing immunological checkpoint blockades led to complete responses compared to tumors treated with NDV only. Discussion These data demonstrated that NDV expressing immunological checkpoint inhibitors could reverse the immunosuppressive state of tumor microenvironments and enhance tumor-specific T cell responses.
Collapse
Affiliation(s)
- Lisa A. Santry
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - Jacob P. van Vloten
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - Amanda W. K. AuYeung
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - Robert C. Mould
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - Jacob G. E. Yates
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - Thomas M. McAusland
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - James J. Petrik
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | | | - Byram W. Bridle
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - Sarah K. Wootton
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
74
|
Wu W, Li H, Wang Z, Dai Z, Liang X, Luo P, Liu K, Zhang H, Zhang N, Li S, Zhang C. The tertiary lymphoid structure-related signature identified PTGDS in regulating PD-L1 and promoting the proliferation and migration of glioblastoma. Heliyon 2024; 10:e23915. [PMID: 38205335 PMCID: PMC10777022 DOI: 10.1016/j.heliyon.2023.e23915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 12/12/2023] [Accepted: 12/15/2023] [Indexed: 01/12/2024] Open
Abstract
Background Tertiary lymphoid structure (TLS) is a unique organ that carries out tumor cell elimination at tumor sites. It is continuously stimulated by inflammatory tumor signals and has been found to augment immunotherapy response. However, the detailed mechanisms behind it still need to be defined. Methods To explore and grasp the whole picture of TLS from a pan-cancer view, we collected nine TLS-related genes from previous studies. We performed a comprehensive analysis of 9637 samples across 33 tumor types accessed from The Cancer Genome Atlas (TCGA) database. EdU, Transwell, and flow cytometry were performed on the feature gene PTGDS in U251 cells. The regulatory role of PTGDS on PD-L1 expression and macrophage polarization was verified. Results Alteration analysis showed that mutations of TLS-related genes were widespread and relatively high. Clustering analysis based on the expression of these nine genes obtained two distinct clusters, with high EIF1AY and PTGDS in cluster 2 and better overall survival in cluster 1. To distinguish the two clusters, we utilized six machine learning algorithms and filtrated EIF1AY, PTGDS, SKAP1, and RBP5 as the characteristic genes, among which the former two genes were proved to be hazardous. PTGDS was found to regulate PD-L1 expression and also promoted the proliferation and migration of U251 cells. The knockdown of PTGDS could reduce the migration of macrophages and inhibit the polarization of macrophages into M2-phenotype. In addition, we established a TLS score to demonstrate patients' TLS activity. The low TLS-score group overlapped with cluster 1 and displayed a better prognosis. Besides, the low TLS-score group was related to better immunotherapy responses. The HE staining of histopathological sections confirmed that the low TLS-score group exhibited higher infiltration of immune cells. Conclusion This study reveals broad molecular, tumorigenic, and immunogenic signatures for further functional and therapeutic studies of tertiary lymphoid structure. The TLS score we established effectively predicted immunotherapy response and patients' survival. Its future application and combination await more research.
Collapse
Affiliation(s)
- Wantao Wu
- The Animal Laboratory Center, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, China
| | - He Li
- The Animal Laboratory Center, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
- Changsha Medical University, Changsha, China
| | - Zeyu Wang
- Department of Neurosurgery, Xiangya Hospital, Central South University Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Ziyu Dai
- Department of Neurosurgery, Xiangya Hospital, Central South University Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Xisong Liang
- Department of Neurosurgery, Xiangya Hospital, Central South University Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Peng Luo
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Kun Liu
- Department of Neurosugery, The Second People's Hospital of Hunan Province, The Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Hao Zhang
- Department of Neurosurgery, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Nan Zhang
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
- College of Bioinformatics Science and Technology, Harbin Medical University Harbin, China
| | - Shuyu Li
- Department of Thyroid and Breast Surgery, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| | - Chi Zhang
- Department of Neurosurgery, Xiangya Hospital, Central South University Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
75
|
Dhanushkumar T, M E S, Selvam PK, Rambabu M, Dasegowda KR, Vasudevan K, George Priya Doss C. Advancements and hurdles in the development of a vaccine for triple-negative breast cancer: A comprehensive review of multi-omics and immunomics strategies. Life Sci 2024; 337:122360. [PMID: 38135117 DOI: 10.1016/j.lfs.2023.122360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 12/15/2023] [Accepted: 12/15/2023] [Indexed: 12/24/2023]
Abstract
Triple-Negative Breast Cancer (TNBC) presents a significant challenge in oncology due to its aggressive behavior and limited therapeutic options. This review explores the potential of immunotherapy, particularly vaccine-based approaches, in addressing TNBC. It delves into the role of immunoinformatics in creating effective vaccines against TNBC. The review first underscores the distinct attributes of TNBC and the importance of tumor antigens in vaccine development. It then elaborates on antigen detection techniques such as exome sequencing, HLA typing, and RNA sequencing, which are instrumental in identifying TNBC-specific antigens and selecting vaccine candidates. The discussion then shifts to the in-silico vaccine development process, encompassing antigen selection, epitope prediction, and rational vaccine design. This process merges computational simulations with immunological insights. The role of Artificial Intelligence (AI) in expediting the prediction of antigens and epitopes is also emphasized. The review concludes by encapsulating how Immunoinformatics can augment the design of TNBC vaccines, integrating tumor antigens, advanced detection methods, in-silico strategies, and AI-driven insights to advance TNBC immunotherapy. This could potentially pave the way for more targeted and efficacious treatments.
Collapse
Affiliation(s)
- T Dhanushkumar
- Department of Biotechnology, School of Applied Sciences, REVA University, Bengaluru 560064, India
| | - Santhosh M E
- Department of Biotechnology, School of Applied Sciences, REVA University, Bengaluru 560064, India
| | - Prasanna Kumar Selvam
- Department of Biotechnology, School of Applied Sciences, REVA University, Bengaluru 560064, India
| | - Majji Rambabu
- Department of Biotechnology, School of Applied Sciences, REVA University, Bengaluru 560064, India
| | - K R Dasegowda
- Department of Biotechnology, School of Applied Sciences, REVA University, Bengaluru 560064, India
| | - Karthick Vasudevan
- Department of Biotechnology, School of Applied Sciences, REVA University, Bengaluru 560064, India.
| | - C George Priya Doss
- Laboratory of Integrative Genomics, Department of Integrative Biology, School of BioSciences and Technology, Vellore Institute of Technology (VIT), Vellore, India.
| |
Collapse
|
76
|
Agarwal M, Kumar M, Pathak R, Bala K, Kumar A. Exploring TLR signaling pathways as promising targets in cervical cancer: The road less traveled. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2024; 385:227-261. [PMID: 38663961 DOI: 10.1016/bs.ircmb.2023.11.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Abstract
Cervical cancer is the leading cause of cancer-related deaths for women globally. Despite notable advancements in prevention and treatment, the identification of novel therapeutic targets remains crucial for cervical cancer. Toll-like receptors (TLRs) play an essential role in innate immunity as pattern-recognition receptors. There are several types of pathogen-associated molecular patterns (PAMPs), including those present in cervical cancer cells, which have the ability to activate toll-like receptors (TLRs). Recent studies have revealed dysregulated toll-like receptor (TLR) signaling pathways in cervical cancer, leading to the production of inflammatory cytokines and chemokines that can facilitate tumor growth and metastasis. Consequently, TLRs hold significant promise as potential targets for innovative therapeutic agents against cervical cancer. This book chapter explores the role of TLR signaling pathways in cervical cancer, highlighting their potential for targeted therapy while addressing challenges such as tumor heterogeneity and off-target effects. Despite these obstacles, targeting TLR signaling pathways presents a promising approach for the development of novel and effective treatments for cervical cancer.
Collapse
Affiliation(s)
- Mohini Agarwal
- Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh, India
| | - Manish Kumar
- Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh, India
| | - Rajiv Pathak
- Department of Genetics, Albert Einstein College of Medicine, New York, NY, United States
| | - Kumud Bala
- Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh, India
| | - Anoop Kumar
- National Institute of Biologicals, Noida, Uttar Pradesh, India.
| |
Collapse
|
77
|
Rai S, Roy G, Hajam YA. Melatonin: a modulator in metabolic rewiring in T-cell malignancies. Front Oncol 2024; 13:1248339. [PMID: 38260850 PMCID: PMC10800968 DOI: 10.3389/fonc.2023.1248339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 12/04/2023] [Indexed: 01/24/2024] Open
Abstract
Melatonin, (N-acetyl-5-methoxytryptamine) an indoleamine exerts multifaced effects and regulates numerous cellular pathways and molecular targets associated with circadian rhythm, immune modulation, and seasonal reproduction including metabolic rewiring during T cell malignancy. T-cell malignancies encompass a group of hematological cancers characterized by the uncontrolled growth and proliferation of malignant T-cells. These cancer cells exhibit a distinct metabolic adaptation, a hallmark of cancer in general, as they rewire their metabolic pathways to meet the heightened energy requirements and biosynthesis necessary for malignancies is the Warburg effect, characterized by a shift towards glycolysis, even when oxygen is available. In addition, T-cell malignancies cause metabolic shift by inhibiting the enzyme pyruvate Dehydrogenase Kinase (PDK) which in turn results in increased acetyl CoA enzyme production and cellular glycolytic activity. Further, melatonin plays a modulatory role in the expression of essential transporters (Glut1, Glut2) responsible for nutrient uptake and metabolic rewiring, such as glucose and amino acid transporters in T-cells. This modulation significantly impacts the metabolic profile of T-cells, consequently affecting their differentiation. Furthermore, melatonin has been found to regulate the expression of critical signaling molecules involved in T-cell activations, such as CD38, and CD69. These molecules are integral to T-cell adhesion, signaling, and activation. This review aims to provide insights into the mechanism of melatonin's anticancer properties concerning metabolic rewiring during T-cell malignancy. The present review encompasses the involvement of oncogenic factors, the tumor microenvironment and metabolic alteration, hallmarks, metabolic reprogramming, and the anti-oncogenic/oncostatic impact of melatonin on various cancer cells.
Collapse
Affiliation(s)
- Seema Rai
- Department of Zoology Guru Ghasidas Vishwavidyalaya, Bilaspur, India
| | - Gunja Roy
- Department of Zoology Guru Ghasidas Vishwavidyalaya, Bilaspur, India
| | - Younis Ahmad Hajam
- Department of Life Sciences and Allied Health Sciences, Sant Bhag Singh University, Jalandhar, India
| |
Collapse
|
78
|
Zanghì A, Di Filippo PS, Avolio C, D’Amico E. Myeloid-derived Suppressor Cells and Multiple Sclerosis. Curr Neuropharmacol 2024; 23:36-57. [PMID: 38988152 PMCID: PMC11519824 DOI: 10.2174/1570159x22999240710142942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 02/17/2024] [Accepted: 02/23/2024] [Indexed: 07/12/2024] Open
Abstract
Myeloid-Derived Suppressor Cells (MDSCs) are a heterogeneous population of immature myeloid cells that play important roles in maintaining immune homeostasis and regulating immune responses. MDSCs can be divided into two main subsets based on their surface markers and functional properties: granulocytic MDSCs (G-MDSCs) and monocytic MDSCs (M-MDSCs). Recently greatest attention has been paid to innate immunity in Multiple Sclerosis (MS), so the aim of our review is to provide an overview of the main characteristics of MDSCs in MS and its preclinical model by discussing the most recent data available. The immunosuppressive functions of MDSCs can be dysregulated in MS, leading to an exacerbation of the autoimmune response and disease progression. Antigen-specific peptide immunotherapy, which aims to restore tolerance while avoiding the use of non-specific immunosuppressive drugs, is a promising approach for autoimmune diseases, but the cellular mechanisms behind successful therapy remain poorly understood. Therefore, targeting MDSCs could be a promising therapeutic approach for MS. Various strategies for modulating MDSCs have been investigated, including the use of pharmacological agents, biological agents, and adoptive transfer of exogenous MDSCs. However, it remained unclear whether MDSCs display any therapeutic potential in MS and how this therapy could modulate different aspects of the disease. Collectively, all the described studies revealed a pivotal role for MDSCs in the regulation of MS.
Collapse
Affiliation(s)
- Aurora Zanghì
- Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | | | - Carlo Avolio
- Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Emanuele D’Amico
- Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| |
Collapse
|
79
|
Qu S, Gong M, Deng Y, Xiang Y, Ye D. Research progress and application of single-cell sequencing in head and neck malignant tumors. Cancer Gene Ther 2024; 31:18-27. [PMID: 37968342 PMCID: PMC10794142 DOI: 10.1038/s41417-023-00691-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 10/19/2023] [Accepted: 11/03/2023] [Indexed: 11/17/2023]
Abstract
Single-cell sequencing (SCS) is a technology that separates thousands of cells from the organism and accurately analyzes the genetic material expressed in each cell using high-throughput sequencing technology. Unlike the traditional bulk sequencing approach, which can only provide the average value of a cell population and cannot obtain specific single-cell data, single-cell sequencing can identify the gene sequence and expression changes of a single cell, and reflects the differences between genetic material and protein between cells, and ultimately the role played by the tumor microenvironment. single-cell sequencing can further explore the pathogenesis of head and neck malignancies from the single-cell biological level and provides a theoretical basis for the clinical diagnosis and treatment of head and neck malignancies. This article will systematically introduce the latest progress and application of single-cell sequencing in malignant head and neck tumors.
Collapse
Affiliation(s)
- Siyuan Qu
- Department of Otorhinolaryngology-Head and Neck Surgery, The Affiliated Lihuili Hospital, Ningbo University, Ningbo, 315040, Zhejiang, China
| | - Mengdan Gong
- Department of Otorhinolaryngology-Head and Neck Surgery, The Affiliated Lihuili Hospital, Ningbo University, Ningbo, 315040, Zhejiang, China
| | - Yongqin Deng
- Department of Otorhinolaryngology-Head and Neck Surgery, The Affiliated Lihuili Hospital, Ningbo University, Ningbo, 315040, Zhejiang, China
| | - Yizhen Xiang
- Department of Otorhinolaryngology-Head and Neck Surgery, The Affiliated Lihuili Hospital, Ningbo University, Ningbo, 315040, Zhejiang, China
| | - Dong Ye
- Department of Otorhinolaryngology-Head and Neck Surgery, The Affiliated Lihuili Hospital, Ningbo University, Ningbo, 315040, Zhejiang, China.
| |
Collapse
|
80
|
Zhang W, Yu L, Chang Z, Xiong H. BCG immunotherapy promotes tumor-derived T-cell activation through the FLT3/FLT3LG pathway in bladder cancer. J Cancer 2024; 15:623-631. [PMID: 38213738 PMCID: PMC10777044 DOI: 10.7150/jca.90085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 11/08/2023] [Indexed: 01/13/2024] Open
Abstract
Bladder instillation therapy is a common treatment for superficial or nonmuscle invasive bladder cancer. After surgery or reresection, chemotherapy drugs (epirubicin) or medications such as Bacillus Calmette-Guérin (BCG) are used for bladder instillation therapy, which can reduce the risk of bladder cancer recurrence and progression. However, the specific mechanism by which BCG stimulates the antitumor response has not been thoroughly elucidated. Additionally, although BCG immunotherapy is effective, it is difficult to predict which patients will have a positive response. In this study, we explored the BCG-induced immune response and found that high levels of Fms-related receptor tyrosine kinase 3 ligand (FLT3LG) were expressed after BCG treatment. This FLT3LG can directly act on CD8+ T cells and promote their proliferation and activation. The use of FLT3 inhibitors can neutralize the antitumor effects of BCG. In vitro experiments showed that FLT3LG can synergize with T-cell receptor activators to promote the activation of tumor-derived T cells. This study partially elucidates the mechanism of CD8+ T-cell activation in BCG immunotherapy and provides a theoretical basis for optimizing BCG instillation therapy in bladder cancer.
Collapse
Affiliation(s)
- Wei Zhang
- Emergency and Disaster Medical Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China
| | - Lu Yu
- Clinical laboratory, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China
| | - Zhiguang Chang
- Edmond H. Fischer Translational Medical Research Laboratory, Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China
| | - Haiyun Xiong
- Department of Urology, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China
| |
Collapse
|
81
|
Fabrizio FP, Muscarella LA, Rossi A. B7-H3/CD276 and small-cell lung cancer: What's new? Transl Oncol 2024; 39:101801. [PMID: 37865049 PMCID: PMC10728701 DOI: 10.1016/j.tranon.2023.101801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 09/25/2023] [Accepted: 10/08/2023] [Indexed: 10/23/2023] Open
Abstract
Immunotherapy revolutionized the treatment landscape of several cancers, including small-cell lung cancer (SCLC), with a huge number of practice-changing trials, and becoming a new frontier for their management. The addition of an anti-PD-L1, atezolizumab or durvalumab, to platinum/etoposide regimen became the standard of care for first-line therapy of extensive-stage (ES)-SCLC with the 12 months median survival exceeded for the first time. Nevertheless, most patients show primary or acquired resistance to anti-PD-L1 therefore new promising therapeutic immune-targets are under clinical investigation in several solid tumors. Among these, B7-H3, also known as CD276, is a member of the B7 family overexpressed in tumor tissues, including SCLC, while showing limited expression in normal tissues becoming an attractive and promising target for cancer immunotherapy. B7-H3 plays a dual role in the immune system during the T-cell activation, acting as a T-cell costimulatory/coinhibitory immunoregulatory protein, and promoting pro-tumorigenic functions such as tumor migration, invasion, metastases, resistance, and metabolism. Immunohistochemistry, flow cytometry, and immunofluorescence were the most used methods to assess B7-H3 expression levels and validate a possible relationship between B7-H3 staining patterns and clinicopathological features in lung cancer patients. To date, there are no clinically available therapeutics/drugs targeting B7-H3 in any solid tumors. The most promising preliminary clinical results have been reported by DS7300a and HS-20093, both are antibody-drug conjugates, that are under investigation in ongoing trials for the treatment of pretreated SCLC. This review will provide an overview of B7-H3 and corresponding inhibitors and the clinical development in the management of SCLC.
Collapse
Affiliation(s)
- Federico Pio Fabrizio
- Laboratory of Oncology, Fondazione IRCCS Ospedale Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy.
| | - Lucia Anna Muscarella
- Laboratory of Oncology, Fondazione IRCCS Ospedale Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Antonio Rossi
- Oncology Centre of Excellence, Therapeutic Science & Strategy Unit, IQVIA, Milan 20019, Italy
| |
Collapse
|
82
|
ZENG SHUANGSHUANG, CHEN XI, YI QIAOLI, THAKUR ABHIMANYU, YANG HUI, YAN YUANLIANG, LIU SHAO. CRABP2 regulates infiltration of cancer-associated fibroblasts and immune response in melanoma. Oncol Res 2023; 32:261-272. [PMID: 38186580 PMCID: PMC10765133 DOI: 10.32604/or.2023.042345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 07/31/2023] [Indexed: 01/09/2024] Open
Abstract
Finding biomarkers for immunotherapy is an urgent issue in cancer treatment. Cellular retinoic acid-binding protein 2 (CRABP2) is a controversial factor in the occurrence and development of human tumors. However, there is limited research on the relationship between CRABP2 and immunotherapy response. This study found that negative correlations of CRABP2 and immune checkpoint markers (PD-1, PD-L1, and CTLA-4) were observed in breast invasive carcinoma (BRCA), skin cutaneous melanoma (SKCM), stomach adenocarcinoma (STAD) and testicular germ cell tumors (TGCT). In particular, in SKCM patients who were treated with PD-1 inhibitors, high levels of CRABP2 predicted poor prognosis. Additionally, CRABP2 expression was elevated in cancer-associated fibroblasts (CAFs) at the single-cell level. The expression of CRABP2 was positively correlated with markers of CAFs, such as MFAP5, PDPN, ITGA11, PDGFRα/β and THY1 in SKCM. To validate the tumor-promoting effect of CRABP2 in vivo, SKCM xenograft mice models with CRABP2 overexpression have been constructed. These models showed an increase in tumor weight and volume. Enrichment analysis indicated that CRABP2 may be involved in immune-related pathways of SKCM, such as extracellular matrix (ECM) receptor interaction and epithelial-mesenchymal transition (EMT). The study suggests that CRABP2 may regulate immunotherapy in SKCM patients by influencing infiltration of CAFs. In conclusion, this study provides new insights into the role of CRABP2 in immunotherapy response. The findings suggest that CRABP2 may be a promising biomarker for PD-1 inhibitors in SKCM patients. Further research is needed to confirm these findings and to explore the clinical implications of CRABP2 in immunotherapy.
Collapse
Affiliation(s)
- SHUANGSHUANG ZENG
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - XI CHEN
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - QIAOLI YI
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - ABHIMANYU THAKUR
- Pritzker School of Molecular Engineering, Ben May Department for Cancer Research, University of Chicago, Chicago, IL, USA
| | - HUI YANG
- Department of Pathology, The Second Affiliated Hospital of Shandong First Medical University, Taian, 271000, China
| | - YUANLIANG YAN
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - SHAO LIU
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| |
Collapse
|
83
|
Ogbuji V, Paster IC, Recio-Boiles A, Carew JS, Nawrocki ST, Chipollini J. Current Landscape of Immune Checkpoint Inhibitors for Metastatic Urothelial Carcinoma: Is There a Role for Additional T-Cell Blockade? Cancers (Basel) 2023; 16:131. [PMID: 38201559 PMCID: PMC10778285 DOI: 10.3390/cancers16010131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 11/30/2023] [Accepted: 12/23/2023] [Indexed: 01/12/2024] Open
Abstract
Urothelial carcinoma (UC) is the most common form of bladder cancer (BC) and is the variant with the most immunogenic response. This makes urothelial carcinoma an ideal candidate for immunotherapy with immune checkpoint inhibitors. Key immune checkpoint proteins PD-1 and CTLA-4 are frequently expressed on T-cells in urothelial carcinoma. The blockade of this immune checkpoint can lead to the reactivation of lymphocytes and augment the anti-tumor immune response. The only immune checkpoint inhibitors that are FDA-approved for metastatic urothelial carcinoma target the programmed death-1 receptor and its ligand (PD-1/PD-L1) axis. However, the overall response rate and progression-free survival rates of these agents are limited in this patient population. Therefore, there is a need to find further immune-bolstering treatment combinations that may positively impact survival for patients with advanced UC. In this review, the current immune checkpoint inhibition treatment landscape is explored with an emphasis on combination therapy in the form of PD-1/PD-L1 with CTLA-4 blockade. The investigation of the current literature on immune checkpoint inhibition found that preclinical data show a decrease in tumor volumes and size when PD-1/PD-L1 is blocked, and similar results were observed with CTLA-4 blockade. However, there are limited investigations evaluating the combination of CTLA-4 and PD-1/PD-L1 blockade. We anticipate this review to provide a foundation for a deeper experimental investigation into combination immune checkpoint inhibition therapy in metastatic urothelial carcinoma.
Collapse
Affiliation(s)
- Vanessa Ogbuji
- College of Medicine, University of Arizona, Tucson, AZ 85724, USA; (V.O.); (I.C.P.); (S.T.N.)
| | - Irasema C. Paster
- College of Medicine, University of Arizona, Tucson, AZ 85724, USA; (V.O.); (I.C.P.); (S.T.N.)
| | - Alejandro Recio-Boiles
- Department of Medicine, The University of Arizona Cancer Center, Tucson, AZ 85724, USA; (A.R.-B.); (J.S.C.)
| | - Jennifer S. Carew
- Department of Medicine, The University of Arizona Cancer Center, Tucson, AZ 85724, USA; (A.R.-B.); (J.S.C.)
| | - Steffan T. Nawrocki
- College of Medicine, University of Arizona, Tucson, AZ 85724, USA; (V.O.); (I.C.P.); (S.T.N.)
- Department of Medicine, The University of Arizona Cancer Center, Tucson, AZ 85724, USA; (A.R.-B.); (J.S.C.)
| | - Juan Chipollini
- College of Medicine, University of Arizona, Tucson, AZ 85724, USA; (V.O.); (I.C.P.); (S.T.N.)
| |
Collapse
|
84
|
Ding K, Mou P, Wang Z, Liu S, Liu J, Lu H, Yu G. The next bastion to be conquered in immunotherapy: microsatellite stable colorectal cancer. Front Immunol 2023; 14:1298524. [PMID: 38187388 PMCID: PMC10770832 DOI: 10.3389/fimmu.2023.1298524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 11/28/2023] [Indexed: 01/09/2024] Open
Abstract
Colorectal cancer (CRC) is the second leading cause of cancer-related deaths worldwide, and its incidence continues to rise, particularly in developing countries. The advent of immune checkpoint inhibitors (ICIs) has represented a significant advancement in CRC treatment. Deficient mismatch repair (dMMR) or high microsatellite instability (MSI-H) serves as a biomarker for immunotherapy, with dMMR/MSI-H CRC exhibiting significantly better response rates to immunotherapy compared to proficient mismatch repair (pMMR)or microsatellite stable (MSS) CRC. While some progress has been made in the treatment of pMMR/MSS CRC in recent years, it remains a challenging issue in clinical practice. The tumor microenvironment (TME) plays a crucial role not only in the development and progression of CRC but also in determining the response to immunotherapy. Understanding the characteristics of the TME in pMMR/MSS CRC could offer new insights to enhance the efficacy of immunotherapy. In this review, we provide an overview of the current research progress on the TME characteristics and advancements in immunotherapy for pMMR/MSS CRC.
Collapse
Affiliation(s)
- Kai Ding
- Department of Gastroenterology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Pei Mou
- Department of Ophthalmology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Zhe Wang
- Department of General Surgery, Pudong New Area People’s Hospital, Shanghai, China
| | - Shuqing Liu
- Department of Gastroenterology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - JinPei Liu
- Department of Gastroenterology, Gongli Hospital of Shanghai Pudong New Area, Shanghai, China
| | - Hao Lu
- Department of General Surgery, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Ganjun Yu
- Department of Immunology, College of Basic Medicine & National Key Laboratory of Immunity and Inflammation, Naval Medical University, Shanghai, China
| |
Collapse
|
85
|
Kim K, Kim H, Shin I, Noh SJ, Kim JY, Suh KJ, Kim YN, Lee JY, Cho DY, Kim SH, Kim JH, Lee SH, Choi JK. Genomic hypomethylation in cell-free DNA predicts responses to checkpoint blockade in lung and breast cancer. Sci Rep 2023; 13:22482. [PMID: 38110532 PMCID: PMC10728099 DOI: 10.1038/s41598-023-49639-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 12/10/2023] [Indexed: 12/20/2023] Open
Abstract
Genomic hypomethylation has recently been identified as a determinant of therapeutic responses to immune checkpoint blockade (ICB). However, it remains unclear whether this approach can be applied to cell-free DNA (cfDNA) and whether it can address the issue of low tumor purity encountered in tissue-based methylation profiling. In this study, we developed an assay named iMethyl, designed to estimate the genomic hypomethylation status from cfDNA. This was achieved through deep targeted sequencing of young LINE-1 elements with > 400,000 reads per sample. iMethyl was applied to a total of 653 ICB samples encompassing lung cancer (cfDNA n = 167; tissue n = 137; cfDNA early during treatment n = 40), breast cancer (cfDNA n = 91; tissue n = 50; PBMC n = 50; cfDNA at progression n = 44), and ovarian cancer (tissue n = 74). iMethyl-liquid predicted ICB responses accurately regardless of the tumor purity of tissue samples. iMethyl-liquid was also able to monitor therapeutic responses early during treatment (3 or 6 weeks after initiation of ICB) and detect progressive hypomethylation accompanying tumor progression. iMethyl-tissue had better predictive power than tumor mutation burden and PD-L1 expression. In conclusion, our iMethyl-liquid method allows for reliable noninvasive prediction, early evaluation, and monitoring of clinical responses to ICB therapy.
Collapse
Affiliation(s)
- Kyeonghui Kim
- Department of Bio and Brain Engineering, KAIST, Daejeon, Republic of Korea
| | - Hyemin Kim
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Seoul, Republic of Korea
| | - Inkyung Shin
- Penta Medix Co., Ltd, Seongnam-si, Gyeongi-do, Republic of Korea
| | - Seung-Jae Noh
- Penta Medix Co., Ltd, Seongnam-si, Gyeongi-do, Republic of Korea
| | - Jeong Yeon Kim
- Department of Bio and Brain Engineering, KAIST, Daejeon, Republic of Korea
| | - Koung Jin Suh
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam-si, Gyeongi-do, Republic of Korea
| | - Yoo-Na Kim
- Department of Obstetrics and Gynecology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jung-Yun Lee
- Department of Obstetrics and Gynecology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Dae-Yeon Cho
- Penta Medix Co., Ltd, Seongnam-si, Gyeongi-do, Republic of Korea
| | - Se Hyun Kim
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam-si, Gyeongi-do, Republic of Korea.
| | - Jee Hyun Kim
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam-si, Gyeongi-do, Republic of Korea.
| | - Se-Hoon Lee
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Seoul, Republic of Korea.
- Department of Health Sciences and Technology, Samsung Advanced Institute of Health Science and Technology, Sungkyunkwan University, Seoul, Republic of Korea.
| | - Jung Kyoon Choi
- Department of Bio and Brain Engineering, KAIST, Daejeon, Republic of Korea.
- Penta Medix Co., Ltd, Seongnam-si, Gyeongi-do, Republic of Korea.
| |
Collapse
|
86
|
Qurat-ul-Ain, Frei NF, Khoshiwal AM, Stougie P, Odze R, Camilleri-Broet S, Ferri L, Duits LC, Bergman J, Stachler MD. Feasibility Study Utilizing NanoString's Digital Spatial Profiling (DSP) Technology for Characterizing the Immune Microenvironment in Barrett's Esophagus Formalin-Fixed Paraffin-Embedded Tissues. Cancers (Basel) 2023; 15:5895. [PMID: 38136440 PMCID: PMC10742302 DOI: 10.3390/cancers15245895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/14/2023] [Accepted: 12/14/2023] [Indexed: 12/24/2023] Open
Abstract
Characterization of the Barrett's esophagus (BE) microenvironment in patients with a known progression status, to determine how it may influence BE progression to esophageal adenocarcinoma (EAC), has been understudied, hindering both the biological understanding of the progression and the development of novel diagnostics and therapies. This study's aim was to determine if a highly multiplex interrogation of the microenvironment can be performed on endoscopic formalin-fixed, paraffin-embedded (FFPE) samples, utilizing the NanoString GeoMx digital spatial profiling (GeoMx DSP) platform and if it can begin to identify the types of immune cells and pathways that may mediate the progression of BE. We performed a spatial proteomic analysis of 49 proteins expressed in the microenvironment and epithelial cells of FFPE endoscopic biopsies from patients with non-dysplastic BE (NDBE) who later progressed to high-grade dysplasia or EAC (n = 7) or from patients who, after at least 5 years follow-up, did not (n = 8). We then performed an RNA analysis of 1812 cancer-related transcripts on three endoscopic mucosal resections containing regions of BE, dysplasia, and EAC. Profiling with GeoMx DSP showed reasonable quality metrics and detected expected differences between epithelium and stroma. Several proteins were found to have an increased expression within NDBE biopsies from progressors compared to non-progressors, suggesting further studies are warranted.
Collapse
Affiliation(s)
- Qurat-ul-Ain
- Department of Pathology, University of California, San Francisco, CA 94143, USA;
| | - Nicola F. Frei
- Amsterdam UMC Locatie AMC, 1105 AZ Amsterdam, The Netherlands
| | | | - Pim Stougie
- Amsterdam UMC Locatie AMC, 1105 AZ Amsterdam, The Netherlands
| | - Robert Odze
- Department of Pathology, School of Medicine, Tufts University, Boston, MA 02111, USA
| | - Sophie Camilleri-Broet
- Division of Thoracic and Upper Gastrointestinal Surgery, Montreal General Hospital, McGill University, Montreal, QC H3G 1A4, Canada
| | - Lorenzo Ferri
- Division of Thoracic and Upper Gastrointestinal Surgery, Montreal General Hospital, McGill University, Montreal, QC H3G 1A4, Canada
| | - Lucas C. Duits
- Amsterdam UMC Locatie AMC, 1105 AZ Amsterdam, The Netherlands
| | - Jacques Bergman
- Amsterdam UMC Locatie AMC, 1105 AZ Amsterdam, The Netherlands
| | - Matthew D. Stachler
- Department of Pathology, University of California, San Francisco, CA 94143, USA;
| |
Collapse
|
87
|
Ma S, Wu X, Wu Z, Zhao Q. Treatment-prognostication-adjustment a new therapeutic idea by analyzing T cell immune checkpoint in tumor microenvironment by algorithm: A bibliometric analysis. Hum Vaccin Immunother 2023; 19:2269788. [PMID: 37905399 PMCID: PMC10760387 DOI: 10.1080/21645515.2023.2269788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 10/08/2023] [Indexed: 11/02/2023] Open
Abstract
To evaluate the temporal and spatial distribution of the knowledge network about tumor microenvironment and prognoses and explore new research hot spots and trends. Articles and reviews on tumor microenvironment and prognoses in the Web of Science journal from January 1999 to April 2022 were included. We used the CiteSpace and VOSviewer software to analyze the knowledge network composed of journals, institutions, countries, authors, and keywords. Frontiers in Immunology, Cancers, and Frontiers in Oncology have published more than 10% of articles in this field. China and the United States have contributed the most articles. Fudan University and Sun Yat-Sen University are the most active institutions. The authors in this field work closely; Zhang Wei and Douglas have made outstanding contributions. The three main research areas of tumor microenvironment and prognoses are microenvironment, prognosis, and immunotherapy. Until 2020, the main keywords were endothelial growth factor and adhesion. In the past three years, survival analysis, immune cell infiltration, and prediction model have been used. It can be seen that the focus in this field has shifted from tumor cell behavior and directly related molecules to prognosis prediction and non-tumor cells in the microenvironment. The future research trend may be to study the changes in the tumor microenvironment to predict the prognosis and guide the treatment. VOSviewer, CiteSpace, and Microsoft Excel 2019 were used to conduct a comprehensive visual analysis of the research on tumor environment and prognoses and provide valuable reference materials for researchers.
Collapse
Affiliation(s)
- Shiwei Ma
- Department of Anesthesiology, Third Xiangya Hospital, Central South University, Changsha, China
| | - Xin Wu
- Department of spine surgery, Third Xiangya Hospital, Central South University, Changsha, China
| | - Zhongguang Wu
- Department of Clinical Laboratory Medicine, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, P.R. China
| | - Qiangqiang Zhao
- Department of Hematology, The People’s Hospital of Liuzhou City, Guangxi, P. R. China
- Department of Hematology, The Qinghai Provincial People’s Hospital, Xining, China
| |
Collapse
|
88
|
Pang G, Wei S, Zhao J, Wang FJ. Improving nanochemoimmunotherapy efficacy by boosting "eat-me" signaling and downregulating "don't-eat-me" signaling with Ganoderma lucidum polysaccharide-based drug delivery. J Mater Chem B 2023; 11:11562-11577. [PMID: 37982298 DOI: 10.1039/d3tb02118a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2023]
Abstract
To address the challenges posed by low immunogenicity and immune checkpoints during cancer treatment, we propose an alternative strategy that combines immunogenic cell death (ICD) effects with CD47/SIRPα blockade to reactivate phagocytosis of tumor cells by macrophages with polysaccharide-based drug delivery. In this study, the EGFR inhibitor gefitinib was identified as a novel CD47 modulator, which promoted the translocation of CD47 molecules from the cell membrane to endosomes through the EGFR-Rab5 pathway, leading to reduced cell surface CD47 levels and limiting interaction with SIRPα. Based on this finding, we developed prophagocytic mixed nanodrugs to enhance macrophage phagocytosis by encapsulating ICD inducer doxorubicin and CD47 inhibitor gefitinib with immunostimulatory polysaccharides from Ganoderma lucidum. This approach downregulated cell surface CD47 expression to attenuate "don't-eat-me" signaling, while increasing doxorubicin accumulation in tumors by inhibiting drug-resistance proteins, leading to more exposure of calreticulin and amplifying the "eat-me" signaling. In vivo experiments demonstrated that this approach significantly suppressed intraperitoneal tumor dissemination, reversed doxorubicin-induced weight loss, and effectively induced macrophage polarization, dendritic cell maturation, and CD8+ T cell activation. These findings highlighted the significant potential of our macrophage-centered therapeutic strategy using polysaccharide-based nanocarriers and provided new perspectives for chemoimmunotherapy.
Collapse
Affiliation(s)
- Guibin Pang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China.
| | - Siqi Wei
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China.
| | - Jian Zhao
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China.
- ECUST-FONOW Joint Research Center for Innovative Medicines, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China
| | - Fu-Jun Wang
- New Drug R&D Center, Zhejiang Fonow Medicine Co., Ltd., 209 West Hulian Road, Dongyang 322100, Zhejiang, P. R. China
- ECUST-FONOW Joint Research Center for Innovative Medicines, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, P. R. China.
| |
Collapse
|
89
|
de Oliveira Filho RS, de Oliveira DA, Nisimoto MM, Marti LC. A Review of Advanced Cutaneous Melanoma Therapies and Their Mechanisms, from Immunotherapies to Lysine Histone Methyl Transferase Inhibitors. Cancers (Basel) 2023; 15:5751. [PMID: 38136297 PMCID: PMC10741407 DOI: 10.3390/cancers15245751] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/05/2023] [Accepted: 12/06/2023] [Indexed: 12/24/2023] Open
Abstract
Advanced cutaneous melanoma is considered to be the most aggressive type of skin cancer and has variable rates of treatment response. Currently, there are some classes of immunotherapy and target therapies for its treatment. Immunotherapy can inhibit tumor growth and its recurrence by triggering the host's immune system, whereas targeted therapy inhibits specific molecules or signaling pathways. However, melanoma responses to these treatments are highly heterogeneous, and patients can develop resistance. Epigenomics (DNA/histone modifications) contribute to cancer initiation and progression. Epigenetic alterations are divided into four levels of gene expression regulation: DNA methylation, histone modification, chromatin remodeling, and non-coding RNA regulation. Deregulation of lysine methyltransferase enzymes is associated with tumor initiation, invasion, development of metastases, changes in the immune microenvironment, and drug resistance. The study of lysine histone methyltransferase (KMT) and nicotinamide N-methyltransferase (NNMT) inhibitors is important for understanding cancer epigenetic mechanisms and biological processes. In addition to immunotherapy and target therapy, the research and development of KMT and NNMT inhibitors is ongoing. Many studies are exploring the therapeutic implications and possible side effects of these compounds, in addition to their adjuvant potential to the approved current therapies. Importantly, as with any drug development, safety, efficacy, and specificity are crucial considerations when developing methyltransferase inhibitors for clinical applications. Thus, this review article presents the recently available therapies and those in development for advanced cutaneous melanoma therapy.
Collapse
Affiliation(s)
- Renato Santos de Oliveira Filho
- Department of Plastic Surgery, Escola Paulista de Medicina–Universidade Federal de São Paulo–EPM-UNIFESP, São Paulo 04023-062, SP, Brazil
| | - Daniel Arcuschin de Oliveira
- Department of Plastic Surgery, Universidade Federal de São Paulo–UNIFESP-Skin Cancer and Melanoma Fellow, São Paulo 04023-900, SP, Brazil;
| | | | - Luciana Cavalheiro Marti
- Experimental Research Department, Hospital Israelita Albert Einstein, São Paulo 05652-900, SP, Brazil
| |
Collapse
|
90
|
Chai K, Wang C, Zhou J, Mu W, Gao M, Fan Z, Lv G. Quenching thirst with poison? Paradoxical effect of anticancer drugs. Pharmacol Res 2023; 198:106987. [PMID: 37949332 DOI: 10.1016/j.phrs.2023.106987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 11/06/2023] [Accepted: 11/07/2023] [Indexed: 11/12/2023]
Abstract
Anticancer drugs have been developed with expectations to provide long-term or at least short-term survival benefits for patients with cancer. Unfortunately, drug therapy tends to provoke malignant biological and clinical behaviours of cancer cells relating not only to the evolution of resistance to specific drugs but also to the enhancement of their proliferation and metastasis abilities. Thus, drug therapy is suspected to impair long-term survival in treated patients under certain circumstances. The paradoxical therapeutic effects could be described as 'quenching thirst with poison', where temporary relief is sought regardless of the consequences. Understanding the underlying mechanisms by which tumours react on drug-induced stress to maintain viability is crucial to develop rational targeting approaches which may optimize survival in patients with cancer. In this review, we describe the paradoxical adverse effects of anticancer drugs, in particular how cancer cells complete resistance evolution, enhance proliferation, escape from immune surveillance and metastasize efficiently when encountered with drug therapy. We also describe an integrative therapeutic framework that may diminish such paradoxical effects, consisting of four main strategies: (1) targeting endogenous stress response pathways, (2) targeting new identities of cancer cells, (3) adaptive therapy- exploiting subclonal competition of cancer cells, and (4) targeting tumour microenvironment.
Collapse
Affiliation(s)
- Kaiyuan Chai
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, First Hospital of Jilin University, Changchun, Jilin, China
| | - Chuanlei Wang
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, First Hospital of Jilin University, Changchun, Jilin, China
| | - Jianpeng Zhou
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, First Hospital of Jilin University, Changchun, Jilin, China
| | - Wentao Mu
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, First Hospital of Jilin University, Changchun, Jilin, China
| | - Menghan Gao
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, First Hospital of Jilin University, Changchun, Jilin, China
| | - Zhongqi Fan
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, First Hospital of Jilin University, Changchun, Jilin, China.
| | - Guoyue Lv
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, First Hospital of Jilin University, Changchun, Jilin, China.
| |
Collapse
|
91
|
Zhou J, Guo H, Liu L, Jin Z, Zhang W, Tang T. Identification of immune-related hub genes and construction of an immune-related gene prognostic index for low-grade glioma. J Cell Mol Med 2023; 27:3851-3863. [PMID: 37775993 PMCID: PMC10718158 DOI: 10.1111/jcmm.17960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 08/14/2023] [Accepted: 09/08/2023] [Indexed: 10/01/2023] Open
Abstract
Low-grade glioma (LGG) poses significant management challenges and has a dismal prognosis. While immunotherapy has shown significant promise in cancer treatment, its progress in glioma has confronted with challenges. In our study, we aimed to develop an immune-related gene prognostic index (IRGPI) which could be used to evaluate the response and efficacy of LGG patients with immunotherapy. We included a total of 529 LGG samples from TCGA database and 1152 normal brain tissue samples from the GTEx database. Immune-related differentially expressed genes (DEGs) were screened. Then, we used weighted gene co-expression network analysis (WGCNA) to identify immune-related hub genes in LGG patients and performed Cox regression analysis to construct an IRGPI. The median IRGPI was used as the cut-off value to categorize LGG patients into IRGPI-high and low subgroups, and the molecular and immune mechanism in IRGPI-defined subgroups were analysed. Finally, we explored the relationship between IRGPI-defined subgroups and immunotherapy related indicators in patients after immunotherapy. Three genes (RHOA, NFKBIA and CCL3) were selected to construct the IRGPI. In a survival analysis using TCGA cohort as a training set, patients in the IRGPI-low subgroup had a better OS than those in IRGPI-high subgroup, consistent with the results in CGGA cohort. The comprehensive results showed that IRGPI-low subgroup had a more abundant activated immune cell population and lower TIDE score, higher MSI, higher TMB score, lower T cell dysfunction score, more likely benefit from ICIs therapy. IRGPI is a promising biomarker in the field of LGG ICIs therapy to distinguish the prognosis, the molecular and immunological characteristics of patients.
Collapse
Affiliation(s)
- Jing Zhou
- Department of Oncology, Shanxi Province Academy of Traditional Chinese MedicineShanxi Province Hospital of Traditional Chinese MedicineTaiyuanChina
| | - Hao Guo
- Department of AnesthesiologyShanxi Provincial People's HospitalTaiyuanChina
| | - Likun Liu
- Department of Oncology, Shanxi Province Academy of Traditional Chinese MedicineShanxi Province Hospital of Traditional Chinese MedicineTaiyuanChina
| | - Zengcai Jin
- Department of Oncology, Shanxi Province Academy of Traditional Chinese MedicineShanxi Province Hospital of Traditional Chinese MedicineTaiyuanChina
| | - Wencui Zhang
- Department of Oncology, Shanxi Province Academy of Traditional Chinese MedicineShanxi Province Hospital of Traditional Chinese MedicineTaiyuanChina
| | - Tao Tang
- Department of Integrated Traditional Chinese and Western Medicine, Institute of Integrative MedicineXiangya Hospital, Central South UniversityChangshaChina
- National Clinical Research Center for Geriatric DisordersXiangya Hospital, Central South UniversityChangshaChina
| |
Collapse
|
92
|
Hu S, Qin J, Gao R, Xiao Q, Liu X, Pan Y, Wang S. Integrated analysis of single cell and bulk RNA sequencing identifies CTHRC1 + INHBA + CAF as drivers of colorectal cancer progression. Mol Carcinog 2023; 62:1787-1802. [PMID: 37539967 DOI: 10.1002/mc.23615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 07/17/2023] [Accepted: 07/24/2023] [Indexed: 08/05/2023]
Abstract
Cancer-associated fibroblasts (CAFs) are a key component of the tumor microenvironment and a critical factor in the progression of colorectal cancer (CRC). The aim of this study was to screen for CAFs specific genes that could serve as promising therapeutic targets for CRC patients. Our findings showed a significant increase in the proportion of fibroblasts in CRC tissues, and a high proportion of fibroblasts was associated with immune escape and poor prognosis in CRC. Collagen triple helix repeat containing 1 (CTHRC1) and inhibin subunit beta A (INHBA) were identified as key genes in the progression of CRC, primarily expressed in CAFs and significantly upregulated in CRC tissues. We defined CTHRC1 and INHBA as cancer-associated fibroblast-related genes (CAFRGs), which were associated with poor prognosis in CRC and macrophage polarization. CAFRGs promoted immune escape and metastasis in CRC and were good predictors of immune therapy response. Drug sensitivity analysis showed that the high expression group of CAFRGs was sensitive to 15 chemotherapy drugs, while the low expression group was sensitive to only 3. Clustering of fibroblasts in the tumor revealed that CTHRC1+ INHBA+ CAF was a poor prognostic factor in CRC and was associated with extracellular matrix remodeling and immune regulation. In conclusion, our study provides new theoretical basis for effective treatment strategies and therapeutic targets for CRC.
Collapse
Affiliation(s)
- Shangshang Hu
- School of Medicine, Southeast University, Nanjing, Jiangsu, China
- General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jian Qin
- School of Medicine, Southeast University, Nanjing, Jiangsu, China
- General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Rui Gao
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - QianNi Xiao
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Xiangxiang Liu
- School of Medicine, Southeast University, Nanjing, Jiangsu, China
- General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yuqin Pan
- General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
- Jiangsu Collaborative Innovation Center on Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Shukui Wang
- School of Medicine, Southeast University, Nanjing, Jiangsu, China
- General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, China
- Jiangsu Collaborative Innovation Center on Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
93
|
Lu S, Xu J, Zhao Z, Guo Y, Zhang H, Jurutka PW, Huang D, Cao C, Cheng S. Dietary Lactobacillus rhamnosus GG extracellular vesicles enhance antiprogrammed cell death 1 (anti-PD-1) immunotherapy efficacy against colorectal cancer. Food Funct 2023; 14:10314-10328. [PMID: 37916395 DOI: 10.1039/d3fo02018e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
There is a need to explore combination therapy to improve the efficacy of immunotherapy for colorectal cancer through food probiotics. In this study, extracellular vesicles (EV) derived from Lactobacillus rhamnosus GG (LGG-EV) were successfully isolated. Adjusting the culture temperature to 30 °C led to an elevated LGG-EV yield, and the addition of penicillin resulted in a decrease in particle size. In addition, LGG-EV have better gastrointestinal tract stability in a Ca2+ environment in vivo and in vitro. Oral administration of LGG-EV synergistically improved anti-PD-1 immunotherapy efficacy against colorectal cancer. Mechanistically, LGG-EV modulated intestinal immunity by increasing the CD8+ T/CD4+ T cell ratio in mesenteric lymph nodes and enhancing the ratio of MHC II+ DC cells, CD4+ T cells, and CD8+ T cells in tumor tissues. Meanwhile, the diversity of the gut microbiota and the abundance of beneficial bacteria, such as Lactobacillus, increased in the combined-treatment mice. In addition, there were significant changes in the levels of serum metabolites associated with the microbiota and anti-tumor effects, including uridine, which was elevated by the combination of anti-PD-1 and LGG-EV treatment. Our findings provide theoretical and mechanistic insights into the development of LGG-EV as postbiotics in combination with immune checkpoint inhibitors for cancer therapy.
Collapse
Affiliation(s)
- Shun Lu
- Department of Food Nutrition and Safety, School of Engineering, China Pharmaceutical University, Nanjing 211198, P. R. China.
| | - Jing Xu
- Department of Food Nutrition and Safety, School of Engineering, China Pharmaceutical University, Nanjing 211198, P. R. China.
| | - Zihao Zhao
- Department of Food Nutrition and Safety, School of Engineering, China Pharmaceutical University, Nanjing 211198, P. R. China.
| | - Yuheng Guo
- Department of Food Nutrition and Safety, School of Engineering, China Pharmaceutical University, Nanjing 211198, P. R. China.
| | - Hanwen Zhang
- Department of Food Nutrition and Safety, School of Engineering, China Pharmaceutical University, Nanjing 211198, P. R. China.
| | - Peter W Jurutka
- School of Mathematical and Natural Sciences, Arizona State University, AZ 85306, USA
| | - Dechun Huang
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 211198, P. R. China
| | - Chongjiang Cao
- Department of Food Nutrition and Safety, School of Engineering, China Pharmaceutical University, Nanjing 211198, P. R. China.
| | - Shujie Cheng
- Department of Food Nutrition and Safety, School of Engineering, China Pharmaceutical University, Nanjing 211198, P. R. China.
| |
Collapse
|
94
|
Chami P, Diab Y, Khalil DN, Azhari H, Jarnagin WR, Abou-Alfa GK, Harding JJ, Hajj J, Ma J, El Homsi M, Reyngold M, Crane C, Hajj C. Radiation and Immune Checkpoint Inhibitors: Combination Therapy for Treatment of Hepatocellular Carcinoma. Int J Mol Sci 2023; 24:16773. [PMID: 38069095 PMCID: PMC10706661 DOI: 10.3390/ijms242316773] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/24/2023] [Accepted: 11/24/2023] [Indexed: 12/18/2023] Open
Abstract
The liver tumor immune microenvironment has been thought to possess a critical role in the development and progression of hepatocellular carcinoma (HCC). Despite the approval of immune checkpoint inhibitors (ICIs), such as programmed cell death receptor 1 (PD-1)/programmed cell death ligand 1 (PD-L1) and cytotoxic T lymphocyte associated protein 4 (CTLA-4) inhibitors, for several types of cancers, including HCC, liver metastases have shown evidence of resistance or poor response to immunotherapies. Radiation therapy (RT) has displayed evidence of immunosuppressive effects through the upregulation of immune checkpoint molecules post-treatment. However, it was revealed that the limitations of ICIs can be overcome through the use of RT, as it can reshape the liver immune microenvironment. Moreover, ICIs are able to overcome the RT-induced inhibitory signals, effectively restoring anti-tumor activity. Owing to the synergetic effect believed to arise from the combination of ICIs with RT, several clinical trials are currently ongoing to assess the efficacy and safety of this treatment for patients with HCC.
Collapse
Affiliation(s)
- Perla Chami
- Faculty of Medicine, American University of Beirut, Beirut 1107, Lebanon;
| | - Youssef Diab
- Faculty of Medicine, University of Balamand, Beirut 1100, Lebanon; (Y.D.)
| | - Danny N. Khalil
- Memorial Sloan Kettering Cancer Center, New York, NY 10027, USA
| | - Hassan Azhari
- Memorial Sloan Kettering Cancer Center, New York, NY 10027, USA
| | - William R. Jarnagin
- Memorial Sloan Kettering Cancer Center, New York, NY 10027, USA
- Department of Surgery, Weill Medical College, Cornell University, New York, NY 10021, USA
| | - Ghassan K. Abou-Alfa
- Memorial Sloan Kettering Cancer Center, New York, NY 10027, USA
- Department of Medicine, Weill Medical College, Cornell University, New York, NY 10021, USA
| | - James J. Harding
- Memorial Sloan Kettering Cancer Center, New York, NY 10027, USA
- Department of Medicine, Weill Medical College, Cornell University, New York, NY 10021, USA
| | - Joseph Hajj
- Faculty of Medicine, University of Balamand, Beirut 1100, Lebanon; (Y.D.)
| | - Jennifer Ma
- Memorial Sloan Kettering Cancer Center, New York, NY 10027, USA
| | - Maria El Homsi
- Memorial Sloan Kettering Cancer Center, New York, NY 10027, USA
| | - Marsha Reyngold
- Memorial Sloan Kettering Cancer Center, New York, NY 10027, USA
| | | | - Carla Hajj
- Memorial Sloan Kettering Cancer Center, New York, NY 10027, USA
- New York Proton Center, New York, NY 10035, USA
| |
Collapse
|
95
|
Bhanderi H, Khalid F, Bodla ZH, Muhammad T, Du D, Meghal T. Autoimmune diabetes from pembrolizumab: A case report and review of literature. World J Clin Oncol 2023; 14:535-543. [PMID: 38059185 PMCID: PMC10696214 DOI: 10.5306/wjco.v14.i11.535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 10/13/2023] [Accepted: 10/30/2023] [Indexed: 11/22/2023] Open
Abstract
BACKGROUND Immunotherapy, specifically the use of checkpoint inhibitors such as pembrolizumab, has become an important tool in personalized cancer therapy. These inhibitors target proteins on T-cells that regulate the immune response against tumor cells. Pembrolizumab, which targets the programmed cell death 1 receptor on T-cells, has been approved for the treatment of metastatic melanoma and non-small cell lung cancer. However, it can also lead to immune-related side effects, including pneumonitis, colitis, thyroid abnormalities, and rare cases of type 1 diabetes. CASE SUMMARY The case presented involves an adult patient in 30s with breast cancer who developed hyperglycemia after receiving pembrolizumab treatment. The patient was diagnosed with diabetic ketoacidosis and further investigations were performed to evaluate for new-onset type 1 diabetes. The patient had a history of hypothyroidism and a family history of breast cancer. Treatment for diabetic ketoacidosis was initiated, and the patient was discharged for close follow-up with an endocrinologist. CONCLUSION This literature review highlights the occurrence of diabetic ketoacidosis and new-onset type 1 diabetes in patients receiving pembrolizumab treatment for different types of cancer. Overall, the article emphasizes the therapeutic benefits of immunotherapy in cancer treatment, particularly pembrolizumab, while also highlighting the potential side effect of immune-related diabetes that can occur in a small percentage of patients. Here we present a case where pembrolizumab lead to development of diabetes after a few cycles highlighting one of the rare yet a serious toxicity of the drug.
Collapse
Affiliation(s)
- Hardikkumar Bhanderi
- Department of Internal Medicine, Monmouth Medical Center, Long branch, NJ 07740, United States
| | - Farhan Khalid
- Department of Internal Medicine, Monmouth Medical Center, Long branch, NJ 07740, United States
| | - Zubair Hassan Bodla
- Department of Internal Medicine, University of Central Florida College of Medicine, Gainesville, FL 32303, United States
| | - Tayyeb Muhammad
- Department of Internal Medicine, Monmouth Medical Center, Long branch, NJ 07740, United States
| | - Doantrang Du
- Department of Internal Medicine, Monmouth Medical Center, Long branch, NJ 07740, United States
| | - Trishala Meghal
- Department of Hematology-Oncology, Monmouth Medical Center, Long Branch, NJ 07740, United States
| |
Collapse
|
96
|
Basak U, Sarkar T, Mukherjee S, Chakraborty S, Dutta A, Dutta S, Nayak D, Kaushik S, Das T, Sa G. Tumor-associated macrophages: an effective player of the tumor microenvironment. Front Immunol 2023; 14:1295257. [PMID: 38035101 PMCID: PMC10687432 DOI: 10.3389/fimmu.2023.1295257] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 10/23/2023] [Indexed: 12/02/2023] Open
Abstract
Cancer progression is primarily caused by interactions between transformed cells and the components of the tumor microenvironment (TME). TAMs (tumor-associated macrophages) make up the majority of the invading immune components, which are further categorized as anti-tumor M1 and pro-tumor M2 subtypes. While M1 is known to have anti-cancer properties, M2 is recognized to extend a protective role to the tumor. As a result, the tumor manipulates the TME in such a way that it induces macrophage infiltration and M1 to M2 switching bias to secure its survival. This M2-TAM bias in the TME promotes cancer cell proliferation, neoangiogenesis, lymphangiogenesis, epithelial-to-mesenchymal transition, matrix remodeling for metastatic support, and TME manipulation to an immunosuppressive state. TAMs additionally promote the emergence of cancer stem cells (CSCs), which are known for their ability to originate, metastasize, and relapse into tumors. CSCs also help M2-TAM by revealing immune escape and survival strategies during the initiation and relapse phases. This review describes the reasons for immunotherapy failure and, thereby, devises better strategies to impair the tumor-TAM crosstalk. This study will shed light on the understudied TAM-mediated tumor progression and address the much-needed holistic approach to anti-cancer therapy, which encompasses targeting cancer cells, CSCs, and TAMs all at the same time.
Collapse
Affiliation(s)
- Udit Basak
- Division of Molecular Medicine, Bose Institute, Kolkata, India
| | - Tania Sarkar
- Division of Molecular Medicine, Bose Institute, Kolkata, India
| | - Sumon Mukherjee
- Division of Molecular Medicine, Bose Institute, Kolkata, India
| | | | - Apratim Dutta
- Division of Molecular Medicine, Bose Institute, Kolkata, India
| | - Saikat Dutta
- Division of Molecular Medicine, Bose Institute, Kolkata, India
| | - Debadatta Nayak
- Central Council for Research in Homeopathy (CCRH), New Delhi, India
| | - Subhash Kaushik
- Central Council for Research in Homeopathy (CCRH), New Delhi, India
| | - Tanya Das
- Division of Molecular Medicine, Bose Institute, Kolkata, India
| | - Gaurisankar Sa
- Division of Molecular Medicine, Bose Institute, Kolkata, India
| |
Collapse
|
97
|
Zhu D, Xu X, Zou P, Liu Y, Wang H, Han G, Lu C, Xie M. Synthesis and preliminary biological evaluation of a novel 99mTc-labeled small molecule for PD-L1 imaging. Bioorg Med Chem Lett 2023; 96:129496. [PMID: 37797805 DOI: 10.1016/j.bmcl.2023.129496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/26/2023] [Accepted: 10/02/2023] [Indexed: 10/07/2023]
Abstract
In recent years, PD-1/PD-L1 checkpoint blockade immunotherapy with remarkable efficacy has set off a heat wave. The expression level of PD-L1, which plays a predictive role in anti-PD-1/PD-L1 therapy, could be quantified by noninvasive imaging with radiotracers. Herein, we introduced the synthesis and preliminary biological evaluation of a novel 99mTc-labeled small molecule radiotracer [99mTc]G3C-CBM for PD-L1 imaging. [99mTc]G3C-CBM was achieved with high radiochemical purity (>96 %) and remained good stability in PBS and FBS. In competitive combination experiment, [99mTc]G3C-CBM was displaced by increasing concentrations of unlabeled G3C-CBM, resulting in an IC50 value of 41.25±2.23 nM for G3C-CBM. The uptake of [99mTc]G3C-CBM in A375-hPD-L1 cells (17.51±2.08 %) was approximately 6.47 folds of that in A375 cells (2.71±0.36 %) after co-incubation for 2 h. The biodistribution results showed that the radioactivity uptake in A375-hPD-L1 tumor reached the maximum (0.35±0.01 %ID/g) at 2 h post injection, and the optimum tumor/muscle ratio of 2.94±0.29 occurred at the same time. In addition, [99mTc]G3C-CBM was quickly cleared from the blood with a clearance half-life of just 119.25 min. These results indicate that [99mTc]G3C-CBM is a potential SPECT PD-L1 imaging agent and is worthy of further study.
Collapse
Affiliation(s)
- Dandan Zhu
- School of Pharmacy, Nanjing Medical University, Nanjing 211166, China; NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, China
| | - Xiang Xu
- School of Pharmacy, Nanjing Medical University, Nanjing 211166, China; NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, China
| | - Pei Zou
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, China
| | - Yaling Liu
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, China
| | - Hongyong Wang
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, China
| | - Guoqing Han
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, China
| | - Chunxiong Lu
- School of Pharmacy, Nanjing Medical University, Nanjing 211166, China; NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, China.
| | - Minhao Xie
- School of Pharmacy, Nanjing Medical University, Nanjing 211166, China; NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, China.
| |
Collapse
|
98
|
Huang S, Zheng G, Yang K. Neoadjuvant PD-1/PD-L1 combined with CTLA-4 inhibitors for solid malignancies: a systematic review and meta-analysis. World J Surg Oncol 2023; 21:349. [PMID: 37926852 PMCID: PMC10626778 DOI: 10.1186/s12957-023-03212-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 10/03/2023] [Indexed: 11/07/2023] Open
Abstract
BACKGROUND The effectiveness and safety of neoadjuvant PD-1/PD-L1 inhibitors combined with CTLA-4 inhibitors is controversial. This systematic review and meta-analysis aimed to evaluate the efficacy and safety of PD-1/PD-L1 inhibitors combined with CTLA-4 inhibitors as neoadjuvant therapy for malignant solid tumors. METHODS This study has been registered with the number CRD42023407275 on PROSPERO. Systematic searches were conducted in PubMed, Embase, Web of Science and Cochrane Library databases until March 17, 2023. In addition, manual searches were performed. The inclusion criteria encompassed randomized controlled trials (RCTs) that assessed the utilization of neoadjuvant PD-1/PD-L1 inhibitors combined with CTLA-4 inhibitors PD-1/PD-L1 inhibitors for patients with solid malignancies. The Cochrane Collaboration's tool for assessing risk of bias in randomized trials (ROB1) were used. Risk ratios (RRs), hazared ratios (HRs) and their respective 95% confidence intervals were calculated using Stata17.0 MP and Review Manager 5.4 software. RESULTS A total of 2780 records were identified, and ultimately 10 studies involving 273 patients were included. The meta-analysis showed that the addition of CTLA-4 inhibitors to PD-1/PD-L1 inhibitors did not demonstrate a significant effect on overall response rate, main pathological response, pathological complete response, surgical resection, radical resection, overall survival, progression-free survival, recurrence-free survival, grade 3-4 adverse events, all-cause mortality, and completed treatment (P > 0.05). However, further subgroup analysis indicated that the combination of PD-1 with CTLA-4 inhibitors significantly increased the occurrence of grade 3-4 adverse events in patients (P < 0.05). CONCLUSIONS As neoadjuvant therapy for malignant solid tumors, the addition of CTLA-4 inhibitors to PD-1/PD-L1 inhibitors does not appear to enhance efficacy.Moreover, there is a potential increase in the risk of grade 3-4 adverse events associated with this combination. However, it is important to note that the studies included in this analysis suffer from limitations such as small samples and single-center designs, which are inherent constrains with the available published literature. Further research involving large-sample and multicenter RCTs are warranted to obtain more reliable results.
Collapse
Affiliation(s)
- Shuang Huang
- Department of Stomatology, Shapingba Hospital affiliated to Chongqing University, No.44, Xiaolongkan New Street, Chongqing, Shapingba District, 400030, China
| | - Gang Zheng
- Anorectal Department, Chongqing Traditional Chinese Medicine Hospital, 6 Panxi 7 Road, Jiangbei District, Chongqing, 400021, China.
| | - Kai Yang
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Chongqing Medical University, No.1, Youyi Road, Yuzhong District, Chongqing, 400016, China.
| |
Collapse
|
99
|
Niezni D, Taub-Tabib H, Harris Y, Sason H, Amrusi Y, Meron-Azagury D, Avrashami M, Launer-Wachs S, Borchardt J, Kusold M, Tiktinsky A, Hope T, Goldberg Y, Shamay Y. Extending the boundaries of cancer therapeutic complexity with literature text mining. Artif Intell Med 2023; 145:102681. [PMID: 37925210 DOI: 10.1016/j.artmed.2023.102681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 08/30/2023] [Accepted: 10/03/2023] [Indexed: 11/06/2023]
Abstract
Drug combination therapy is a main pillar of cancer therapy. As the number of possible drug candidates for combinations grows, the development of optimal high complexity combination therapies (involving 4 or more drugs per treatment) such as RCHOP-I and FOLFIRINOX becomes increasingly challenging due to combinatorial explosion. In this paper, we propose a text mining (TM) based tool and workflow for rapid generation of high complexity combination treatments (HCCT) in order to extend the boundaries of complexity in cancer treatments. Our primary objectives were: (1) Characterize the existing limitations in combination therapy; (2) Develop and introduce the Plan Builder (PB) to utilize existing literature for drug combination effectively; (3) Evaluate PB's potential in accelerating the development of HCCT plans. Our results demonstrate that researchers and experts using PB are able to create HCCT plans at much greater speed and quality compared to conventional methods. By releasing PB, we hope to enable more researchers to engage with HCCT planning and demonstrate its clinical efficacy.
Collapse
Affiliation(s)
- Danna Niezni
- Faculty of Biomedical Engineering, Technion - Israel Institute of Technology, Haifa, Israel
| | | | - Yuval Harris
- Faculty of Biomedical Engineering, Technion - Israel Institute of Technology, Haifa, Israel
| | - Hagit Sason
- Faculty of Biomedical Engineering, Technion - Israel Institute of Technology, Haifa, Israel
| | - Yakir Amrusi
- Faculty of Biomedical Engineering, Technion - Israel Institute of Technology, Haifa, Israel
| | - Dana Meron-Azagury
- Faculty of Biomedical Engineering, Technion - Israel Institute of Technology, Haifa, Israel
| | - Maytal Avrashami
- Faculty of Biomedical Engineering, Technion - Israel Institute of Technology, Haifa, Israel
| | - Shaked Launer-Wachs
- Faculty of Biomedical Engineering, Technion - Israel Institute of Technology, Haifa, Israel
| | | | - M Kusold
- Allen Institute for AI, Seattle, USA
| | | | - Tom Hope
- Allen Institute for AI, Tel Aviv, Israel; The Hebrew University, Jerusalem, Israel
| | - Yoav Goldberg
- Allen Institute for AI, Tel Aviv, Israel; Bar-Ilan University, Ramat-Gan, Israel
| | - Yosi Shamay
- Faculty of Biomedical Engineering, Technion - Israel Institute of Technology, Haifa, Israel.
| |
Collapse
|
100
|
Rithvik A, Samarpita S, Rasool M. Unleashing the pathological imprinting of cancer in autoimmunity: Is ZEB1 the answer? Life Sci 2023; 332:122115. [PMID: 37739160 DOI: 10.1016/j.lfs.2023.122115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/05/2023] [Accepted: 09/19/2023] [Indexed: 09/24/2023]
Abstract
The intriguing scientific relationship between autoimmunity and cancer immunology have been traditionally indulged to throw spotlight on novel pathological targets. Understandably, these "slowly killing" diseases are on the opposite ends of the immune spectrum. However, the immune regulatory mechanisms between autoimmunity and cancer are not always contradictory and sometimes mirror each other based on disease stage, location, and timepoint. Moreover, the blockade of immune checkpoint molecules or signalling pathways that unleashes the immune response against cancer is being leveraged to preserve self-tolerance and treat many autoimmune disorders. Therefore, understanding the common crucial factors involved in cancer is of paramount importance to paint the autoimmune disease spectrum and validate novel drug candidates. In the current review, we will broadly describe how ZEB1, or Zinc-finger E-box Binding Homeobox 1, reinforces immune exhaustion in cancer or contributes to loss of self-tolerance in auto-immune conditions. We made an effort to exchange information about the molecular pathways and pathological responses (immune regulation, cell proliferation, senescence, autophagy, hypoxia, and circadian rhythm) that can be regulated by ZEB1 in the context of autoimmunity. This will help untwine the intricate and closely postured pathogenesis of ZEB1, that is less explored from the perspective of autoimmunity than its counterpart, cancer. This review will further consider several approaches for targeting ZEB1 in autoimmunity.
Collapse
Affiliation(s)
- Arulkumaran Rithvik
- Immunopathology Lab, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore 632 014, Tamil Nādu, India
| | - Snigdha Samarpita
- Department of Internal Medicine, Mayo Clinic, Rochester, MN 55905, USA; Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
| | - Mahaboobkhan Rasool
- Immunopathology Lab, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore 632 014, Tamil Nādu, India.
| |
Collapse
|