51
|
Li C, Zhao HL, Li YJ, Zhang YY, Liu HY, Feng FZ, Yan H. The expression and significance of leukemia inhibitory factor, interleukin-6 and vascular endothelial growth factor in Chinese patients with endometriosis. Arch Gynecol Obstet 2021; 304:163-170. [PMID: 33555431 DOI: 10.1007/s00404-021-05980-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 01/19/2021] [Indexed: 12/14/2022]
Abstract
OBJECTIVE To observe the levels of leukemia inhibitory factor (LIF), interleukin-6 (IL-6) and vascular endothelial growth factor (VEGF) in blood, peritoneal fluid, ectopic endometrial tissue, and ectopic endometrial stromal cells of patients with endometriosis, and to compare expression of IL-6, LIF and VEGF expression between endometriotic and non-endometriotic patients underwent laparoscopic surgery. METHODS Thirty-one patients who underwent laparoscopic surgery for endometriosis in our hospital from January 2018 to January 2020 were included in the observation group, and 32 patients who underwent laparoscopic surgery for uterine fibroids, ovarian serous cystadenoma, and ovarian teratomas, were included in the control group. The levels of LIF, IL-6 and VEGF in the blood and peritoneal fluid of the two groups of patients were detected. The levels of LIF, IL-6 and VEGF in ectopic endometrial tissue and self-paired eutopic endometrial tissue, ectopic endometrial stromal cells and self-paired eutopic endometrial stromal cells of patients in the observation group were detected. After treating the primary cultured ectopic endometrial stromal cells with LIF and IL-6 alone or in combination, the changes of VEGF mRNA of ectopic endometrial stromal cells and the VEGF levels in the supernatant were observed. RESULTS The levels of LIF, IL-6 and VEGF in the blood and peritoneal fluid of the observation group were all higher than those of the control group (P < 0.05), and the levels of LIF, IL-6 and VEGF in the peritoneal fluid of the observation group were significantly higher than those in the blood (P < 0.05). In the observation group, the expression levels of LIF-mRNA and IL-6 mRNA in the ectopic endometrial tissue were higher than those in the self-paired eutopic endometrial tissues (P < 0.05), while the expression level of VEGF mRNA in the ectopic endometrial tissues was lower than that in the self-paired eutopic endometrial tissues (P < 0.05). Besides, the mRNA expression levels of LIF, IL-6 and VEGF in ectopic endometrial stromal cells of the observation group were all higher than those in the self-paired eutopic endometrial stromal cells (P < 0.05). After stimulating ectopic endometrial stromal cells with LIF, IL-6 and LIF + IL-6, respectively, the VEGF levels in the supernatant were all significantly higher than that in the blank control group (P < 0.05). CONCLUSION The LIF, IL-6 and VEGF levels in blood and peritoneal fluid were increased in patients with endometriosis, and increased LIF and IL-6 in ectopic endometriosis stromal cells can play a synergistic role in increasing the VEGF levels, which may be involved in the occurrence and development of endometriosis.
Collapse
Affiliation(s)
- Cui Li
- Department of Gynaecology, Linyi Central Hospital, No.17 Jiankang Road, Yishui County, Linyi City, 276400, Shandong, China
| | - Hong-Lian Zhao
- Department of Gynaecology and Obstetrics, Linyi Central Hospital, Linyi, China
| | - Yu-Juan Li
- Department of Gynaecology, Linyi Central Hospital, No.17 Jiankang Road, Yishui County, Linyi City, 276400, Shandong, China
| | - Yu-Ying Zhang
- Department of Gynaecology, Linyi Central Hospital, No.17 Jiankang Road, Yishui County, Linyi City, 276400, Shandong, China
| | - Hong-Yun Liu
- Department of Gynaecology, Linyi Central Hospital, No.17 Jiankang Road, Yishui County, Linyi City, 276400, Shandong, China
| | - Fu-Zhong Feng
- Department of Gynaecology, Linyi Central Hospital, No.17 Jiankang Road, Yishui County, Linyi City, 276400, Shandong, China
| | - Hua Yan
- Department of Gynaecology, Linyi Central Hospital, No.17 Jiankang Road, Yishui County, Linyi City, 276400, Shandong, China.
| |
Collapse
|
52
|
Binch ALA, Fitzgerald JC, Growney EA, Barry F. Cell-based strategies for IVD repair: clinical progress and translational obstacles. Nat Rev Rheumatol 2021; 17:158-175. [PMID: 33526926 DOI: 10.1038/s41584-020-00568-w] [Citation(s) in RCA: 124] [Impact Index Per Article: 41.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/10/2020] [Indexed: 12/21/2022]
Abstract
Intervertebral disc (IVD) degeneration is a major cause of low back pain, a prevalent and chronic condition that has a striking effect on quality of life. Currently, no approved pharmacological interventions or therapies are available that prevent the progressive destruction of the IVD; however, regenerative strategies are emerging that aim to modify the disease. Progress has been made in defining promising new treatments for disc disease, but considerable challenges remain along the entire translational spectrum, from understanding disease mechanism to useful interpretation of clinical trials, which make it difficult to achieve a unified understanding. These challenges include: an incomplete appreciation of the mechanisms of disc degeneration; a lack of standardized approaches in preclinical testing; in the context of cell therapy, a distinct lack of cohesion regarding the cell types being tested, the tissue source, expansion conditions and dose; the absence of guidelines regarding disease classification and patient stratification for clinical trial inclusion; and an incomplete understanding of the mechanisms underpinning therapeutic responses to cell delivery. This Review discusses current approaches to disc regeneration, with a particular focus on cell-based therapeutic strategies, including ongoing challenges, and attempts to provide a framework to interpret current data and guide future investigational studies.
Collapse
Affiliation(s)
- Abbie L A Binch
- Regenerative Medicine Institute (REMEDI), National University of Ireland Galway, Galway, Ireland
| | - Joan C Fitzgerald
- Regenerative Medicine Institute (REMEDI), National University of Ireland Galway, Galway, Ireland
| | - Emily A Growney
- Regenerative Medicine Institute (REMEDI), National University of Ireland Galway, Galway, Ireland
| | - Frank Barry
- Regenerative Medicine Institute (REMEDI), National University of Ireland Galway, Galway, Ireland.
| |
Collapse
|
53
|
Huang B, Liu J, Wei X, Li S, Xiang Y, Wu H, Chen J, Zhao F. Damage to the human lumbar cartilage endplate and its clinical implications. J Anat 2021; 238:338-348. [PMID: 33011984 PMCID: PMC7812127 DOI: 10.1111/joa.13321] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 09/08/2020] [Accepted: 09/08/2020] [Indexed: 02/03/2023] Open
Abstract
The cartilaginous endplate (CEP) is a thin layer of hyaline cartilage, and plays an important role in the diffusion of nutrients into the intervertebral discs. Its damage may seriously affect the disc degeneration, and result in low back pain (LBP). However, the structural features of damaged CEPs have not been well characterized, and this hinders our understanding of the etiology of disc degeneration and pain. To present the structural features of micro-damaged CEPs in patients with disc degeneration and LBP that might even be regarded as an initial factor for disc degeneration, we performed a histological study of micro-damaged CEPs harvested from human lumbar intervertebral discs and analyzed its clinical implications. Human lumbar CEPs were excised from 35 patients (mean age 60.91 years) who had disc degeneration and LBP. Control tissue was obtained from 15 patients (mean age 54.67 years) with lumbar vertebral burst fractures. LBP and disability were assessed clinically, and all patients underwent anterior vertebral body fusion surgery. CEPs together with some adjacent nucleus pulposus (NP) were sectioned at 4 µm, and stained using H&E, Safranin O/Fast Green, and Alcian Blue. Immunostaining and PCR were used to identify various markers of degeneration, innervation, and inflammation. Histology demonstrated physical micro-damage in 14/35 CEPs from the disc degeneration group. Six major types of damage could be distinguished: fissure, traumatic nodes, vascular mimicry, incorporation of NP tissue within the CEP, incorporation of bone within the CEP, and incorporation of NP and bone within the CEP. Pain and disability scores (ODI: p = 0.0190; JOA: p = 0.0205; JOABPEQ: p = 0.0034) were significantly higher in those with micro-damaged CEPs (N = 14) than in those with non-damaged CEPs (N = 21). CEP damage was significantly associated with elevated MMP3 (p = 0.043), MMP13 (p = 0.0191), ADAMTS5 (p = 0.0253), TNF-α (p = 0.0011), and Substance P (p = 0.0028), and with reduced Sox9 (p = 0.0212), aggrecan (p = 0.0127), and type II collagen (p = 0.0139). In conclusion, we presented a new classification of human lumbar micro-damaged CEPs. Furthermore, we verify disc degeneration, innervation, and discogenic pain in micro-damaged CEPs.
Collapse
Affiliation(s)
- Bao Huang
- Department of Orthopaedic Surgery, Sir Run Run Shaw HospitalZhejiang University School of MedicineHangzhouChina,Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang ProvinceHangzhouChina
| | - Junhui Liu
- Department of Orthopaedic Surgery, Sir Run Run Shaw HospitalZhejiang University School of MedicineHangzhouChina,Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang ProvinceHangzhouChina
| | - Xiaoan Wei
- Department of Orthopaedic Surgery, Sir Run Run Shaw HospitalZhejiang University School of MedicineHangzhouChina,Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang ProvinceHangzhouChina
| | - Shengwen Li
- Department of Orthopedic SurgeryHaining People's HospitalHainingChina
| | - Yufeng Xiang
- Department of Orthopedic SurgeryLinhai Second People's HospitalTaizhouChina
| | - Hao Wu
- Department of Orthopaedics and TraumatologyThe University of Hong KongPokfulamHong Kong, SARChina
| | - Jian Chen
- Department of Orthopaedic Surgery, Sir Run Run Shaw HospitalZhejiang University School of MedicineHangzhouChina,Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang ProvinceHangzhouChina
| | - Fengdong Zhao
- Department of Orthopaedic Surgery, Sir Run Run Shaw HospitalZhejiang University School of MedicineHangzhouChina,Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang ProvinceHangzhouChina
| |
Collapse
|
54
|
Baumgartner L, Wuertz-Kozak K, Le Maitre CL, Wignall F, Richardson SM, Hoyland J, Ruiz Wills C, González Ballester MA, Neidlin M, Alexopoulos LG, Noailly J. Multiscale Regulation of the Intervertebral Disc: Achievements in Experimental, In Silico, and Regenerative Research. Int J Mol Sci 2021; 22:E703. [PMID: 33445782 PMCID: PMC7828304 DOI: 10.3390/ijms22020703] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 12/22/2020] [Accepted: 12/24/2020] [Indexed: 12/17/2022] Open
Abstract
Intervertebral disc (IVD) degeneration is a major risk factor of low back pain. It is defined by a progressive loss of the IVD structure and functionality, leading to severe impairments with restricted treatment options due to the highly demanding mechanical exposure of the IVD. Degenerative changes in the IVD usually increase with age but at an accelerated rate in some individuals. To understand the initiation and progression of this disease, it is crucial to identify key top-down and bottom-up regulations' processes, across the cell, tissue, and organ levels, in health and disease. Owing to unremitting investigation of experimental research, the comprehension of detailed cell signaling pathways and their effect on matrix turnover significantly rose. Likewise, in silico research substantially contributed to a holistic understanding of spatiotemporal effects and complex, multifactorial interactions within the IVD. Together with important achievements in the research of biomaterials, manifold promising approaches for regenerative treatment options were presented over the last years. This review provides an integrative analysis of the current knowledge about (1) the multiscale function and regulation of the IVD in health and disease, (2) the possible regenerative strategies, and (3) the in silico models that shall eventually support the development of advanced therapies.
Collapse
Affiliation(s)
- Laura Baumgartner
- BCN MedTech, Department of Information and Communication Technologies, Universitat Pompeu Fabra, 08018 Barcelona, Spain; (L.B.); (C.R.W.); (M.A.G.B.)
| | - Karin Wuertz-Kozak
- Department of Biomedical Engineering, Rochester Institute of Technology (RIT), Rochester, NY 14623, USA;
- Schön Clinic Munich Harlaching, Spine Center, Academic Teaching Hospital and Spine Research Institute of the Paracelsus Medical University Salzburg (Austria), 81547 Munich, Germany
| | - Christine L. Le Maitre
- Biomolecular Sciences Research Centre, Sheffield Hallam University, Sheffield S1 1WB, UK;
| | - Francis Wignall
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Sciences Centre, Oxford Road, Manchester M13 9PT, UK; (F.W.); (S.M.R.); (J.H.)
| | - Stephen M. Richardson
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Sciences Centre, Oxford Road, Manchester M13 9PT, UK; (F.W.); (S.M.R.); (J.H.)
| | - Judith Hoyland
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Sciences Centre, Oxford Road, Manchester M13 9PT, UK; (F.W.); (S.M.R.); (J.H.)
| | - Carlos Ruiz Wills
- BCN MedTech, Department of Information and Communication Technologies, Universitat Pompeu Fabra, 08018 Barcelona, Spain; (L.B.); (C.R.W.); (M.A.G.B.)
| | - Miguel A. González Ballester
- BCN MedTech, Department of Information and Communication Technologies, Universitat Pompeu Fabra, 08018 Barcelona, Spain; (L.B.); (C.R.W.); (M.A.G.B.)
- Catalan Institution for Research and Advanced Studies (ICREA), Pg. Lluis Companys 23, 08010 Barcelona, Spain
| | - Michael Neidlin
- Department of Mechanical Engineering, National Technical University of Athens, 15780 Athens, Greece; (M.N.); (L.G.A.)
| | - Leonidas G. Alexopoulos
- Department of Mechanical Engineering, National Technical University of Athens, 15780 Athens, Greece; (M.N.); (L.G.A.)
| | - Jérôme Noailly
- BCN MedTech, Department of Information and Communication Technologies, Universitat Pompeu Fabra, 08018 Barcelona, Spain; (L.B.); (C.R.W.); (M.A.G.B.)
| |
Collapse
|
55
|
Zhang S, Hu B, Liu W, Wang P, Lv X, Chen S, Shao Z. The role of structure and function changes of sensory nervous system in intervertebral disc-related low back pain. Osteoarthritis Cartilage 2021; 29:17-27. [PMID: 33007412 DOI: 10.1016/j.joca.2020.09.002] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 08/18/2020] [Accepted: 09/21/2020] [Indexed: 02/06/2023]
Abstract
Low back pain (LBP) is a common musculoskeletal symptom, which can be developed in multiple clinical diseases. It is widely recognized that intervertebral disc (IVD) degeneration (IVDD) is one of the leading causes of LBP. However, the pathogenesis of IVD-related LBP is still controversial, and the treatment means are also insufficient to date. In recent decades, the role of structure and function changes of sensory nervous system in the induction and the maintenance of LBP is drawing more and more attention. With the progress of IVDD, IVD cell exhaustion and extracellular matrix degradation result in IVD structural damage, while neovascularization, innervation and inflammatory activation further deteriorate the microenvironment of IVD. New nerve ingrowth into degenerated IVD amplifies the impacts of IVD-derived nociceptive molecules on sensory endings. Moreover, IVDD is usually accompanied with disc herniation, which could injure and inflame affected nerves. Under mechanical and pro-inflammatory stimulation, the pain-transmitting pathway exhibits a sensitized function state and ultimately leads to LBP. Hence, relevant pathogenic factors, such as neurotrophins, ion channels, inflammatory factors, etc., are supposed to serve as promising therapeutic targets for LBP. The purpose of this review is to comprehensively summarize the current evidence on 1) the pathological changes of sensory nervous system during IVDD and their association with LBP, and 2) potential therapeutic strategies for LBP targeting relevant pathogenic factors.
Collapse
Affiliation(s)
- S Zhang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - B Hu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - W Liu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - P Wang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - X Lv
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - S Chen
- Department of Orthopaedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China.
| | - Z Shao
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| |
Collapse
|
56
|
Fournier DE, Kiser PK, Shoemaker JK, Battié MC, Séguin CA. Vascularization of the human intervertebral disc: A scoping review. JOR Spine 2020; 3:e1123. [PMID: 33392458 PMCID: PMC7770199 DOI: 10.1002/jsp2.1123] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 08/14/2020] [Accepted: 08/23/2020] [Indexed: 12/24/2022] Open
Abstract
Intervertebral discs (IVDs) are often referred to as the largest avascular structures of the human body, yet a collective resource characterizing the vascularization of the IVD does not exist. To address this gap, the objective of this study was to conduct a comprehensive search of the literature to review and summarize current knowledge of the prevalence and localization of blood supply in human IVDs, with a scoping review. A comprehensive search of peer-reviewed publications on the topic of IVD vascularization in humans was conducted across six electronic databases: PubMed, EMBASE, MEDLINE, Scopus, Web of Science, and BIOSIS Previews. Studies of humans were included regardless of age, sex, ethnicity, and health status, with the exception of IVD herniation. Two independent reviewers screened titles and abstracts and full-texts according to eligibility criteria. The review was conducted and reported according to Preferred Reporting Items for Systematic Reviews Extension for Scoping Reviews guidelines. Our search yielded 3122 articles, with 22 articles meeting the inclusion criteria. The study samples ranged in age from fetal to >90 years and included both sexes, various health statuses, and used different methodologies (eg, histology, medical imaging, and gross dissection) to assess vasculature. Overall, consistent observations were that (a) the nucleus pulposus of the IVD is avascular throughout life, (b) both the cartilage endplates and annulus fibrosus receive considerable blood supply early in life that diminishes over the lifespan, and (c) vascular ingrowth into the cartilage endplates and inner layers of the annulus fibrosus is commonly associated with damaged or disrupted tissue, irrespective of age. Histology and immunohistochemistry are often used to report vascularization of the IVD. The body of the current literature suggests that the IVD should not be generalized as an avascular tissue. Instead, vascularization of the IVD differs based on the constituent tissues, their age, and state of degeneration or damage.
Collapse
Affiliation(s)
- Dale E. Fournier
- Health and Rehabilitation Sciences (Physical Therapy), Faculty of Health SciencesThe University of Western OntarioLondonOntarioCanada
- Bone and Joint InstituteThe University of Western OntarioLondonOntarioCanada
| | - Patti K. Kiser
- Department of Pathology and Laboratory Medicine, Schulich School of Medicine & DentistryThe University of Western OntarioLondonOntarioCanada
| | - J. Kevin Shoemaker
- Bone and Joint InstituteThe University of Western OntarioLondonOntarioCanada
- School of Kinesiology, Faculty of Health SciencesThe University of Western OntarioLondonOntarioCanada
- Department of Physiology and Pharmacology, Schulich School of Medicine & DentistryThe University of Western OntarioLondonOntarioCanada
| | - Michele C. Battié
- Bone and Joint InstituteThe University of Western OntarioLondonOntarioCanada
- School of Physical Therapy, Faculty of Health SciencesThe University of Western OntarioLondonOntarioCanada
| | - Cheryle A. Séguin
- Bone and Joint InstituteThe University of Western OntarioLondonOntarioCanada
- Department of Physiology and Pharmacology, Schulich School of Medicine & DentistryThe University of Western OntarioLondonOntarioCanada
| |
Collapse
|
57
|
Sun Z, Zhao H, Liu B, Gao Y, Tang WH, Liu ZH, Luo ZJ. AF cell derived exosomes regulate endothelial cell migration and inflammation: Implications for vascularization in intervertebral disc degeneration. Life Sci 2020; 265:118778. [PMID: 33217442 DOI: 10.1016/j.lfs.2020.118778] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 11/01/2020] [Accepted: 11/14/2020] [Indexed: 12/19/2022]
Abstract
AIMS The intervertebral disc is the largest avascular organ of the body. Vascularization of the disc has been typically regarded as a pathological feature of intervertebral disc degeneration (IDD). However, the underlying mechanism of vascularization in IDD is still unclear. The current study aimed to investigate the role of AF cell derived exosome (AF-exo) in the interaction with human umbilical vein endothelial cells (HUVECs) and its potential role in the regulation of vascularization in IDD. MAIN METHODS Human AF tissues were obtained from patients with IDD and idiopathic scoliosis. The AF-exo were isolated and identified by transmission electron microscopy (TEM), nanoparticle trafficking analysis (NTA) and Western blotting. Then, the AF-exo were used for HUVECs cultures. The migration of HUVECs was observed in 2D and 3D cultures. The inflammatory phenotype of HUVECs was examined by Real-time PCR and enzyme-linked immunosorbent assay (ELISA). Additionally, apoptosis of HUVECs were analyzed by flow cytometry. KEY FINDINGS Here, we for the first time found that AF cells could secrete AF-exo and that the AF-exo could be phagocytosed by HUVECs. Additionally, we found that degenerated AF-exo exerted pro-vascularization effect on HUVECs by promoting cell migration (in 2D and 3D cultures) and inflammatory factor expression including IL-6, TNF-α, MMP-3, MMP-13 and VEGF, whereas the application of non-degenerated AF-exo demonstrated inverse effects. SIGNIFICANCE These results showed that AF-exo is an essential regulator mediating intercellular communication between AF cells and HUVECs, suggesting its important role in vascularization in the intervertebral disc.
Collapse
Affiliation(s)
- Zhen Sun
- Department of Orthopedic, Xijing Hospital, Fourth Military Medical University, Western Changle Road, Xi'an, Shaanxi Province, PR China.
| | - Hang Zhao
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Western Changle Road, Xi'an, Shaanxi Province, PR China; Department of Pharmacy, The 456th Hospital of the People's Liberation Army, Jinan, PR China
| | - Bing Liu
- Department of Radiology, Xijing Hospital, Fourth Military Medical University, Western Changle Road, Xi'an, Shaanxi Province, PR China
| | - Yang Gao
- Department of Orthopedic, Xijing Hospital, Fourth Military Medical University, Western Changle Road, Xi'an, Shaanxi Province, PR China
| | - Wen-Hao Tang
- Department of Orthopedic, Xijing Hospital, Fourth Military Medical University, Western Changle Road, Xi'an, Shaanxi Province, PR China
| | - Zhi-Heng Liu
- Department of Orthopedic, 986 Air Force Hospital of China, Xi'an, Shaanxi Province, PR China
| | - Zhuo-Jing Luo
- Department of Orthopedic, Xijing Hospital, Fourth Military Medical University, Western Changle Road, Xi'an, Shaanxi Province, PR China.
| |
Collapse
|
58
|
Shen C, Li Y, Chen Y, Huang L, Zhang F, Wu W. Melatonin prevents the binding of vascular endothelial growth factor to its receptor and promotes the expression of extracellular matrix-associated genes in nucleus pulposus cells. Exp Ther Med 2020; 20:106. [PMID: 32989385 PMCID: PMC7517348 DOI: 10.3892/etm.2020.9227] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Accepted: 05/28/2020] [Indexed: 12/13/2022] Open
Abstract
The mechanisms of intervertebral disc degeneration (IDD) involve numerous factors, including loss of the extracellular matrix (ECM) and vascular ingrowth. Melatonin has been reported to protect intervertebral discs (IVDs) from degeneration and to exert a potential anti-angiogenic effect. The aim of the present study was to investigate the anti-angiogenic and anabolic effects of melatonin in IVDs. Human nucleus pulposus (NP) and degenerative nucleus pulposus (DNP) cells were isolated and treated with melatonin. The results indicated that melatonin promoted ECM synthesis and NP cell proliferation. In addition, an NP/DNP and human umbilical vein endothelial cell (HUVEC) co-culture model was used to investigate the anti-angiogenesis effect of melatonin. Melatonin was indicated to suppress tube formation and migration of HUVECs in culture with NP cell-conditioned medium, as well as in an NP cell co-culture model. Fluorescence-labeled vascular endothelial growth factor (VEGF) was used to study the binding between VEGF and its receptor. The results of the present study indicated that melatonin exerts an angiogenic effect via inhibition of the binding of VEGF to its receptor in HUVECs. Taken together, these results suggest that melatonin is a potential agent to prevent IDD.
Collapse
Affiliation(s)
- Chengchun Shen
- Department of Orthopedics, Ningbo No. 6 Hospital, Ningbo, Zhejiang 315010, P.R. China
| | - Yan Li
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Ningbo, Zhejiang 315010, P.R. China
| | - Yunlin Chen
- Department of Orthopedics, Ningbo No. 6 Hospital, Ningbo, Zhejiang 315010, P.R. China
| | - Lei Huang
- Department of Orthopedics, Ningbo No. 6 Hospital, Ningbo, Zhejiang 315010, P.R. China
| | - Feng Zhang
- Department of Orthopedics, Ningbo No. 6 Hospital, Ningbo, Zhejiang 315010, P.R. China
| | - Wei Wu
- Department of Orthopedics, Hwa Mei Hospital, University of Chinese Academy of Sciences, Ningbo No. 2 Hospital, Ningbo, Zhejiang 315010, P.R. China
| |
Collapse
|
59
|
Schmitz TC, Salzer E, Crispim JF, Fabra GT, LeVisage C, Pandit A, Tryfonidou M, Maitre CL, Ito K. Characterization of biomaterials intended for use in the nucleus pulposus of degenerated intervertebral discs. Acta Biomater 2020; 114:1-15. [PMID: 32771592 DOI: 10.1016/j.actbio.2020.08.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 07/06/2020] [Accepted: 08/03/2020] [Indexed: 12/19/2022]
Abstract
Biomaterials for regeneration of the intervertebral disc must meet complex requirements conforming to biological, mechanical and clinical demands. Currently no consensus on their characterization exists. It is crucial to identify parameters and their method of characterization for accurate assessment of their potential efficacy, keeping in mind the translation towards clinical application. This review systematically analyses the characterization techniques of biomaterial systems that have been used for nucleus pulposus (NP) restoration and regeneration. Substantial differences in the approach towards assessment became evident, hindering comparisons between different materials with respect to their suitability for NP restoration and regeneration. We have analysed the current approaches and identified parameters necessary for adequate biomaterial characterization, with the clinical goal of functional restoration and biological regeneration of the NP in mind. Further, we provide guidelines and goals for their measurement. STATEMENT OF SIGNIFICANCE: Biomaterials intended for restoration of regeneration of the nucleus pulposus within the intervertebral disc must meet biological, biomechanical and clinical demands. Many materials have been investigated, but a lack of consensus on which parameters to evaluate leads to difficulties in comparing materials as well as mostly partial characterization of the materials in question. A gap between current methodology and clinically relevant and meaningful characterization is prevalent. In this article, we identify necessary methods and their implementation for complete biomaterial characterization in the context of clinical applicability. This will allow for a more unified approach to NP-biomaterials research within the field as a whole and enable comparative analysis of novel materials yet to be developed.
Collapse
Affiliation(s)
- Tara C Schmitz
- Orthopaedic Biomechanics, Department of Biomedical Engineering, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, Netherlands.
| | - Elias Salzer
- Orthopaedic Biomechanics, Department of Biomedical Engineering, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, Netherlands.
| | - João F Crispim
- Orthopaedic Biomechanics, Department of Biomedical Engineering, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, Netherlands.
| | - Georgina Targa Fabra
- Centre for Research in Medical Devices (CÚRAM), National University of Ireland Galway, 7WQJ+8F Galway, Ireland.
| | - Catherine LeVisage
- Université de Nantes, INSERM UMR 1229, Regenerative Medicine and Skeleton, RMeS School of Dental Surgery, University of Nantes, 1 Place Ricordeau, 44300 Nantes, France.
| | - Abhay Pandit
- Centre for Research in Medical Devices (CÚRAM), National University of Ireland Galway, 7WQJ+8F Galway, Ireland.
| | - Marianna Tryfonidou
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, 3584 CL Utrecht, Netherlands.
| | - Christine Le Maitre
- Biomolecular Sciences Research Centre Sheffield Hallam University, City Campus, Howard Street, S1 1WB Sheffield, United Kingdom.
| | - Keita Ito
- Orthopaedic Biomechanics, Department of Biomedical Engineering, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, Netherlands.
| |
Collapse
|
60
|
Cherif H, Bisson DG, Mannarino M, Rabau O, Ouellet JA, Haglund L. Senotherapeutic drugs for human intervertebral disc degeneration and low back pain. eLife 2020; 9:54693. [PMID: 32821059 PMCID: PMC7442487 DOI: 10.7554/elife.54693] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Accepted: 08/03/2020] [Indexed: 12/12/2022] Open
Abstract
Cellular senescence is a contributor to intervertebral disc (IVD) degeneration and low back pain. Here, we found that RG-7112, a potent mouse double-minute two protein inhibitor, selectively kills senescent IVD cells through apoptosis. Gene expression pathway analysis was used to compare the functional networks of genes affected by RG-7112, a pure synthetic senolytic with o-Vanillin a natural and anti-inflammatory senolytic. Both affected a functional gene network related to cell death and survival. O-Vanillin also affected networks related to cell cycle progression as well as connective tissue development and function. Both senolytics effectively decreased the senescence-associated secretory phenotype (SASP) of IVD cells. Furthermore, bioavailability and efficacy were verified ex vivo in the physiological environment of degenerating intact human discs where a single dose improved disc matrix homeostasis. Matrix improvement correlated with a reduction in senescent cells and SASP, supporting a translational potential of targeting senescent cells as a therapeutic intervention. Pain in the lower back affects about four in five people during their lifetime. Over time, the discs that provide cushioning between the vertebrae of the spine can degenerate, which can be one of the major causes of lower back pain. It has been shown that when the cells of these discs are exposed to different stress factors, they stop growing and become irreversibly dormant. Such ‘senescent’ cells release a range of proteins and small molecules that lead to painful inflammation and further degeneration of the discs. Moreover, it is thought that a high number of senescent cells may be linked to other degenerative diseases such as arthritis. Current treatments can only reduce the severity of the symptoms, but they cannot prevent the degeneration from progressing. Now, Cherif et al. set out to test the effects of two different compounds on human disc cells grown in the laboratory. One of the molecules studied, RG-7112, is a synthetic drug that has been approved for safety by the US Food and Drug Administration and has been shown to remove senescent cells. The other, o-Vanillin, is a natural compound that has anti-inflammatory and anti-senescence properties. The results showed that both compounds were able to trigger changes to that helped new, healthy cells to grow and at the same time kill senescent cells. They also reduced the production of molecules linked to inflammation and pain. Further analyses revealed that the compounds were able to strengthen the fibrous matrix that surrounds and supports the discs. Cherif et al. hope that this could form the basis for a new family of drugs for back pain to slow the degeneration of the discs and reduce pain. This may also have benefits for other similar degenerative diseases caused by cell senescence, such as arthritis.
Collapse
Affiliation(s)
- Hosni Cherif
- Orthopaedic Research Lab, Department of Surgery, McGill University and the Research Institute of the McGill University Health Centre, Montreal, Canada.,McGill Scoliosis and Spine Group, Department of Surgery, McGill University and the Research Institute of the McGill University Health Centre, Montreal, Canada
| | - Daniel G Bisson
- Orthopaedic Research Lab, Department of Surgery, McGill University and the Research Institute of the McGill University Health Centre, Montreal, Canada.,McGill Scoliosis and Spine Group, Department of Surgery, McGill University and the Research Institute of the McGill University Health Centre, Montreal, Canada
| | - Matthew Mannarino
- Orthopaedic Research Lab, Department of Surgery, McGill University and the Research Institute of the McGill University Health Centre, Montreal, Canada.,McGill Scoliosis and Spine Group, Department of Surgery, McGill University and the Research Institute of the McGill University Health Centre, Montreal, Canada
| | - Oded Rabau
- McGill Scoliosis and Spine Group, Department of Surgery, McGill University and the Research Institute of the McGill University Health Centre, Montreal, Canada.,Shriner's Hospital for Children, 1003 Decarie Blvd, Montreal, Canada
| | - Jean A Ouellet
- McGill Scoliosis and Spine Group, Department of Surgery, McGill University and the Research Institute of the McGill University Health Centre, Montreal, Canada.,Shriner's Hospital for Children, 1003 Decarie Blvd, Montreal, Canada
| | - Lisbet Haglund
- Orthopaedic Research Lab, Department of Surgery, McGill University and the Research Institute of the McGill University Health Centre, Montreal, Canada.,McGill Scoliosis and Spine Group, Department of Surgery, McGill University and the Research Institute of the McGill University Health Centre, Montreal, Canada.,Shriner's Hospital for Children, 1003 Decarie Blvd, Montreal, Canada
| |
Collapse
|
61
|
Effects of photobiomodulation on annulus fibrosus cells derived from degenerative disc disease patients exposed to microvascular endothelial cells conditioned medium. Sci Rep 2020; 10:9655. [PMID: 32541845 PMCID: PMC7296027 DOI: 10.1038/s41598-020-66689-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 05/18/2020] [Indexed: 11/17/2022] Open
Abstract
Intervertebral disc (IVD) degeneration with chronic low back pain is associated with neo-vascularisation into the deeper IVD regions. During this process, endothelial cells (ECs), which are primarily responsible for angiogenesis, interact with the adjacent annulus fibrosus (AF) cells, which are the first line of defence against the invasion of vascular structures into deeper IVD regions. However, the accumulation of inflammatory and catabolic enzymes that results from this interaction promotes matrix degradation and an inflammatory response. Thus, regulating the production of these mediators and catabolic enzymes could ameliorate IVD degeneration. Photobiomodulation (PBM) therapy is a non-invasive stimulation known to have biologically beneficial effects on wound healing, tissue repair, and inflammation. Here, we examined the effects of PBM, administered at various wavelengths (645, 525, and 465 nm) and doses (16, 32, and 64 J/cm2), on EC-stimulated human AF cells. Our results show that PBM selectively inhibited the EC-mediated production of inflammatory mediators, catabolic enzymes, and neurotrophins by human AF cells in a dose- and wavelength-dependent manner. These results suggest that PBM could be a superior and advanced treatment strategy for IVD degeneration.
Collapse
|
62
|
Qiu S, Shi C, Anbazhagan AN, Das V, Arora V, Kc R, Li X, O-Sullivan I, van Wijnen A, Chintharlapalli S, Gott-Velis G, Richard R, Mwale F, Shibuya M, Min S, Im HJ. Absence of VEGFR-1/Flt-1 signaling pathway in mice results in insensitivity to discogenic low back pain in an established disc injury mouse model. J Cell Physiol 2020; 235:5305-5317. [PMID: 31875985 PMCID: PMC9782756 DOI: 10.1002/jcp.29416] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 12/16/2019] [Indexed: 12/25/2022]
Abstract
Although degenerative disc disease (DDD) and related low back pain (LBP) are growing public health problems, the underlying disease mechanisms remain unclear. An increase in the vascular endothelial growth factor (VEGF) levels in DDD has been reported. This study aimed to examine the role of VEGF receptors (VEGFRs) in DDD, using a mouse model of DDD. Progressive DDD was induced by anterior stabbing of lumbar intervertebral discs in wild type (WT) and VEGFR-1 tyrosine-kinase deficient mice (vegfr-1TK-/- ). Pain assessments were performed weekly for 12 weeks. Histological and immunohistochemical assessments were made for discs, dorsal root ganglions, and spinal cord. Both vegfr-1TK-/- and WT mice presented with similar pathological changes in discs with an increased expression of inflammatory cytokines and matrix-degrading enzymes. Despite the similar pathological patterns, vegfr-1TK-/- mice showed insensitivity to pain compared with WT mice. This insensitivity to discogenic pain was related to lower levels of pain factors in the discs and peripheral sensory neurons and lower spinal glial activation in the vegfr-1TK- /- mice than in the WT mice. Exogenous stimulation of bovine disc cells with VEGF increased inflammatory and cartilage degrading enzyme. Silencing vegfr-1 by small-interfering-RNA decreased VEGF-induced expression of pain markers, while silencing vegfr-2 decreased VEGF-induced expression of inflammatory and metabolic markers without changing pain markers. This suggests the involvement of VEGFR-1 signaling specifically in pain transmission. Collectively, our results indicate that the VEGF signaling is involved in DDD. Particularly, VEGFR-1 is critical for discogenic LBP transmission independent of the degree of disc pathology.
Collapse
Affiliation(s)
- Sujun Qiu
- Department of Spinal Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Changgui Shi
- Department of Orthopedic Surgery, Changzheng Hospital, the Second Military Medical University of China, Shanghai, China
| | | | - Vaskar Das
- Departments of Anesthesiology, Rush University Medical Center, Chicago, IL, United States
| | - Vipin Arora
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Ranjan Kc
- Division of Orthopedic Surgery, the Children's Hospital of Philadelphia Research Institute, Philadelphia, PA, United States
| | - Xin Li
- Department of Bioengineering, University of Illinois at Chicago, IL, United States
| | - InSug O-Sullivan
- Department of Medicine, University of Illinois at Chicago, Chicago, IL, United States
| | - Andre van Wijnen
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, NM, United States
| | | | - Gina Gott-Velis
- Department of Bioengineering, University of Illinois at Chicago, IL, United States
- Departments of Anesthesiology, the University of Illinois at Chicago (UIC), IL, United States
| | - Ripper Richard
- Departments of Anesthesiology, the University of Illinois at Chicago (UIC), IL, United States
| | - Fackson Mwale
- Orthopaedics Research Laboratory, Lady Davis Institute for Medical Research, SMBD-Jewish General Hospital, Montreal, QC, Canada
- Department of Experimental Surgery, Faculty of Medicine, McGill University, Montreal, QC, Canada
| | - Masabumi Shibuya
- Institute of Physiology and Medicine, Jobu University, Takasaki, Gunma, Japan
| | - Shaoxiong Min
- Department of Spinal Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Hee-Jeong Im
- Department of Bioengineering, University of Illinois at Chicago, IL, United States
- Jesse Brown Veterans Affairs Medical Center (JBVAMC) at Chicago, IL, United States
| |
Collapse
|
63
|
Involvement of the G-Protein-Coupled Receptor 4 in the Increased Expression of RANK/RANKL/OPG System and Neurotrophins by Nucleus Pulposus Cells under the Degenerated Intervertebral Disc-Like Acidic Microenvironment. BIOMED RESEARCH INTERNATIONAL 2020; 2020:1328436. [PMID: 32566653 PMCID: PMC7277045 DOI: 10.1155/2020/1328436] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 03/22/2020] [Accepted: 04/01/2020] [Indexed: 12/05/2022]
Abstract
Intervertebral disc (IVD) degeneration is associated with local inflammation and increased expression of neurotrophins. Acidic microenvironment is believed to cause the progression of IVD degeneration. However, there is a paucity of information regarding the relationship between acidic microenvironment and the inflammation and expression of neurotrophins in IVD. G-protein-coupled receptor 4 (GPR4) is a pH-sensing receptor, which can activate the inflammation and increase the expression levels of nerve growth factor in acidic microenvironment. In this study, culture media with pH 7.2 (representing the normal IVD-like acidic condition) and pH 6.5 (degenerated IVD-like acidic condition) were prepared. The gene and protein expression levels of GPR4 in SD rat nucleus pulposus cells were determined under the acidic conditions. And cyclic AMP (cAMP), the second messenger of GPR4, was assayed. Furthermore, the expression levels of receptor activator of nuclear factor κ B (RANK), RANKL ligand (RANKL), osteoprotegerin (OPG), nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), and neurotrophin-3 (NT-3) were also determined. To clarify the involvement of GPR4 in the upregulation of the expression of RANK/RANKL/OPG system and neurotrophins, gene knockdown and forced expression of GPR4 and inhibiting its downstream cAMP accumulation and Ca2+ mobilization were performed. The alternation of the expression levels of matrix metalloproteinase-3 (MMP-3), MMP-13, and aggrecanase-2 (ADAMTS-5) were evaluated by RT-PCR and western blot. The results showed that GPR4 was expressed in rat nucleus pulposus cells, and the expression was upregulated under the degenerated IVD-like acidic microenvironment. cAMP accumulation levels were increased under the degenerated IVD-like acidic culture conditions. The expression levels of RANK, RANKL, OPG, NGF, and BNDF were significantly upregulated under the degenerated IVD-like acidic microenvironment. GPR4 knockdown and reduction of cAMP by the inhibitor SQ22536 abolished the upregulation of the expression of RANK, RANKL, OPG, NGF, and BNDF under the degenerated IVD-like acidic microenvironment. On the opposite, acidosis-induced cAMP accumulation and upregulation of RANK, RANKL, OPG, NGF, and BNDF were further promoted by GPR4 overexpression. The expression levels of MMP-3, MMP-13, and ADAMTS-5 were upregulated under the degenerated IVD-like acidic condition, which can be promoted or attenuated by GPR4 overexpression or knockdown, respectively. We concluded that GPR4-mediated cAMP accumulation was involved in the increased expression of RANK/RANKL/OPG system and neurotrophins by nucleus pulposus cells under the degenerated IVD-like acidic microenvironment.
Collapse
|
64
|
Romereim SM, Johnston CA, Redwine AL, Wachs RA. Development of an in vitro intervertebral disc innervation model to screen neuroinhibitory biomaterials. J Orthop Res 2020; 38:1016-1026. [PMID: 31825104 PMCID: PMC7244214 DOI: 10.1002/jor.24557] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 11/30/2019] [Indexed: 02/04/2023]
Abstract
Pain originating from an intervertebral disc (discogenic pain) is a major source of chronic low back pain. Pathological innervation of the disc by pain-sensing nerve fibers is thought to be a key component of discogenic pain, so treatment with biomaterials that have the ability to inhibit neurite growth will greatly benefit novel disc therapeutics. Currently, disc therapeutic biomaterials are rarely screened for their ability to modulate nerve growth, mainly due to a lack of models to screen neuromodulation. To address this deficit, our lab has engineered a three dimensional in vitro disc innervation model that mimics the interface between primary sensory nerves and the intervertebral disc. Further, herein we have demonstrated the utility of this model to screen the efficacy of chondroitin sulfate biomaterials to inhibit nerve fiber invasion into the model disc. Biomaterials containing chondroitin-4-sulfate (CS-A) decrease neurite growth in a uniform gel and at an interface between a growth-permissive and a growth-inhibitory gel, while chondroitin-6-sulfate (CS-C) is less neuroinhibitory. This in vitro model holds great potential for screening inhibitors of nerve fiber growth to further improve intervertebral disc replacements and therapeutics. © 2019 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 38:1016-1026, 2020.
Collapse
Affiliation(s)
- Sarah M Romereim
- Biological Systems Engineering, University of Nebraska-Lincoln, P.O. Box 830726, Lincoln, Nebraska, 68583-0726
| | - Caleb A Johnston
- Biological Systems Engineering, University of Nebraska-Lincoln, P.O. Box 830726, Lincoln, Nebraska, 68583-0726
| | - Adan L Redwine
- Biological Systems Engineering, University of Nebraska-Lincoln, P.O. Box 830726, Lincoln, Nebraska, 68583-0726
| | - Rebecca A Wachs
- Biological Systems Engineering, University of Nebraska-Lincoln, P.O. Box 830726, Lincoln, Nebraska, 68583-0726
| |
Collapse
|
65
|
Xiao ZF, Su GY, Hou Y, Chen SD, Zhao BD, He JB, Zhang JH, Chen YJ, Lin DK. Mechanics and Biology Interact in Intervertebral Disc Degeneration: A Novel Composite Mouse Model. Calcif Tissue Int 2020; 106:401-414. [PMID: 31912171 DOI: 10.1007/s00223-019-00644-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Accepted: 11/27/2019] [Indexed: 12/16/2022]
Abstract
The aim of this study was to distinguish the characteristics of intervertebral disc degeneration (IVDD) originating from mechanics imbalance, biology disruption, and their communion, and to develop a composite IVDD model by ovariectomy combined with lumbar facetectomy for mimicking elderly IVDD with osteoporosis and lumbar spinal instability. Mice were randomly divided into four groups and subjected to sham surgery (CON), ovariectomy (OVX), facetectomy (mechanical instability, INS) or their combination (COM), respectively. Radiographical (n = 4) and histological changes (n = 8) of L4/5 spinal segments were analyzed. Tartrate-resistant acid phosphatase (TRAP) staining was conducted to detect osteoclasts, and expression of osterix (OSX), type I collagen (Col I), type II collagen (Col II) and vascular endothelial growth factor (VEGF) were evaluated by immunochemistry. OVX affected the body's metabolism but INS did not, as the body weight increased and uterus weight decreased in OVX and COM mice compared to CON and INS mice. OVX, INS, and COM caused IVDD in various degrees at 12 weeks after surgery. However, the major pathogeneses of OVX- and INS-induced IVDD were different, which focused on endplate (EP) remodeling and annulus fibrosus (AF) collapse, respectively. OVX induced osteopenia of vertebra. In contrast, INS promoted the stress-adaptive increase of subchondral bone trabeculae. The COM produced a reproducible severe IVDD model with characteristics of sparse vertebral trabeculae, cartilaginous EP ossification, subchondral bone sclerosis, fibrous matrix disorder, angiogenesis, disc stiffness, as well as space fusion. Additionally, all groups had elevated bone and cartilage turnover compared with CON group, as the quantity of trap + osteoclasts and the osteogenic OSX expression increased in these groups. Likewise, the VEGF expression levels were similar, accompanied by the altered matrix expression of disc, including the changed distribution and contents of Col II and Col I. The findings suggested that the composite mouse model to some extent could effectively mimic the interactions of biology and mechanics engaged in the onset and natural course of IVDD, which would be more compatible with the IVDD of elderly with vertebral osteoporosis and spinal instability and benefit to further clarify the complicated mechanobiological environment of elderly IVDD progression.
Collapse
Affiliation(s)
- Zhi-Feng Xiao
- The Department of Spinal Surgery, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, No. 111, Dade Road, Yuexiu District, Guangzhou, 510120, People's Republic of China
- Guangzhou University of Chinese Medicine, No. 12, Jichang Road, Baiyun District, Guangzhou, 510405, People's Republic of China
| | - Guo-Yi Su
- The Department of Spinal Surgery, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, No. 111, Dade Road, Yuexiu District, Guangzhou, 510120, People's Republic of China
- Guangzhou University of Chinese Medicine, No. 12, Jichang Road, Baiyun District, Guangzhou, 510405, People's Republic of China
| | - Yu Hou
- The Department of Spinal Surgery, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, No. 111, Dade Road, Yuexiu District, Guangzhou, 510120, People's Republic of China
- Guangzhou University of Chinese Medicine, No. 12, Jichang Road, Baiyun District, Guangzhou, 510405, People's Republic of China
| | - Shu-Dong Chen
- The Department of Spinal Surgery, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, No. 111, Dade Road, Yuexiu District, Guangzhou, 510120, People's Republic of China
- Guangzhou University of Chinese Medicine, No. 12, Jichang Road, Baiyun District, Guangzhou, 510405, People's Republic of China
| | - Bing-de Zhao
- The Department of Spinal Surgery, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, No. 111, Dade Road, Yuexiu District, Guangzhou, 510120, People's Republic of China
- Guangzhou University of Chinese Medicine, No. 12, Jichang Road, Baiyun District, Guangzhou, 510405, People's Republic of China
| | - Jian-Bo He
- Guangzhou University of Chinese Medicine, No. 12, Jichang Road, Baiyun District, Guangzhou, 510405, People's Republic of China
| | - Ji-Heng Zhang
- Guangzhou University of Chinese Medicine, No. 12, Jichang Road, Baiyun District, Guangzhou, 510405, People's Republic of China
| | - Yan-Jun Chen
- Guangzhou University of Chinese Medicine, No. 12, Jichang Road, Baiyun District, Guangzhou, 510405, People's Republic of China
| | - Ding-Kun Lin
- The Department of Spinal Surgery, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, No. 111, Dade Road, Yuexiu District, Guangzhou, 510120, People's Republic of China.
- Guangzhou University of Chinese Medicine, No. 12, Jichang Road, Baiyun District, Guangzhou, 510405, People's Republic of China.
| |
Collapse
|
66
|
van den Akker GGH, Eijssen LMT, Richardson SM, Rhijn LWV, Hoyland JA, Welting TJM, Voncken JW. A Membranome-Centered Approach Defines Novel Biomarkers for Cellular Subtypes in the Intervertebral Disc. Cartilage 2020; 11:203-220. [PMID: 29629573 PMCID: PMC7097986 DOI: 10.1177/1947603518764260] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
OBJECTIVE Lack of specific marker-sets prohibits definition and functional distinction of cellular subtypes in the intervertebral disc (IVD), such as those from the annulus fibrosus (AF) and the nucleus pulposus (NP). DESIGN We recently generated immortalized cell lines from human NP and AF tissues; these comprise a set of functionally distinct clonal subtypes. Whole transcriptome analyses were performed of 12 phenotypically distinct clonal cell lines (4× NP-Responder, 4× NP-nonResponder, 2× AF-Sheet forming, and 2× AF-nonSheet forming). Data sets were filtered for membrane-associated marker genes and compared to literature. RESULTS Comparison of our immortal cell lines to published primary NP, AF, and articular chondrocytes (AC) transcriptome datasets revealed preservation of AF and NP phenotypes. NP-specific membrane-associated genes were defined by comparison to AF cells in both the primary dataset (46 genes) and immortal cell-lines (161 genes). Definition of AF-specific membrane-associated genes yielded 125 primary AF cell and 92 immortal cell-line markers. Overlap between primary and immortal NP cells yielded high-confidence NP-specific marker genes for NP-R (CLDN11, TMEFF2, CA12, ANXA2, CD44) and NP-nR (EFNA1, NETO2, SLC2A1). Overlap between AF and immortal AF subtypes yielded specific markers for AF-S (COLEC12, LPAR1) and AF-nS (CHIC1). CONCLUSIONS The current study provides a reference platform for preclinical evaluation of novel membrane-associated cell type-specific markers in the IVD. Future research will focus on their biological relevance for IVD function in development, homeostasis, and degenerate conditions.
Collapse
Affiliation(s)
- Guus G. H. van den Akker
- Department of Orthopedic Surgery, Maastricht University Medical Centre, Maastricht, Netherlands
- Department of Molecular Genetics, Maastricht University Medical Centre, Maastricht, Netherlands
| | - Lars M. T. Eijssen
- Department of Bioinformatics, Maastricht University Medical Centre, Maastricht, Netherlands
| | - Stephen M. Richardson
- Centre for Regenerative Medicine, Institute of Inflammation and Repair, University of Manchester, Manchester, UK
| | - Lodewijk W. van Rhijn
- Department of Orthopedic Surgery, Maastricht University Medical Centre, Maastricht, Netherlands
| | - Judith A. Hoyland
- Centre for Regenerative Medicine, Institute of Inflammation and Repair, University of Manchester, Manchester, UK
| | - Tim J. M. Welting
- Department of Orthopedic Surgery, Maastricht University Medical Centre, Maastricht, Netherlands
| | - Jan Willem Voncken
- Department of Molecular Genetics, Maastricht University Medical Centre, Maastricht, Netherlands
| |
Collapse
|
67
|
Li Y, Zhang T, Tian W, Hu H, Xin Z, Ma X, Ye C, Hang K, Han X, Zhao J, Li W. Loss of TIMP3 expression induces inflammation, matrix degradation, and vascular ingrowth in nucleus pulposus: A new mechanism of intervertebral disc degeneration. FASEB J 2020; 34:5483-5498. [PMID: 32107793 DOI: 10.1096/fj.201902364rr] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 02/05/2020] [Accepted: 02/12/2020] [Indexed: 02/06/2023]
Abstract
Low back pain (LBP) is one of the most common complains in orthopedic outpatient department and intervertebral disc degeneration (IDD) is one of the most important reasons of LBP. The mechanisms of IDD contain a complex biochemical cascade which includes inflammation, vascular ingrowth, and results in degradation of matrix. In our study, we used both in vitro and in vivo models to investigate the relation between tissue inhibitor of metalloproteinase-3 (TIMP3) expression and IDD. Loss of TIMP3 expression was found in degenerative intervertebral disc (IVD), this change of expression was closely related with the dephosphorylation of smad2/3. Overexpression of TIMP3 significantly inhibited the release of TNF-α and matrix degradation induced by Lipopolysaccharide. Vascular ingrowth was also suppressed by TIMP3 in the in vitro and in vivo models. Further, animal experiments confirmed that the degeneration of IVD was reduced after overexpression of TIMP3 in nucleus pulposus. Taken together, our results indicated TIMP-3 might play an important role in the pathogenesis of IDD and therefore be a potential therapeutic target in the future.
Collapse
Affiliation(s)
- Yan Li
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Orthopedics Research Institute of Zhejiang University, Hangzhou, China
| | - Ting Zhang
- Department of Radiotherapy, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Wenjia Tian
- Department of Endocrinology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Hejia Hu
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Orthopedics Research Institute of Zhejiang University, Hangzhou, China
| | - Zengfeng Xin
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Orthopedics Research Institute of Zhejiang University, Hangzhou, China
| | - Xiaojing Ma
- Department of Pathology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Chenyi Ye
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Orthopedics Research Institute of Zhejiang University, Hangzhou, China
| | - Kai Hang
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Orthopedics Research Institute of Zhejiang University, Hangzhou, China
| | - Xiuguo Han
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedics, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Jie Zhao
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedics, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Weixu Li
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Orthopedics Research Institute of Zhejiang University, Hangzhou, China
| |
Collapse
|
68
|
He M, Pang J, Sun H, Zheng G, Lin Y, Ge W. Overexpression of TIMP3 inhibits discogenic pain by suppressing angiogenesis and the expression of substance P in nucleus pulposus. Mol Med Rep 2020; 21:1163-1171. [PMID: 31922222 PMCID: PMC7003021 DOI: 10.3892/mmr.2020.10922] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 09/04/2019] [Indexed: 12/11/2022] Open
Abstract
Approximately 50% of the cases of low back pain (LBP) are attributed to discogenic origin. The causes of discogenic pain are complicated and consist of a complex biochemical cascade. Neovascularization of intervertebral discs (IVDs) is believed to be associated with discogenic pain. The anti‑angiogenesis ability of tissue inhibitor of metalloproteinase‑3 (TIMP3) has been reported in many tumors, yet whether TIMP3 is associated with neovascularization of IVDs remains unknown. In the present study, both in vitro and in vivo models were used to investigate the association between discogenic pain and TIMP3 expression in nucleus pulposus (NP). PCR results demonstrated that inflammation induced downregulation of TIMP3 expression in NP cells. By using an adenovirus system to upregulate TIMP3 expression, the effect of TIMP3 on angiogenesis was measured by endothelial cell migration and tube formation assays. The results demonstrated that overexpression of TIMP3 suppressed angiogenesis in NP without the regulation of vascular endothelial growth factor (VEGF) expression. TNF‑α converting enzyme (TACE) expression was downregulated by TIMP3, thus inhibiting the TACE‑induced activation of TNF‑α in NP cells. Immunohistochemical staining of IVDs also confirmed that TIMP3 inhibited the expression of substance P in NP. Taken together, the present results indicated the expression of TIMP3 in NP may have a key role in the development of discogenic pain.
Collapse
Affiliation(s)
- Mingwei He
- Department of Anesthesiology, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, P.R. China
| | - Jinlei Pang
- Department of Anesthesiology, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, P.R. China
| | - Haiyan Sun
- Department of Anesthesiology, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, P.R. China
| | - Guanrong Zheng
- Department of Pain, Shengli Oilfield Central Hospital, Dongying, Shandong 257000, P.R. China
| | - Yan Lin
- Department of Pain, Shengli Oilfield Central Hospital, Dongying, Shandong 257000, P.R. China
| | - Weipeng Ge
- Department of Pain, Shengli Oilfield Central Hospital, Dongying, Shandong 257000, P.R. China
| |
Collapse
|
69
|
Li FXZ, Xu F, Lin X, Wu F, Zhong JY, Wang Y, Guo B, Zheng MH, Shan SK, Yuan LQ. The Role of Substance P in the Regulation of Bone and Cartilage Metabolic Activity. Front Endocrinol (Lausanne) 2020; 11:77. [PMID: 32180759 PMCID: PMC7059306 DOI: 10.3389/fendo.2020.00077] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 02/05/2020] [Indexed: 01/06/2023] Open
Abstract
Substance P (SP) is a neuropeptide that is released from sensory nerve endings and is widely present in nerve fibers. It acts on bones and related tissues by binding to receptors, thereby regulating bone metabolism, cartilage metabolism, and fracture healing. SP has attracted widespread attention as a signaling substance that can be recognized by both the immune system and the nervous system. Previous studies have shown that bone and chondrocytes can synthesize and secrete sensory neuropeptides and express their receptors, and can promote proliferation, differentiation, apoptosis, matrix synthesis, and the degradation of target cells through autocrine/paracrine modes. In this paper, we review the research progress made in this field in recent years in order to provide a reference for further understanding the regulatory mechanism of bone and cartilage physiology and pathological metabolism.
Collapse
Affiliation(s)
- Fu-Xing-Zi Li
- Department of Endocrinology and Metabolism, National Clinical Research Center for Metabolic Disease, Hunan Provincial Key Laboratory of Metabolic Bone Diseases, The Second Xiang-Ya Hospital, Central South University, Changsha, China
| | - Feng Xu
- Department of Endocrinology and Metabolism, National Clinical Research Center for Metabolic Disease, Hunan Provincial Key Laboratory of Metabolic Bone Diseases, The Second Xiang-Ya Hospital, Central South University, Changsha, China
| | - Xiao Lin
- Department of Radiology, The Second Xiang-Ya Hospital, Central South University, Changsha, China
| | - Feng Wu
- Department of Pathology, The Second Xiang-Ya Hospital, Central South University, Changsha, China
| | - Jia-Yu Zhong
- Department of Endocrinology and Metabolism, National Clinical Research Center for Metabolic Disease, Hunan Provincial Key Laboratory of Metabolic Bone Diseases, The Second Xiang-Ya Hospital, Central South University, Changsha, China
| | - Yi Wang
- Department of Endocrinology and Metabolism, National Clinical Research Center for Metabolic Disease, Hunan Provincial Key Laboratory of Metabolic Bone Diseases, The Second Xiang-Ya Hospital, Central South University, Changsha, China
| | - Bei Guo
- Department of Endocrinology and Metabolism, National Clinical Research Center for Metabolic Disease, Hunan Provincial Key Laboratory of Metabolic Bone Diseases, The Second Xiang-Ya Hospital, Central South University, Changsha, China
| | - Ming-Hui Zheng
- Department of Endocrinology and Metabolism, National Clinical Research Center for Metabolic Disease, Hunan Provincial Key Laboratory of Metabolic Bone Diseases, The Second Xiang-Ya Hospital, Central South University, Changsha, China
| | - Su-Kang Shan
- Department of Endocrinology and Metabolism, National Clinical Research Center for Metabolic Disease, Hunan Provincial Key Laboratory of Metabolic Bone Diseases, The Second Xiang-Ya Hospital, Central South University, Changsha, China
| | - Ling-Qing Yuan
- Department of Endocrinology and Metabolism, National Clinical Research Center for Metabolic Disease, Hunan Provincial Key Laboratory of Metabolic Bone Diseases, The Second Xiang-Ya Hospital, Central South University, Changsha, China
- *Correspondence: Ling-Qing Yuan
| |
Collapse
|
70
|
Bach FC, de Rooij KM, Riemers FM, Snuggs JW, de Jong WAM, Zhang Y, Creemers LB, Chan D, Le Maitre C, Tryfonidou MA. Hedgehog proteins and parathyroid hormone-related protein are involved in intervertebral disc maturation, degeneration, and calcification. JOR Spine 2019; 2:e1071. [PMID: 31891120 PMCID: PMC6920702 DOI: 10.1002/jsp2.1071] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 10/18/2019] [Accepted: 10/22/2019] [Indexed: 12/22/2022] Open
Abstract
Parathyroid hormone-related protein (PTHrP) and hedgehog signaling play an important role in chondrocyte development, (hypertrophic) differentiation, and/or calcification, but their role in intervertebral disc (IVD) degeneration is unknown. Better understanding their involvement may provide therapeutic clues for low back pain due to IVD degeneration. Therefore, this study aimed to explore the role of PTHrP and hedgehog proteins in postnatal canine and human IVDs during the aging/degenerative process. The expression of PTHrP, hedgehog proteins and related receptors was studied during the natural loss of the notochordal cell (NC) phenotype during IVD maturation using tissue samples and de-differentiation in vitro and degeneration by real-time quantitative polymerase chain reaction (RT-qPCR) and immunohistochemistry. Correlations between their expression and calcification levels (Alizarin Red S staining) were determined. In addition, the effect of PTHrP and hedgehog proteins on canine and human chondrocyte-like cells (CLCs) was determined in vitro focusing on the propensity to induce calcification. The expression of PTHrP, its receptor (PTHR1) and hedgehog receptors decreased during loss of the NC phenotype. N-terminal (active) hedgehog (Indian hedgehog/Sonic hedgehog) protein expression did not change during maturation or degeneration, whereas expression of PTHrP, PTHR1 and hedgehog receptors increased during IVD degeneration. Hedgehog and PTHR1 immunopositivity were increased in nucleus pulposus tissue with abundant vs no/low calcification. In vitro, hedgehog proteins facilitated calcification in CLCs, whereas PTHrP did not affect calcification levels. In conclusion, hedgehog and PTHrP expression is present in healthy and degenerated IVDs. Hedgehog proteins had the propensity to induce calcification in CLCs from degenerated IVDs, indicating that in the future, inhibiting hedgehog signaling could be an approach to inhibit calcification during IVD degeneration.
Collapse
Affiliation(s)
- Frances C. Bach
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary MedicineUtrecht UniversityUtrechtThe Netherlands
| | - Kim M. de Rooij
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary MedicineUtrecht UniversityUtrechtThe Netherlands
| | - Frank M. Riemers
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary MedicineUtrecht UniversityUtrechtThe Netherlands
| | - Joseph W. Snuggs
- Biomolecular Sciences Research Centre, Sheffield Hallam UniversitySheffieldUK
| | - Willem A. M. de Jong
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary MedicineUtrecht UniversityUtrechtThe Netherlands
| | - Ying Zhang
- School of Biomedical SciencesThe University of Hong KongPokfulamHong Kong
| | - Laura B. Creemers
- Department of OrthopaedicsUniversity Medical Center UtrechtUtrechtThe Netherlands
| | - Danny Chan
- School of Biomedical SciencesThe University of Hong KongPokfulamHong Kong
| | - Christine Le Maitre
- Biomolecular Sciences Research Centre, Sheffield Hallam UniversitySheffieldUK
| | - Marianna A. Tryfonidou
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary MedicineUtrecht UniversityUtrechtThe Netherlands
| |
Collapse
|
71
|
Binch ALA, Richardson SM, Hoyland JA, Barry FP. Combinatorial conditioning of adipose derived-mesenchymal stem cells enhances their neurovascular potential: Implications for intervertebral disc degeneration. JOR Spine 2019; 2:e1072. [PMID: 31891121 PMCID: PMC6920684 DOI: 10.1002/jsp2.1072] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 10/26/2019] [Accepted: 10/30/2019] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Mesenchymal stem cells (MSCs) are becoming an increasingly attractive option for regenerative therapies due to their availability, self-renewal capacity, multilineage potential, and anti-inflammatory properties. Clinical trials are underway to test the efficacy of stem cell-based therapies for the repair and regeneration of the degenerate intervertebral disc (IVD), a major cause of back pain. Recently, both bone marrow-derived MSCs and adipose-derived stem cells (ASCs) have been assessed for IVD therapy but there is a lack of knowledge surrounding the optimal cell source and the response of transplanted cells to the low oxygen, pro-inflammatory niche of the degenerate disc. Here, we investigated several neurovascular factors from donor-matched MSCs and ASCs that may potentiate the survival and persistence of sensory nerve fibers and blood vessels present within painful degenerate discs and their regulation by oxygen tensions and inflammatory cytokines. METHODS Donor-matched ASCs and MSCs were conditioned with either IL-1β or TNFα under normoxic (21% O2) or hypoxic (5% O2) conditions. Expression and secretion of several potent neurovascular factors were assessed using qRT-PCR and human magnetic Luminex assay. RESULTS ASCs and MSCs expressed constitutive levels of key neurotrophic factors; and stimulation of ASCs with hypoxia triggered increased secretion of both angiogenic factors (Ang-2 and VEGF-A) and neurotrophic (NGF and NT-3) compared to MSCs. We also report increased transcriptional regulation of pain-associated neuropeptides in hypoxia stimulated ASCs compared to those in normoxic conditions. We demonstrate transcriptional and translational upregulation of NGF, NT-3, Ang-1, and FGF-2 in response to cytokines in ASCs in 21% and 5% O2. CONCLUSIONS This work highlights fundamental differences between the neurovascular secretome of donor-matched ASCs and MSCs, demonstrating the importance of cell-selection for tissue specific regeneration to reduce ectopic sensory nerve and blood vessel survival and improve patient outcomes.
Collapse
Affiliation(s)
- Abbie. L. A. Binch
- Regenerative Medicine Institute (REMEDI), National University of Ireland Galway (NUI Galway)GalwayIreland
| | - Stephen M. Richardson
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and HealthManchester Academic Health Sciences Centre, University of ManchesterManchesterUK
| | - Judith A. Hoyland
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and HealthManchester Academic Health Sciences Centre, University of ManchesterManchesterUK
- NIHR Manchester Biomedical Research Centre, Central Manchester Foundation Trust, Manchester Academic Health Science CentreManchesterUK
| | - Frank P. Barry
- Regenerative Medicine Institute (REMEDI), National University of Ireland Galway (NUI Galway)GalwayIreland
| |
Collapse
|
72
|
Interaction between Mesenchymal Stem Cells and Intervertebral Disc Microenvironment: From Cell Therapy to Tissue Engineering. Stem Cells Int 2019; 2019:2376172. [PMID: 32587618 PMCID: PMC7294366 DOI: 10.1155/2019/2376172] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Revised: 07/20/2019] [Accepted: 08/19/2019] [Indexed: 12/13/2022] Open
Abstract
Low back pain (LBP) in one of the most disabling symptoms affecting nearly 80% of the population worldwide. Its primary cause seems to be intervertebral disc degeneration (IDD): a chronic and progressive process characterized by loss of viable cells and extracellular matrix (ECM) breakdown within the intervertebral disc (IVD) especially in its inner region, the nucleus pulposus (NP). Over the last decades, innovative biological treatments have been investigated in order to restore the original healthy IVD environment and achieve disc regeneration. Mesenchymal stem cells (MSCs) have been widely exploited in regenerative medicine for their capacity to be easily harvested and be able to differentiate along the osteogenic, chondrogenic, and adipogenic lineages and to secrete a wide range of trophic factors that promote tissue homeostasis along with immunomodulation and anti-inflammation. Several in vitro and preclinical studies have demonstrated that MSCs are able to acquire a NP cell-like phenotype and to synthesize structural components of the ECM as well as trophic and anti-inflammatory mediators that may support resident cell activity. However, due to its unique anatomical location and function, the IVD presents distinctive features: avascularity, hypoxia, low glucose concentration, low pH, hyperosmolarity, and mechanical loading. Such conditions establish a hostile microenvironment for both resident and exogenously administered cells, which limited the efficacy of intradiscal cell therapy in diverse investigations. This review is aimed at describing the characteristics of the healthy and degenerated IVD microenvironment and how such features influence both resident cells and MSC viability and biological activity. Furthermore, we focused on how recent research has tried to overcome the obstacles coming from the IVD microenvironment by developing innovative cell therapies and functionalized bioscaffolds.
Collapse
|
73
|
Vickers L, Thorpe AA, Snuggs J, Sammon C, Le Maitre CL. Mesenchymal stem cell therapies for intervertebral disc degeneration: Consideration of the degenerate niche. JOR Spine 2019; 2:e1055. [PMID: 31463465 PMCID: PMC6686825 DOI: 10.1002/jsp2.1055] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 05/08/2019] [Indexed: 02/06/2023] Open
Abstract
We have previously reported a synthetic Laponite crosslinked poly N-isopropylacrylamide-co-N, N'-dimethylacrylamide (NPgel) hydrogel, which induces nucleus pulposus (NP) cell differentiation of human mesenchymal stem cells (hMSCs) without the need for additional growth factors. Furthermore NP gel supports integration following injection into the disc and restores mechanical function to the disc. However, translation of this treatment strategy into clinical application is dependent on the survival and differentiation of hMSC to the correct cell phenotype within the degenerate intervertebral disc (IVD). Here, we investigated the viability and differentiation of hMSCs within NP gel within a catabolic microenvironment. hMSCs were encapsulated in NPgel and cultured for 4 weeks under hypoxia (5% O2) with ± calcium, interleukin-1β (IL-1β), and tumor necrosis factor alpha (TNFα) either individually or in combination to mimic the degenerate environment. Cell viability and cellular phenotype were investigated. Stem cell viability was maintained within hydrogel systems for the 4 weeks investigated under all degenerate conditions. NP matrix markers: Agg and Col II and NP phenotypic markers: HIF-1α, FOXF1, and PAX1 were expressed within the NPgel cultures and expression was not affected by culture within degenerate conditions. Alizarin red staining demonstrated increased calcium deposition under cultures containing CaCl2 indicating calcification of the matrix. Interestingly matrix metalloproteinases (MMPs), ADAMTS 4, and Col I expression by hMSCs cultured in NPgel was upregulated by calcium but not by proinflammatory cytokines IL-1β and TNFα. Importantly IL-1β and TNFα, regarded as key contributors to disc degeneration, were not shown to affect the NP cell differentiation of mesenchymal stem cells (MSCs) in the NPgel. In agreement with our previous findings, NPgel alone was sufficient to induce NP cell differentiation of MSCs, with expression of both aggrecan and collagen type II, under both standard and degenerate culture conditions; thus could provide a therapeutic option for the repair of the NP during IVD degeneration.
Collapse
Affiliation(s)
- Louise Vickers
- Biomolecular Sciences Research CentreSheffield Hallam UniversitySheffieldUK
| | - Abbey A. Thorpe
- Biomolecular Sciences Research CentreSheffield Hallam UniversitySheffieldUK
| | - Joseph Snuggs
- Biomolecular Sciences Research CentreSheffield Hallam UniversitySheffieldUK
| | - Christopher Sammon
- Materials and Engineering Research InstituteSheffield Hallam UniversitySheffieldUK
| | | |
Collapse
|
74
|
Whole blood transcriptomic profiles can differentiate vulnerability to chronic low back pain. PLoS One 2019; 14:e0216539. [PMID: 31095601 PMCID: PMC6522025 DOI: 10.1371/journal.pone.0216539] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 04/23/2019] [Indexed: 01/15/2023] Open
Abstract
The mechanisms underlying the transition from acute to chronic pain remain unclear. Here, we sought to characterize the transcriptome associated with chronic low back pain as well as the transcriptome of the transition from acute to chronic low back pain. For the analysis, we compared the whole blood transcriptome of: (a) patients at the onset of low back pain who no longer had pain within 6 weeks after onset (acute) with patients who developed chronic low back pain at 6 months (chronic T5); and, (b) patients at the onset of low back pain (chronic T1) who developed chronic pain at 6 months with healthy pain-free (normal) controls. The majority of differentially expressed genes were protein coding. We illustrate a unique chronic low back pain transcriptome characterized by significant enrichment for known pain genes, extracellular matrix genes, and genes from the extended major histocompatibility complex (MHC) genomic locus. The transcriptome of the transition from acute to chronic low back pain was characterized by significant upregulation of antigen presentation pathway (MHC class I and II) genes and downregulation of mitochondrial genes associated with oxidative phosphorylation, suggesting a unique genomic signature of vulnerability to low back pain chronicity.
Collapse
|
75
|
Rudnik-Jansen I, Tellegen A, Beukers M, Öner F, Woike N, Mihov G, Thies J, Meij B, Tryfonidou M, Creemers L. Safety of intradiscal delivery of triamcinolone acetonide by a poly(esteramide) microsphere platform in a large animal model of intervertebral disc degeneration. Spine J 2019; 19:905-919. [PMID: 31056104 DOI: 10.1016/j.spinee.2018.10.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 10/23/2018] [Accepted: 10/23/2018] [Indexed: 02/03/2023]
Abstract
BACKGROUND CONTEXT Local corticosteroids have been used to relieve symptoms of chronic low back pain, although treatment effects have been shown to wear off relatively fast. Prolonging corticosteroid presence by controlled release from biomaterials may allow for longer pain relief while circumventing adverse effects such as high bolus dosages. PURPOSE The purpose of this study was to evaluate the safety and efficacy of intradiscal controlled release of triamcinolone acetonide (TAA) by poly(esteramide) microspheres in a canine degenerated intervertebral disc (IVD) model. STUDY DESIGN In a preclinical experimental large animal model, the effect of prolonged glucocorticoid exposure on disc degeneration was evaluated. METHODS Degeneration was accelerated by nucleotomy of lumbar IVDs of Beagle dogs. After 4 weeks, microspheres loaded with 8.4 µg TAA, and 0.84mg TAA were administered to the degenerated IVDs by intradiscal injection (n=6 per group). Empty microspheres (n=6) and all adjacent non-nucleotomized noninjected IVDs were included as controls (n=24). Immediately prior to TAA administration and after 12 weeks, magnetic resonance imaging was performed. Degenerative changes were evaluated by disc height index, Pfirrmann grading, T1ρ and T2 mapping values, postmortem CT scans, macroscopic and microscopic grading, and biochemical/immunohistochemical analysis of inflammation and extracellular matrix content. In addition, nerve growth factor (NGF) protein expression, a biomarker for pain, was scored in nucleus pulposus (NP) tissues. The study was funded by a research grant from Health Holland (1.3million euros = 1.5million US dollars). RESULTS Macroscopic evaluation and CT images postmortem were consistent with mild disc degeneration. Other abnormalities were not observed. Nucleotomy-induced degeneration and inflammation was mild, reflected by moderate Pfirrmann grades and PGE2 levels. Regardless of TAA dosage, local sustained delivery did not affect disc height index nor Pfirrmann grading, T1ρ and T2 mapping values, PGE2 tissue levels, collagen, GAG, and DNA content. However, the low dosage of TAA microspheres significantly reduced NGF immunopositivity in degenerated NP tissue. CONCLUSIONS This is the first in vivo application in a preclinical large animal model of a controlled release formulation of corticosteroids in mild IVD degeneration. Sustained release of TAA locally in the IVD appeared safe and reduced NGF expression, suggesting its potential applicability for pain relief, although beneficial effects were absent on tissue degeneration. CLINICAL SIGNIFICANCE The present platform seems to be promising in extending the local controlled delivery of TAA with the potency to provide long-standing analgesia in the subset of LBP patients suffering from discogenic pain.
Collapse
Affiliation(s)
- Imke Rudnik-Jansen
- Department of Orthopaedics, University Medical Center Utrecht, HP G05.228, Postbus 85500, Heidelberglaan 100, 3508GA Utrecht, The Netherlands
| | - Anna Tellegen
- Department of Clinical Sciences of Companion Animals, Yalelaan 108, 3584 CM Utrecht, The Netherlands
| | - Martijn Beukers
- Department of Clinical Sciences of Companion Animals, Yalelaan 108, 3584 CM Utrecht, The Netherlands
| | - Fetullah Öner
- Department of Orthopaedics, University Medical Center Utrecht, HP G05.228, Postbus 85500, Heidelberglaan 100, 3508GA Utrecht, The Netherlands
| | - Nina Woike
- DSM Biomedical B.V., Koestraat 1, 6167 RA Geleen, The Netherlands
| | - George Mihov
- DSM Biomedical B.V., Koestraat 1, 6167 RA Geleen, The Netherlands
| | - Jens Thies
- DSM Biomedical B.V., Koestraat 1, 6167 RA Geleen, The Netherlands
| | - Björn Meij
- Department of Clinical Sciences of Companion Animals, Yalelaan 108, 3584 CM Utrecht, The Netherlands
| | - Marianna Tryfonidou
- Department of Clinical Sciences of Companion Animals, Yalelaan 108, 3584 CM Utrecht, The Netherlands
| | - Laura Creemers
- Department of Orthopaedics, University Medical Center Utrecht, HP G05.228, Postbus 85500, Heidelberglaan 100, 3508GA Utrecht, The Netherlands.
| |
Collapse
|
76
|
Electrical impulse effects on degenerative human annulus fibrosus model to reduce disc pain using micro-electrical impulse-on-a-chip. Sci Rep 2019; 9:5827. [PMID: 30967598 PMCID: PMC6456732 DOI: 10.1038/s41598-019-42320-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 03/29/2019] [Indexed: 02/06/2023] Open
Abstract
Electrical stimulation of cells and tissues for therapeutic benefit is a well-established method. Although animal studies can emulate the complexity of an organism’s physiology, lab-on-a-chip platforms provide a suitable primary model for follow-up animal studies. Thus, inexpensive and easy-to-use platforms for in vitro human cell studies are required. In the present study, we designed a micro-electrical impulse (micro-EI)-on-a-chip (micro-EI-chip), which can precisely control electron density and adjust the frequency based on a micro-EI. The micro-EI-chip can stimulate cells at various micro-EI densities (0–500 mV/mm) and frequencies (0–300 Hz), which enables multiple co-culture of different cell types with or without electrical stimulation. As a proof-of-concept study, a model involving degenerative inflamed human annulus fibrosus (hAF) cells was established in vitro and the effects of micro-EI on inflamed hAF cells were evaluated using the micro-EI-chip. Stimulation of the cells (150 mV/mm at 200 Hz) inhibited the secretion of inflammatory cytokines and downregulated the activities of extracellular matrix-modifying enzymes and matrix metalloproteinase-1. These results show that micro-EI stimulation could affect degenerative diseases based on inflammation, implicating the micro-EI-chip as being useful for basic research of electroceuticals.
Collapse
|
77
|
de Vries SA, van Doeselaar M, Meij BP, Tryfonidou MA, Ito K. Notochordal cell matrix: An inhibitor of neurite and blood vessel growth? J Orthop Res 2018; 36:3188-3195. [PMID: 30035331 PMCID: PMC6585673 DOI: 10.1002/jor.24114] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 07/16/2018] [Indexed: 02/04/2023]
Abstract
Blood vessel and neurite ingrowth into the degenerating intervertebral disc (IVD) are related to pain. In reported studies, notochordal cell (NC)-conditioned medium (NCCM) induced a regenerative response of nucleus pulposus (NP) cells, but also inhibition of neurite and vessel formation. NC matrix (NCM) derived from NC-rich NP tissue, induced even stronger anabolic effects than NCCM. Thus, the aim was to investigate whether NCM has similar anti-neurogenic and -angiogenic properties as NCCM. NCM and NCCM where produced from porcine NC-rich NP tissue. Human umbilical vein endothelial cells (HUVECs) were cultured in base medium (BM, 300 mOsm), NCCM (produced at 300 and 400 mOsm), NCM, or with chondroitin sulfate (CS, positive control) in angiogenesis-inducing medium, after which vessel length was measured. Although CS alone inhibited vessel growth, NCCM (both osmolarities) stimulated vessel formation by HUVECs. NCM did not affect vessel growth relative to BM. SH-SY5Y cells were cultured in BM, NCCM, and NCM on poly-D-lysine coated and polystyrene surfaces, and analyzed for neurite length and percentage of neurite expressing cells. On coated surfaces, neither NCCM nor NCM affected neurite growth. On a polystyrene surface, NCCM and NCM induced a higher number of neurite-expressing cells. NCCM's previously reported anti-angiogenic and -neurogenic effects were not observed in this study. Although addition of CS inhibited HUVEC vessel formation, other factors may be present in NCCM and NCM that affect neurite and vessel growth. Therefore, future studies testing an NC-based regenerative strategy should carefully assess the risk of such adverse effects in an in vivo setting. © 2018 The Authors. Journal of Orthopaedic Research® Published by Wiley Periodicals, Inc. J Orthop Res 36:3188-3195, 2018.
Collapse
Affiliation(s)
- Stefan A.H. de Vries
- Orthopaedic Biomechanics, Department of Biomedical EngineeringEindhoven University of TechnologyP.O. Box 513Eindhoventhe Netherlands
| | - Marina van Doeselaar
- Orthopaedic Biomechanics, Department of Biomedical EngineeringEindhoven University of TechnologyP.O. Box 513Eindhoventhe Netherlands
| | - Björn P. Meij
- Faculty of Veterinary Medicine, Department of Clinical Sciences of Companion AnimalsUtrecht UniversityUtrechtthe Netherlands
| | - Marianna A. Tryfonidou
- Faculty of Veterinary Medicine, Department of Clinical Sciences of Companion AnimalsUtrecht UniversityUtrechtthe Netherlands
| | - Keita Ito
- Orthopaedic Biomechanics, Department of Biomedical EngineeringEindhoven University of TechnologyP.O. Box 513Eindhoventhe Netherlands,Department of OrthopaedicsUniversity Medical CenterUtrechtthe Netherlands
| |
Collapse
|
78
|
Jiao Y, Yuan Y, Lin Y, Zhou Z, Zheng Y, Wu W, Tang G, Chen Y, Xiao J, Li C, Chen Z, Cao P. Propionibacterium acnes induces discogenic low back pain via stimulating nucleus pulposus cells to secrete pro-algesic factor of IL-8/CINC-1 through TLR2-NF-κB p65 pathway. J Mol Med (Berl) 2018; 97:25-35. [PMID: 30397790 DOI: 10.1007/s00109-018-1712-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 10/13/2018] [Accepted: 10/28/2018] [Indexed: 12/19/2022]
Abstract
Latent infection of Propionibacterium acnes was considered as a new pathogeny for low back pain (LBP); however, there is no credible animal evidence or mechanism hypothesis. This study proved that P. acnes is a causative pathogen of bacteria-induced LBP and investigated its underlying mechanism. For this, P. acnes was firstly identified in patients' degenerated intervertebral disc (IVDs) samples. The results of patients' Japanese Orthopaedic Association Back Pain Evaluation Questionnaire (JOABPEQ), Japanese Orthopaedic Association (JOA), and Oswestry Disability Index (ODI) scores indicated that P. acnes-positive patients showed more severe LBP and physical disability. Then, a P. acnes-inoculated lumbar IVDs model was established in rats. The results of paw/foot withdrawal threshold and qRT-PCR indicated that P. acnes-inoculated rats had obvious LBP in behavioral evaluation and over-expression of substance P (SP) and calcitonin gene-related peptide (CGRP) in IVDs. Subsequently, enzyme-linked immunosorbent assay (ELISA) results demonstrated that increased expression of IL-8 or CINC-1 (the homolog of IL-8 in rats) in the P. acnes-positive IVDs of human and rats. The CINC-1 injected animal model proved that the cytokines were able to induce LBP. Finally, the co-culture experiments showed that nucleus pulposus cells (NPCs) were able to respond to P. acnes and secreted IL-8/CINC-1 via TLR-2/NF-κB p65 pathway. In conclusion, P. acnes had strong association with LBP by stimulating NPCs to secrete pro-algesic factor of IL-8/CINC-1 via TLR2/NF-κBp65 pathway. The finding may provide a promising alternative therapy strategy for LBP in clinical. KEY MESSAGES: Patients with P. acnes-positive IVDs tended to have more severe LBP, physical disability, and increased IL-8 expressions. P. acnes can induce LBP via IL-8/CINC-1 in IVDs. P. acnes stimulate the NPCs to secrete pro-algesic factor of IL-8/CINC-1 via TLR2/NF-κBp65 pathway.
Collapse
Affiliation(s)
- Yucheng Jiao
- Department of Orthopedics, Ruijin Hospital, School of Medicine, Shanghai Jiaotong University, 197 Ruijin Er Road, Shanghai, 200025, China
- Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases with Integrated Chinese-Western Medicine, Shanghai Institute of Traumatology and Orthopedics, Ruijin Hospital, School of Medicine, Shanghai Jiaotong University, 197 Ruijin Er Road, Shanghai, 200025, China
| | - Ye Yuan
- Department of Orthopedics, Ruijin Hospital, School of Medicine, Shanghai Jiaotong University, 197 Ruijin Er Road, Shanghai, 200025, China
- Department of Orthopedics, Beijing Tsinghua Changgung Hospital, Tsinghua University, Beijing, 102218, China
| | - Yazhou Lin
- Department of Orthopedics, Ruijin Hospital, School of Medicine, Shanghai Jiaotong University, 197 Ruijin Er Road, Shanghai, 200025, China
- Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases with Integrated Chinese-Western Medicine, Shanghai Institute of Traumatology and Orthopedics, Ruijin Hospital, School of Medicine, Shanghai Jiaotong University, 197 Ruijin Er Road, Shanghai, 200025, China
| | - Zezhu Zhou
- Department of Orthopedic Surgery, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200092, China
| | - Yuehuan Zheng
- Department of Orthopedics, Ruijin Hospital North, School of Medicine, Shanghai Jiaotong University, Shanghai, 201800, China
| | - Wenjian Wu
- Department of Orthopedics, Ruijin Hospital, School of Medicine, Shanghai Jiaotong University, 197 Ruijin Er Road, Shanghai, 200025, China
| | - Guoqing Tang
- Kunshan Hospital of Traditional Chinese medicine, Kunshan, 215300, China
| | - Yong Chen
- Kunshan Hospital of Traditional Chinese medicine, Kunshan, 215300, China
| | - Jiaqi Xiao
- Department of Medical Microbiology and Parasitology, School of Medicine, Shanghai Jiaotong University, Shanghai, 200025, China
| | - Changwei Li
- Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases with Integrated Chinese-Western Medicine, Shanghai Institute of Traumatology and Orthopedics, Ruijin Hospital, School of Medicine, Shanghai Jiaotong University, 197 Ruijin Er Road, Shanghai, 200025, China.
| | - Zhe Chen
- Department of Orthopedics, Ruijin Hospital, School of Medicine, Shanghai Jiaotong University, 197 Ruijin Er Road, Shanghai, 200025, China.
- Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases with Integrated Chinese-Western Medicine, Shanghai Institute of Traumatology and Orthopedics, Ruijin Hospital, School of Medicine, Shanghai Jiaotong University, 197 Ruijin Er Road, Shanghai, 200025, China.
| | - Peng Cao
- Department of Orthopedics, Ruijin Hospital, School of Medicine, Shanghai Jiaotong University, 197 Ruijin Er Road, Shanghai, 200025, China.
- Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases with Integrated Chinese-Western Medicine, Shanghai Institute of Traumatology and Orthopedics, Ruijin Hospital, School of Medicine, Shanghai Jiaotong University, 197 Ruijin Er Road, Shanghai, 200025, China.
| |
Collapse
|
79
|
Yang G, Chen L, Gao Z, Wang Y. Implication of microglia activation and CSF-1/CSF-1Rpathway in lumbar disc degeneration-related back pain. Mol Pain 2018; 14:1744806918811238. [PMID: 30326776 PMCID: PMC6243401 DOI: 10.1177/1744806918811238] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Back pain is common and costly. Although lumbar disc degeneration has long been regarded as a major contributor to back pain, how disc degeneration leads to back pain remains unclear. Recent studies observed microglia activation in the spinal cord after disc degeneration, suggesting activated microglia may be involved in discogenic back pain. To determine whether microglia activation participates in disc degeneration-induced back pain, we used a modified disc puncture-induced degeneration-related back pain mouse model to examine the changes in spinal microglia and investigate the potential link between microglia activation and discogenic back pain. In this study, 46 CX3CR1GFP/+ male mice were used in experimental and sham groups. A modified posterolateral retroperitoneal approach was used to expose the L3/L4 disc to induce the needle puncture in the experimental group. Behavioral tests, including grip force and physical function, were used to measure back pain at pre- and postsurgery. The L3 dorsal root ganglions and lumbar spinal cord were obtained at postoperative weeks 1 to 4 followed by immunofluorescence with different antibodies. Micrographs were obtained by confocal microscopy, and morphometric measurements of microglia were analyzed using Imaris. The punctured disc underwent progressive degeneration and mice with disc degeneration showed impaired grip force and physical function. Compared to the control mice, the number of microglia in the lumbar spinal cord was significantly increased in the disc-punctured animals. Moreover, accumulated microglia exhibited larger soma size and lesser ramification in the disc-injured mice. Immunofluorescence demonstrated colony-stimulating factor 1, a cytokine that promotes microglia repopulation, was significantly increased in L3 dorsal root ganglions, whereas its receptor colony-stimulating factor 1 receptor was upregulated on microglia in the disc-injured mice. In summary, lumbar disc puncture caused progressive disc degeneration which induced microglia activation and back pain in mice. Increased colony-stimulating factor 1/colony-stimulating factor 1 receptor signaling is involved in the disc degeneration-induced microglia activation and back pain.
Collapse
Affiliation(s)
- Ge Yang
- 1 Spine Lab, Department of Orthopedic Surgery, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Lunhao Chen
- 1 Spine Lab, Department of Orthopedic Surgery, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhihua Gao
- 2 Department of Neurobiology, Institute of Neuroscience, National Health Commission and Chinese Academy of Medical Sciences Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, Hangzhou, China
| | - Yue Wang
- 1 Spine Lab, Department of Orthopedic Surgery, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
80
|
Werner JH, Rosenberg JH, Keeley KL, Agrawal DK. Immunobiology of periprosthetic inflammation and pain following ultra-high-molecular-weight-polyethylene wear debris in the lumbar spine. Expert Rev Clin Immunol 2018; 14:695-706. [PMID: 30099915 DOI: 10.1080/1744666x.2018.1511428] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
INTRODUCTION Wear debris-induced osteolysis is a common cause of arthroplasty failure in several joints including the knee, hip and intervertebral disc. Debris from the prosthesis can trigger an inflammatory response that leads to aseptic loosening and prosthesis failure. In the spine, periprosthetic pain also occurs following accumulation of wear debris through neovascularization of the disc. The role of the immune system in the pathobiology of periprosthetic osteolysis of joint replacements is debatable. Areas covered: We discussed the stimulation of pro-inflammatory and pro-protective and pro-regenerative pathways due to debris from the prosthetics. The balance between the two pathways may determine the outcome results. Also, the role of cytokines and immune cells in periprosthetic inflammation in the etiology of osteolysis is critically reviewed. Expert commentary: Therapies targeting the inflammatory process associated with ultra-high-molecular-weight polyethylene wear debris could reduce implant failure. Additionally, therapies targeting neovascularization of discs following arthroplasty could mitigate periprosthetic pain.
Collapse
Affiliation(s)
- John H Werner
- a Department of Clinical and Translational Science , Creighton University School of Medicine , Omaha , NE , USA
| | - John H Rosenberg
- a Department of Clinical and Translational Science , Creighton University School of Medicine , Omaha , NE , USA
| | - Kristen L Keeley
- a Department of Clinical and Translational Science , Creighton University School of Medicine , Omaha , NE , USA
| | - Devendra K Agrawal
- a Department of Clinical and Translational Science , Creighton University School of Medicine , Omaha , NE , USA
| |
Collapse
|
81
|
Bonavita R, Vincent K, Pinelli R, Dahia CL. Formation of the sacrum requires down-regulation of sonic hedgehog signaling in the sacral intervertebral discs. Biol Open 2018; 7:bio.035592. [PMID: 29784673 PMCID: PMC6078355 DOI: 10.1242/bio.035592] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
In humans, the sacrum forms an important component of the pelvic arch, and it transfers the weight of the body to the lower limbs. The sacrum is formed by collapse of the intervertebral discs (IVDs) between the five sacral vertebrae during childhood, and their fusion to form a single bone. We show that collapse of the sacral discs in the mouse is associated with the down-regulation of sonic hedgehog (SHH) signaling in the nucleus pulposus (NP) of the disc, and many aspects of this phenotype can be reversed by experimental postnatal activation of hedgehog (HH) signaling. We have previously shown that SHH signaling is essential for the normal postnatal growth and differentiation of intervertebral discs elsewhere in the spine, and that loss of SHH signaling leads to pathological disc degeneration, a very common disorder of aging. Thus, loss of SHH is pathological in one region of the spine but part of normal development in another. Summary: Loss of SHH signaling is associated with the collapse of the sacral discs and formation of the sacrum. Conditional reactivation of SHH re-awakens the sacral disc, suggesting its potential for disc regeneration.
Collapse
Affiliation(s)
- Raffaella Bonavita
- Orthopaedic Soft Tissue Research Program, Hospital for Special Surgery, New York, NY 10021, USA
| | - Kathleen Vincent
- Orthopaedic Soft Tissue Research Program, Hospital for Special Surgery, New York, NY 10021, USA
| | - Robert Pinelli
- Orthopaedic Soft Tissue Research Program, Hospital for Special Surgery, New York, NY 10021, USA
| | - Chitra Lekha Dahia
- Orthopaedic Soft Tissue Research Program, Hospital for Special Surgery, New York, NY 10021, USA .,Department of Cell and Developmental Biology, Weill Cornell Medical College, New York, NY 10065, USA
| |
Collapse
|
82
|
Navone SE, Peroglio M, Guarnaccia L, Beretta M, Grad S, Paroni M, Cordiglieri C, Locatelli M, Pluderi M, Rampini P, Campanella R, Alini M, Marfia G. Mechanical loading of intervertebral disc modulates microglia proliferation, activation, and chemotaxis. Osteoarthritis Cartilage 2018; 26:978-987. [PMID: 29723636 DOI: 10.1016/j.joca.2018.04.013] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 04/10/2018] [Accepted: 04/20/2018] [Indexed: 02/02/2023]
Abstract
OBJECTIVE The aim of the study is to assess the effects of the neuroinflammatory microenvironment of a mechanically-induced degenerating intervertebral disc (IVD) on neuroinflammatory like cells such as microglia, in order to comprehend the role of microglial cells in degenerative disc disease. METHODS Bovine caudal IVDs were kept in culture in an ex vivo bioreactor under high frequency loading and limited nutrition or in free swelling conditions as control samples. Conditioned media (CM) were collected, analysed for cytokine and neurotrophin content and applied to microglial cells for neuroinflammatory activation assessment. RESULTS Degenerative conditioned medium (D-CM) induced a higher production of interleukin (IL)-8, nerve growth factor (NGF), interferon (IFN)-γ, IL-17 from IVD cells than unloaded control conditioned medium (U-CM). Upon 48 h of co-incubation with microglia, D-CM stimulated microglia proliferation, activation, with increased expression of ionized calcium binding adaptor molecule 1 (IBA1) and CD68, and chemotaxis. Moreover, an increment of nitrite production was observed. Interestingly, D-CM caused an upregulation of IL-1β, IL-6, tumour necrosis factor α (TNFα), inducible NO synthase (iNOS), IBA1, and vascular endothelial growth factor (VEGF) genes in microglia. Similar results were obtained when microglia were treated with the combination of the measured cytokines. CONCLUSIONS Our findings show that in IVD degenerative microenvironment, IL-8, NGF, IFN-γ, IL-17 drive activation of microglia in the spinal cord and increase upregulation of neuroinflammatory markers. This, in turn, enhances the inflammatory milieu within IVD tissues and in the peridiscal space, aggravating the cascade of degenerative events. This study provides evidence for an important role of microglia in maintaining IVD neuroinflammatory microenvironment and probably inducing low back pain.
Collapse
Affiliation(s)
- S E Navone
- Laboratory of Experimental Neurosurgery and Cell Therapy, Neurosurgery Unit, Fondazione IRCCS Ca'Granda Ospedale Maggiore Policlinico, University of Milan, Milan, Italy
| | - M Peroglio
- AO Research Institute Davos, Davos, Switzerland
| | - L Guarnaccia
- Laboratory of Experimental Neurosurgery and Cell Therapy, Neurosurgery Unit, Fondazione IRCCS Ca'Granda Ospedale Maggiore Policlinico, University of Milan, Milan, Italy
| | - M Beretta
- Laboratory of Experimental Neurosurgery and Cell Therapy, Neurosurgery Unit, Fondazione IRCCS Ca'Granda Ospedale Maggiore Policlinico, University of Milan, Milan, Italy
| | - S Grad
- AO Research Institute Davos, Davos, Switzerland
| | - M Paroni
- Istituto Nazionale di Genetica Molecolare "Romeo ed Enrica Invernizzi," Milan, Italy
| | - C Cordiglieri
- Istituto Nazionale di Genetica Molecolare "Romeo ed Enrica Invernizzi," Milan, Italy
| | - M Locatelli
- Laboratory of Experimental Neurosurgery and Cell Therapy, Neurosurgery Unit, Fondazione IRCCS Ca'Granda Ospedale Maggiore Policlinico, University of Milan, Milan, Italy
| | - M Pluderi
- Laboratory of Experimental Neurosurgery and Cell Therapy, Neurosurgery Unit, Fondazione IRCCS Ca'Granda Ospedale Maggiore Policlinico, University of Milan, Milan, Italy
| | - P Rampini
- Laboratory of Experimental Neurosurgery and Cell Therapy, Neurosurgery Unit, Fondazione IRCCS Ca'Granda Ospedale Maggiore Policlinico, University of Milan, Milan, Italy
| | - R Campanella
- Laboratory of Experimental Neurosurgery and Cell Therapy, Neurosurgery Unit, Fondazione IRCCS Ca'Granda Ospedale Maggiore Policlinico, University of Milan, Milan, Italy
| | - M Alini
- AO Research Institute Davos, Davos, Switzerland
| | - G Marfia
- Laboratory of Experimental Neurosurgery and Cell Therapy, Neurosurgery Unit, Fondazione IRCCS Ca'Granda Ospedale Maggiore Policlinico, University of Milan, Milan, Italy.
| |
Collapse
|
83
|
Capossela S, Pavlicek D, Bertolo A, Landmann G, Stoyanov JV. Unexpectedly decreased plasma cytokines in patients with chronic back pain. J Pain Res 2018; 11:1191-1198. [PMID: 29950891 PMCID: PMC6016579 DOI: 10.2147/jpr.s153872] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Introduction Chronic back pain is one of the most important socioeconomic problems that affects the global population. Elevated levels of inflammatory mediators, such as cytokines, have been correlated with pain, but their role in chronic back pain remains unclear. The effectiveness of anti-inflammatory drugs seems to be limited for chronic back pain. The authors wanted to investigate the levels of inflammatory mediators in long-term medically treated patients with persistent chronic back pain. Methods Cytokine plasma levels of patients with chronic back pain (n=23), compared to pain-free healthy controls (n=30), were investigated by immunoassay. Patients with chronic back pain were exposed to long-term conservative medical therapy with physiotherapy and anti-inflammatories, also combined with antidepressants and/or muscle-relaxants. Results The patients with chronic back pain expressed lower levels of the chemokines MCP1, CCL5, and CXCL6 compared to pain-free healthy controls. Significantly lower concentrations of the anti-inflammatory cytokines, interleukin (IL)-4 and granulocyte-colony stimulating factor were also found. Interestingly, levels of proinflammatory cytokines (IL-2, IL-6, IL-1β, tumor necrosis factor alpha), IL-10, granulocyte-macrophage colony-stimulating factor, and stromal cell-derived factor 1 alpha showed no significant differences between both groups. Conclusion This decrease of inflammatory mediators in medically treated patients with chronic back pain is of unclear origin and might be either a long-term side effect of medical therapy or related to chronic pain. Further longitudinal research is necessary to elucidate the underlying cause of these findings.
Collapse
Affiliation(s)
| | | | | | - Gunther Landmann
- Centre for Pain Medicine, Swiss Paraplegic Centre, Nottwil, Switzerland
| | | |
Collapse
|
84
|
Capossela S, Bertolo A, Gunasekera K, Pötzel T, Baur M, Stoyanov JV. VEGF vascularization pathway in human intervertebral disc does not change during the disc degeneration process. BMC Res Notes 2018; 11:333. [PMID: 29784013 PMCID: PMC5963106 DOI: 10.1186/s13104-018-3441-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Accepted: 05/11/2018] [Indexed: 12/30/2022] Open
Abstract
Objective During degeneration of the intervertebral disc ingrowth of blood vessels and nerves into the disc are associated with back pain. Vascular endothelial growth factors promote vasculogenesis by binding to the membrane vascular endothelial growth factor receptor 1, while shorter soluble forms of this receptor can inhibit vascularization. We hypothesized that membrane and soluble receptor forms might change between stages of intervertebral disc degeneration. Results Expression of soluble and membrane forms of vascular endothelial growth factor receptor 1 in human degenerated intervertebral discs and healthy bovine caudal discs was assessed by qRT-PCR and immunoblot. Comparative microarray meta-analysis across disc degeneration grades showed that membrane and soluble forms of this receptor, together with other components of classic vascularization pathways, are constitutively expressed across human disc degeneration stages. Contrary to our hypothesis, we observed that expression of the classic vascularization pathway is stable across degeneration stages and we assume that soluble vascular endothelial growth factor receptor 1 does not contribute to prevent disc degeneration. However, we observed increased expression levels of genes involved in alternative vascularization signalling pathways in severely degenerated discs, suggesting that abnormal vascularization is part of the pathological progression of disc degeneration. Electronic supplementary material The online version of this article (10.1186/s13104-018-3441-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Simona Capossela
- Biomedical Laboratories, Swiss Paraplegic Research, 6207, Nottwil, Switzerland
| | - Alessandro Bertolo
- Biomedical Laboratories, Swiss Paraplegic Research, 6207, Nottwil, Switzerland
| | - Kapila Gunasekera
- Biomedical Laboratories, Swiss Paraplegic Research, 6207, Nottwil, Switzerland
| | | | - Martin Baur
- Swiss Paraplegic Centre, Nottwil, Switzerland.,Cantonal Hospital of Lucerne, Lucerne, Switzerland
| | - Jivko V Stoyanov
- Biomedical Laboratories, Swiss Paraplegic Research, 6207, Nottwil, Switzerland.
| |
Collapse
|
85
|
Lama P, Le Maitre CL, Harding IJ, Dolan P, Adams MA. Nerves and blood vessels in degenerated intervertebral discs are confined to physically disrupted tissue. J Anat 2018; 233:86-97. [PMID: 29708266 DOI: 10.1111/joa.12817] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/02/2018] [Indexed: 12/18/2022] Open
Abstract
Nerves and blood vessels are found in the peripheral annulus and endplates of healthy adult intervertebral discs. Degenerative changes can allow these vessels to grow inwards and become associated with discogenic pain, but it is not yet clear how far, and why, they grow in. Previously we have shown that physical disruption of the disc matrix, which is a defining feature of disc degeneration, creates free surfaces which lose proteoglycans and water, and so become physically and chemically conducive to cell migration. We now hypothesise that blood vessels and nerves in degenerated discs are confined to such disrupted tissue. Whole lumbar discs were obtained from 40 patients (aged 37-75 years) undergoing surgery for disc herniation, disc degeneration with spondylolisthesis or adolescent scoliosis ('non-degenerated' controls). Thin (5-μm) sections were stained with H&E and toluidine blue for semi-quantitative assessment of blood vessels, fissures and proteoglycan loss. Ten thick (30-μm) frozen sections from each disc were immunostained for CD31 (an endothelial cell marker), PGP 9.5 and Substance P (general and nociceptive nerve markers, respectively) and examined by confocal microscopy. Volocity image analysis software was used to calculate the cross-sectional area of each labelled structure, and its distance from the nearest free surface (disc periphery or internal fissure). Results showed that nerves and blood vessels were confined to proteoglycan-depleted regions of disrupted annulus. The maximum distance of any blood vessel or nerve from the nearest free surface was 888 and 247 μm, respectively. Blood vessels were greater in number, grew deeper, and occupied more area than nerves. The density of labelled blood vessels and nerves increased significantly with Pfirrmann grade of disc degeneration and with local proteoglycan loss. Analysing multiple thick sections with fluorescent markers on a confocal microscope allows reliable detection of thin filamentous structures, even within a dense matrix. We conclude that, in degenerated and herniated discs, blood vessels and nerves are confined to proteoglycan-depleted regions of disrupted tissue, especially within annulus fissures.
Collapse
Affiliation(s)
- Polly Lama
- Department of Orthopaedic Surgery, McGill University, Montreal, QC, Canada
| | | | | | - Patricia Dolan
- Centre for Applied Anatomy, University of Bristol, Bristol, UK
| | - Michael A Adams
- Centre for Applied Anatomy, University of Bristol, Bristol, UK
| |
Collapse
|
86
|
Boisson M, Lefèvre-Colau MM, Rannou F, Nguyen C. Active discopathy: a clinical reality. RMD Open 2018; 4:e000660. [PMID: 29682329 PMCID: PMC5905838 DOI: 10.1136/rmdopen-2018-000660] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Revised: 03/21/2018] [Accepted: 03/26/2018] [Indexed: 12/19/2022] Open
Abstract
In the late 1980s, the description by Modic and colleagues of elementary discovertebral changes detected on MRI (Modic classification) suggested for the first time a possible correlation between anatomical and clinical features in a subgroup of patients with non-specific chronic low back pain. Degenerative disc disease is frequent and usually asymptomatic, but Modic 1 changes in the vertebral endplates adjacent to a degenerated disc are associated with inflammatory-like chronic low back pain and low-grade local and systemic inflammation, which led to the concept of ‘active discopathy’. Active discopathy shares some similarities with acute flares of peripheral osteoarthritis. Likewise, what triggers disc activation and how it self-limits remain unknown. A better understanding of mechanisms underlying disc activation and its self-limitation is of clinical relevance because it may enable the design of more targeted pharmacological and non-pharmacological interventions for the subgroup of patients with chronic low back pain and active discopathy. Here, we narratively review current disc-centred biomechanical and biochemical hypotheses of disc activation and discuss evidence of interactions with adverse personal and environmental factors.
Collapse
Affiliation(s)
- Margaux Boisson
- AP-HP, Service de Rééducation et de Réadaptation de l'Appareil Locomoteur et des Pathologies du Rachis, Hôpitaux Universitaires Paris Centre-Groupe Hospitalier Cochin, Paris, France
| | - Marie-Martine Lefèvre-Colau
- AP-HP, Service de Rééducation et de Réadaptation de l'Appareil Locomoteur et des Pathologies du Rachis, Hôpitaux Universitaires Paris Centre-Groupe Hospitalier Cochin, Paris, France.,Faculté de Médecine de Paris Descartes, Université Paris Descartes, Sorbonne Paris Cité, Paris, France.,ECaMO Team, INSERM UMR 1153, Centre de Recherche Épidémiologie et Statistique, Sorbonne Paris Cité, Paris, France.,Institut Fédératif de Recherche sur le Handicap, Paris, France
| | - François Rannou
- AP-HP, Service de Rééducation et de Réadaptation de l'Appareil Locomoteur et des Pathologies du Rachis, Hôpitaux Universitaires Paris Centre-Groupe Hospitalier Cochin, Paris, France.,Faculté de Médecine de Paris Descartes, Université Paris Descartes, Sorbonne Paris Cité, Paris, France.,Laboratoire de Pharmacologie, Toxicologie et Signalisation Cellulaire, Faculté des Sciences Fondamentales et Biomédicales, INSERM UMR 1124, UFR Biomédicale des Saints-Pères, Paris, France
| | - Christelle Nguyen
- AP-HP, Service de Rééducation et de Réadaptation de l'Appareil Locomoteur et des Pathologies du Rachis, Hôpitaux Universitaires Paris Centre-Groupe Hospitalier Cochin, Paris, France.,Faculté de Médecine de Paris Descartes, Université Paris Descartes, Sorbonne Paris Cité, Paris, France.,Laboratoire de Pharmacologie, Toxicologie et Signalisation Cellulaire, Faculté des Sciences Fondamentales et Biomédicales, INSERM UMR 1124, UFR Biomédicale des Saints-Pères, Paris, France
| |
Collapse
|
87
|
Tellegen AR, Willems N, Beukers M, Grinwis GCM, Plomp SGM, Bos C, van Dijk M, de Leeuw M, Creemers LB, Tryfonidou MA, Meij BP. Intradiscal application of a PCLA-PEG-PCLA hydrogel loaded with celecoxib for the treatment of back pain in canines: What's in it for humans? J Tissue Eng Regen Med 2018; 12:642-652. [PMID: 28544701 DOI: 10.1002/term.2483] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Revised: 05/02/2017] [Accepted: 05/13/2017] [Indexed: 12/19/2022]
Abstract
Chronic low back pain is a common clinical problem in both the human and canine population. Current pharmaceutical treatment often consists of oral anti-inflammatory drugs to alleviate pain. Novel treatments for degenerative disc disease focus on local application of sustained released drug formulations. The aim of this study was to determine safety and feasibility of intradiscal application of a poly(ε-caprolactone-co-lactide)-b-poly(ethylene glycol)-bpoly(ε-caprolactone-co-lactide) PCLA-PEG-PCLA hydrogel releasing celecoxib, a COX-2 inhibitor. Biocompatibility was evaluated after subcutaneous injection in mice, and safety of intradiscal injection of the hydrogel was evaluated in experimental dogs with early spontaneous intervertebral disc (IVD) degeneration. COX-2 expression was increased in IVD samples surgically obtained from canine patients, indicating a role of COX-2 in clinical IVD disease. Ten client-owned dogs with chronic low back pain related to IVD degeneration received an intradiscal injection with the celecoxib-loaded hydrogel. None of the dogs showed adverse reactions after intradiscal injection. The hydrogel did not influence magnetic resonance imaging signal at long-term follow-up. Clinical improvement was achieved by reduction of back pain in 9 of 10 dogs, as was shown by clinical examination and owner questionnaires. In 3 of 10 dogs, back pain recurred after 3 months. This study showed the safety and effectiveness of intradiscal injections in vivo with a thermoresponsive PCLA-PEG-PCLA hydrogel loaded with celecoxib. In this set-up, the dog can be used as a model for the development of novel treatment modalities in both canine and human patients with chronic low back pain.
Collapse
Affiliation(s)
- Anna R Tellegen
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Nicole Willems
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Martijn Beukers
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Guy C M Grinwis
- Department of Pathobiology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Saskia G M Plomp
- Department of Orthopaedic Surgery, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Clemens Bos
- Imaging Division, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | | | - Laura B Creemers
- Department of Orthopaedic Surgery, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Marianna A Tryfonidou
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Björn P Meij
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
88
|
Feng C, Zhang Y, Yang M, Lan M, Huang B, Liu H, Zhou Y. Transcriptome and alternative splicing analysis of nucleus pulposus cells in response to high oxygen tension: Involvement of high oxygen tension in the pathogenesis of intervertebral disc degeneration. Int J Mol Med 2018; 41:3422-3432. [PMID: 29512703 PMCID: PMC5881661 DOI: 10.3892/ijmm.2018.3523] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 02/22/2018] [Indexed: 12/31/2022] Open
Abstract
High oxygen tension caused by neovascularization in the microenvironment of intervertebral discs (IVDs) is associated with the pathogenesis of IVD degeneration (IDD). Pre-mRNAs undergo alternative splicing (AS) to produce structurally and functionally diverse mRNA and proteins. However, the precise role of high oxygen tension in IDD and the relationship between AS and high oxygen tension in disc cells remain unknown. To investigate the effect of high oxygen tension on disc cells, Affymetrix Rat Transcriptome Array 1.0 was used to determine differentially expressed genes (DEGs) and alternative splicing genes (ASGs) in rat nucleus pulposus (NP) cells treated with 20% O2. NP cells at 1% O2 served as the control. PCR was used for validation. GO and KEGG pathway analysis was performed. Furthermore, the reactive oxygen species (ROS) production, growth, cell cycle and matrix metabolism of NP cells were also investigated. In total, 2499 DEGs and 8451 ASGs were identified. Various GO terms and KEGG pathways were potently associated with IDD, including autophagy, mTOR signaling pathway and angiogenesis. Especially, high oxygen tension increased ROS production in NP cells. It also accelerated the matrix metabolism of NP cells and induced NP cell cycle arrest to retard cell growth. This study, for the first time, analyzes the transcriptome and AS of NP cells in response to high oxygen tension, indicating that high oxygen tension is involved in the establishment and progression of IDD through its wide effects on the viability and function of disc cells.
Collapse
Affiliation(s)
- Chencheng Feng
- Department of Orthopedics, Xinqiao Hospital, The Third Military Medical University, Chongqing 400037, P.R. China
| | - Yang Zhang
- Department of Orthopedics, Xinqiao Hospital, The Third Military Medical University, Chongqing 400037, P.R. China
| | - Minghui Yang
- Department of Orthopedics, Xinqiao Hospital, The Third Military Medical University, Chongqing 400037, P.R. China
| | - Minghong Lan
- Department of Orthopedics, Xinqiao Hospital, The Third Military Medical University, Chongqing 400037, P.R. China
| | - Bo Huang
- Department of Orthopedics, Xinqiao Hospital, The Third Military Medical University, Chongqing 400037, P.R. China
| | - Huan Liu
- Department of Orthopedics, Xinqiao Hospital, The Third Military Medical University, Chongqing 400037, P.R. China
| | - Yue Zhou
- Department of Orthopedics, Xinqiao Hospital, The Third Military Medical University, Chongqing 400037, P.R. China
| |
Collapse
|
89
|
Feng C, Yang M, Zhang Y, Lan M, Huang B, Liu H, Zhou Y. Cyclic mechanical tension reinforces DNA damage and activates the p53-p21-Rb pathway to induce premature senescence of nucleus pulposus cells. Int J Mol Med 2018; 41:3316-3326. [PMID: 29512682 PMCID: PMC5881642 DOI: 10.3892/ijmm.2018.3522] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 01/29/2018] [Indexed: 12/18/2022] Open
Abstract
Intervertebral disc (IVD) degeneration (IDD) is a widely recognized contributor to low back pain. Mechanical stress is a crucial etiological factor of IDD. During the process of IDD, a vicious circle is formed between abnormal mechanical stress and the damage of disc structure and function. Notably, the pathological process of IDD is mediated by the phenotypic shift of IVD cells from an extracellular matrix anabolic phenotype to a catabolic and pro-inflammatory phenotype. Therefore, the effects of mechanical stress on the initiation and progression of IDD depend on the mechanobiology of IVD cells. Recently, disc cell senescence was identified as a new hallmark of IDD. However, the senescent response of disc cells to mechanical stress remains unknown. In this study, we found that prolonged exposure of cyclic mechanical tension (CMT) with unphysiological magnitude generated by the Flexercell tension system markedly induced premature senescence of nucleus pulposus (NP) cells. CMT augmented the DNA damage of NP cells, but did not affect the redox homeostasis of NP cells. Moreover, the p53-p21-retinoblastoma protein (Rb) pathway was activated by CMT to mediate the CMT-induced premature senescence of NP cells. The findings are beneficial to understanding the mechanism of disc cell senescence and the mechanobiology of disc cells further. It suggests that prolonged abnormal mechanical stress accelerates the establishment and progression of disc cell senescence and consequently impairs the structural and functional homeostasis of IVDs to cause IDD. Preventing the pro-senescent effect of mechanical stress on IVD cells is a promising approach to delay the process of IDD.
Collapse
Affiliation(s)
- Chencheng Feng
- Department of Orthopedics, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, P.R. China
| | - Minghui Yang
- Department of Orthopedics, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, P.R. China
| | - Yang Zhang
- Department of Orthopedics, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, P.R. China
| | - Minghong Lan
- Department of Orthopedics, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, P.R. China
| | - Bo Huang
- Department of Orthopedics, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, P.R. China
| | - Huan Liu
- Department of Orthopedics, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, P.R. China
| | - Yue Zhou
- Department of Orthopedics, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, P.R. China
| |
Collapse
|
90
|
Miyazaki S, Diwan AD, Kato K, Cheng K, Bae WC, Sun Y, Yamada J, Muehleman C, Lenz ME, Inoue N, Sah RL, Kawakami M, Masuda K. ISSLS PRIZE IN BASIC SCIENCE 2018: Growth differentiation factor-6 attenuated pro-inflammatory molecular changes in the rabbit anular-puncture model and degenerated disc-induced pain generation in the rat xenograft radiculopathy model. EUROPEAN SPINE JOURNAL : OFFICIAL PUBLICATION OF THE EUROPEAN SPINE SOCIETY, THE EUROPEAN SPINAL DEFORMITY SOCIETY, AND THE EUROPEAN SECTION OF THE CERVICAL SPINE RESEARCH SOCIETY 2018; 27:739-751. [PMID: 29460012 DOI: 10.1007/s00586-018-5488-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Accepted: 01/14/2018] [Indexed: 12/14/2022]
Abstract
PURPOSE To elucidate the effects of growth differentiation factor-6 (GDF6) on: (i) gene expression of inflammatory/pain-related molecules and structural integrity in the rabbit intervertebral disc (IVD) degeneration model, and (ii) sensory dysfunction and changes in pain-marker expression in dorsal nerve ganglia (DRGs) in the rat xenograft radiculopathy model. METHODS Forty-six adolescent rabbits received anular-puncture in two non-consecutive lumbar IVDs. Four weeks later, phosphate-buffered saline (PBS) or GDF6 (1, 10 or 100 µg) was injected into the nucleus pulposus (NP) of punctured discs and followed for 4 weeks for gene expression analysis and 12 weeks for structural analyses. For pain assessment, eight rabbits were sacrificed at 4 weeks post-injection and NP tissues of injected discs were transplanted onto L5 DRGs of 16 nude rats to examine mechanical allodynia. The rat DRGs were analyzed immunohistochemically. RESULTS In GDF6-treated rabbit NPs, gene expressions of interleukin-6, tumor necrosis factor-α, vascular endothelial growth factor, prostaglandin-endoperoxide synthase 2, and nerve growth factor were significantly lower than those in the PBS group. GDF6 injections resulted in partial restoration of disc height and improvement of MRI disc degeneration grades with statistical significance in rabbit structural analyses. Allodynia induced by xenograft transplantation of rabbit degenerated NPs onto rat DRGs was significantly reduced by GDF6 injection. Staining intensities for ionized calcium-binding adaptor molecule-1 and calcitonin gene-related peptide in rat DRGs of the GDF6 group were significantly lower than those of the PBS group. CONCLUSION GDF6 injection may change the pathological status of degenerative discs and attenuate degenerated IVD-induced pain.
Collapse
Affiliation(s)
- Shingo Miyazaki
- Department of Orthopaedic Surgery, University of California-San Diego, 9500 Gilman Dr., MC0863, La Jolla, CA, 92093-0863, USA.,Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-Cho Chuo-Ku, Kobe, 650-0017, Hyogo, Japan
| | - Ashish D Diwan
- Orthopaedic Research Institute and Department of Orthopaedic Surgery, St George Hospital, University of New South Wales, Suite 16, Lvl 5, 1 South Street, Kogarah, Sydney, NSW 2217, Australia
| | - Kenji Kato
- Department of Orthopaedic Surgery, University of California-San Diego, 9500 Gilman Dr., MC0863, La Jolla, CA, 92093-0863, USA.,Department of Orthopaedic Surgery, Nagoya City University Graduate School of Medicine, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, 467-8601, Aichi, Japan
| | - Kevin Cheng
- Department of Orthopaedic Surgery, University of California-San Diego, 9500 Gilman Dr., MC0863, La Jolla, CA, 92093-0863, USA
| | - Won C Bae
- Department of Radiology, University of California-San Diego, 9500 Gilman Dr., MC0997, La Jolla, CA, 92093-0997, USA
| | - Yang Sun
- Department of Bioengineering, University of California-San Diego, 9500 Gilman Dr., MC0412, La Jolla, CA, 92093-0412, USA.,Orthopaedic Medical Center, the Second Hospital of Jilin University, Changchun, Jilin, China
| | - Junichi Yamada
- Department of Orthopaedic Surgery, University of California-San Diego, 9500 Gilman Dr., MC0863, La Jolla, CA, 92093-0863, USA.,Department of Orthopaedic Surgery, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, 514-8507, Mie, Japan
| | - Carol Muehleman
- Department of Biochemistry, Rush University Medical Center, 1645 W Harrison St, 5th floor, Chicago, 60612, IL, USA
| | - Mary E Lenz
- Department of Orthopaedic Surgery, University of California-San Diego, 9500 Gilman Dr., MC0863, La Jolla, CA, 92093-0863, USA
| | - Nozomu Inoue
- Department of Orthopaedic Surgery, Rush University Medical Center, 1611 W. Harrison St. Suite 204J, Chicago, 60612, IL, USA
| | - Robert L Sah
- Department of Orthopaedic Surgery, University of California-San Diego, 9500 Gilman Dr., MC0863, La Jolla, CA, 92093-0863, USA.,Department of Bioengineering, University of California-San Diego, 9500 Gilman Dr., MC0412, La Jolla, CA, 92093-0412, USA
| | - Mamoru Kawakami
- Spine Care Center, Wakayama Medical University Kihoku Hospital, 219, Myouji, Katsuragicho, Ito Gun, 649-7113, Wakayama, Japan
| | - Koichi Masuda
- Department of Orthopaedic Surgery, University of California-San Diego, 9500 Gilman Dr., MC0863, La Jolla, CA, 92093-0863, USA.
| |
Collapse
|
91
|
Huang YC, Xiao J, Leung VY, Lu WW, Hu Y, Luk KDK. Lumbar intervertebral disc allograft transplantation: the revascularisation pattern. EUROPEAN SPINE JOURNAL : OFFICIAL PUBLICATION OF THE EUROPEAN SPINE SOCIETY, THE EUROPEAN SPINAL DEFORMITY SOCIETY, AND THE EUROPEAN SECTION OF THE CERVICAL SPINE RESEARCH SOCIETY 2017; 27:728-736. [DOI: 10.1007/s00586-017-5419-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2017] [Revised: 10/24/2017] [Accepted: 11/30/2017] [Indexed: 12/31/2022]
|
92
|
Amaro A, Guerra AB, Defino MP, Vieira LA, Peluso C, Bianco B, Rodrigues LMR. Vascular endothelial growth factor gene variations as a risk predictor in disc degeneration. EINSTEIN-SAO PAULO 2017; 15:403-408. [PMID: 29364361 PMCID: PMC5875151 DOI: 10.1590/s1679-45082017ao4053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 08/22/2017] [Indexed: 11/27/2022] Open
Abstract
Objective To evaluate the frequency of polymorphisms in the vascular endothelial growth factor (VEGF) gene, as well as to identify a potential risk haplotype among the polymorphic regions in this gene in patients with disc degeneration and in the Control Group. Methods This study analyzed a total of 217 individuals distributed into the Disc Degeneration and Control Groups. Peripheral blood was collected from all patients to detect VEGF gene polymorphisms identified by qPCR (rs699947, rs1570360, rs2010963, rs833061 and rs3025039). All patients presenting disc degeneration had the confirmation by nuclear magnetic resonance test and were rated according to disc degeneration level. Results All polymorphisms were in Hardy- Weinberg equilibrium (p>0.05) in the studied population. The genotypic frequency for Disc Degeneration and Control Group were rs699947 p = 0.475, rs1570360 p = 0.862, rs2010963 p = 0.823, rs833061 p=0.596 and rs3025039 p=0.230. In haplotype analysis, the compositions CAGGC (p=0.094) and CCGGC (p=0.054) stood out. Conclusion The correlation between VEGF gene polymorphism as a risk predictor for disc degeneration was negative in the studied population. However, the VEGF gene has a large polymorphic region, and it is activated by various catabolic and metabolic factors in the disc degeneration process, which has not been fully elucidated.
Collapse
|
93
|
van Uden S, Silva-Correia J, Oliveira JM, Reis RL. Current strategies for treatment of intervertebral disc degeneration: substitution and regeneration possibilities. Biomater Res 2017; 21:22. [PMID: 29085662 PMCID: PMC5651638 DOI: 10.1186/s40824-017-0106-6] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 10/05/2017] [Indexed: 02/06/2023] Open
Abstract
Background Intervertebral disc degeneration has an annual worldwide socioeconomic impact masked as low back pain of over 70 billion euros. This disease has a high prevalence over the working age class, which raises the socioeconomic impact over the years. Acute physical trauma or prolonged intervertebral disc mistreatment triggers a biochemical negative tendency of catabolic-anabolic balance that progress to a chronic degeneration disease. Current biomedical treatments are not only ineffective in the long-run, but can also cause degeneration to spread to adjacent intervertebral discs. Regenerative strategies are desperately needed in the clinics, such as: minimal invasive nucleus pulposus or annulus fibrosus treatments, total disc replacement, and cartilaginous endplates decalcification. Main body Herein, it is reviewed the state-of-the-art of intervertebral disc regeneration strategies from the perspective of cells, scaffolds, or constructs, including both popular and unique tissue engineering approaches. The premises for cell type and origin selection or even absence of cells is being explored. Choice of several raw materials and scaffold fabrication methods are evaluated. Extensive studies have been developed for fully regeneration of the annulus fibrosus and nucleus pulposus, together or separately, with a long set of different rationales already reported. Recent works show promising biomaterials and processing methods applied to intervertebral disc substitutive or regenerative strategies. Facing the abundance of studies presented in the literature aiming intervertebral disc regeneration it is interesting to observe how cartilaginous endplates have been extensively neglected, being this a major source of nutrients and water supply for the whole disc. Conclusion Several innovative avenues for tackling intervertebral disc degeneration are being reported – from acellular to cellular approaches, but the cartilaginous endplates regeneration strategies remain unaddressed. Interestingly, patient-specific approaches show great promise in respecting patient anatomy and thus allow quicker translation to the clinics in the near future.
Collapse
Affiliation(s)
- Sebastião van Uden
- 3B's Research Group-Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco GMR Gandra, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Guimarães, Braga Portugal.,Present Address: Bioengineering Laboratories Srl, Viale Brianza 8, Meda, Italy.,Present Address: Politecnico di Milano, Piazza Leonardo da Vinci, 32 Milan, Italy
| | - Joana Silva-Correia
- 3B's Research Group-Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco GMR Gandra, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Guimarães, Braga Portugal
| | - Joaquim Miguel Oliveira
- 3B's Research Group-Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco GMR Gandra, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Guimarães, Braga Portugal.,The Discoveries Centre for Regenerative and Precision Medicine, Headquarters at University of Minho, Avepark, 4805-017 Barco Guimarães, Portugal
| | - Rui Luís Reis
- 3B's Research Group-Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco GMR Gandra, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Guimarães, Braga Portugal.,The Discoveries Centre for Regenerative and Precision Medicine, Headquarters at University of Minho, Avepark, 4805-017 Barco Guimarães, Portugal
| |
Collapse
|
94
|
Xin L, Xu W, Yu L, Fan S, Wang W, Yu F, Wang Z. Effects of annulus defects and implantation of poly(lactic-co-glycolic acid) (PLGA)/fibrin gel scaffolds on nerves ingrowth in a rabbit model of annular injury disc degeneration. J Orthop Surg Res 2017; 12:73. [PMID: 28499451 PMCID: PMC5429511 DOI: 10.1186/s13018-017-0572-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2016] [Accepted: 04/26/2017] [Indexed: 12/01/2022] Open
Abstract
Background Growth of nerve fibers has been shown to occur in a rabbit model of intravertebral disc degeneration (IVD) induced by needle puncture. As nerve growth may underlie the process of chronic pain in humans affected by disc degeneration, we sought to investigate the factors underlying nerve ingrowth in a minimally invasive annulotomy rabbit model of IVD by comparing the effects of empty disc defects with those of defects filled with poly(lactic-co-glycolic acid)/fibrin gel (PLGA) plugs. Methods New Zealand white rabbits (n = 24) received annular injuries at three lumbar levels (L3/4, L4/5, and L5/6). The discs were randomly assigned to four groups: (a) annular defect (1.8-mm diameter; 4-mm depth) by mini-trephine, (b) annular defect implanted with a PLGA scaffold containing a fibrin gel, (c) annular puncture by a 16G needle (5-mm depth), and (d) uninjured L2/3 disc (control). Disc degeneration was evaluated by radiography, MRI, histology, real-time PCR, and analysis of proteoglycan (PG) content. Nerve ingrowth into the discs was assessed by immunostaining with the nerve marker protein gene product 9.5. Results Injured discs showed a progressive disc space narrowing with significant disc degeneration and proteoglycan loss, as confirmed by imaging results, molecular and compositional analysis, and histological examinations. In 16G punctured discs, nerve ingrowth was observed on the surface of scar tissue. In annular defects, nerve fibers were found to be distributed along small fissures within the fibrocartilaginous-like tissue that filled the AF. In discs filled with PLGA/ fibrin gel, more nerve fibers were observed growing deeper into the inner AF along the open annular track. In addition, innervations scores showed significantly higher than those of punctured discs and empty defects. A limited vascular proliferation was found in the injured sites and regenerated tissues. Conclusions Nerve ingrowth was significantly higher in PLGA/fibrin-filled discs than in empty defects. Possible explanations include (i) annular fissures along the defect and early loss of proteoglycan may facilitate the ingrowth process and (ii) biodegradable PLGA/fibrin gel may promote adverse growth of nerves and blood vessels into deeper parts of injured disc. The rabbit annular defect model of disc degeneration appears suitable to investigate the effects of nerve ingrowth in relation to pain generation.
Collapse
Affiliation(s)
- Long Xin
- Department of Spine Surgery, Tongde Hospital of Zhejiang Province, Hangzhou, China
| | - Weixing Xu
- Department of Spine Surgery, Tongde Hospital of Zhejiang Province, Hangzhou, China
| | - Leijun Yu
- Department of Spine Surgery, Tongde Hospital of Zhejiang Province, Hangzhou, China
| | - Shunwu Fan
- Department of Orthopedics, the Affiliated Sir Run Run Shaw Hospital, Zhejiang University, Zhejiang, China
| | - Wei Wang
- Department of Polymer Materials Science and Engineering, School of Material Science and Engineering, Tianjin University, Tianjin, China
| | - Fang Yu
- Department of Mental Health, Tongde Hospital of Zhejiang Province, Hangzhou, China
| | - Zhenbin Wang
- Orthopedics Laboratory, Department of Spine Surgery, The Fourth Affiliated Hospital, Xinjiang Medical University, Urumqi, Xinjiang, 830000, China.
| |
Collapse
|
95
|
Xiao L, Ding M, Fernandez A, Zhao P, Jin L, Li X. Curcumin alleviates lumbar radiculopathy by reducing neuroinflammation, oxidative stress and nociceptive factors. Eur Cell Mater 2017; 33:279-293. [PMID: 28485773 PMCID: PMC5521990 DOI: 10.22203/ecm.v033a21] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Current non-surgical treatments for lumbar radiculopathy [e.g. epidural steroids and Tumour necrosis factor-α (TNF-α) antagonists] are neither effective nor safe. As a non-toxic natural product, curcumin possesses an exceptional anti-inflammatory profile. We hypothesised that curcumin alleviates lumbar radiculopathy by attenuating neuroinflammation, oxidative stress and nociceptive factors. In a dorsal root ganglion (DRG) culture, curcumin effectively inhibited TNF-α-induced neuroinflammation, in a dose-dependent manner, as shown by mRNA and protein expression of IL-6 and COX-2. Such effects might be mediated via protein kinase B (AKT) and extracellular signal regulated kinase (ERK) pathways. Also, a similar effect in combating TNF-α-induced neuroinflammation was observed in isolated primary neurons. In addition, curcumin protected neurons from TNF-α-triggered excessive reactive oxygen species (ROS) production and cellular apoptosis and, accordingly, promoted mRNA expression of the anti-oxidative enzymes haem oxygenase-1, catalase and superoxide dismutase-2. Intriguingly, electronic von Frey test suggested that intraperitoneal injection of curcumin significantly abolished ipsilateral hyperalgesia secondary to disc herniation in mice, for up to 2 weeks post-surgery. Such in vivo pain alleviation could be attributed to the suppression, observed in DRG explant culture, of TNF-α-elicited neuropeptides, such as substance P and calcitonin gene-related peptide. Surprisingly, micro-computed tomography (μCT) data suggested that curcumin treatment could promote disc height recovery following disc herniation. Alcian blue/picrosirius red staining confirmed that systemic curcumin administration promoted regeneration of extracellular matrix proteins, visualised by presence of abundant newly-formed collagen and proteoglycan content in herniated disc. Our study provided pre-clinical evidence for expediting this natural, non-toxic pleiotropic agent to become a new and safe clinical treatment of radiculopathy.
Collapse
Affiliation(s)
- L. Xiao
- Department of Orthopaedic Surgery, University of Virginia, Cobb Hall, 135 Hospital Dr. Charlottesville, VA 22908, USA
| | - M. Ding
- Department of Orthopaedic Surgery, University of Virginia, Cobb Hall, 135 Hospital Dr. Charlottesville, VA 22908, USA,Department of Anaesthesiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - A. Fernandez
- Department of Orthopaedic Surgery, University of Virginia, Cobb Hall, 135 Hospital Dr. Charlottesville, VA 22908, USA
| | - P. Zhao
- Department of Anaesthesiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - L. Jin
- Department of Orthopaedic Surgery, University of Virginia, Cobb Hall, 135 Hospital Dr. Charlottesville, VA 22908, USA
| | - X. Li
- Department of Orthopaedic Surgery, University of Virginia, Cobb Hall, 135 Hospital Dr. Charlottesville, VA 22908, USA,Address for correspondence: Dr Xudong Li, MD, PhD, Rm B051, Cobb Hall, Department of Orthopaedic Surgery, University of Virginia, 135 Hospital Dr. Charlottesville, VA 22908, USA, Telephone number: +1 4349824135, Fax number: +1 4349241691,
| |
Collapse
|
96
|
Veruva SY, Lanman TH, Isaza JE, Freeman TA, Kurtz SM, Steinbeck MJ. Periprosthetic UHMWPE Wear Debris Induces Inflammation, Vascularization, and Innervation After Total Disc Replacement in the Lumbar Spine. Clin Orthop Relat Res 2017; 475:1369-1381. [PMID: 27488379 PMCID: PMC5384906 DOI: 10.1007/s11999-016-4996-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND The pathophysiology and mechanisms driving the generation of unintended pain after total disc replacement (TDR) remain unexplored. Ultrahigh-molecular-weight polyethylene (UHMWPE) wear debris from TDRs is known to induce inflammation, which may result in pain. QUESTIONS/PURPOSES The purpose of this study was to determine whether (1) periprosthetic UHMWPE wear debris induces immune responses that lead to the production of tumor necrosis factor-α (TNFα) and interleukin (IL)-1ß, the vascularization factors, vascular endothelial growth factor (VEGF) and platelet-derived growth factor-bb (PDGFbb), and the innervation/pain factors, nerve growth factor (NGF) and substance P; (2) the number of macrophages is associated with the production of the aforementioned factors; (3) the wear debris-induced inflammatory pathogenesis involves an increase in vascularization and associated innervation. METHODS Periprosthetic tissues from our collection of 11 patients with contemporary TDRs were evaluated using polarized light microscopy to quantify UHMWPE wear particles. The major reason for revision (mean implantation time of 3 years [range, 1-6 years]) was pain. For control subjects, biopsy samples from four patients with degenerative disc disease with severe pain and autopsy samples from three normal patients with no history of back pain were also investigated. Immunohistochemistry and histology were used to identify secretory factors, macrophages, and blood vessels. Immunostained serial sections were imaged at ×200 magnification and using MATLAB and NIH ImageJ, a threshold was determined for each factor and used to quantify positive staining normalized to tissue sectional area. The Mann-Whitney U test was used to compare results from different patient groups, whereas the Spearman Rho test was used to determine correlations. Significance was based on p < 0.05. RESULTS The mean percent area of all six inflammatory, vascularization, and innervation factors was higher in TDR tissues when compared with normal disc tissues. Based on nonparametric data analysis, those factors showing the most significant increase included TNFα (5.17 ± 1.76 versus 0.05 ± 0.03, p = 0.02), VEGF (3.02 ± 1.01 versus 0.02 ± 0.002, p = 0.02), and substance P (4.15 ± 1.01 versus 0.08 ± 0.04, p = 0.02). The mean percent area for IL-1ß (2.41 ± 0.66 versus 0.13 ± 0.13, p = 0.01), VEGF (3.02 ± 1.01 versus 0.34 ± 0.29, p = 0.04), and substance P (4.15 ± 1.01 versus 1.05 ± 0.46, p = 0.01) was also higher in TDR tissues when compared with disc tissues from patients with painful degenerative disc disease. Five of the factors, TNFα, IL-1ß, VEGF, NGF, and substance P, strongly correlated with the number of wear particles, macrophages, and blood vessels. The most notable correlations included TNFα with wear particles (p < 0.001, ρ = 0.63), VEGF with macrophages (p = 0.001, ρ = 0.71), and NGF with blood vessels (p < 0.001, ρ = 0.70). Of particular significance, the expression of PDGFbb, NGF, and substance P was predominantly localized to blood vessels/nerve fibers. CONCLUSIONS These findings indicate wear debris-induced inflammatory reactions can be linked to enhanced vascularization and associated innervation/pain factor production at periprosthetic sites around TDRs. Elucidating the pathogenesis of inflammatory particle disease will provide information needed to identify potential therapeutic targets and treatment strategies to mitigate pain and potentially avoid revision surgery. LEVEL OF EVIDENCE Level III, therapeutic study.
Collapse
Affiliation(s)
- Sai Y Veruva
- Implant Research Center, Drexel University, 3401 Market Street, Suite 345, Philadelphia, PA, 19104, USA
| | - Todd H Lanman
- Department of Neurosurgery, UCLA David Geffen School of Medicine, Los Angeles, CA, USA
| | | | - Theresa A Freeman
- Department of Orthopaedic Surgery, Thomas Jefferson University, Philadelphia, PA, USA
| | - Steven M Kurtz
- Implant Research Center, Drexel University, 3401 Market Street, Suite 345, Philadelphia, PA, 19104, USA
- Exponent, Inc, Philadelphia, PA, USA
| | - Marla J Steinbeck
- Implant Research Center, Drexel University, 3401 Market Street, Suite 345, Philadelphia, PA, 19104, USA.
- Department of Orthopaedic Surgery, Drexel University College of Medicine, Philadelphia, PA, USA.
| |
Collapse
|
97
|
Diz JBM, de Souza Moreira B, Felício DC, Teixeira LF, de Jesus-Moraleida FR, de Queiroz BZ, Pereira DS, Pereira LSM. Brain-derived neurotrophic factor plasma levels are increased in older women after an acute episode of low back pain. Arch Gerontol Geriatr 2017; 71:75-82. [PMID: 28376368 DOI: 10.1016/j.archger.2017.03.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 03/08/2017] [Accepted: 03/17/2017] [Indexed: 10/19/2022]
Abstract
BACKGROUND Low back pain (LBP) is a growing public health problem in old age, and it is associated with disabling pain and depressive disorders. We compared brain-derived neurotrophic factor (BDNF) plasma levels, a key neurotrophin in pain modulation, between older women after an acute episode of LBP and age-matched pain-free controls, and investigated potential differences in BDNF levels between controls and LBP subgroups based on pain severity, presence of depressive symptoms and use of analgesic and antidepressant drugs. METHODS A total of 221 participants (154 with LBP and 67 pain-free) were studied. A comprehensive assessment of sociodemographic and clinical variables was conducted including pain severity (11-point NRS), depressive symptoms (GDS-15), age, body mass index, physical activity and total number of comorbidities and medications in use. RESULTS BDNF levels in LBP group were significantly higher than controls (7515.9±3021.2; Md=7116.0 vs 6331.8±3364.0; Md=5897.5pg/mL, P=0.005). LBP subgroups exhibited higher BDNF levels than controls, regardless of pain severity, presence of depressive symptoms and use of analgesic drugs. BDNF levels were significantly higher in LBP subgroup without use of antidepressant drugs compared to both controls and LBP subgroup with use of antidepressant drugs. DISCUSSION This study provides evidence that older women with acute low back pain exhibit higher BDNF plasma levels compared to pain-free controls. Subgroup comparisons suggest that use of pain-relief drugs may influence BDNF levels. The study results offer a novel target for research on mechanisms of back pain in older adults.
Collapse
Affiliation(s)
- Juliano Bergamaschine Mata Diz
- Department of Physical Therapy, Postgraduate Program in Rehabilitation Sciences, Universidade Federal de Minas Gerais, 6627 Antônio Carlos Avenue, 31270-901, Belo Horizonte, Minas Gerais, Brazil.
| | - Bruno de Souza Moreira
- Department of Physical Therapy, Postgraduate Program in Rehabilitation Sciences, Universidade Federal de Minas Gerais, 6627 Antônio Carlos Avenue, 31270-901, Belo Horizonte, Minas Gerais, Brazil.
| | - Diogo Carvalho Felício
- Department of Physical Therapy, Universidade Federal de Juiz de Fora, s/n Eugênio do Nascimento Avenue, 36038-330, Juiz de Fora, Minas Gerais, Brazil.
| | - Luiza Faria Teixeira
- Department of Physical Therapy, Universidade do Vale do Sapucaí, 320 Coronel Alfredo Custódio de Paula Avenue, 37550-000, Pouso Alegre, Minas Gerais, Brazil.
| | - Fabianna Resende de Jesus-Moraleida
- Department of Physical Therapy, Faculty of Medicine, Universidade Federal do Ceará, 949 Alexandre Barúna Street, 60430-160, Fortaleza, Ceará, Brazil.
| | - Bárbara Zille de Queiroz
- Department of Physical Therapy, Postgraduate Program in Rehabilitation Sciences, Universidade Federal de Minas Gerais, 6627 Antônio Carlos Avenue, 31270-901, Belo Horizonte, Minas Gerais, Brazil.
| | - Daniele Sirineu Pereira
- Department of Physical Therapy, Universidade Federal de Alfenas, 2600 Jovino Fernandes Sales Avenue, 31270-901, Alfenas, Minas Gerais, Brazil.
| | - Leani Souza Máximo Pereira
- Department of Physical Therapy, Postgraduate Program in Rehabilitation Sciences, Universidade Federal de Minas Gerais, 6627 Antônio Carlos Avenue, 31270-901, Belo Horizonte, Minas Gerais, Brazil.
| |
Collapse
|
98
|
Zhang Z, Zhang Y, Zhou Z, Shi H, Qiu X, Xiong J, Chen Y. BDNF regulates the expression and secretion of VEGF from osteoblasts via the TrkB/ERK1/2 signaling pathway during fracture healing. Mol Med Rep 2017; 15:1362-1367. [PMID: 28098876 DOI: 10.3892/mmr.2017.6110] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 08/09/2016] [Indexed: 11/05/2022] Open
Abstract
Brain‑derived neurotrophic factor (BDNF), a member of the neurotropic family, is expressed in osteoblast‑like cells of a fracture callus, however, its role in fracture healing remains to be fully elucidated. Osteoblasts isolated from Sprague Dawley rats were stimulated by BDNF in a dose‑ and time‑dependent manner. Immunoblotting and immunofluorescence was used to detect the expression and distribution of targeted proteins. The concentration of vascular endothelial growth factor (VEGF) released in medium was determined using an ELISA. PD98059 and K252a were used to investigate the signaling pathways that may be involved. The present study demonstrated that BDNF was involved in fracture repair by controlling the expression and secretion of VEGF from osteoblasts, which predominantly drives angiogenesis during fracture healing. Tropomyosin‑related kinase B (TrkB), the specific receptor of BDNF, was shown to be expressed at high levels in the osteoblasts. Following BDNF stimulation, TrkB and extracellular signal‑regulated kinase 1/2 (ERK1/2) were rapidly activated. The inhibition of TrkB by K252a decreased the expression and secretion of VEGF, and suppressed the phosphorylation level of ERK1/2. PD98059, an antagonist of ERK1/2, elicited the same effects on VEGF from the BDNF‑stimulated osteoblasts, however, it did not affect the phosphorylation of TrkB. In conclusion, during fracture healing, BDNF was found to stimulate the expression and secretion of VEGF from osteoblasts via the TrkB/ERK1/2 signaling pathway.
Collapse
Affiliation(s)
- Zitao Zhang
- Department of Orthopedics, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu 210008, P.R. China
| | - Yan Zhang
- Department of Orthopedics, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu 210008, P.R. China
| | - Zhengnan Zhou
- Department of Orthopedics, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu 210008, P.R. China
| | - Hongfei Shi
- Department of Orthopedics, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu 210008, P.R. China
| | - Xusheng Qiu
- Department of Orthopedics, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu 210008, P.R. China
| | - Jin Xiong
- Department of Orthopedics, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu 210008, P.R. China
| | - Yixin Chen
- Department of Orthopedics, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu 210008, P.R. China
| |
Collapse
|
99
|
Deletion of Opg Leads to Increased Neovascularization and Expression of Inflammatory Cytokines in the Lumbar Intervertebral Disc of Mice. Spine (Phila Pa 1976) 2017; 42:E8-E14. [PMID: 27196016 DOI: 10.1097/brs.0000000000001701] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
STUDY DESIGN Neovascularization and expression of inflammatory cytokines were examined in Osteoprotegerin (Opg) knockout (KO) mice that show intervertebral disc (IVD) degeneration. OBJECTIVE The aim of this study was to clarify the pathological changes in lumbar IVD degeneration in Opg KO mice. SUMMARY OF BACKGROUND DATA Osteoporosis is a controversial risk factor for IVD degeneration. Deletion of Opg resulted in IVD degeneration in mice. Neovascularization and inflammatory cytokines are key factors in IVD degeneration. METHODS Opg KO mice and their wild-type (WT) littermates were euthanized. Lumbar IVDs were harvested. Safranin O/Fast Green staining was performed to examine the pathological changes. Microcomputed tomographic (micro-CT) analysis was performed to determine the structural changes at the junction of lumbar IVD cartilage and vertebrae. Tartrate-resistant acid phosphatase (TRAP) staining was performed to evaluate osteoclast formation. Protein expression of vascular endothelial growth factor A (VEGF-A), CD31, VE-cadherin, CD 34, interleukin-1β (IL-1β), and tumor necrosis factors α (TNF-α) were analyzed by immunohistochemistry (IHC) assays. Gene expressions of IL-1β, IL-6, and TNF-α were analyzed by real-time polymerase chain reaction (RT-PCR). RESULTS In 12-week-old Opg KO mice, new bone was formed in the endplate cartilage of lumbar IVDs and this became more obvious in 24-week-old Opg KO mice. Three-dimensional (3D) μCT reconstruction analyses showed that the edges of the L4 and L5 vertebrae were rugged with bone marrow cavities in it. Protein expression of VEGF-A, CD31, VE-cadherin, and CD34 was increased in the endplate and growth plate of lumbar IVDs of Opg KO mice. Gene expression of IL-1β, IL-6, and TNF-α as well as protein expression of IL-1β and TNF-α were highly expressed in the lumbar IVDs of Opg KO mice. CONCLUSION Deletion of Opg leads to increased neovascularization and expression of inflammatory cytokines in the lumbar disc in Opg KO mice, which may play important roles in IVD degeneration. LEVEL OF EVIDENCE N/A.
Collapse
|
100
|
Daniels J, Binch AAL, Le Maitre CL. Inhibiting IL-1 signaling pathways to inhibit catabolic processes in disc degeneration. J Orthop Res 2017; 35:74-85. [PMID: 27391542 DOI: 10.1002/jor.23363] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Accepted: 07/02/2016] [Indexed: 02/04/2023]
Abstract
Intervertebral disc degeneration is characterized by an imbalance between catabolic and anabolic signaling, with an increase in catabolic cytokines particularly IL-1β, a key regulator of IVD degeneration. This study aimed to investigate intracellular signaling pathways activated by IL-1β, and GDF-5 in the degenerate IVD to identify potential new therapeutic targets. Human NP cells were cultured in alginate beads to regain in vivo phenotype prior to stimulation with IL-1β or GDF-5 for 30 min, a proteasome profiler array was initially utilized to screen activation status of 46 signaling proteins. Immunoflourescence was used to investigate activation of the NFκB pathway. Cell-based ELISAs were then deployed to confirm results for ERK1/2, p38 MAPK, c-jun, and IκB signaling. IHC was utilized to investigate native activation status within human IVD tissue between grades of degeneration. Finally, cells were stimulated with IL-1β in the absence or presence of p38 MAPK, c-jun, JNK, and NFκB inhibitors to investigate effects on MMP3, MMP13, IL-1β, IL-6, and IL-8 mRNA expression. This study demonstrated three key signaling pathways which were differentially activated by IL-1β but not GDF-5; namely p38 MAPK, c-jun, and NFκB. While ERK 1/2 was activated by both GDF-5 and IL-1. Immunohistochemistry demonstrated p38 MAPK, c-jun, and NFκB were activated during human IVD degeneration and inhibition of these pathways reduced or abrogated the catabolic effects of IL-1β, with inhibition of NFκB signaling demonstrating most widespread inhibition of IL-1β catabolic effects. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:74-85, 2017.
Collapse
Affiliation(s)
- Jodie Daniels
- Biomolecular Sciences Research Centre, Sheffield Hallam University, S1 1WB, Howard Street, Sheffield, South Yorkshire, Sheffield, United Kingdom
| | - Abbie A L Binch
- Biomolecular Sciences Research Centre, Sheffield Hallam University, S1 1WB, Howard Street, Sheffield, South Yorkshire, Sheffield, United Kingdom
| | - Christine L Le Maitre
- Biomolecular Sciences Research Centre, Sheffield Hallam University, S1 1WB, Howard Street, Sheffield, South Yorkshire, Sheffield, United Kingdom
| |
Collapse
|