51
|
Yu L, Wang Y, Li R, Zhang R, Zhang X, Hua S, Peng D. The differential proliferation of AOB and NOB during natural nitrifier cultivation and acclimation with raw sewage as seed sludge. RSC Adv 2020; 10:28277-28286. [PMID: 35519145 PMCID: PMC9055716 DOI: 10.1039/d0ra05252c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 07/16/2020] [Indexed: 11/21/2022] Open
Abstract
Nitrifier immigration from sewers to wastewater treatment systems is attracting increasing attention for understanding nitrifier community assembly mechanisms, and improving process modeling and operation. In this study, nitrifiers in raw sewage were cultivated and acclimated in a sequencing batch reactor (SBR) for 90 days to investigate the characteristics of the influent nitrifiers after immigration. During the experiment, specific nitrite utilization rate (SNUR) exceeded specific ammonia utilization rate (SAUR) when floc size reached 224 ± 46 μm, and nitrogen loss occurred at the same time. The ratio of nitrite oxidizing bacteria (NOB) to ammonia oxidizing bacteria (AOB) increased from 0.84 to 2.14 after cultivation. The Illumina MiSeq sequencing showed that the dominant AOB was Nitrosomonas sp. Nm84 and unidentified species, and the three most abundant Nitrospira were Nitrospira defluvii, Nitrospira calida, and unidentified Nitrospira spp. in both raw sewage and cultivated activated sludge. The shared reads of raw sewage and activated sludge were 48.76% for AOB and 89.35% for Nitrospira. These indicated that nitrifiers, especially NOB, immigrated from influent can survive and propagate in wastewater systems, which may be a significant hinder to suppress NOB in the application of advanced nitrogen remove process based on partial nitrification in the mainstream.
Collapse
Affiliation(s)
- Lifang Yu
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology #13, Yanta Road Xi'an 710055 China +86 029 82202729 +86 029 82202729
- Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology Xi'an 710055 China
| | - Yu Wang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology #13, Yanta Road Xi'an 710055 China +86 029 82202729 +86 029 82202729
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology Xi'an 710055 China
| | - Ren Li
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology #13, Yanta Road Xi'an 710055 China +86 029 82202729 +86 029 82202729
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology Xi'an 710055 China
| | - Ru Zhang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology #13, Yanta Road Xi'an 710055 China +86 029 82202729 +86 029 82202729
| | - Xingxiu Zhang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology #13, Yanta Road Xi'an 710055 China +86 029 82202729 +86 029 82202729
| | - Sisi Hua
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology #13, Yanta Road Xi'an 710055 China +86 029 82202729 +86 029 82202729
| | - Dangcong Peng
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology #13, Yanta Road Xi'an 710055 China +86 029 82202729 +86 029 82202729
| |
Collapse
|
52
|
Wen D, Valencia A, Ordonez D, Chang NB, Wanielista M. Comparative nitrogen removal via microbial ecology between soil and green sorption media in a rapid infiltration basin for co-disposal of stormwater and wastewater. ENVIRONMENTAL RESEARCH 2020; 184:109338. [PMID: 32172072 DOI: 10.1016/j.envres.2020.109338] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 01/16/2020] [Accepted: 03/02/2020] [Indexed: 06/10/2023]
Abstract
In this study, a rapid infiltration basin (RIB) designed as green infrastructure for co-disposal of wastewater effluent and stormwater runoff was retrofitted for sustainable groundwater recharge after nitrogen removal. For comparison of nitrogen removal efficiency via different filtration media, the RIB was divided into two sub-basins for different filtration processes. One sub-basin was filled with a native sandy soil with about 2-4% clay (Control RIB), and the other sub-basin was modified with Biosorption Activated Media (BAM) (BAM RIB), for the enhancement of microbial nitrogen removal. The two sub-basins accept an equal amount of excess reclaimed wastewater in non-storm periods, and stormwater during periodic storm events. The infiltrate in both the BAM RIB and the Control RIB eventually reaches the Upper Floridan Aquifer. The seven microbial species involved in this microbial ecology study are nitrite oxidizing bacteria (NOB), ammonia oxidizing bacteria (AOB), anaerobic oxidation of ammonium (anammox) bacteria, complete ammonia oxidizer (Comammox) bacteria, denitrifiers, dissimilatory nitrate reduction to ammonium (DNRA) and ammonia-oxidizing archaea (AOA). The population dynamics study was conducted with the aid of the quantitative polymerase chain reaction (qPCR) for the quantification of the microbial gene population in support of microbial ecology discovery. The qPCR results demonstrated the competition effect between AOA, AOB, and Comammox, the inhibition effect between NOB and DNRA with the presence of anammox, and the complementary effect due to an abundance of NOB and AOB in the microbial ecology. Although, competition between denitrifiers and DNRA was expected to impact population dynamics, both microbial species were found to be the most predominant in both control and BAM RIBs. Research findings indicate that the use of BAM RIB achieves significantly efficient nitrogen removal driven by complementary effects in the microbial ecology.
Collapse
Affiliation(s)
- Dan Wen
- Department of Civil, Environmental, and Construction Engineering, University of Central Florida, Orlando, FL, USA
| | - Andrea Valencia
- Department of Civil, Environmental, and Construction Engineering, University of Central Florida, Orlando, FL, USA
| | - Diana Ordonez
- Department of Civil, Environmental, and Construction Engineering, University of Central Florida, Orlando, FL, USA
| | - Ni-Bin Chang
- Department of Civil, Environmental, and Construction Engineering, University of Central Florida, Orlando, FL, USA.
| | - Martin Wanielista
- Department of Civil, Environmental, and Construction Engineering, University of Central Florida, Orlando, FL, USA
| |
Collapse
|
53
|
Mehrani MJ, Sobotka D, Kowal P, Ciesielski S, Makinia J. The occurrence and role of Nitrospira in nitrogen removal systems. BIORESOURCE TECHNOLOGY 2020; 303:122936. [PMID: 32059161 DOI: 10.1016/j.biortech.2020.122936] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 01/27/2020] [Accepted: 01/29/2020] [Indexed: 05/04/2023]
Abstract
Application of the modern microbial techniques changed the paradigm about the microorganisms performing nitrification. Numerous investigations recognized representatives of the genus Nitrospira as a key and predominant nitrite-oxidizing bacteria in biological nutrient removal systems, especially under low dissolved oxygen and substrate conditions. The recent discovery of Nitrospira capable of performing complete ammonia oxidation (comammox) raised a fundamental question about the actual role of Nitrospira in both nitrification steps. This review summarizes the current knowledge about morphological, physiological and genetic characteristics of the canonical and comammox Nitrospira. Potential implications of comammox for the functional aspects of nitrogen removal have been highlighted. The complex meta-analysis of literature data was applied to identify specific individual variables and their combined interactions on the Nitrospira abundance. In addition to dissolved oxygen and influent nitrogen concentrations, temperature and pH may play an important role in enhancing or suppressing the Nitrospira activity.
Collapse
Affiliation(s)
- Mohamad-Javad Mehrani
- Faculty of Civil and Environmental Engineering, Gdansk University of Technology, Narutowicza Street 11/12, 80-233 Gdansk, Poland
| | - Dominika Sobotka
- Faculty of Civil and Environmental Engineering, Gdansk University of Technology, Narutowicza Street 11/12, 80-233 Gdansk, Poland
| | - Przemyslaw Kowal
- Faculty of Civil and Environmental Engineering, Gdansk University of Technology, Narutowicza Street 11/12, 80-233 Gdansk, Poland
| | - Sławomir Ciesielski
- Department of Environmental Biotechnology, Faculty of Environmental Sciences, University of Warmia and Mazury in Olsztyn, ul. Sloneczna 45G, 10-709 Olsztyn, Poland
| | - Jacek Makinia
- Faculty of Civil and Environmental Engineering, Gdansk University of Technology, Narutowicza Street 11/12, 80-233 Gdansk, Poland.
| |
Collapse
|
54
|
Ammonium-Nitrogen (NH4+-N) Removal from Groundwater by a Dropping Nitrification Reactor: Characterization of NH4+-N Transformation and Bacterial Community in the Reactor. WATER 2020. [DOI: 10.3390/w12020599] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
A dropping nitrification reactor was proposed as a low-cost and energy-saving option for the removal of NH4+-N from contaminated groundwater. The objectives of this study were to investigate NH4+-N removal performance and the nitrogen removal pathway and to characterize the microbial communities in the reactor. Polyolefin sponge cubes (10 mm × 10 mm × 10 mm) were connected diagonally in a nylon thread to produce 1 m long dropping nitrification units. Synthetic groundwater containing 50 mg L−1 NH4+-N was added from the top of the hanging units at a flow rate of 4.32 L day−1 for 56 days. Nitrogen-oxidizing microorganisms in the reactor removed 50.8–68.7% of the NH4+-N in the groundwater, which was aerated with atmospheric oxygen as it flowed downwards through the sponge units. Nitrogen transformation and the functional bacteria contributing to it were stratified in the sponge units. Nitrosomonadales-like AOB predominated and transformed NH4+-N to NO2−-N in the upper part of the reactor. Nitrospirales-like NOB predominated and transformed NO2−-N to NO3−-N in the lower part of the reactor. The dropping nitrification reactor could be a promising technology for oxidizing NH4+-N in groundwater and other similar contaminated wastewaters.
Collapse
|
55
|
Freeman D, Bajón Fernández Y, Wilson A, McKew BA, Whitby C, Clark DR, Jefferson B, Coulon F, Hassard F. Nitrogen oxidation consortia dynamics influence the performance of full-scale rotating biological contactors. ENVIRONMENT INTERNATIONAL 2020; 135:105354. [PMID: 31864025 DOI: 10.1016/j.envint.2019.105354] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Revised: 11/13/2019] [Accepted: 11/20/2019] [Indexed: 06/10/2023]
Abstract
Ammonia oxidising microorganisms (AOM) play an important role in ammonia removal in wastewater treatment works (WWTW) including rotating biological contactors (RBCs). Environmental factors within RBCs are known to impact the performance of key AOM, such that only some operational RBCs have shown ability for elevated ammonia removal. In this work, long-term treatment performance of seven full-scale RBC systems along with the structure and abundance of the ammonia oxidising bacteria (AOB) and archaea (AOA) communities within microbial biofilms were examined. Long term data showed the dominance of AOB in most RBCs, although two RBCs had demonstrable shift toward an AOA dominated AOM community. Next Generation Sequencing of the 16S rRNA gene revealed diverse evolutionary ancestry of AOB from RBC biofilms while nitrite-oxidising bacteria (NOBs) were similar to reference databases. AOA were more abundant in the biofilms subject to lower organic loading and higher oxygen concentration found at the distal end of RBC systems. Modelling revealed a distinct nitrogen cycling community present within high performing RBCs, linked to efficient control of RBC process variables (retention time, organic loading and oxygen concentration). We present a novel template for enhancing the resilience of RBC systems through microbial community analysis which can guide future strategies for more effective ammonia removal. To best of the author's knowledge, this is the first comparative study reporting the use of next generation sequencing data on microbial biofilms from RBCs to inform effluent quality of small WWTW.
Collapse
Affiliation(s)
- D Freeman
- Cranfield University, College Road, Cranfield, Bedfordshire MK43 0AL, UK; Severn Trent, 2 St Johns Street, Coventry CV1 2LZ, UK
| | - Y Bajón Fernández
- Cranfield University, College Road, Cranfield, Bedfordshire MK43 0AL, UK; Severn Trent, 2 St Johns Street, Coventry CV1 2LZ, UK
| | - A Wilson
- Severn Trent, 2 St Johns Street, Coventry CV1 2LZ, UK; Atkins Global, The Axis, 10 Holliday St, Birmingham B1 1TF, UK
| | - B A McKew
- School of Biological Sciences, University of Essex, Colchester CO4 3SQ, UK
| | - C Whitby
- School of Biological Sciences, University of Essex, Colchester CO4 3SQ, UK
| | - D R Clark
- School of Biological Sciences, University of Essex, Colchester CO4 3SQ, UK
| | - B Jefferson
- Cranfield University, College Road, Cranfield, Bedfordshire MK43 0AL, UK
| | - F Coulon
- Cranfield University, College Road, Cranfield, Bedfordshire MK43 0AL, UK
| | - F Hassard
- Cranfield University, College Road, Cranfield, Bedfordshire MK43 0AL, UK.
| |
Collapse
|
56
|
Liu Z, Klümper U, Liu Y, Yang Y, Wei Q, Lin JG, Gu JD, Li M. Metagenomic and metatranscriptomic analyses reveal activity and hosts of antibiotic resistance genes in activated sludge. ENVIRONMENT INTERNATIONAL 2019; 129:208-220. [PMID: 31129497 DOI: 10.1016/j.envint.2019.05.036] [Citation(s) in RCA: 121] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 04/22/2019] [Accepted: 05/14/2019] [Indexed: 05/23/2023]
Abstract
Wastewater treatment plants (WWTPs) are a source and reservoir for subsequent spread of various antibiotic resistance genes (ARGs). However, little is known about the activity and hosts of ARGs in WWTPs. Here, we utilized both metagenomic and metatranscriptomic approaches to comprehensively reveal the diversity, abundance, expression and hosts of ARGs in activated sludge (AS) from three conventional WWTPs in Taiwan. Based on deep sequencing data and a custom-made ARG database, a total of 360 ARGs associated with 24 classes of antibiotics were identified from the three AS metagenomes, with an abundance range of 7.06 × 10-1-1.20 × 10-4 copies of ARG/copy of 16S rRNA gene. Differential coverage binning analysis revealed that >22 bacterial phyla were the putative hosts of the identified ARGs. Surprisingly, genus Mycobacterium and family Burkholderiaceae were observed as multi-drug resistant harboring 14 and 50 ARGs. Metatranscriptome analysis showed 65.8% of the identified ARGs were being expressed, highlighting that ARGs were not only present, but also transcriptionally active in AS. Remarkably, 110 identified ARGs were annotated as plasmid-associated and displayed a close to two-fold increased likelihood of being transcriptionally expressed compared to those ARGs found exclusively within bacterial chromosomes. Further analysis showed the transcript abundance of aminoglycoside, sulfonamide, and tetracycline resistance genes was mainly contributed by plasmid-borne ARGs. Our approach allowed us to specifically link ARGs to their transcripts and genetic context, providing a comprehensive insight into the prevalence, expression and hosts of ARGs in AS. Overall, results of this study enhance our understanding of the distribution and dissemination of ARGs in WWTPs, which benefits environmental risk assessment and management of ARB and ARGs.
Collapse
Affiliation(s)
- Zongbao Liu
- Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong, PR China; Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, Guangdong, PR China
| | - Uli Klümper
- ESI & CLES, Biosciences, University of Exeter, Penryn Campus, Cornwall, United Kingdom; European Centre for Environment and Human Health, University of Exeter, Truro, United Kingdom
| | - Yang Liu
- Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong, PR China
| | - Yuchun Yang
- Laboratory of Environmental Microbiology and Toxicology, School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Qiaoyan Wei
- Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong, PR China
| | - Jih-Gaw Lin
- Institute of Environmental Engineering, National Chiao Tung University, 1001 University Road, Hsinchu City 30010, Taiwan
| | - Ji-Dong Gu
- Laboratory of Environmental Microbiology and Toxicology, School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong, China.
| | - Meng Li
- Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong, PR China.
| |
Collapse
|
57
|
Law Y, Matysik A, Chen X, Swa Thi S, Ngoc Nguyen TQ, Qiu G, Natarajan G, Williams RBH, Ni BJ, Seviour TW, Wuertz S. High Dissolved Oxygen Selection against Nitrospira Sublineage I in Full-Scale Activated Sludge. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:8157-8166. [PMID: 31184114 DOI: 10.1021/acs.est.9b00955] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
A single Nitrospira sublineage I OTU was found to perform nitrite oxidation in full-scale domestic wastewater treatment plants (WWTPs) in the tropics. This taxon had an apparent oxygen affinity constant lower than that of the full-scale domestic activated sludge cohabitating ammonium oxidizing bacteria (AOB) (0.09 ± 0.02 g O2 m-3 versus 0.3 ± 0.03 g O2 m-3). Thus, nitrite oxidizing bacteria (NOB) may in fact thrive under conditions of low oxygen supply. Low dissolved oxygen (DO) conditions selected for and high aeration inhibited the NOB in a long-term lab-scale reactor. The relative abundance of Nitrospira sublineage I gradually decreased with increasing DO until it was washed out. Nitritation was sustained even after the DO was lowered subsequently. The morphologies of AOB and NOB microcolonies responded to DO levels in accordance with their oxygen affinities. NOB formed densely packed spherical clusters with a low surface area-to-volume ratio compared to the Nitrosomonas-like AOB clusters, which maintained a porous and nonspherical morphology. In conclusion, the effect of oxygen on AOB/NOB population dynamics depends on which OTU predominates given that oxygen affinities are species-specific, and this should be elucidated when devising operating strategies to achieve mainstream partial nitritation.
Collapse
Affiliation(s)
- Yingyu Law
- Singapore Centre for Environmental Life Sciences Engineering , Nanyang Technological University , Singapore 637551 , Singapore
| | - Artur Matysik
- Singapore Centre for Environmental Life Sciences Engineering , Nanyang Technological University , Singapore 637551 , Singapore
| | - Xueming Chen
- Process and Systems Engineering Center (PROSYS), Department of Chemical and Biochemical Engineering , Technical University of Denmark , 2800 Kgs Lyngby , Denmark
| | - Sara Swa Thi
- Singapore Centre for Environmental Life Sciences Engineering , Nanyang Technological University , Singapore 637551 , Singapore
| | - Thi Quynh Ngoc Nguyen
- Singapore Centre for Environmental Life Sciences Engineering , Nanyang Technological University , Singapore 637551 , Singapore
| | - Guanglei Qiu
- Singapore Centre for Environmental Life Sciences Engineering , Nanyang Technological University , Singapore 637551 , Singapore
| | - Gayathri Natarajan
- Singapore Centre for Environmental Life Sciences Engineering , Nanyang Technological University , Singapore 637551 , Singapore
| | - Rohan B H Williams
- Singapore Centre for Environmental Life Sciences Engineering , National University of Singapore , Singapore 119077 , Singapore
| | - Bing-Jie Ni
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering , University of Technology Sydney , Sydney , New South Wales 2007 , Australia
| | - Thomas William Seviour
- Singapore Centre for Environmental Life Sciences Engineering , Nanyang Technological University , Singapore 637551 , Singapore
| | - Stefan Wuertz
- Singapore Centre for Environmental Life Sciences Engineering , Nanyang Technological University , Singapore 637551 , Singapore
- School of Civil and Environmental Engineering , Nanyang Technological University , Singapore 639798 , Singapore
| |
Collapse
|
58
|
Chen R, Ji J, Chen Y, Takemura Y, Liu Y, Kubota K, Ma H, Li YY. Successful operation performance and syntrophic micro-granule in partial nitritation and anammox reactor treating low-strength ammonia wastewater. WATER RESEARCH 2019; 155:288-299. [PMID: 30852316 DOI: 10.1016/j.watres.2019.02.041] [Citation(s) in RCA: 109] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 02/19/2019] [Accepted: 02/20/2019] [Indexed: 06/09/2023]
Abstract
The stable operation of the partial nitritation and anammox (PN/A) process is a challenge in the treatment of low-strength ammonia wastewater like sewage mainstream. This study demonstrated the feasibility of achieving stable operation in the treatment of 50 mg/L ammonia wastewater with a micro granule-based PN/A reactor. The long-term operation results showed nitrogen removal efficiencies of 71.8 ± 9.9% were stably obtained under a relatively short hydraulic retention time (HRT) of 2 h. The analysis on the physicochemical properties of the granules indicated most of the granules were in a size in a range of 265-536 μm, and the elementary composition of the granules was determined to be CH1.61O0.61N0.17S0.01P0.03. The microbial analysis revealed Candidatus Kuenenia stuttgartiensis anammox bacteria and Nitrosomonas-like AOB were the two most dominant bacteria with 27.6% and 10.5% abundance, respectively, both of which formed spatially syntrophic co-immobilization within the micro-granules. The ex-situ activity tests showed the activity of NOB was well limited through DO regulation in the reactor. These results provide an alternative PN/A process configuration for low-strength wastewater treatment by sustaining microstate granules. Optimization of the nitrogen sludge loading rate and DO regulation are important for the successful performance.
Collapse
Affiliation(s)
- Rong Chen
- International S&T Cooperation Center for Urban Alternative Water Resources Development, Key Lab of Environmental Engineering, Shaanxi Province, Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an, 710055, PR China; Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aza-Aoba, Aramaki, Aoba-ku, Sendai, Miyagi, 980-8579, Japan
| | - Jiayuan Ji
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aza-Aoba, Aramaki, Aoba-ku, Sendai, Miyagi, 980-8579, Japan
| | - Yujie Chen
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aza-Aoba, Aramaki, Aoba-ku, Sendai, Miyagi, 980-8579, Japan
| | - Yasuyuki Takemura
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aza-Aoba, Aramaki, Aoba-ku, Sendai, Miyagi, 980-8579, Japan
| | - Yuan Liu
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aza-Aoba, Aramaki, Aoba-ku, Sendai, Miyagi, 980-8579, Japan
| | - Kengo Kubota
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aza-Aoba, Aramaki, Aoba-ku, Sendai, Miyagi, 980-8579, Japan
| | - Haiyuan Ma
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aza-Aoba, Aramaki, Aoba-ku, Sendai, Miyagi, 980-8579, Japan
| | - Yu-You Li
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aza-Aoba, Aramaki, Aoba-ku, Sendai, Miyagi, 980-8579, Japan; Graduate School of Environmental Studies, Tohoku University, 6-6-06 Aza-Aoba, Aramaki, Aoba-ku, Sendai, Miyagi, 980-8579, Japan.
| |
Collapse
|
59
|
Menéndez-Serra M, Triadó-Margarit X, Castañeda C, Herrero J, Casamayor EO. Microbial composition, potential functional roles and genetic novelty in gypsum-rich and hypersaline soils of Monegros and Gallocanta (Spain). THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 650:343-353. [PMID: 30199680 DOI: 10.1016/j.scitotenv.2018.09.050] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 09/03/2018] [Accepted: 09/04/2018] [Indexed: 06/08/2023]
Abstract
Soil microbial communities (both Bacteria and Archaea) were studied after 16S rRNA genes massive sequencing in two hypersaline and gypsum-rich contrasted sites located in NE Spain. Soil microbial communities were also locally analysed according to environmental variables, including geological, physico-chemical, biogeochemically, and climatic data. Typical soil characteristics, climate data, and plant composition clearly split the two sites and major differences among the microbial communities for the areas were initially expected. Overall, high values of microbial species richness (up to 2300 taxa) and ecological diversity was detected in both sites. High genetic novelty levels were found mostly to environmental sequences, highlighting the high potential for microbiological studies. In contrast to the initial expectations, a substantial overlapping between Monegros and Gallocanta microbes was observed, indicating a high similarity despite of the geographical, botanical and environmental distances between sites, in agreement with both high dispersal and local selection inherent to the microbial world. The potential biogeochemical cycling showed small differences between sites, with presence of photosynthetic green and purple sulfur bacteria, cyanobacteria and aerobic and anaerobic chemolitotrophs. Potential for aerobic methane oxidation and anaerobic methanogenesis was observed in both sites, with predominance of potential nitrification mostly by ammonia-oxidizing archaea, nitrite oxidation and denitrification, and minor contribution for nitrate reduction and nitrate ammonification. The predicted functions based on the taxonomic composition showed high overlapping between the two studied regions, despite their difference in gypsum richness.
Collapse
Affiliation(s)
- Mateu Menéndez-Serra
- Integrative Freshwater Ecology Group, Centro de Estudios Avanzados de Blanes (CEAB-CSIC), Acces Cala Sant Francesc 14, Blanes 17300, Spain
| | - Xavier Triadó-Margarit
- Integrative Freshwater Ecology Group, Centro de Estudios Avanzados de Blanes (CEAB-CSIC), Acces Cala Sant Francesc 14, Blanes 17300, Spain
| | - Carmen Castañeda
- Estación Experimental de Aula Dei (EEAD-CSIC), Av. Montañana 1005, 50059 Zaragoza, Spain
| | - Juan Herrero
- Estación Experimental de Aula Dei (EEAD-CSIC), Av. Montañana 1005, 50059 Zaragoza, Spain
| | - Emilio O Casamayor
- Integrative Freshwater Ecology Group, Centro de Estudios Avanzados de Blanes (CEAB-CSIC), Acces Cala Sant Francesc 14, Blanes 17300, Spain.
| |
Collapse
|
60
|
Truu M, Oopkaup K, Krustok I, Kõiv-Vainik M, Nõlvak H, Truu J. Bacterial community activity and dynamics in the biofilm of an experimental hybrid wetland system treating greywater. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:4013-4026. [PMID: 30554320 DOI: 10.1007/s11356-018-3940-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 12/06/2018] [Indexed: 06/09/2023]
Abstract
The objectives of this study were to determine the biofilm microbial activity and bacterial community structure and successions in greywater treatment filters and to relate the treatment efficiency to the bacterial community parameters. This 10-month study was performed in a newly established experimental system for domestic greywater treatment that consisted of three parallel vertical flow filters (VFs) followed by a horizontal flow filter (HF). A rapid increase in the bacterial community abundance occurred during the first 85 days of filter operations, followed by a short-term decrease and the stabilization of the 16S rRNA gene copy numbers at average levels of 1.2 × 109 and 3.2 × 108 copies/g dw in VFs and HF, respectively, until the end of the experiment. The dominant bacterial phyla and genera differed between the VFs and HF. The temporal variation in the bacterial community structure was primarily related to the species replacement, and it was significantly affected by the influent organic carbon and nitrogen compounds in the VFs and the ammonia and organic carbon in the HF filters. Despite the differences in the community structure and assembly mechanisms, the temporal dynamics of the bacterial community showed high congruence between the filter types. The treatment efficiency was related to the biofilm bacterial community diversity and abundance and the abundance of certain bacterial genera in the VF filters. The results suggest that the dominant pathway of nitrogen removal by greywater treatment VFs occurs via coupled heterotrophic nitrification and denitrification, while the contribution of aerobic denitrification is temporally variable in these filters.
Collapse
Affiliation(s)
- Marika Truu
- Faculty of Science and Technology, University of Tartu, Vanemuise 46, 51014, Tartu, Estonia
| | - Kristjan Oopkaup
- Faculty of Science and Technology, University of Tartu, Vanemuise 46, 51014, Tartu, Estonia
| | - Ivo Krustok
- Department of Environmental Management, Ministry of the Environment, Narva St. 7a, 15172, Tallinn, Estonia
| | - Margit Kõiv-Vainik
- Faculty of Science and Technology, University of Tartu, Vanemuise 46, 51014, Tartu, Estonia
| | - Hiie Nõlvak
- Faculty of Science and Technology, University of Tartu, Vanemuise 46, 51014, Tartu, Estonia
| | - Jaak Truu
- Faculty of Science and Technology, University of Tartu, Vanemuise 46, 51014, Tartu, Estonia.
| |
Collapse
|
61
|
Holmes DE, Dang Y, Smith JA. Nitrogen cycling during wastewater treatment. ADVANCES IN APPLIED MICROBIOLOGY 2019; 106:113-192. [PMID: 30798802 DOI: 10.1016/bs.aambs.2018.10.003] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Many wastewater treatment plants in the world do not remove reactive nitrogen from wastewater prior to release into the environment. Excess reactive nitrogen not only has a negative impact on human health, it also contributes to air and water pollution, and can cause complex ecosystems to collapse. In order to avoid the deleterious effects of excess reactive nitrogen in the environment, tertiary wastewater treatment practices that ensure the removal of reactive nitrogen species need to be implemented. Many wastewater treatment facilities rely on chemicals for tertiary treatment, however, biological nitrogen removal practices are much more environmentally friendly and cost effective. Therefore, interest in biological treatment is increasing. Biological approaches take advantage of specific groups of microorganisms involved in nitrogen cycling to remove reactive nitrogen from reactor systems by converting ammonia to nitrogen gas. Organisms known to be involved in this process include autotrophic ammonia-oxidizing bacteria, heterotrophic ammonia-oxidizing bacteria, ammonia-oxidizing archaea, anaerobic ammonia oxidizing bacteria (anammox), nitrite-oxidizing bacteria, complete ammonia oxidizers, and dissimilatory nitrate reducing microorganisms. For example, in nitrifying-denitrifying reactors, ammonia- and nitrite-oxidizing bacteria convert ammonia to nitrate and then denitrifying microorganisms reduce nitrate to nonreactive dinitrogen gas. Other nitrogen removal systems (anammox reactors) take advantage of anammox bacteria to convert ammonia to nitrogen gas using NO as an oxidant. A number of promising new biological treatment technologies are emerging and it is hoped that as the cost of these practices goes down more wastewater treatment plants will start to include a tertiary treatment step.
Collapse
|
62
|
Duan H, Wang Q, Erler DV, Ye L, Yuan Z. Effects of free nitrous acid treatment conditions on the nitrite pathway performance in mainstream wastewater treatment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 644:360-370. [PMID: 29981984 DOI: 10.1016/j.scitotenv.2018.06.346] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 06/27/2018] [Accepted: 06/27/2018] [Indexed: 06/08/2023]
Abstract
Inline sludge treatment using free nitrous acid (FNA) was recently shown to be effective in establishing the nitrite pathway in a biological nitrogen removal system. However, the effects of FNA treatment conditions on the nitrite pathway performance remained to be investigated. In this study, three different FNA treatment frequencies (daily sludge treatment ratios of 0.22, 0.31 and 0.38, respectively), two FNA concentrations (1.35 mgN/L and 4.23 mgN/L, respectively) and two influent feeding regimes (one- and two-step feeding) were investigated in four laboratory-scale sequencing batch reactors. The nitrite accumulation ratio was positively correlated to the FNA treatment frequency. However, when a high treatment frequency was used e.g., daily sludge treatment ratio of 0.38, a significant reduction in ammonia oxidizing bacteria (AOB) activity occurred, leading to poor ammonium oxidation. AOB were able to acclimatise to FNA concentrations up to of 4.23 mgN/L, whereas nitrite oxidizing bacteria (NOB) were limited by an FNA concentration of 1.35 mgN/L over the duration of the study (up to 120 days). This difference in sensitivity to FNA could be used to further enhance nitrite accumulation, with 90% accumulation achieved at an FNA concentration of 4.23 mgN/L and a daily sludge treatment ratio of 0.31 in this study. However, this high level of nitrite accumulation led to increased N2O emission, with emission factors of up to 3.9% observed. The N2O emission was mitigated (reduced to 1.3%) by applying two-step feeding resulting in a nitrite accumulation ratio of 45.1%. Economic analysis showed that choosing the optimal FNA treatment conditions depends on a combination of the wastewater characteristics, the nitrogen discharge standards, and the operational costs. This study provides important information for the optimisation and practical application of FNA-based sludge treatment technology for achieving the mainstream stable nitrite pathway.
Collapse
Affiliation(s)
- Haoran Duan
- Advanced Water Management Centre (AWMC), The University of Queensland, St Lucia, QLD 4072, Australia
| | - Qilin Wang
- Advanced Water Management Centre (AWMC), The University of Queensland, St Lucia, QLD 4072, Australia; Griffith School of Engineering, Griffith University, QLD, Australia; Centre for Clean Environment and Energy, Environmental Futures Research Institute, Griffith University, QLD, Australia.
| | - Dirk V Erler
- Centre for Coastal Biogeochemistry, School of Environment, Science and Engineering, Southern Cross University, Lismore, NSW 2480, Australia
| | - Liu Ye
- School of Chemical Engineering, The University of Queensland, St. Lucia, Brisbane, QLD, 4072, Australia
| | - Zhiguo Yuan
- Advanced Water Management Centre (AWMC), The University of Queensland, St Lucia, QLD 4072, Australia.
| |
Collapse
|
63
|
Towhid ST. Microbial Interaction as a Determinant of the Quality of Supply Drinking Water: A Conceptual Analysis. Front Public Health 2018; 6:184. [PMID: 29998093 PMCID: PMC6028747 DOI: 10.3389/fpubh.2018.00184] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 06/08/2018] [Indexed: 11/13/2022] Open
Abstract
This conceptual analysis elucidates the microbial interaction inside municipal distribution pipes, subsequent deterioration in the quality of the supply water, and its impacts on public health. Literature review involved a total of 21 original reports on microbiological events inside the water distribution system were studied, summarizing the current knowledge about the build-up of microbes in treated municipal water at various points of the distribution system. Next, original reports from the microbiological analysis of supply water from Bangladesh were collected to enlist the types of bacteria found growing actively. A schematic diagram of microbial interaction among the genera was constructed with respect to the physical, chemical, and microbiological quality of the supply water. Finally latest guidelines and expert opinions from public health authorities around the world are reviewed to keep up with using cutting-edge molecular technology to ensure safe and good quality drinking water for municipal supply.
Collapse
Affiliation(s)
- Syeda T Towhid
- Department of Microbiology, Jagannath University, Dhaka, Bangladesh
| |
Collapse
|
64
|
Diversity and assembly patterns of activated sludge microbial communities: A review. Biotechnol Adv 2018; 36:1038-1047. [DOI: 10.1016/j.biotechadv.2018.03.005] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 02/11/2018] [Accepted: 03/11/2018] [Indexed: 11/22/2022]
|
65
|
Sniffen KD, Price JR, Sales CM, Olson MS. Influence of Scale on Biomass Growth and Nutrient Removal in an Algal-Bacterial Leachate Treatment System. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:13344-13352. [PMID: 29053261 DOI: 10.1021/acs.est.7b03975] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Data collected from experiments conducted at a flask scale are regularly used as input data for life cycle assessments and techno-economic analyses for predicting the potential productivities of large-scale commercial facilities. This study measures and compares nitrogen removal and biomass growth rates in treatment systems that utilize an algae-bacteria consortium to remediate landfill leachate at three scales: small (0.25 L), medium (100 L), and large (1000 L). The medium- and large-scale vessels were run for 52 consecutive weeks as semibatch reactors under variable environmental conditions. The small-scale experiments were conducted in flasks as batch experiments under controlled environmental conditions. Kolomogov-Smirnov statistical tests, which compare the distributions of entire data sets, were used to determine if the ammonia removal, total nitrogen removal, and biomass growth rates at each scale were statistically different. Results from the Kolmogov-Smirnov comparison indicate that there is a significant difference between all rates determined in the large-scale vessels compared to those in the small-scale vessels. These results suggest that small-scale experiments may not be appropriate as input data in predictive analyses of full scale algal processes. The accumulation of nitrite and nitrate within the reactor, observed midway through the experimental process, is attributed to high relative abundances of ammonia- and nitrite-oxidizing bacteria, identified via metagenomic analysis.
Collapse
Affiliation(s)
- Kaitlyn D Sniffen
- Drexel University , 3141 Chestnut St., Philadelphia, Pennsylvania 19104, United States
| | - Jacob R Price
- Drexel University , 3141 Chestnut St., Philadelphia, Pennsylvania 19104, United States
| | - Christopher M Sales
- Drexel University , 3141 Chestnut St., Philadelphia, Pennsylvania 19104, United States
| | - Mira S Olson
- Drexel University , 3141 Chestnut St., Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
66
|
Jiang X, Wu Y, Liu G, Liu W, Lu B. The effects of climate, catchment land use and local factors on the abundance and community structure of sediment ammonia-oxidizing microorganisms in Yangtze lakes. AMB Express 2017; 7:173. [PMID: 28905318 PMCID: PMC5597559 DOI: 10.1186/s13568-017-0479-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 09/05/2017] [Indexed: 11/30/2022] Open
Abstract
Ammonia-oxidizing archaea (AOA) and bacteria (AOB) play important roles in regulating the nitrification process in lake ecosystems. However, the relative effects of climate, catchment land use and local conditions on the sediment ammonia-oxidizing communities in lakes remain unclear. In this study, the diversity and abundance of AOA and AOB communities were investigated in ten Yangtze lakes by polymerase chain reaction (PCR), clone library and quantitative PCR techniques. The results showed that the abundances of both AOA and AOB in bare sediments were considerably but not significantly higher than those in vegetated sediments. Interestingly, AOB communities were more sensitive to changes in local environmental factors and vegetation characteristics than were AOA communities. Amongst climate and land use variables, mean annual precipitation, percentage of agriculture and percentage of vegetation were the key determinants of AOB abundance and diversity. Additionally, total organic carbon and chlorophyll-a concentrations in lake water were significantly related to AOB abundance and diversity. The results of the ordination analysis indicated that 81.2 and 84.3% of the cumulative variance for the species composition of AOA and AOB communities could be explained by the climate, land use and local factors. The climate and local environments played important roles in shaping AOA communities, whereas catchment agriculture and water chlorophyll-a concentration were key influencing factors of AOB communities. Our findings suggest that the composition and structure of sediment ammonia-oxidizing communities in Yangtze lakes are strongly influenced by different spatial scale factors.
Collapse
|
67
|
Collado S, Oulego P, Alonso S, Díaz M. Flow cytometric characterization of bacterial abundance and physiological status in a nitrifying-denitrifying activated sludge system treating landfill leachate. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:21262-21271. [PMID: 28741203 DOI: 10.1007/s11356-017-9596-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 06/20/2017] [Indexed: 06/07/2023]
Abstract
Flow cytometry has recently been presented as a research tool in the assessment of the viability/activity of activated sludge from municipal wastewater treatment plants, but it has not put in practice for industrial biotreatments yet. In this study, for the first time ever, the reliability and significance of the multiparameter flow cytometry applied to the biological nitrification-denitrification treatment of leachate have been evaluated. Using a double staining procedure (cFDA/PI), the viable, damaged, and dead subpopulations were determined, and the results were compared to those obtained with conventional methods, such as nitrogen and oxygen uptake rates or plate counting. Flow cytometry showed that viable cells represented approximately 47% of the total population, whereas active cells accounted for 90%. For both sludge from nitrification and denitrification processes, with less than 1% of them being also culturable in plate. Either flow cytometry or uptake rates revealed that health status of sludge remained constant throughout the biotreatment, which is consistent with the high recirculation rates. Under anaerobic starvation conditions, physiological status of sludge remained constant as well as specific oxygen and denitrification rates. Nevertheless, both the culturability in plate and the nitrification rate significantly decreased. These findings proved that multiparameter flow cytometry is a useful tool for the assessment of the viability and activity of sludge from a nitrification-denitrification biotreatment process. These results gathered all the bacterial communities in the sludge, so the decay in minority populations, such as nitrifying bacteria, requires the use of a complementary technique to evaluate specific activities.
Collapse
Affiliation(s)
- Sergio Collado
- Department of Chemical and Environmental Engineering, University of Oviedo, Oviedo, Spain
| | - Paula Oulego
- Department of Chemical and Environmental Engineering, University of Oviedo, Oviedo, Spain
| | - Saúl Alonso
- Department of Chemical and Environmental Engineering, University of Oviedo, Oviedo, Spain
| | - Mario Díaz
- Department of Chemical and Environmental Engineering, University of Oviedo, Oviedo, Spain.
| |
Collapse
|