51
|
Coutinho LG, Grandgirard D, Leib SL, Agnez-Lima LF. Cerebrospinal-fluid cytokine and chemokine profile in patients with pneumococcal and meningococcal meningitis. BMC Infect Dis 2013; 13:326. [PMID: 23865742 PMCID: PMC3717124 DOI: 10.1186/1471-2334-13-326] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2012] [Accepted: 07/09/2013] [Indexed: 01/27/2023] Open
Abstract
Background Bacterial meningitis is characterized by an intense inflammatory reaction contributing to neuronal damage. The aim of this study was to obtain a comparative analysis of cytokines and chemokines in patients with pneumococcal (PM) and meningococcal meningitis (MM) considering that a clear difference between the immune response induced by these pathogens remains unclear. Methods The cyto/chemokines, IL-1β, IL-2, IL-6, TNF-α, IFN-γ, IL-10, IL-1Ra, CXCL8/IL-8, CCL2/MCP-1, CLL3/MIP-1α, CCL4/MIP-1γ and G-CSF, were measured in cerebrospinal fluid (CSF) samples from patients with PM and MM. Additionally, a literature review about the expression of cytokines in CSF samples of patients with MB was made. Results Concerning cytokines levels, only IFN-γ was significantly higher in patients with Streptococcus pneumoniae compared to those with Neisseria meningitidis, regardless of the time when the lumbar puncture (LP) was made. Furthermore, when samples were compared considering the timing of the LP, higher levels of TNF-α (P <0.05) were observed in MM patients whose LP was made within 48 h from the initial symptoms of disease. We also observed that the index of release of cyto/chemokines per cell was significantly higher in PM. From the literature review, it was observed that TNF-α, IL-1β and IL-6 are the best studied cytokines, while reports describing the concentration of the cytokine IL-2, IL-1Ra, G-CSF and CCL4/MIP-1β in CSF samples of patients with bacterial meningitis were not found. Conclusion The data obtained in this study and the previously published data show a similar profile of cytokine expression during PM and MM. Nevertheless, the high levels of IFN-γ and the ability to release high levels of cytokines with a low number of cells are important factors to be considered in the pathogenesis of PM and thereby should be further investigated. Moreover, differences in the early response induced by the pathogens were observed. However, the differences observed are not sufficient to trigger changes in the current therapy of corticosteroids adopted in both the PM and MM.
Collapse
|
52
|
Wara-aswapati N, Chayasadom A, Surarit R, Pitiphat W, Boch JA, Nagasawa T, Ishikawa I, Izumi Y. Induction of Toll-Like Receptor Expression by Porphyromonas gingivalis. J Periodontol 2013; 84:1010-8. [DOI: 10.1902/jop.2012.120362] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
53
|
The causative pathogen determines the inflammatory profile in cerebrospinal fluid and outcome in patients with bacterial meningitis. Mediators Inflamm 2013; 2013:312476. [PMID: 23864766 PMCID: PMC3705964 DOI: 10.1155/2013/312476] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2013] [Revised: 05/28/2013] [Accepted: 06/04/2013] [Indexed: 11/21/2022] Open
Abstract
Background. The brain's inflammatory response to the infecting pathogen determines the outcome of bacterial meningitis (BM), for example, the associated mortality and the extent of brain injury. The inflammatory cascade is initiated by the presence of bacteria in the cerebrospinal fluid (CSF) activating resident immune cells and leading to the influx of blood derived leukocytes. To elucidate the pathomechanisms behind the observed difference in outcome between different pathogens, we compared the inflammatory profile in the CSF of patients with BM caused by Streptococcus pneumonia (n = 14), Neisseria meningitidis (n = 22), and Haemophilus influenza (n = 9). Methods. CSF inflammatory parameters, including cytokines and chemokines, MMP-9, and nitric oxide synthase activity, were assessed in a cohort of patients with BM from Burkina Faso. Results. Pneumococcal meningitis was associated with significantly higher CSF concentrations of IFN-γ, MCP-1, and the matrix-metalloproteinase (MMP-) 9. In patients with a fatal outcome, levels of TNF-α, IL-1β, IL-1RA, IL-6, and TGF-α were significantly higher. Conclusion. The signature of pro- and anti-inflammatory mediators and the intensity of inflammatory processes in CSF are determined by the bacterial pathogen causing bacterial meningitis with pneumococcal meningitis being associated with a higher case fatality rate than meningitis caused by N. meningitidis or H. influenzae.
Collapse
|
54
|
Group B Streptococcus and Streptococcus suis capsular polysaccharides induce chemokine production by dendritic cells via Toll-like receptor 2- and MyD88-dependent and -independent pathways. Infect Immun 2013; 81:3106-18. [PMID: 23774593 DOI: 10.1128/iai.00113-13] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Streptococcus agalactiae (also known as group B Streptococcus [GBS]) and Streptococcus suis are encapsulated streptococci causing severe septicemia and meningitis. Bacterial capsular polysaccharides (CPSs) are poorly immunogenic, but anti-CPS antibodies are essential to the host defense against encapsulated bacteria. The mechanisms underlying anti-CPS antibody responses are not fully elucidated, but the biochemistry of CPSs, particularly the presence of sialic acid, may have an immunosuppressive effect. We investigated the ability of highly purified S. suis and GBS native (sialylated) CPSs to activate dendritic cells (DCs), which are crucial actors in the initiation of humoral immunity. The influence of CPS biochemistry was studied using CPSs extracted from different serotypes within these two streptococcal species, as well as desialylated CPSs. No interleukin-1β (IL-1β), IL-6, IL-12p70, tumor necrosis factor alpha (TNF-α), or IL-10 production was observed in S. suis or GBS CPS-stimulated DCs. Moreover, these CPSs exerted immunosuppressive effects on DC activation, as a diminution of gamma interferon (IFN-γ)-induced B cell-activating factor of the tumor necrosis factor family (BAFF) expression was observed in CPS-pretreated cells. However, S. suis and GBS CPSs induced significant production of CCL3, via partially Toll-like receptor 2 (TLR2)- and myeloid differentiation factor 88 (MyD88)-dependent pathways, and CCL2, via TLR-independent mechanisms. No major influence of CPS biochemistry was observed on the capacity to induce chemokine production by DCs, indicating that DCs respond to these CPSs in a patterned way rather than a structure-dedicated manner.
Collapse
|
55
|
Potmesil R, Beran O, Musilek M, Kriz P, Holub M. Different cytokine production and Toll-like receptor expression induced by heat-killed invasive and carrier strains of Neisseria meningitidis. APMIS 2013; 122:33-41. [PMID: 23489281 DOI: 10.1111/apm.12062] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2012] [Accepted: 02/03/2013] [Indexed: 02/02/2023]
Abstract
Neisseria meningitidis may cause severe invasive disease. The carriage state of the pathogen is common, and the reasons underlying why the infection becomes invasive are not fully understood. The aim of this study was to compare the differences between invasive and carrier strains in the activation of innate immunity. The monocyte expression of TLR2, TLR4, CD14, and HLA-DR, cytokine production, and the granulocyte oxidative burst were analyzed after in vitro stimulation by heat-killed invasive (n = 14) and carrier (n = 9) strains of N. meningitidis. The expression of the cell surface markers in monocytes, the oxidative burst, and cytokine concentrations were measured using flow cytometry. Carrier strains stimulated a higher production of inflammatory cytokines and oxidative burst in granulocytes than invasive strains (all p < 0.001), whereas invasive strains significantly up-regulated TLR2, TLR4 (p < 0.001), and CD14 (p < 0.01) expression on monocytes. Conversely, the monocyte expression of HLA-DR was higher after the stimulation by carrier strains (p < 0.05) in comparison to invasive strains. The LPS inhibitor polymyxin B abolished the differences between the strains. Our findings indicate different immunostimulatory potencies of invasive strains of N. meningitidis compared with carrier strains.
Collapse
Affiliation(s)
- Roman Potmesil
- Department of Infectious and Tropical Diseases, First Faculty of Medicine, Charles University in Prague and Na Bulovce Hospital, Prague, Czech Republic
| | | | | | | | | |
Collapse
|
56
|
Blok DC, van der Sluijs KF, Florquin S, de Boer OJ, van 't Veer C, de Vos AF, van der Poll T. Limited anti-inflammatory role for interleukin-1 receptor like 1 (ST2) in the host response to murine postinfluenza pneumococcal pneumonia. PLoS One 2013; 8:e58191. [PMID: 23483993 PMCID: PMC3590127 DOI: 10.1371/journal.pone.0058191] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2012] [Accepted: 01/31/2013] [Indexed: 01/23/2023] Open
Abstract
Interleukin-1 receptor like 1 (ST2) is a negative regulator of Toll-like receptor (TLR) signaling. TLRs are important for host defense during respiratory tract infections by both influenza and Streptococcus (S.) pneumoniae. Enhanced susceptibility to pneumococcal pneumonia is an important complication following influenza virus infection. We here sought to determine the role of ST2 in primary influenza A infection and secondary pneumococcal pneumonia. ST2 knockout (st2−/−) and wild-type (WT) mice were intranasally infected with influenza A virus; in some experiments mice were infected 2 weeks later with S. pneumoniae. Both mouse strains cleared the virus similarly during the first 14 days of influenza infection and had recovered their weights equally at day 14. Overall st2−/− mice tended to have a stronger pulmonary inflammatory response upon infection with influenza; especially 14 days after infection modest but statistically significant elevations were seen in lung IL-6, IL-1β, KC, IL-10, and IL-33 concentrations and myeloperoxidase levels, indicative of enhanced neutrophil activity. Interestingly, bacterial lung loads were higher in st2−/− mice during the later stages of secondary pneumococcal pneumonia, which was associated with relatively increased lung IFN-γ levels. ST2 deficiency did not impact on gross lung pathology in either influenza or secondary S. pneumoniae pneumonia. These data show that ST2 plays a limited anti-inflammatory role during both primary influenza and postinfluenza pneumococcal pneumonia.
Collapse
Affiliation(s)
- Dana C Blok
- Center of Experimental and Molecular Medicine, Center of Infection and Immunity Amsterdam, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
57
|
Su YC, Singh B, Riesbeck K. Moraxella catarrhalis: from interactions with the host immune system to vaccine development. Future Microbiol 2013; 7:1073-100. [PMID: 22953708 DOI: 10.2217/fmb.12.80] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Moraxella catarrhalis is a human-restricted commensal that over the last two decades has developed into an emerging respiratory tract pathogen. The bacterial species is equipped with various adhesins to facilitate its colonization. Successful evasion of the human immune system is a prerequisite for Moraxella infection. This strategy involves induction of an excessive proinflammatory response, intervention of granulocyte recruitment to the infection site, activation of selected pattern recognition receptors and cellular adhesion molecules to counteract the host bacteriolytic attack, as well as, finally, reprogramming of antigen presenting cells. Host immunomodulator molecules are also exploited by Moraxella to aid in resistance against complement killing and host bactericidal molecules. Thus, breaking the basis of Moraxella immune evasion mechanisms is fundamental for future invention of effective therapy in controlling Moraxella infection.
Collapse
Affiliation(s)
- Yu-Ching Su
- Medical Microbiology, Department of Laboratory Medicine Malmö, Lund University, Skåne University Hospital, Malmö, Sweden
| | | | | |
Collapse
|
58
|
Francis SMS, Tan ME, Fung PR, Shaw JG, Semmler AB, Nataatmadja M, Bowman RV, Fong KM, Yang IA. Peripheral compartment innate immune response to Haemophilus influenzae and Streptococcus pneumoniae in chronic obstructive pulmonary disease patients. Innate Immun 2012; 19:428-37. [PMID: 23212542 DOI: 10.1177/1753425912466926] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Alterations in innate immunity that predispose to chronic obstructive pulmonary disease (COPD) exacerbations are poorly understood. We examined innate immunity gene expression in peripheral blood polymorphonuclear leukocytes (PMN) and monocytes stimulated by Haemophilus influenzae and Streptococcus pneumoniae. Thirty COPD patients (15 rapid and 15 non-rapid lung function decliners) and 15 smokers without COPD were studied. Protein expression of IL-8, IL-6, TNF-α and IFN-γ (especially monocytes) increased with bacterial challenge. In monocytes stimulated with S. pneumoniae, TNF-α protein expression was higher in COPD (non-rapid decliners) than in smokers. In co-cultures of monocytes and PMN, mRNA expression of TGF-β1 and MYD88 was up-regulated, and CD14, TLR2 and IFN-γ down-regulated with H. influenzae challenge. TNF-α mRNA expression was increased with H. influenzae challenge in COPD. Cytokine responses were similar between rapid and non-rapid decliners. TNF-α expression was up-regulated in non-rapid decliners in response to H. influenzae (monocytes) and S. pneumoniae (co-culture of monocytes and PMN). Exposure to bacterial pathogens causes characteristic innate immune responses in peripheral blood monocytes and PMN in COPD. Bacterial exposure significantly alters the expression of TNF-α in COPD patients, although not consistently. There did not appear to be major differences in innate immune responses between rapid and non-rapid decliners.
Collapse
|
59
|
The meningococcal adhesin NhhA provokes proinflammatory responses in macrophages via toll-like receptor 4-dependent and -independent pathways. Infect Immun 2012; 80:4027-33. [PMID: 22949555 DOI: 10.1128/iai.00456-12] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Activation of macrophages by Toll-like receptors (TLRs) and functionally related proteins is essential for host defense and innate immunity. TLRs recognize a wide variety of pathogen-associated molecules. Here, we demonstrate that the meningococcal outer membrane protein NhhA has immunostimulatory functions and triggers release of proinflammatory cytokines from macrophages. NhhA-induced cytokine release was found to proceed via two distinct pathways in RAW 264.7 macrophages. Interleukin-6 (IL-6) secretion was dependent on activation of TLR4 and required the TLR signaling adaptor protein MyD88. In contrast, release of tumor necrosis factor (TNF) was TLR4 and MyD88 independent. Both pathways involved NF-κB-dependent gene regulation. Using a PCR-based screen, we could identify additional targets of NhhA-dependent gene activation such as the cytokines and growth factors IL-1α, IL-1β, granulocyte colony-stimulating factor (G-CSF), and granulocyte-macrophage colony-stimulating factor (GM-CSF). In human monocyte-derived macrophages, G-CSF, GM-CSF, and IL-6 were found to be major targets of NhhA-dependent gene regulation. NhhA induced transcription of IL-6 and G-CSF mRNA via TLR4-dependent pathways, whereas GM-CSF transcription was induced via TLR4-independent pathways. These data provide new insights into the role of NhhA in host-pathogen interaction.
Collapse
|
60
|
Offersen R, Melchjorsen J, Paludan SR, Østergaard L, Tolstrup M, Søgaard OS. TLR9-adjuvanted pneumococcal conjugate vaccine induces antibody-independent memory responses in HIV-infected adults. Hum Vaccin Immunother 2012; 8:1042-7. [PMID: 22854665 PMCID: PMC3551874 DOI: 10.4161/hv.20707] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
HIV-patients have excess of pneumococcal infection. We immunized 40 HIV-patients twice with pneumococcal conjugate vaccine (Prevnar, Pfizer) +/− a TLR9 agonist (CPG 7909). Peripheral blood mononuclear cells were stimulated with pneumococcal polysaccharides and cytokine concentrations measured. The CPG 7909 adjuvant group had significantly higher relative cytokine responses than the placebo group for IL-1β, IL-2R, IL-6, IFN-γ and MIP-β, which, did not correlate with IgG antibody responses. These findings suggests that CPG 7909 as adjuvant to pneumococcal conjugate vaccine induces cellular memory to pneumococcal polysaccharides in HIV-patients, independently of the humoral response.
Collapse
Affiliation(s)
- Rasmus Offersen
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark.
| | | | | | | | | | | |
Collapse
|
61
|
Manuzak J, Dillon S, Wilson C. Differential interleukin-10 (IL-10) and IL-23 production by human blood monocytes and dendritic cells in response to commensal enteric bacteria. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2012; 19:1207-17. [PMID: 22695160 PMCID: PMC3416095 DOI: 10.1128/cvi.00282-12] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2012] [Accepted: 06/05/2012] [Indexed: 02/07/2023]
Abstract
Human peripheral blood contains antigen-presenting cells (APC), including dendritic cells (DC) and monocytes, that may encounter microbes that have translocated from the intestine to the periphery in disease states like HIV-1 infection and inflammatory bowel disease. We investigated the response of DC and monocytes in peripheral blood mononuclear cells (PBMC) to a panel of representative commensal enteric bacteria, including Escherichia coli, Enterococcus sp., and Bacteroides fragilis. All three bacteria induced significant upregulation of the maturation and activation markers CD40 and CD83 on myeloid dendritic cells (mDC) and plasmacytoid dendritic cells (pDC). However, only mDC produced cytokines, including interleukin-10 (IL-10), IL-12p40/70, and tumor necrosis factor alpha (TNF-α), in response to bacterial stimulation. Cytokine profiles in whole PBMC differed depending on the stimulating bacterial species: B. fragilis induced production of IL-23, IL-12p70, and IL-10, whereas E. coli and Enterococcus induced an IL-10-predominant response. mDC and monocyte depletion experiments indicated that these cell types differentially produced IL-10 and IL-23 in response to E. coli and B. fragilis. Bacteroides thetaiotaomicron did not induce levels of IL-23 similar to those of B. fragilis, suggesting that B. fragilis may have unique proinflammatory properties among Bacteroides species. The addition of recombinant human IL-10 to PBMC cultures stimulated with commensal bacteria abrogated the IL-23 response, whereas blocking IL-10 significantly enhanced IL-23 production, suggesting that IL-10 controls the levels of IL-23 produced. These results indicate that blood mDC and monocytes respond differentially to innate stimulation with whole commensal bacteria and that IL-10 may play a role in controlling the proinflammatory response to translocated microbes.
Collapse
Affiliation(s)
- Jennifer Manuzak
- Department of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, USA
| | | | | |
Collapse
|
62
|
Lammers AJJ, de Porto APNA, de Boer OJ, Florquin S, van der Poll T. The role of TLR2 in the host response to pneumococcal pneumonia in absence of the spleen. BMC Infect Dis 2012; 12:139. [PMID: 22721450 PMCID: PMC3519748 DOI: 10.1186/1471-2334-12-139] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2011] [Accepted: 05/30/2012] [Indexed: 11/18/2022] Open
Abstract
Background Asplenic individuals are susceptible for overwhelming infection with Streptococcus pneumoniae, carrying a high mortality. Although Toll-like receptor (TLR)-2 is considered the major receptor for Gram-positive bacteria in innate immunity, it does not play a major role in host defense against pneumococcal pneumonia. We wanted to investigate if in absence of an intact spleen as a first line of defense, the role of TLR2 during pneumococcal pneumonia becomes more significant, thereby explaining its insignificant role during infections in immune competent hosts. Methods We intranasally infected splenectomized wildtype (WT), TLR2 knock-out (KO) and TLR2/4 double KO mice with either serotype 2 or 3 S. pneumoniae. Results There were no differences between asplenic WT and TLR2KO mice of bacterial loads in lung homogenates and blood, cytokine and chemokine levels in the lungs, and lung pathology scores. TLR2/4 double KO mice were not impaired in bacterial control as well, which indicates that besides the interaction between S. pneumoniae and TLR2, the interaction between pneumolysin and TLR4 does not stimulate antibacterial defense in the asplenic host either. Conclusions These results argue against a significant role of TLR2 in host defense during S. pneumoniae pneumonia in the asplenic state. Therefore, other components can provide sufficient backup mechanisms for TLR2 deficiency in the defense against intrapulmonary infections with S. pneumoniae of the otherwise immune competent host.
Collapse
Affiliation(s)
- Adriana J J Lammers
- Center of Infection and Immunity Amsterdam, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands.
| | | | | | | | | |
Collapse
|
63
|
Chen X, Quinn EM, Ni H, Wang J, Blankson S, Redmond HP, Wang JH, Feng X. B7-H3 participates in the development of experimental pneumococcal meningitis by augmentation of the inflammatory response via a TLR2-dependent mechanism. THE JOURNAL OF IMMUNOLOGY 2012; 189:347-55. [PMID: 22661093 DOI: 10.4049/jimmunol.1103715] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
In addition to a well-documented role in regulating T cell-mediated immune responses, B7-H3, a newly discovered member of the B7 superfamily, has been recently identified as a costimulator in the innate immunity-mediated inflammatory response. In this study, we further report that B7-H3 participates in the development of pneumococcal meningitis in a murine model. Exogenous administration of B7-H3 strongly amplified the inflammatory response, exacerbated blood-brain barrier disruption, and aggravated the clinical disease status in Streptococcus pneumoniae-infected C3H/HeN wild-type mice. Consistent with the in vivo findings, B7-H3 substantially augmented proinflammatory cytokine and chemokine production, upregulated NF-κB p65 and MAPK p38 phosphorylation, and enhanced the nuclear transactivation of NF-κB p65 at both TNF-α and IL-6 promoters in S. pneumoniae-stimulated primary murine microglia cells. These B7-H3-associated in vitro and in vivo effects appeared to be dependent on TLR2 signaling, as B7-H3 almost completely lost its amplifying actions in both TLR2-deficient microglial cells and TLR2-deficient mice. Furthermore, administration of the anti-B7-H3 mAb (MIH35) attenuated the inflammatory response and ameliorated blood-brain barrier disruption in S. pneumoniae-infected wild-type mice. Collectively, our results indicate that B7-H3 plays a contributory role in the development of S. pneumoniae infection-induced bacterial meningitis.
Collapse
Affiliation(s)
- Xuqin Chen
- Department of Neurology, Affiliated Children's Hospital, Soochow University, Suzhou 215006, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
64
|
van Well GTJ, Sanders MS, Ouburg S, van Furth AM, Morré SA. Polymorphisms in Toll-like receptors 2, 4, and 9 are highly associated with hearing loss in survivors of bacterial meningitis. PLoS One 2012; 7:e35837. [PMID: 22662111 PMCID: PMC3360733 DOI: 10.1371/journal.pone.0035837] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2011] [Accepted: 03/23/2012] [Indexed: 12/20/2022] Open
Abstract
Genetic variation in innate immune response genes contributes to inter-individual differences in disease manifestation and degree of complications upon infection. We recently described an association of single nucleotide polymorphisms (SNPs) in TLR9 with susceptibility to meningococcal meningitis (MM). In this study, we investigate the association of SNPs in multiple pathogen recognition and immune response genes with clinical features that determine severity and outcome (especially hearing loss) of childhood MM and pneumococcal meningitis (PM). Eleven SNPs in seven genes (TLR2, TLR4, TLR9, NOD1, NOD2, CASP1, and TRAIL) were genotyped in 393 survivors of childhood bacterial meningitis (BM) (327 MM patients and 66 PM patients). Genotype distributions of single SNPs and combination of SNPs were compared between thirteen clinical characteristics associated with severity of BM. After correction for multiple testing, TLR4+896 mutant alleles were highly associated with post-meningitis hearing loss, especially MM (p= 0.001, OR 4.0 for BM, p= 0.0004, OR 6.2 for MM). In a multigene analysis, combined carriership of the TLR2+2477 wild type (WT) with TLR4+896 mutant alleles increases the risk of hearing loss (p<0.0001, OR 5.7 in BM and p= 0.0001, OR 7.6 in MM). Carriage of one or both mutant alleles in TLR4+896 and TLR9 -1237 increases the risk for hearing loss (p = 0.0006, OR 4.1 in BM). SNPs in immune response genes contribute to differences in clinical severity and outcome of BM. The TLR system seems to play an important role in the immune response to BM and subsequent neuronal damage as well as in cochlear inflammation. Genetic markers may be used for identification of high-risk patients by creating prediction rules for post-meningitis hearing loss and other sequelae, and provide more insight in the complex immune response in the CNS possibly resulting in new therapeutic interventions.
Collapse
Affiliation(s)
- Gijs Th J. van Well
- Department of Pediatric Infectious Diseases, Immunology and Rheumatology, VU University Medical Center, Amsterdam, The Netherlands
- Department of Pediatrics, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Marieke S. Sanders
- Department of Pediatric Infectious Diseases, Immunology and Rheumatology, VU University Medical Center, Amsterdam, The Netherlands
- Laboratory of Immunogenetics, Department of Medical Microbiology, VU University Medical Center, Amsterdam, The Netherlands
- Department of Surgery, Antonius Hospital, Nieuwegein, The Netherlands
| | - Sander Ouburg
- Laboratory of Immunogenetics, Department of Medical Microbiology, VU University Medical Center, Amsterdam, The Netherlands
| | - A. Marceline van Furth
- Department of Pediatric Infectious Diseases, Immunology and Rheumatology, VU University Medical Center, Amsterdam, The Netherlands
| | - Servaas A. Morré
- Laboratory of Immunogenetics, Department of Medical Microbiology, VU University Medical Center, Amsterdam, The Netherlands
- Institute of Public Health Genomics, Department of Genetics and Cell Biology, Research Institutes CAPHRI (School for Public Health and Primary Care) and GROW (School for Oncology & Developmental Biology), Faculty of Health, Medicine & Life Sciences, University of Maastricht, Maastricht, The Netherlands
| |
Collapse
|
65
|
The role of bradykinin and the effect of the bradykinin receptor antagonist icatibant in porcine sepsis. Shock 2012; 36:517-23. [PMID: 21921836 DOI: 10.1097/shk.0b013e3182336a34] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Bradykinin (BK) is regarded as an important mediator of edema, shock, and inflammation during sepsis. In this study, we evaluated the contribution of BK in porcine sepsis by blocking BK and by measuring the stable BK metabolite, BK1-5, using anesthetized pigs. The effect of BK alone, the efficacy of icatibant to block this effect, and the recovery of BK measured as plasma BK1-5 were first investigated. Purified BK injected intravenously induced an abrupt fall in blood pressure, which was completely prevented by pretreatment with icatibant. BK1-5 was detected in plasma corresponding to the doses given. The effect of icatibant was then investigated in an established model of porcine gram-negative sepsis. Neisseria meningitidis was infused intravenously without any pretreatment (n = 8) or pretreated with icatibant (n = 8). Negative controls received saline only. Icatibant-treated pigs developed the same degree of severe sepsis as did the controls. Both groups had massive capillary leakage, leukopenia, and excessive cytokine release. The plasma level of BK1-5 was low or nondetectable in all pigs. The latter observation was confirmed in supplementary studies with pigs undergoing Escherichia coli or polymicrobial sepsis induced by cecal ligation and puncture. In conclusion, icatibant completely blocked the hemodynamic effects of BK but had no beneficial effects on N. meningitidis-induced edema, shock, and inflammation. This and the fact that plasma BK1-5 in all the septic pigs was virtually nondetectable question the role of BK as an important mediator of porcine sepsis. Thus, the data challenge the current view of the role of BK also in human sepsis.
Collapse
|
66
|
So NSY, Ostrowski MA, Gray-Owen SD. Vigorous response of human innate functioning IgM memory B cells upon infection by Neisseria gonorrhoeae. THE JOURNAL OF IMMUNOLOGY 2012; 188:4008-22. [PMID: 22427638 DOI: 10.4049/jimmunol.1100718] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Neisseria gonorrhoeae, the cause of the sexually transmitted infection gonorrhea, elicits low levels of specific Ig that decline rapidly after the bacteria are cleared. Reinfection with the same serovar can occur, and prior gonococcal infection does not alter the Ig response upon subsequent exposure, suggesting that protective immunity is not induced. The mucosal Ig response apparent during gonorrhea does not correlate with that observed systemically, leading to a suggestion that it is locally generated. In considering whether N. gonorrhoeae directly influences B cells, we observed that gonococcal infection prolonged viability of primary human B cells in vitro and elicited robust activation and vigorous proliferative responses in the absence of T cells. Furthermore, we observed the specific expansion of IgD(+)CD27(+) B cells in response to gonococcal infection. These cells are innate in function, conferring protection against diverse microbes by producing low-affinity, broadly reactive IgM without inducing classical immunologic memory. Although gonococcal infection of B cells produced small amounts of gonococcal-specific IgM, IgM specific for irrelevant Ags were also produced, suggesting a broad, polyspecific Ig response. The gonococci were effectively bound and engulfed by B cells. TLR9-inhibitory CpGs blocked B cell responses, indicating that intracellular bacterial degradation allows for innate immune detection within the phagolysosome. To our knowledge, this is the first report of a bacterial pathogen having specific affinity for the human IgM memory B cells, driving their potent activation and polyclonal Ig response. This unfocused T-independent response explains the localized Ig response that occurs, despite an absence of immunologic memory elicited during gonorrhea.
Collapse
Affiliation(s)
- Nancy S Y So
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | | | | |
Collapse
|
67
|
Effects of echinocandins on cytokine/chemokine production by human monocytes activated by infection with Candida glabrata or by lipopolysaccharide. Diagn Microbiol Infect Dis 2012; 72:226-33. [DOI: 10.1016/j.diagmicrobio.2011.11.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2011] [Revised: 11/11/2011] [Accepted: 11/13/2011] [Indexed: 11/23/2022]
|
68
|
Woehrl B, Klein M, Grandgirard D, Koedel U, Leib S. Bacterial meningitis: current therapy and possible future treatment options. Expert Rev Anti Infect Ther 2012; 9:1053-65. [PMID: 22029523 DOI: 10.1586/eri.11.129] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Despite targeted therapy, case-fatality rates and neurologic sequelae of bacterial meningitis remain unacceptably high. The poor outcome is mainly due to secondary systemic and intracranial complications. These complications seem to be both a consequence of the inflammatory response to the invading pathogen and release of bacterial components by the pathogen itself. Therefore, within the last decades, research has focused on the mechanism underlying immune regulation and the inhibition of bacterial lysis in order to identify new targets for adjuvant therapy. The scope of this article is to give an overview on current treatment strategies of bacterial meningitis, to summarize new insights on the pathophysiology of bacterial meningitis, and to give an outlook on new treatment strategies derived from experimental models.
Collapse
Affiliation(s)
- Bianca Woehrl
- Department of Neurology, Klinikum Grosshadern, Ludwig Maximilians University, Munich, Germany
| | | | | | | | | |
Collapse
|
69
|
Durmuş Tekir S, Cakir T, Ulgen KÖ. Infection Strategies of Bacterial and Viral Pathogens through Pathogen-Human Protein-Protein Interactions. Front Microbiol 2012; 3:46. [PMID: 22347880 PMCID: PMC3278985 DOI: 10.3389/fmicb.2012.00046] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2011] [Accepted: 01/30/2012] [Indexed: 01/21/2023] Open
Abstract
Since ancient times, even in today’s modern world, infectious diseases cause lots of people to die. Infectious organisms, pathogens, cause diseases by physical interactions with human proteins. A thorough analysis of these interspecies interactions is required to provide insights about infection strategies of pathogens. Here we analyzed the most comprehensive available pathogen–human protein interaction data including 23,435 interactions, targeting 5,210 human proteins. The data were obtained from the newly developed pathogen–host interaction search tool, PHISTO. This is the first comprehensive attempt to get a comparison between bacterial and viral infections. We investigated human proteins that are targeted by bacteria and viruses to provide an overview of common and special infection strategies used by these pathogen types. We observed that in the human protein interaction network the proteins targeted by pathogens have higher connectivity and betweenness centrality values than those proteins not interacting with pathogens. The preference of interacting with hub and bottleneck proteins is found to be a common infection strategy of all types of pathogens to manipulate essential mechanisms in human. Compared to bacteria, viruses tend to interact with human proteins of much higher connectivity and centrality values in the human network. Gene Ontology enrichment analysis of the human proteins targeted by pathogens indicates crucial clues about the infection mechanisms of bacteria and viruses. As the main infection strategy, bacteria interact with human proteins that function in immune response to disrupt human defense mechanisms. Indispensable viral strategy, on the other hand, is the manipulation of human cellular processes in order to use that transcriptional machinery for their own genetic material transcription. A novel observation about pathogen–human systems is that the human proteins targeted by both pathogens are enriched in the regulation of metabolic processes.
Collapse
Affiliation(s)
- Saliha Durmuş Tekir
- Biosystems Engineering Research Group, Department of Chemical Engineering, Boğaziçi University istanbul, Turkey
| | | | | |
Collapse
|
70
|
Baltch AL, Lawrence D, Ritz WJ, Andersen N, Bopp LH, Michelsen PB, Carlyn CJ, Smith RP. Effects of Anidulafungin and Voriconazole, Singly and in Combination, on Cytokine/Chemokine Production by Human Monocyte-Derived Macrophages Infected with Candida glabrata or Activated by Lipopolysaccharide. Chemotherapy 2012; 58:146-51. [DOI: 10.1159/000337076] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2011] [Accepted: 02/05/2012] [Indexed: 12/13/2022]
|
71
|
Abstract
The clinical symptoms induced by Neisseria meningitidis reflect compartmentalized intravascular and intracranial bacterial growth and inflammation. In this chapter, we describe a classification system for meningococcal disease based on the nature of the clinical symptoms. Meningococci invade the subarachnoid space and cause meningitis in as many as 50-70% of patients. The bacteremic phase is moderate in patients with meningitis and mild systemic meningococcemia but graded high in patients with septic shock. Three landmark studies using this classification system and comprising 862 patients showed that 37-49% developed meningitis without shock, 10-18% shock without meningitis, 7-12% shock and meningitis, and 18-33% had mild meningococcemia without shock or meningitis. N. meningitidis lipopolysaccharide (LPS) is the principal trigger of the innate immune system via activation of the Toll-like receptor 4-MD2 cell surface receptor complex on myeloid and nonmyeloid human cells. The intracellular signals are conveyed via MyD88-dependent and -independent pathways altering the expression of >4,600 genes in target cells such as monocytes. However, non-LPS molecules contribute to inflammation, but 10-100-fold higher concentrations are required to reach the same responses as induced by LPS. Activation of the complement and coagulation systems is related to the bacterial load in the circulation and contributes to the development of shock, organ dysfunction, thrombus formation, bleeding, and long-term complications in patients. Despite rapid intervention and advances in patient intensive care, why as many as 30% of patients with systemic meningococcal disease develop massive meningococcemia leading to shock and death is still not understood.
Collapse
Affiliation(s)
- Petter Brandtzaeg
- Departments of Pediatrics and Medical Biochemistry, University of Oslo, Oslo, Norway.
| | | |
Collapse
|
72
|
Abstract
Pneumococcal meningitis continues to be associated with high rates of mortality and long-term neurological sequelae. The most common route of infection starts by nasopharyngeal colonization by Streptococcus pneumoniae, which must avoid mucosal entrapment and evade the host immune system after local activation. During invasive disease, pneumococcal epithelial adhesion is followed by bloodstream invasion and activation of the complement and coagulation systems. The release of inflammatory mediators facilitates pneumococcal crossing of the blood-brain barrier into the brain, where the bacteria multiply freely and trigger activation of circulating antigen-presenting cells and resident microglial cells. The resulting massive inflammation leads to further neutrophil recruitment and inflammation, resulting in the well-known features of bacterial meningitis, including cerebrospinal fluid pleocytosis, cochlear damage, cerebral edema, hydrocephalus, and cerebrovascular complications. Experimental animal models continue to further our understanding of the pathophysiology of pneumococcal meningitis and provide the platform for the development of new adjuvant treatments and antimicrobial therapy. This review discusses the most recent views on the pathophysiology of pneumococcal meningitis, as well as potential targets for (adjunctive) therapy.
Collapse
|
73
|
Hanke ML, Kielian T. Toll-like receptors in health and disease in the brain: mechanisms and therapeutic potential. Clin Sci (Lond) 2011; 121:367-87. [PMID: 21745188 PMCID: PMC4231819 DOI: 10.1042/cs20110164] [Citation(s) in RCA: 384] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The discovery of mammalian TLRs (Toll-like receptors), first identified in 1997 based on their homology with Drosophila Toll, greatly altered our understanding of how the innate immune system recognizes and responds to diverse microbial pathogens. TLRs are evolutionarily conserved type I transmembrane proteins expressed in both immune and non-immune cells, and are typified by N-terminal leucine-rich repeats and a highly conserved C-terminal domain termed the TIR [Toll/interleukin (IL)-1 receptor] domain. Upon stimulation with their cognate ligands, TLR signalling elicits the production of cytokines, enzymes and other inflammatory mediators that can have an impact on several aspects of CNS (central nervous system) homoeostasis and pathology. For example, TLR signalling plays a crucial role in initiating host defence responses during CNS microbial infection. Furthermore, TLRs are targets for many adjuvants which help shape pathogen-specific adaptive immune responses in addition to triggering innate immunity. Our knowledge of TLR expression and function in the CNS has greatly expanded over the last decade, with new data revealing that TLRs also have an impact on non-infectious CNS diseases/injury. In particular, TLRs recognize a number of endogenous molecules liberated from damaged tissues and, as such, influence inflammatory responses during tissue injury and autoimmunity. In addition, recent studies have implicated TLR involvement during neurogenesis, and learning and memory in the absence of any underlying infectious aetiology. Owing to their presence and immune-regulatory role within the brain, TLRs represent an attractive therapeutic target for numerous CNS disorders and infectious diseases. However, it is clear that TLRs can exert either beneficial or detrimental effects in the CNS, which probably depend on the context of tissue homoeostasis or pathology. Therefore any potential therapeutic manipulation of TLRs will require an understanding of the signals governing specific CNS disorders to achieve tailored therapy.
Collapse
Affiliation(s)
- Mark L. Hanke
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198
| | - Tammy Kielian
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198
| |
Collapse
|
74
|
Zheng H, Luo X, Segura M, Sun H, Ye C, Gottschalk M, Xu J. The role of toll-like receptors in the pathogenesis of Streptococcus suis. Vet Microbiol 2011; 156:147-56. [PMID: 22055206 DOI: 10.1016/j.vetmic.2011.10.014] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2011] [Revised: 10/08/2011] [Accepted: 10/12/2011] [Indexed: 01/03/2023]
Abstract
Streptococcus suis is an important agent of swine and human meningitis. Sequence type (ST) 7 emerged in China and was responsible for the human epidemic caused by S. suis in 2005. The virulence of S. suis ST7 is greater than the wild type pathogenic S. suis, ST1; however, the mechanisms for this increased pathogenicity are unknown. The aim of this study was to determine the role of different toll-like receptors (TLRs) involved in regulating the host response to the S. suis infection and to speculate on differing mechanisms used by ST7 strains to induce disease. Here we compared two ST7 strains isolated in the 2005 Sichuan outbreak to two ST1 strains. Our data show TLR2, 6 and 9 are involved in the recognition of heat-killed S. suis independent of the ST type. We found the TLR-dependent cytokine production differed between the two types of strains using whole cell lysate proteins. TLR6 played a greater role in cytokine production induced by the whole cell lysate proteins from the ST7 strain than in that induced by the ST1 strain lysates. The data suggest that mechanisms of inflammation induced by S. suis strains differ where this will be useful in designing efficient strategies in combating streptococcal toxic shock-like syndrome caused by the S. suis ST7 strains.
Collapse
Affiliation(s)
- Han Zheng
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping, Beijing, China
| | | | | | | | | | | | | |
Collapse
|
75
|
Bhatty M, Pruett SB, Swiatlo E, Nanduri B. Alcohol abuse and Streptococcus pneumoniae infections: consideration of virulence factors and impaired immune responses. Alcohol 2011; 45:523-39. [PMID: 21827928 DOI: 10.1016/j.alcohol.2011.02.305] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2010] [Revised: 01/26/2011] [Accepted: 02/16/2011] [Indexed: 01/01/2023]
Abstract
Alcohol is the most frequently abused substance in the world. Both acute and chronic alcohol consumption have diverse and well-documented effects on the human immune system, leading to increased susceptibility to infections like bacterial pneumonia. Streptococcus pneumoniae is the most common bacterial etiology of community-acquired pneumonia worldwide. The frequency and severity of pneumococcal infections in individuals with a history of alcohol abuse is much higher than the general population. Despite this obvious epidemiological relevance, very few experimental studies have focused on the interaction of pneumococci with the immune system of a host acutely or chronically exposed to alcohol. Understanding these host-pathogen interactions is imperative for designing effective prophylactic and therapeutic interventions for such populations. Recent advances in pneumococcal research have greatly improved our understanding of pneumococcal pathogenesis and virulence mechanisms. Additionally, a large body of data is available on the effect of alcohol on the physiology of the lungs and the innate and adaptive immune system of the host. The purpose of this review is to integrate the available knowledge in these diverse areas of for a better understanding of the how the compromised immune system derived from alcohol exposure responds to pneumococcal infections.
Collapse
Affiliation(s)
- Minny Bhatty
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, MS 39762, USA
| | | | | | | |
Collapse
|
76
|
Abstract
Streptococcus pneumoniae is a leading cause of bacterial pneumonia, meningitis, and sepsis in children. Human immunity to pneumococcal infections has been assumed to depend on anticapsular antibodies. However, recent findings from murine models suggest that alternative mechanisms, dependent on T helper cells, are also involved. Although the immunological events in which T helper cells contribute to acquired immunity have been studied in mice, little is known about how these responses are generated in humans. Therefore, we examined bacterial and host factors involved in the induction of Th1 and Th17 responses, using a coculture model of human monocytes and CD4(+) T cells. We show that monocytes promote effector cytokine production by memory T helper cells, leading to a mixed Th1/Th17 (gamma interferon [IFN-γ]/interleukin-17 [IL-17]) profile. Both T helper cytokines were triggered by purified pneumococcal peptidoglycan; however, the balance between the two immune effector arms depended on bacterial viability. Accordingly, live pneumococci triggered a Th1-biased response via monocyte production of IL-12p40, whereas heat-killed pneumococci triggered a Th17 response through TLR2 signaling. An increased understanding of human T helper responses is essential for the development of novel pneumococcal vaccines designed to elicit cell-mediated immunity.
Collapse
|
77
|
Sanders MS, van Well GTJ, Ouburg S, Lundberg PSJ, van Furth AM, Morré SA. Single nucleotide polymorphisms in TLR9 are highly associated with susceptibility to bacterial meningitis in children. Clin Infect Dis 2011; 52:475-80. [PMID: 21258099 DOI: 10.1093/cid/ciq155] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Bacterial meningitis (BM) is a severe infection mainly caused by Streptococcus pneumoniae and Neisseria meningitidis (NM). However, genetically determined susceptibility to develop severe infections by these microorganisms is variable between individuals. Toll-like receptor 9 (TLR9) recognizes bacterial DNA leading to intracellular inflammatory signaling. Single nucleotide polymorphisms (SNPs) within the TLR9 gene are associated with susceptibility to several diseases, no such association with meningitis has been described. METHODS We studied the role of TLR9 SNPs in host defense against BM. Two TLR9 SNPs and 4 TLR9 haplotypes were determined in 472 survivors of BM and compared to 392 healthy controls. RESULTS Carriage of the TLR9+2848-A mutant was significantly decreased in meningococcal meningitis (MM) patients compared with controls (p: .0098, odds ratio [OR]: .6, 95% confidence interval [CI]: .4-.9). TLR9 haplotype I was associated with an increased susceptibility to MM (p: .0237, OR 1.3, 95% CI: 1.0-1.5). In silico analysis shows a very strong immunoinhibitory potential for DNA of NM upon recognition by TLR9 (CpG index of -106.8). CONCLUSIONS We report an association of TLR9 SNPs with susceptibility to BM, specifically MM indicating a protective effect for the TLR9+2848-A allele. We hypothesize that the TLR9+2848-A mutant results in an up-regulation of TLR9 induced immune response compensating the strong inhibitory potential of NM CpG DNA.
Collapse
Affiliation(s)
- Marieke S Sanders
- Department of Pathology, Laboratory for Immunogenetics, VU University Medical Center, Amsterdam, The Netherlands
| | | | | | | | | | | |
Collapse
|
78
|
Sanders MS, van Well GTJ, Ouburg S, Morré SA, van Furth AM. Genetic variation of innate immune response genes in invasive pneumococcal and meningococcal disease applied to the pathogenesis of meningitis. Genes Immun 2011; 12:321-34. [DOI: 10.1038/gene.2011.20] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
79
|
Braun BJ, Slowik A, Leib SL, Lucius R, Varoga D, Wruck CJ, Jansen S, Podschun R, Pufe T, Brandenburg LO. The formyl peptide receptor like-1 and scavenger receptor MARCO are involved in glial cell activation in bacterial meningitis. J Neuroinflammation 2011; 8:11. [PMID: 21299846 PMCID: PMC3040686 DOI: 10.1186/1742-2094-8-11] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2010] [Accepted: 02/07/2011] [Indexed: 12/13/2022] Open
Abstract
Background Recent studies have suggested that the scavenger receptor MARCO (macrophage receptor with collagenous structure) mediates activation of the immune response in bacterial infection of the central nervous system (CNS). The chemotactic G-protein-coupled receptor (GPCR) formyl-peptide-receptor like-1 (FPRL1) plays an essential role in the inflammatory responses of host defence mechanisms and neurodegenerative disorders such as Alzheimer's disease (AD). Expression of the antimicrobial peptide cathelicidin CRAMP/LL-37 is up-regulated in bacterial meningitis, but the mechanisms underlying CRAMP expression are far from clear. Methods Using a rat meningitis model, we investigated the influence of MARCO and FPRL1 on rCRAMP (rat cathelin-related antimicrobial peptide) expression after infection with bacterial supernatants of Streptococcus pneumoniae (SP) and Neisseria meningitides (NM). Expression of FPRL1 and MARCO was analyzed by immunofluorescence and real-time RT-PCR in a rat meningitis model. Furthermore, we examined the receptor involvement by real-time RT-PCR, extracellular-signal regulated kinases 1/2 (ERK1/2) phosphorylation and cAMP level measurement in glial cells (astrocytes and microglia) and transfected HEK293 cells using receptor deactivation by antagonists. Receptors were inhibited by small interference RNA and the consequences in NM- and SP-induced Camp (rCRAMP gene) expression and signal transduction were determined. Results We show an NM-induced increase of MARCO expression by immunofluorescence and real-time RT-PCR in glial and meningeal cells. Receptor deactivation by antagonists and small interfering RNA (siRNA) verified the importance of FPRL1 and MARCO for NM- and SP-induced Camp and interleukin-1β expression in glial cells. Furthermore, we demonstrated a functional interaction between FPRL1 and MARCO in NM-induced signalling by real-time RT-PCR, ERK1/2 phosphorylation and cAMP level measurement and show differences between NM- or SP-induced signal transduction. Conclusions We propose that NM and SP induce glial cell activation and rCRAMP expression also via FPRL1 and MARCO. Thus the receptors contribute an important part to the host defence against infection.
Collapse
Affiliation(s)
- Benedikt J Braun
- Department of Anatomy and Cell Biology, RWTH Aachen University, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
80
|
Zughaier SM. Neisseria meningitidis capsular polysaccharides induce inflammatory responses via TLR2 and TLR4-MD-2. J Leukoc Biol 2010; 89:469-80. [PMID: 21191086 DOI: 10.1189/jlb.0610369] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
CPS are major virulence factors in infections caused by Neisseria meningitidis and form the basis for meningococcal serogroup designation and protective meningococcal vaccines. CPS polymers are anchored in the meningococcal outer membrane through a 1,2-diacylglycerol moiety, but the innate immunostimulatory activity of CPS is largely unexplored. Well-established human and murine macrophage cell lines and HEK/TLR stably transfected cells were stimulated with CPS, purified from an endotoxin-deficient meningococcal serogroup B NMB-lpxA mutant. CPS induced inflammatory responses via TLR2- and TLR4-MD-2. Meningococcal CPS induced a dose-dependent release of cytokines (TNF-α, IL-6, IL-8, and CXCL10) and NO from human and murine macrophages, respectively. CPS induced IL-8 release from HEK cells stably transfected with TLR2/6, TLR2, TLR2/CD14, and TLR4/MD-2/CD14 but not HEK cells alone. mAb to TLR2 but not an isotype control antibody blocked CPS-induced IL-8 release from HEK-TLR2/6-transfected cells. A significant reduction in TNF-α and IL-8 release was seen when THP-1- and HEK-TLR4/MD-2-CD14- but not HEK-TLR2- or HEK-TLR2/6-transfected cells were stimulated with CPS in the presence of Eritoran (E5564), a lipid A antagonist that binds to MD-2, and a similar reduction in NO and TNF-α release was also seen in RAW 264.7 cells in the presence of Eritoran. CD14 and LBP enhanced CPS bioactivity, and NF-κB was, as anticipated, the major signaling pathway. Thus, these data suggest that innate immune recognition of meningococcal CPS by macrophages can occur via TLR2- and TLR4-MD-2 pathways.
Collapse
Affiliation(s)
- Susu M Zughaier
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA.
| |
Collapse
|
81
|
Dobson-Belaire WN, Rebbapragada A, Malott RJ, Yue FY, Kovacs C, Kaul R, Ostrowski MA, Gray-Owen SD. Neisseria gonorrhoeae effectively blocks HIV-1 replication by eliciting a potent TLR9-dependent interferon-α response from plasmacytoid dendritic cells. Cell Microbiol 2010; 12:1703-17. [DOI: 10.1111/j.1462-5822.2010.01502.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
82
|
Dominis-Kramari M, Bosnar M, Kelneri Ž, Glojnari I, Čuži S, Parnham MJ, Erakovi Haber V. Comparison of Pulmonary Inflammatory and Antioxidant Responses to Intranasal Live and Heat-Killed Streptococcus pneumoniae in Mice. Inflammation 2010; 34:471-86. [DOI: 10.1007/s10753-010-9255-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
83
|
|
84
|
Strunk T, Richmond P, Prosser A, Simmer K, Levy O, Burgner D, Currie A. Method of bacterial killing differentially affects the human innate immune response to Staphylococcus epidermidis. Innate Immun 2010; 17:508-16. [PMID: 20807722 DOI: 10.1177/1753425910379840] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND In vitro investigations of human innate immune responses to extracellular bacteria commonly utilise killed preparations in preference to live organisms. The effects of the bacterial preparation method on the activation of innate signalling pathways by the common opportunistic pathogen Staphylococcus epidermidis (SE) are unknown. MATERIALS AND METHODS Mononuclear cell cytokine expression patterns induced by live (LSE), heat-killed (HKSE) and ethanol-killed SE (EKSE) were characterized at the transcriptional and translational level. Toll-like receptor (TLR)-activating capacity of the preparations was analysed using TLR-transfected human embryonic kidney cells. RESULTS Live SE activated NF-κB, STAT1, type I interferon, and inflammasome pathways. Killed preparations engaged the NF-κB pathway, but had significantly lower capacity to activate other innate immune pathways. CONCLUSIONS Killing of extracellular bacteria has significant qualitative and quantitative effects on key aspects of innate responses in vitro. Interpretation of in vitro data and extrapolation of findings should take into account the potential effects of bacterial preparation and should not assume that responses to killed bacteria are predictive of responses to live organisms.
Collapse
Affiliation(s)
- Tobias Strunk
- School of Paediatrics and Child Health, University of Western Australia, Subiaco.
| | | | | | | | | | | | | |
Collapse
|
85
|
Sahingur SE, Xia XJ, Alamgir S, Honma K, Sharma A, Schenkein HA. DNA from Porphyromonas gingivalis and Tannerella forsythia induce cytokine production in human monocytic cell lines. Mol Oral Microbiol 2010; 25:123-35. [PMID: 20331800 DOI: 10.1111/j.2041-1014.2009.00551.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Toll-like receptor 9 (TLR9) expression is increased in periodontally diseased tissues compared with healthy sites indicating a possible role of TLR9 and its ligand, bacterial DNA (bDNA), in periodontal disease pathology. Here, we determine the immunostimulatory effects of periodontal bDNA in human monocytic cells (THP-1). THP-1 cells were stimulated with DNA of two putative periodontal pathogens: Porphyromonas gingivalis and Tannerella forsythia. The role of TLR9 in periodontal bDNA-initiated cytokine production was determined either by blocking TLR9 signaling in THP-1 cells with chloroquine or by measuring IL-8 production and nuclear factor-kappaB (NF-kappaB) activation in HEK293 cells stably transfected with human TLR9. Cytokine production (IL-1beta, IL-6, and TNF-alpha) was increased significantly in bDNA-stimulated cells compared with controls. Chloroquine treatment of THP-1 cells decreased cytokine production, suggesting that TLR9-mediated signaling pathways are operant in the recognition of DNA from periodontal pathogens. Compared with native HEK293 cells, TLR9-transfected cells demonstrated significantly increased IL-8 production (P < 0.001) and NF-kappaB activation in response to bDNA, further confirming the role of TLR9 in periodontal bDNA recognition. The results of PCR arrays demonstrated upregulation of proinflammatory cytokine and NF-kappaB genes in response to periodontal bDNA in THP-1 cells, suggesting that cytokine induction is through NF-kappaB activation. Hence, immune responses triggered by periodontal bacterial nucleic acids may contribute to periodontal disease pathology by inducing proinflammatory cytokine production through the TLR9 signaling pathway.
Collapse
Affiliation(s)
- S E Sahingur
- Virginia Commonwealth University, School of Dentistry, Department of Periodontics, Richmond, VA, USA.
| | | | | | | | | | | |
Collapse
|
86
|
Abstract
PURPOSE OF REVIEW Currently, dexamethasone is the only adjuvant of proven benefit in bacterial meningitis. Dexamethasone halves the risk of poor outcome, but only in selected patient groups. New therapies based upon an understanding of the pathophysiology are needed. This article summarizes our knowledge on the pathophysiology of bacterial meningitis with special emphasis on pneumococcal meningitis, the experimentally best characterized subtype. RECENT FINDINGS Experimental studies made clear that the harmful inflammatory reaction is initiated by the interaction of bacterial products with host pattern recognition receptors (PRRs) such as Toll-like receptors. PRR signalling leads to MyD88-dependent production of proinflammatory cytokines of the interleukin-1 family. Secretion of interleukin-1 family cytokines forms a positive feedback loop that boosts MyD88-dependent production of proinflammatory mediators. As a consequence, great numbers of neutrophils are recruited to the subarachnoid space. Activated neutrophils release many potentially cytotoxic agents including oxidants and matrix metalloproteinases that can cause collateral damage to brain tissue. Additionally to the inflammatory response, direct bacterial cytotoxicity has been identified as a contributor to tissue damage. SUMMARY Promising pathophysiologically targeted approaches for adjunctive therapy of acute bacterial meningitis include limiting the release of toxic bacterial products (e.g. nonbacteriolytic antibiotics) and interfering in the generation of host-derived cytotoxins.
Collapse
|
87
|
Pneumococcal conjugate vaccination in persons with HIV: the effect of highly active antiretroviral therapy. AIDS 2010; 24:1315-22. [PMID: 20559037 DOI: 10.1097/qad.0b013e328339fe0b] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
OBJECTIVE Vaccination responses may be affected by concomitant use of highly active antiretroviral therapy (HAART). We aimed to determine HAART's impact on seven-valent pneumococcal conjugate (7vPnC) vaccine immunization with or without a Toll-like receptor 9 (TLR9) agonist adjuvant. DESIGN Observational cohort study. METHODS Adults with HIV were immunized with double doses of 7vPnC +/-1 mg CPG 7909, a TLR9 agonist and vaccine adjuvant, at 0 and 3 months, and 23-valent pneumococcal polysaccharide vaccine at 9 months. We measured IgG levels (ELISA) and opsonophagocytic activity (OPA) at months 0, 3, 4, 9, and 10. Persistent 7vPnC vaccine responders were defined as individuals with two-fold IgG increases to 1 microg/ml or more for at least five of the 7vPnC serotypes at 9 months. RESULTS We included 75 participants on HAART and 20 HAART-naive. Forty-one received CPG 7909 and 48 received placebo adjuvant. More persistent 7vPnC vaccine responders were found among HAART-treated than among HAART-naive (42.3 vs. 15.0%, P = 0.03). Mean loss of vaccine-specific IgG from month 4 to 9 was greater among HAART-naive than among HAART-treated (54.8 vs. 38.1%, P = 0.001). Functional activity (OPA) was higher among HAART-treated than among HAART-naive at 4, 9, and 10 months. In a logistic regression analysis (adjusted for baseline CD4 cell count, CPG 7909, smoking status, BMI, AIDS diagnosis, and age), HAART use was significantly associated with being persistent 7vPnC vaccine responder at month 9 [odds ratio = 4.65, 95% confidence interval (CI) 1.07-20.2]. CONCLUSIONS HIV-infected adults on HAART achieved a more durable antibody response of higher functional activity following pneumococcal conjugate vaccination than HAART-naive individuals, independently of baseline CD4 cell count.
Collapse
|
88
|
Dissecting the effects of lipopolysaccharides from nonlipopolysaccharide molecules in experimental porcine meningococcal sepsis. Crit Care Med 2010; 38:1467-74. [DOI: 10.1097/ccm.0b013e3181de8c94] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
89
|
The structure of Neisseria meningitidis lipid A determines outcome in experimental meningococcal disease. Infect Immun 2010; 78:3177-86. [PMID: 20439476 DOI: 10.1128/iai.01311-09] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Lipopolysaccharide (LPS), a major component of the meningococcal outer membrane, is sensed by the host through activation of Toll-like receptor 4 (TLR4). Recently, we demonstrated that a surprisingly large fraction of Neisseria meningitidis disease isolates are lipid A mutants, due to inactivating mutations in the lpxL1 gene. The lpxL1 mutants activate human TLR4 much less efficiently than wild-type bacteria, which may be advantageous by allowing them to escape from the innate immune system. Here we investigated the influence of lipid A structure on virulence in a mouse model of meningococcal sepsis. One limitation, however, is that murine TLR4 recognizes lpxL1 mutant bacteria much better than human TLR4. We show that an lpxL2 mutant, another lipid A mutant lacking an acyl chain at a different position, activates murine TLR4 less efficiently than the lpxL1 mutant. Therefore, the lpxL2 mutant in mice might be a better model for infections with lpxL1 mutants in humans. Interestingly, we found that the lpxL2 mutant is more virulent in mice than the wild-type strain, whereas the lpxL1 mutant is actually much less virulent than the wild-type strain. These results demonstrate the crucial role of N. meningitidis lipid A structure in virulence.
Collapse
|
90
|
Chiliveru S, Birkelund S, Paludan SR. Induction of interferon-stimulated genes by Chlamydia pneumoniae in fibroblasts is mediated by intracellular nucleotide-sensing receptors. PLoS One 2010; 5:e10005. [PMID: 20386592 PMCID: PMC2850306 DOI: 10.1371/journal.pone.0010005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2010] [Accepted: 03/15/2010] [Indexed: 02/04/2023] Open
Abstract
Background Recognition of microorganisms by the innate immune system is mediated by pattern recognition receptors, including Toll-like receptors and cytoplasmic RIG-I-like receptors. Chlamydia, which include several human pathogenic species, are obligate intracellular gram-negative bacteria that replicate in cytoplasmic vacuoles. The infection triggers a host response contributing to both bacterial clearance and tissue damage. For instance, type I interferons (IFN)s have been demonstrated to exacerbate the course of Chlamydial lung infections in mice. Methods/Principal Findings Here we show that Chlamydia pneumoniae induces expression of IFN-stimulated genes (ISG)s dependent on recognition by nucleotide-sensing Toll-like receptors and RIG-I-like receptors, localized in endosomes and the cytoplasm, respectively. The ISG response was induced with a delayed kinetics, compared to virus infections, and was dependent on bacterial replication and the bacterial type III secretion system (T3SS). Conclusions/Significance Activation of the IFN response during C. pneumoniae infection is mediated by intracellular nucleotide-sensing PRRs, which operate through a mechanism dependent on the bacterial T3SS. Strategies to inhibit the chlamydial T3SS may be used to limit the detrimental effects of the type I IFN system in the host response to Chlamydia infection.
Collapse
Affiliation(s)
- Srikanth Chiliveru
- Department of Medical Microbiology and Immunology, Aarhus University, Aarhus, Denmark
| | - Svend Birkelund
- Department of Medical Microbiology and Immunology, Aarhus University, Aarhus, Denmark
| | - Søren R. Paludan
- Department of Medical Microbiology and Immunology, Aarhus University, Aarhus, Denmark
- * E-mail:
| |
Collapse
|
91
|
Impaired Pneumovax-23-Induced Monocyte-Derived Cytokine Production in Patients with Common Variable Immunodeficiency. J Clin Immunol 2010; 30:435-41. [DOI: 10.1007/s10875-010-9371-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2009] [Accepted: 01/12/2010] [Indexed: 01/28/2023]
|
92
|
Defective B cell response to TLR9 ligand (CpG-ODN), Streptococcus pneumoniae and Haemophilus influenzae extracts in common variable immunodeficiency patients. Cell Immunol 2010; 262:105-11. [PMID: 20171611 DOI: 10.1016/j.cellimm.2010.01.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2009] [Revised: 01/15/2010] [Accepted: 01/15/2010] [Indexed: 12/19/2022]
Abstract
Common variable immunodeficiency (CVID) is a primary immunodeficiency characterized by hypogammaglobulinaemia and antibody deficiency to both T dependent and independent antigens. Patients suffer from recurrent sinopulmonary infections mostly caused by Streptococcus pneumoniae and Haemophilus influenzae, but also gastrointestinal or autoimmune symptoms. Their response to vaccination is poor or absent. In this study we investigated B cell activation induced by the TLR9 specific ligand (CpG-ODN) and bacterial extracts from S. pneumoniae and H. influenzae known to stimulate several TLR. We found that B cells from CVID patients express lower levels of CD86 after stimulation with CpG-ODN, S. pneumoniae and H. influenzae extracts in combination with anti-IgM antibody and also display a lower proliferative index when stimulated with bacterial extracts. Our results point to a broad TLR signalling defect in B lymphocytes from CVID patients that may be related to the hypogammaglobulinaemia and poor response to vaccination characteristic of these patients.
Collapse
|
93
|
Schubert-Unkmeir A, Slanina H, Frosch M. Mammalian cell transcriptome in response to meningitis-causing pathogens. Expert Rev Mol Diagn 2010; 9:833-42. [PMID: 19895228 DOI: 10.1586/erm.09.68] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Bacterial meningitis continues to be a major cause of mortality and morbidity, despite improved antimicrobial therapy. A key factor that contributes to this situation is the incomplete understanding of its pathogenesis. High-throughput methods (e.g., DNA microarray technology) can provide a holistic picture of the transcriptional events that underlie the host response to bacterial infections, including that during bacterial meningitis. Since 2001, several studies have been reported on the cellular host's responses to infections with Neisseria meningitidis and Streptococcus pneumoniae (the leading causes of bacterial meningitis) using DNA microarrays and have described numerous differentially expressed genes. The present review summarizes the main recent findings with gene expression analyses in the field of bacterial meningitis. Experiments that defined a common host response, as well as pathogen-specific host responses, will be discussed. This review will also outline the contributions of global gene analyses to our understanding of the pathophysiology of bacterial meningitis.
Collapse
Affiliation(s)
- Alexandra Schubert-Unkmeir
- Institute of Hygiene and Microbiology, University of Wuerzburg, Josef-Schneider-Str.2, 97080 Wuerzburg, Germany.
| | | | | |
Collapse
|
94
|
Wieland CW, Florquin S, van der Poll T. Toll-like receptor 9 is not important for host defense against Haemophilus influenzae. Immunobiology 2009; 215:910-4. [PMID: 19942314 DOI: 10.1016/j.imbio.2009.10.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2009] [Revised: 10/14/2009] [Accepted: 10/18/2009] [Indexed: 02/06/2023]
Abstract
Non-typeable Haemophilus influenzae (NTHi) is a common Gram-negative respiratory pathogen. We demonstrated previously that myeloid differentiation primary-response protein 88 (MyD88) is of utmost importance in host defense against NTHi. All TLRs except for TLR3 depend on MyD88 for signaling. TLR9, the TLR for detecting pathogen DNA depends on MyD88 signaling. Here, we investigate the role of TLR9 during NTHi pneumonia. Alveolar macrophages (AM) from normal wild-type (WT) and TLR9 knock-out (KO) mice were harvested and stimulated with growth-arrested NTHi or CPG DNA. WT and TLR9 KO mice were infected intranasally with NTHi: cytokine and chemokine responses were measured 16h later. Despite significant reduced TNF production by TLR9 KO AM in response to CPG DNA, no difference was detected in TNF production after NTHi stimulation by isolated alveolar macrophages from WT and TLR9 KO mice. Moreover, we found similar pulmonary bacterial loads, similar cytokine and chemokine levels in WT and TLR9 KO mice, and no differences in histopathology. In conclusion, we were not able to demonstrate a role for TLR9 in the recognition of and host defense against NTHi.
Collapse
Affiliation(s)
- Catharina W Wieland
- Center of Infection and Immunity Amsterdam (CINIMA), Academic Medical Center, University of Amsterdam, The Netherlands.
| | | | | |
Collapse
|
95
|
Abstract
Pneumococcus remains the most common cause of community-acquired pneumonia worldwide. Streptococcus pneumoniae is well adapted to people, and is a frequent inhabitant of the upper airways in healthy hosts. This seemingly innocuous state of colonisation is a dynamic and competitive process in which the pathogen attempts to engage the host, proliferate, and invade the lower airways. The host in turn continuously deploys an array of innate and acquired cellular and humoral defences to prevent pneumococci from breaching tissue barriers. Discoveries into essential molecular mechanisms used by pneumococci to evade host-sensing systems that are designed to contain the pathogen provide new insights into potential treatment options. Versatility of the genome of pneumococci and the bacteria's polygenic virulence capabilities show that a multifaceted approach with many vaccine antigens, antibiotic combinations, and immunoadjuvant therapies will be needed to control this microbe.
Collapse
Affiliation(s)
- Tom van der Poll
- Centre for Infection and Immunity Amsterdam, Centre for Experimental and Molecular Medicine, Academic Medical Centre, University of Amsterdam, Amsterdam, the Netherlands.
| | | |
Collapse
|
96
|
Pathogen recognition and inflammatory signaling in innate immune defenses. Clin Microbiol Rev 2009; 22:240-73, Table of Contents. [PMID: 19366914 DOI: 10.1128/cmr.00046-08] [Citation(s) in RCA: 2163] [Impact Index Per Article: 135.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The innate immune system constitutes the first line of defense against invading microbial pathogens and relies on a large family of pattern recognition receptors (PRRs), which detect distinct evolutionarily conserved structures on pathogens, termed pathogen-associated molecular patterns (PAMPs). Among the PRRs, the Toll-like receptors have been studied most extensively. Upon PAMP engagement, PRRs trigger intracellular signaling cascades ultimately culminating in the expression of a variety of proinflammatory molecules, which together orchestrate the early host response to infection, and also is a prerequisite for the subsequent activation and shaping of adaptive immunity. In order to avoid immunopathology, this system is tightly regulated by a number of endogenous molecules that limit the magnitude and duration of the inflammatory response. Moreover, pathogenic microbes have developed sophisticated molecular strategies to subvert host defenses by interfering with molecules involved in inflammatory signaling. This review presents current knowledge on pathogen recognition through different families of PRRs and the increasingly complex signaling pathways responsible for activation of an inflammatory and antimicrobial response. Moreover, medical implications are discussed, including the role of PRRs in primary immunodeficiencies and in the pathogenesis of infectious and autoimmune diseases, as well as the possibilities for translation into clinical and therapeutic applications.
Collapse
|
97
|
Philbin VJ, Levy O. Developmental biology of the innate immune response: implications for neonatal and infant vaccine development. Pediatr Res 2009; 65:98R-105R. [PMID: 19918215 PMCID: PMC2795575 DOI: 10.1203/pdr.0b013e31819f195d] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Molecular characterization of mechanisms by which human pattern recognition receptors (PRRs) detect danger signals has greatly expanded our understanding of the innate immune system. PRRs include Toll-like receptors, nucleotide oligomerization domain-like receptors, retinoic acid inducible gene-like receptors, and C-type lectin receptors. Characterization of the developmental expression of these systems in the fetus, newborn, and infant is incomplete but has yielded important insights into neonatal susceptibility to infection. Activation of PRRs on antigen-presenting cells enhances costimulatory function, and thus PRR agonists are potential vaccine adjuvants, some of which are already in clinical use. Thus, study of PRRs has also revealed how previously mysterious immunomodulators are able to mediate their actions, including the vaccine adjuvant aluminum hydroxide that activates a cytosolic protein complex known as the Nacht domain leucine-rich repeat and pyrin domain-containing protein 3 inflammasome leading to interleukin-1beta production. Progress in characterizing PRRs is thus informing and expanding the design of improved adjuvants. This review summarizes recent developments in the field of innate immunity emphasizing developmental expression in the fetus, newborn, and infant and its implications for the design of more effective neonatal and infant vaccines.
Collapse
Affiliation(s)
- Victoria Jane Philbin
- Department of Medicine, Children's Hospital Boston and Harvard Medical School, Boston, Massachusetts 02115, USA
| | | |
Collapse
|
98
|
Kogut M, Klasing K. An immunologist's perspective on nutrition, immunity, and infectious diseases: Introduction and overview. J APPL POULTRY RES 2009. [DOI: 10.3382/japr.2008-00080] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
|
99
|
Performance of the whole-blood stimulation assay for assessing innate immune activation under field conditions. Cytokine 2009; 45:184-9. [DOI: 10.1016/j.cyto.2008.12.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2008] [Revised: 11/27/2008] [Accepted: 12/17/2008] [Indexed: 11/23/2022]
|
100
|
Abstract
Bacterial meningitis is still an important infectious disease with a high morbidity and mortality rate. Bacterial infection of the cerebrospinal fluid (CSF) space causes a powerful inflammatory reaction that is largely responsibly for meningitis-induced tissue damage and adverse outcome of the disease. In a landmark series of experiments in the mid-1980s, cell wall components including lipooligosaccharides and lipoteichoic acid were indicated to be the key bacterial elements that can trigger the host inflammatory response in the CSF. Ten years ago, the discovery of Toll-like receptor proteins (TLRs) that allow the detection of microbial components and initiate the host immune response opened up new horizons in research on the pathophysiology of meningitis. Cell culture approaches provided the first evidence for a crucial role of TLRs in sensing meningeal pathogens including Streptococcus pneumoniae, Neisseria meningitidis, Streptococcus agalactiae, and Listeria monocytogenes. Subsequently, studies in mice with single or combined deficiencies in TLRs demonstrated that TLR activation is a key event in meningeal inflammation and, even more interestingly, a pivotal factor for meningitis-associated tissue damage. A detailed understanding of the mechanisms of host-pathogen interactions in the CSF space may generate new opportunities for specific treatment strategies for bacterial meningitis.
Collapse
|