51
|
DeGraw AJ, Keiser MJ, Ochocki JD, Shoichet BK, Distefano MD. Prediction and evaluation of protein farnesyltransferase inhibition by commercial drugs. J Med Chem 2010; 53:2464-71. [PMID: 20180535 DOI: 10.1021/jm901613f] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The similarity ensemble approach (SEA) relates proteins based on the set-wise chemical similarity among their ligands. It can be used to rapidly search large compound databases and to build cross-target similarity maps. The emerging maps relate targets in ways that reveal relationships one might not recognize based on sequence or structural similarities alone. SEA has previously revealed cross talk between drugs acting primarily on G-protein coupled receptors (GPCRs). Here we used SEA to look for potential off-target inhibition of the enzyme protein farnesyltransferase (PFTase) by commercially available drugs. The inhibition of PFTase has profound consequences for oncogenesis, as well as a number of other diseases. In the present study, two commercial drugs, Loratadine and Miconazole, were identified as potential ligands for PFTase and subsequently confirmed as such experimentally. These results point toward the applicability of SEA for the prediction of not only GPCR-GPCR drug cross talk but also GPCR-enzyme and enzyme-enzyme drug cross talk.
Collapse
Affiliation(s)
- Amanda J DeGraw
- Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, USA
| | | | | | | | | |
Collapse
|
52
|
Lipid metabolism in Trypanosoma brucei. Mol Biochem Parasitol 2010; 172:66-79. [PMID: 20382188 DOI: 10.1016/j.molbiopara.2010.04.001] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2010] [Revised: 03/31/2010] [Accepted: 04/01/2010] [Indexed: 11/28/2022]
Abstract
Trypanosoma brucei membranes consist of all major eukaryotic glycerophospholipid and sphingolipid classes. These are de novo synthesized from precursors obtained either from the host or from catabolised endocytosed lipids. In recent years, substantial progress has been made in the molecular and biochemical characterisation of several of these lipid biosynthetic pathways, using gene knockout or RNA interference strategies or by enzymatic characterization of individual reactions. Together with the completed genome, these studies have highlighted several possible differences between mammalian and trypanosome lipid biosynthesis that could be exploited for the development of drugs against the diseases caused by these parasites.
Collapse
|
53
|
Duez S, Coudray L, Mouray E, Grellier P, Dubois J. Towards the synthesis of bisubstrate inhibitors of protein farnesyltransferase: Synthesis and biological evaluation of new farnesylpyrophosphate analogues. Bioorg Med Chem 2010; 18:543-56. [DOI: 10.1016/j.bmc.2009.12.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2009] [Accepted: 12/04/2009] [Indexed: 01/16/2023]
|
54
|
Abstract
Exploiting the potential of omics for clinical diagnosis, prognosis, and therapeutic purposes has currently been receiving a lot of attention. In recent years, most of the effort has been put into demonstrating the possible clinical applications of the various omics fields. The cost-effectiveness analysis has been, so far, rather neglected. The cost of omics-derived applications is still very high, but future technological improvements are likely to overcome this problem. In this chapter, we will give a general background of the main omics fields and try to provide some examples of the most successful applications of omics that might be used in clinical diagnosis and in a therapeutic context.
Collapse
Affiliation(s)
- Ewa Gubb
- Bioinformatics, Parque Technológico de Bizkaia, Derio, Spain
| | | |
Collapse
|
55
|
XIE AIHUA, CLARK SHAWNAR, PRASANNA SIVAPRAKASAM, DOERKSEN ROBERTJ. Three-dimensional quantitative structure-farnesyltransferase inhibition analysis for some diaminobenzophenones. J Enzyme Inhib Med Chem 2009; 24:1220-8. [PMID: 19912055 PMCID: PMC10725738 DOI: 10.3109/14756360902781389] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
A 3D-QSAR investigation of 95 diaminobenzophenone yeast farnesyltransferase (FT) inhibitors selected from the work of Schlitzer et al. showed that steric, electrostatic, and hydrophobic properties play key roles in the bioactivity of the series. A CoMFA/CoMSIA combined model using the steric and electrostatic fields of CoMFA together with the hydrophobic field of CoMSIA showed significant improvement in prediction compared with the CoMFA steric and electrostatic fields model. The similarity of the 3D-QSAR field maps for yeast FT inhibition activity (from this work) and for antimalarial activity data (from previous work) and the correlation between those activities are discussed.
Collapse
Affiliation(s)
- AIHUA XIE
- Department of Medicinal Chemistry, School of Pharmacy, University of Mississippi, University, MS, 38677-1848, USA
| | - SHAWNA R. CLARK
- Department of Medicinal Chemistry, School of Pharmacy, University of Mississippi, University, MS, 38677-1848, USA
- Tougaloo College, Jackson, MS, 39174
| | - SIVAPRAKASAM PRASANNA
- Department of Medicinal Chemistry, School of Pharmacy, University of Mississippi, University, MS, 38677-1848, USA
| | - ROBERT J. DOERKSEN
- Department of Medicinal Chemistry, School of Pharmacy, University of Mississippi, University, MS, 38677-1848, USA
- Research Institute of Pharmaceutical Sciences, School of Pharmacy, University of Mississippi
| |
Collapse
|
56
|
Heterologous expression studies of Saccharomyces cerevisiae reveal two distinct trypanosomatid CaaX protease activities and identify their potential targets. EUKARYOTIC CELL 2009; 8:1891-900. [PMID: 19820121 DOI: 10.1128/ec.00169-09] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The CaaX tetrapeptide motif typically directs three sequential posttranslational modifications, namely, isoprenylation, proteolysis, and carboxyl methylation. In all eukaryotic systems evaluated to date, two CaaX proteases (Rce1 and Ste24/Afc1) have been identified. Although the Trypanosoma brucei genome also encodes two putative CaaX proteases, the lack of detectable T. brucei Ste24 activity in trypanosome cell extracts has suggested that CaaX proteolytic activity within this organism is solely attributed to T. brucei Rce1 (J. R. Gillespie et al., Mol. Biochem. Parasitol. 153:115-124. 2007). In this study, we demonstrate that both T. brucei Rce1 and T. brucei Ste24 are enzymatically active when heterologously expressed in yeast. Using a-factor and GTPase reporters, we demonstrate that T. brucei Rce1 and T. brucei Ste24 possess partially overlapping specificities much like, but not identical to, their fungal and human counterparts. Of interest, a CaaX motif found on a trypanosomal Hsp40 protein was not cleaved by either T. brucei CaaX protease when examined in the context of the yeast a-factor reporter but was cleaved by both in the context of the Hsp40 protein itself when evaluated using an in vitro radiolabeling assay. We further demonstrate that T. brucei Rce1 is sensitive to small molecules previously identified as inhibitors of the yeast and human CaaX proteases and that a subset of these compounds disrupt T. brucei Rce1-dependent localization of our GTPase reporter in yeast. Together, our results suggest the conserved presence of two CaaX proteases in trypanosomatids, identify an Hsp40 protein as a substrate of both T. brucei CaaX proteases, support the potential use of small molecule CaaX protease inhibitors as tools for cell biological studies on the trafficking of CaaX proteins, and provide evidence that protein context influences T. brucei CaaX protease specificity.
Collapse
|
57
|
Lethu S, Ginisty M, Bosc D, Dubois J. Discovery of a New Class of Protein Farnesyltransferase Inhibitors in the Arylthiophene Series. J Med Chem 2009; 52:6205-8. [DOI: 10.1021/jm901280q] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Sébastien Lethu
- Institut de Chimie des Substances Naturelles, UPR2301 CNRS, Centre de Recherche de Gif-sur-Yvette, Avenue de la Terrasse, 91198 Gif-sur-Yvette Cedex, France
| | - Maryon Ginisty
- Institut de Chimie des Substances Naturelles, UPR2301 CNRS, Centre de Recherche de Gif-sur-Yvette, Avenue de la Terrasse, 91198 Gif-sur-Yvette Cedex, France
| | - Damien Bosc
- Institut de Chimie des Substances Naturelles, UPR2301 CNRS, Centre de Recherche de Gif-sur-Yvette, Avenue de la Terrasse, 91198 Gif-sur-Yvette Cedex, France
| | - Joëlle Dubois
- Institut de Chimie des Substances Naturelles, UPR2301 CNRS, Centre de Recherche de Gif-sur-Yvette, Avenue de la Terrasse, 91198 Gif-sur-Yvette Cedex, France
| |
Collapse
|
58
|
Charron G, Wilson J, Hang HC. Chemical tools for understanding protein lipidation in eukaryotes. Curr Opin Chem Biol 2009; 13:382-91. [PMID: 19699139 DOI: 10.1016/j.cbpa.2009.07.010] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2009] [Revised: 07/02/2009] [Accepted: 07/13/2009] [Indexed: 11/29/2022]
Abstract
Lipidation of proteins is an important mechanism to regulate protein trafficking and activity in cell and tissues. The targeting of proteins to membranes by lipidation plays key roles in many physiological processes and when not regulated properly can lead to cancer and neurological disorders. Dissecting the precise roles of protein lipidation in physiology and disease is a major challenge. Recent advances in chemical biology have now enabled the semisynthesis of lipidated proteins for fundamental biochemical and cellular studies. In addition, new chemical reporters of protein lipidation have improved the detection and enabled the proteomic analysis of lipidated proteins. The expanding efforts in chemical biology are therefore providing new tools to dissect the mechanisms and functions of protein lipidation as well as develop therapeutics targeted at protein lipidation pathways in disease.
Collapse
Affiliation(s)
- Guillaume Charron
- The Laboratory of Chemical Biology and Microbial Pathogenesis, The Rockefeller University, New York, NY 10065, USA
| | | | | |
Collapse
|
59
|
Chung DWD, Ponts N, Cervantes S, Le Roch KG. Post-translational modifications in Plasmodium: more than you think! Mol Biochem Parasitol 2009; 168:123-34. [PMID: 19666057 DOI: 10.1016/j.molbiopara.2009.08.001] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2009] [Revised: 07/10/2009] [Accepted: 08/03/2009] [Indexed: 12/21/2022]
Abstract
Recent evidences indicate that transcription in Plasmodium may be hard-wired and rigid, deviating from the classical model of transcriptional gene regulation. Thus, it is important that other regulatory pathways be investigated as a comprehensive effort to curb the deadly malarial parasite. Research in post-translational modifications in Plasmodium is an emerging field that may provide new venues for drug discovery and potential new insights into how parasitic protozoans regulate their life cycle. Here, we discuss the recent findings of post-translational modifications in Plasmodium.
Collapse
Affiliation(s)
- Duk-Won Doug Chung
- Department of Cell Biology and Neuroscience, University of California, Riverside, 900 University Avenue, Riverside, CA 92521, USA
| | | | | | | |
Collapse
|
60
|
Hast MA, Fletcher S, Cummings CG, Pusateri EE, Blaskovich MA, Rivas K, Gelb MH, Van Voorhis WC, Sebti SM, Hamilton AD, Beese LS. Structural basis for binding and selectivity of antimalarial and anticancer ethylenediamine inhibitors to protein farnesyltransferase. ACTA ACUST UNITED AC 2009; 16:181-92. [PMID: 19246009 DOI: 10.1016/j.chembiol.2009.01.014] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2008] [Revised: 01/21/2009] [Accepted: 01/26/2009] [Indexed: 11/24/2022]
Abstract
Protein farnesyltransferase (FTase) catalyzes an essential posttranslational lipid modification of more than 60 proteins involved in intracellular signal transduction networks. FTase inhibitors have emerged as a significant target for development of anticancer therapeutics and, more recently, for the treatment of parasitic diseases caused by protozoan pathogens, including malaria (Plasmodium falciparum). We present the X-ray crystallographic structures of complexes of mammalian FTase with five inhibitors based on an ethylenediamine scaffold, two of which exhibit over 1000-fold selective inhibition of P. falciparum FTase. These structures reveal the dominant determinants in both the inhibitor and enzyme that control binding and selectivity. Comparison to a homology model constructed for the P. falciparum FTase suggests opportunities for further improving selectivity of a new generation of antimalarial inhibitors.
Collapse
Affiliation(s)
- Michael A Hast
- Department of Biochemistry, Duke University Medical Center, Box 3711, Durham, NC 27710, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
61
|
Xie A, Odde S, Prasanna S, Doerksen RJ. Imidazole-containing farnesyltransferase inhibitors: 3D quantitative structure-activity relationships and molecular docking. J Comput Aided Mol Des 2009; 23:431-48. [PMID: 19479325 DOI: 10.1007/s10822-009-9278-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2008] [Accepted: 05/02/2009] [Indexed: 11/29/2022]
Abstract
One of the most promising anticancer and recent antimalarial targets is the heterodimeric zinc-containing protein farnesyltransferase (FT). In this work, we studied a highly diverse series of 192 Abbott-initiated imidazole-containing compounds and their FT inhibitory activities using 3D-QSAR and docking, in order to gain understanding of the interaction of these inhibitors with FT to aid development of a rational strategy for further lead optimization. We report several highly significant and predictive CoMFA and CoMSIA models. The best model, composed of CoMFA steric and electrostatic fields combined with CoMSIA hydrophobic and H-bond acceptor fields, had r (2) = 0.878, q (2) = 0.630, and r (pred) (2) = 0.614. Docking studies on the statistical outliers revealed that some of them had a different binding mode in the FT active site based on steric bulk and available active site space, explaining why the predicted activities differed from the experimental activities.
Collapse
Affiliation(s)
- Aihua Xie
- Department of Medicinal Chemistry, University of Mississippi, University, MS 38677-1848, USA
| | | | | | | |
Collapse
|
62
|
Coudray L, de Figueiredo RM, Duez S, Cortial S, Dubois J. Synthesis of imidazole-containing analogues of farnesyl pyrophosphate and evaluation of their biological activity on protein farnesyltransferase. J Enzyme Inhib Med Chem 2009; 24:972-85. [DOI: 10.1080/14756360802561196] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Affiliation(s)
- Laëtitia Coudray
- Institut de Chimie des Substances Naturelles, CNRS, Gif sur Yvette, France
| | | | - Stéphanie Duez
- Institut de Chimie des Substances Naturelles, CNRS, Gif sur Yvette, France
| | - Sylvie Cortial
- Institut de Chimie des Substances Naturelles, CNRS, Gif sur Yvette, France
| | - Joëlle Dubois
- Institut de Chimie des Substances Naturelles, CNRS, Gif sur Yvette, France
| |
Collapse
|
63
|
Inhibition of Trypanosoma brucei glucose-6-phosphate dehydrogenase by human steroids and their effects on the viability of cultured parasites. Bioorg Med Chem 2009; 17:2483-9. [PMID: 19231202 DOI: 10.1016/j.bmc.2009.01.068] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2008] [Revised: 01/26/2009] [Accepted: 01/30/2009] [Indexed: 11/20/2022]
Abstract
Dehydroepiandrosterone (DHEA) is known as an intermediate in the synthesis of mammalian steroids and a potent uncompetitive inhibitor of mammalian glucose-6-phosphate dehydrogenase (G6PDH), but not the enzyme from plants and lower eukaryotes. G6PDH catalyzes the first step of the pentose-phosphate pathway supplying cells with ribose 5-phosphate, a precursor of nucleic acid synthesis, and NADPH for biosynthetic processes and protection against oxidative stress. In this paper we demonstrate that also G6PDH of the protozoan parasite Trypanosoma brucei is uncompetitively inhibited by DHEA and epiandrosterone (EA), with K(i) values in the lower micromolar range. A viability assay confirmed the toxic effect of both steroids on cultured T. brucei bloodstream form cells. Additionally, RNAi mediated reduction of the G6PDH level in T. brucei bloodstream forms validated this enzyme as a drug target against Human African Trypanosomiasis. Together these findings show that inhibition of G6PDH by DHEA derivatives may lead to the development of a new class of anti-trypanosomatid compounds.
Collapse
|
64
|
|
65
|
Kerhervé J, Botuha C, Dubois J. New asymmetric synthesis of protein farnesyltransferase inhibitors via palladium-catalyzed cross-coupling reactions of 2-iodo-imidazoles. Org Biomol Chem 2009; 7:2214-22. [DOI: 10.1039/b902601k] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
66
|
Fidock DA, Eastman RT, Ward SA, Meshnick SR. Recent highlights in antimalarial drug resistance and chemotherapy research. Trends Parasitol 2008; 24:537-44. [PMID: 18938106 DOI: 10.1016/j.pt.2008.09.005] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2008] [Revised: 09/15/2008] [Accepted: 09/16/2008] [Indexed: 01/07/2023]
Abstract
This review summarizes recent investigations into antimalarial drug resistance and chemotherapy, including reports of some of the many exciting talks and posters on this topic that were presented at the third Molecular Approaches to Malaria meeting held in Lorne, Australia, in February 2008 (MAM 2008). After surveying this area of research, we focus on two important questions: what is the molecular contribution of pfcrt to chloroquine resistance, and what is the mechanism of action of artemisinin? We conclude with thoughts about the current state of antimalarial chemotherapy and priorities moving forward.
Collapse
Affiliation(s)
- David A Fidock
- Department of Microbiology, Columbia University College of Physicians and Surgeons, New York, NY 10032, USA.
| | | | | | | |
Collapse
|
67
|
Takács A, Petz A, Kollár L. Palladium-catalysed aminocarbonylation of iodoarenes and iodoalkenes with aminophosphonate as N-nucleophile. Tetrahedron 2008. [DOI: 10.1016/j.tet.2008.06.096] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
68
|
Abstract
Zinc bioinorganic chemistry has emphasized the role of the metal ion on the structure and function of the protein. There is, more recently, an increasing appreciation of the role of zinc proteins in a variety of human diseases. This critical review, aimed at both bioinorganic and medicinal chemists, shows how apparently widely-diverging diseases share the common mechanistic approaches of targeting the essential function of the metal ion to inhibit activity. Protein structure and function is briefly summarized in the context of its clinical relevance. The status of current and potential inhibitors is discussed along with the prospects for future developments (162 references).
Collapse
Affiliation(s)
- A I Anzellotti
- Department of Chemistry, Virginia Commonwealth University, PO Box 842006, Richmond, VA23284, USA
| | | |
Collapse
|
69
|
Stuart K, Brun R, Croft S, Fairlamb A, Gürtler RE, McKerrow J, Reed S, Tarleton R. Kinetoplastids: related protozoan pathogens, different diseases. J Clin Invest 2008; 118:1301-10. [PMID: 18382742 PMCID: PMC2276762 DOI: 10.1172/jci33945] [Citation(s) in RCA: 398] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Kinetoplastids are a group of flagellated protozoans that include the species Trypanosoma and Leishmania, which are human pathogens with devastating health and economic effects. The sequencing of the genomes of some of these species has highlighted their genetic relatedness and underlined differences in the diseases that they cause. As we discuss in this Review, steady progress using a combination of molecular, genetic, immunologic, and clinical approaches has substantially increased understanding of these pathogens and important aspects of the diseases that they cause. Consequently, the paths for developing additional measures to control these "neglected diseases" are becoming increasingly clear, and we believe that the opportunities for developing the drugs, diagnostics, vaccines, and other tools necessary to expand the armamentarium to combat these diseases have never been better.
Collapse
Affiliation(s)
- Ken Stuart
- Seattle Biomedical Research Institute, Seattle, Washington, USA.
| | | | | | | | | | | | | | | |
Collapse
|
70
|
Bulbule VJ, Rivas K, Verlinde CLMJ, Van Voorhis WC, Gelb MH. 2-Oxotetrahydroquinoline-Based Antimalarials with High Potency and Metabolic Stability. J Med Chem 2008; 51:384-7. [PMID: 18198825 DOI: 10.1021/jm7013138] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Vivek J. Bulbule
- Departments of Chemistry, Medicine, and Biochemistry, University of Washington, Seattle, Washington 98195
| | - Kasey Rivas
- Departments of Chemistry, Medicine, and Biochemistry, University of Washington, Seattle, Washington 98195
| | | | - Wesley C. Van Voorhis
- Departments of Chemistry, Medicine, and Biochemistry, University of Washington, Seattle, Washington 98195
| | - Michael H. Gelb
- Departments of Chemistry, Medicine, and Biochemistry, University of Washington, Seattle, Washington 98195
| |
Collapse
|
71
|
Olepu S, Suryadevara PK, Rivas K, Yokoyama K, Verlinde CLMJ, Chakrabarti D, Van Voorhis WC, Gelb MH. 2-Oxo-tetrahydro-1,8-naphthyridines as selective inhibitors of malarial protein farnesyltransferase and as anti-malarials. Bioorg Med Chem Lett 2007; 18:494-7. [PMID: 18077162 DOI: 10.1016/j.bmcl.2007.11.104] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2007] [Revised: 11/22/2007] [Accepted: 11/27/2007] [Indexed: 10/22/2022]
Abstract
A new class of 2-oxo-tetrahydro-1,8-naphthyridine-based protein farnesyltransferase inhibitors were synthesized and found to inhibit protein farnesyltransferase from the malaria parasite with potencies in the low nanomolar range. The compounds were much less potent on mammalian protein prenyltransferases. Two of the compounds block the growth of malaria in culture with potencies in the sub-micromolar range. Some of the compounds were found to be much more metabolically stable than previously described tetrahydroquinoline-based protein farnesyltransferase inhibitors.
Collapse
Affiliation(s)
- Srinivas Olepu
- Department of Chemistry, University of Washington, Seattle, WA 98195, USA
| | | | | | | | | | | | | | | |
Collapse
|
72
|
Marma MS, Xia Z, Stewart C, Coxon F, Dunford JE, Baron R, Kashemirov BA, Ebetino FH, Triffitt JT, Russell RGG, McKenna CE. Synthesis and biological evaluation of alpha-halogenated bisphosphonate and phosphonocarboxylate analogues of risedronate. J Med Chem 2007; 50:5967-75. [PMID: 17975902 DOI: 10.1021/jm0702884] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Alpha-halogenated analogues of the anti-resorptive bisphosphonate risedronate (5, Ris) and its phosphonocarboxylate cognate (7, 3-PEHPC) were synthesized and compared with 5, 7, and the corresponding desoxy analogues in bone mineral affinity and mevalonate pathway inhibition assays. The Ris (5e-h) and 3-PEHPC (7e-h) analogues had decreased bone mineral affinity, confirming that the alpha-OH group in 5 and 7 enhances bone affinity. The 5 alpha-halo-analogues potently inhibited farnesyl pyrophosphate synthase (FPPS) with IC50 values from 16 (alpha-F) to 340 (alpha-Br) nM (5, 6 nM). In contrast, 7 alpha-halo-analogues were ineffective versus FPPS (IC50 > 600 microM), but inhibited Rab geranylgeranyl transferase (RGGT) (IC50 = 16-35 microM) similarly to 7 itself (IC50 = 24 microM). The alpha-F analogue 7e was 1-2 times as active as 7 in J774 cell viability and Rab11 prenylation inhibition assays.
Collapse
Affiliation(s)
- Mong S Marma
- Department of Chemistry, University of Southern California, Los Angeles, CA 90089-0744, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
73
|
Van Voorhis WC, Rivas KL, Bendale P, Nallan L, Hornéy C, Barrett LK, Bauer KD, Smart BP, Ankala S, Hucke O, Verlinde CLMJ, Chakrabarti D, Strickland C, Yokoyama K, Buckner FS, Hamilton AD, Williams DK, Lombardo LJ, Floyd D, Gelb MH. Efficacy, pharmacokinetics, and metabolism of tetrahydroquinoline inhibitors of Plasmodium falciparum protein farnesyltransferase. Antimicrob Agents Chemother 2007; 51:3659-71. [PMID: 17606674 PMCID: PMC2043286 DOI: 10.1128/aac.00246-07] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
New antimalarials are urgently needed. We have shown that tetrahydroquinoline (THQ) protein farnesyltransferase (PFT) inhibitors (PFTIs) are effective against the Plasmodium falciparum PFT and are effective at killing P. falciparum in vitro. Previously described THQ PFTIs had limitations of poor oral bioavailability and rapid clearance from the circulation of rodents. In this paper, we validate both the Caco-2 cell permeability model for predicting THQ intestinal absorption and the in vitro liver microsome model for predicting THQ clearance in vivo. Incremental improvements in efficacy, oral absorption, and clearance rate were monitored by in vitro tests; and these tests were followed up with in vivo absorption, distribution, metabolism, and excretion studies. One compound, PB-93, achieved cure when it was given orally to P. berghei-infected rats every 8 h for a total of 72 h. However, PB-93 was rapidly cleared, and dosing every 12 h failed to cure the rats. Thus, the in vivo results corroborate the in vitro pharmacodynamics and demonstrate that 72 h of continuous high-level exposure to PFTIs is necessary to kill plasmodia. The metabolism of PB-93 was demonstrated by a novel technique that relied on double labeling with a radiolabel and heavy isotopes combined with radiometric liquid chromatography and mass spectrometry. The major liver microsome metabolite of PB-93 has the PFT Zn-binding N-methyl-imidazole removed; this metabolite is inactive in blocking PFT function. By solving the X-ray crystal structure of PB-93 bound to rat PFT, a model of PB-93 bound to malarial PFT was constructed. This model suggests areas of the THQ PFTIs that can be modified to retain efficacy and protect the Zn-binding N-methyl-imidazole from dealkylation.
Collapse
Affiliation(s)
- Wesley C Van Voorhis
- Department of Medicine, University of Washington, Room I-104-E, Health Sciences Building, Seattle, WA 98195-7185, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
74
|
Pan Y, Garg A, Agarwal AK. Mislocalization of prelamin A Tyr646Phe mutant to the nuclear pore complex in human embryonic kidney 293 cells. Biochem Biophys Res Commun 2007; 355:78-84. [PMID: 17291448 PMCID: PMC1850995 DOI: 10.1016/j.bbrc.2007.01.116] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2007] [Accepted: 01/14/2007] [Indexed: 10/23/2022]
Abstract
Mature lamin A is formed after post-translational processing of prelamin A, which includes prenylation and carboxymethylation of cysteine 661 in the CaaX motif, followed by two proteolytic cleavages by zinc metalloprotease (ZMPSTE24). We expressed several prelamin A mutants, C661S (defective in prenylation), Y646F (designed to undergo prenylation but not second proteolytic cleavage), double mutant, Y646F/C661S and Y646X (mature lamin A), and the wild-type construct in human embryonic kidney (HEK-293) cells. Only the Y646F mutant co-localized with nuclear pore complex proteins, including Nup53 and Nup98, whereas the other mutants localized to the nuclear envelope rim. The cells expressing Y646F mutant also revealed abnormal nuclear morphology which was partially rescued with the farnesyl transferase inhibitors. These data suggest that the unprenylated prelamin A is not toxic to the cells. The toxicity of prenylated prelamin A may be due to its association and/or accumulation at the nuclear pore complex which could be partially reversed by farnesyl transferase inhibitors.
Collapse
Affiliation(s)
| | | | - Anil K. Agarwal
- *Correspondence: Anil K. Agarwal, Ph.D., Division of Nutrition and Metabolic Diseases, Center for Human Nutrition, Department of Internal Medicine, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390, U.S.A. Ph: 214-648-7685, Fax: 214-648-7150,
| |
Collapse
|
75
|
de Figueiredo RM, Coudray L, Dubois J. Synthesis and biological evaluation of potential bisubstrate inhibitors of protein farnesyltransferase. Design and synthesis of functionalized imidazoles. Org Biomol Chem 2007; 5:3299-309. [PMID: 17912382 DOI: 10.1039/b709854e] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel series of compounds, derived from 2,5-functionalized imidazoles, have been synthesized as potential bisubstrate inhibitors of protein farnesyltransferase (FTase) using structure-based design. These compounds have a 1,4-diacid chain and a tripeptide connected by an imidazole ring. The synthetic strategy relies on the functionalization at the C-2 position of the heterocycle with the diacid side chain and peptide coupling at the C-5 position. Several new compounds were synthesized in good yields. Kinetic experiments on the most active compounds revealed different binding modes depending on the diacid chain length.
Collapse
Affiliation(s)
- Renata Marcia de Figueiredo
- Institut de Chimie des Substances Naturelles, CNRS, Avenue de la Terrasse, 91198, Gif-sur-Yvette cedex, France
| | | | | |
Collapse
|
76
|
Abstract
Diseases caused by tropical parasites affect hundreds of millions of people worldwide but have been largely neglected for drug development because they affect poor people in poor regions of the world. Most of the current drugs used to treat these diseases are decades old and have many limitations, including the emergence of drug resistance. This review will summarize efforts to reinvigorate the drug development pipeline for these diseases, which is driven in large part by support from major philanthropies. The organisms responsible for these diseases have a fascinating biology, and many potential biochemical targets are now apparent. These neglected diseases present unique challenges to drug development that are being addressed by new consortia of scientists from academia and industry.
Collapse
Affiliation(s)
- Adam R Renslo
- Department of Pharmaceutical Chemistry and the Small Molecule Discovery Center, University of California-San Francisco, San Francisco, CA 94158, USA
| | | |
Collapse
|
77
|
Eastman RT, White J, Hucke O, Yokoyama K, Verlinde CLMJ, Hast MA, Beese LS, Gelb MH, Rathod PK, Van Voorhis WC. Resistance mutations at the lipid substrate binding site of Plasmodium falciparum protein farnesyltransferase. Mol Biochem Parasitol 2006; 152:66-71. [PMID: 17208314 PMCID: PMC2875941 DOI: 10.1016/j.molbiopara.2006.11.012] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2006] [Revised: 11/30/2006] [Accepted: 11/30/2006] [Indexed: 11/23/2022]
Abstract
The post-translational farnesylation of proteins serves to anchor a subset of intracellular proteins to membranes in eukaryotic organisms and also promotes protein-protein interactions. This enzymatic reaction is carried out by protein farnesyltransferase (PFT), which catalyzes the transfer of a 15-carbon isoprenoid lipid unit, a farnesyl group, from farnesyl pyrophosphate to the C-termini of proteins containing a CaaX motif. Inhibition of PFT is lethal to the pathogenic protozoa Plasmodium falciparum. Previously, we have shown that parasites resistant to a tetrahydroquinoline (THQ)-based PFT inhibitor BMS-388891 have mutations leading to amino acid substitutions in PFT that map to the peptide substrate binding domain. We now report the selection of parasites resistant to another THQ PFT inhibitor BMS-339941. In whole cell assays sensitivity to BMS-339941 was reduced by 33-fold in a resistant clone, and biochemical analysis demonstrated a corresponding 33-fold increase in the BMS-339941 K(i) for the mutant PFT enzyme. More detailed kinetic analysis revealed that the mutant enzyme required higher concentration of peptide and farnesyl pyrophosphate substrates for optimum catalysis. Unlike previously characterized parasites resistant to BMS-388891, the resistant parasites have a mutation which is predicted to be in a distinct location of the enzymatic pocket, near the farnesyl pyrophosphate binding pocket. This is the first description of a mutation from any species affecting the farnesyl pyrophosphate binding pocket with reduced efficacy of PFT inhibitors. These data provide further support that PFT is the target of THQ inhibitors in P. falciparum and suggest that PFT inhibitors should be combined with other antimalarial agents to minimize the development of resistant parasites.
Collapse
Affiliation(s)
| | - John White
- Department of Pathobiology, University of Washington, Seattle, WA, USA
| | - Oliver Hucke
- Biochemistry, University of Washington, Seattle, WA, USA
| | | | | | - Michael A. Hast
- Biochemistry, Duke University Medical Center, Durham, NC, USA
| | - Lorena S. Beese
- Biochemistry, Duke University Medical Center, Durham, NC, USA
| | | | - Pradipsinh K. Rathod
- Department of Pathobiology, University of Washington, Seattle, WA, USA
- Chemistry, University of Washington, Seattle, WA, USA
| | - Wesley C. Van Voorhis
- Department of Pathobiology, University of Washington, Seattle, WA, USA
- Medicine, University of Washington, Seattle, WA, USA
- Corresponding author: Wesley C. Van Voorhis, Dept. of Medicine, University of Washington, Box 357185, 1959 N.E. Pacific, Seattle, WA 98195-7185, Tel.: + 1-206-543-2447; fax: + 1-206-685-8681, E. mail addresses:
| |
Collapse
|
78
|
Grabińska KA, Magnelli P, Robbins PW. Prenylation of Saccharomyces cerevisiae Chs4p Affects Chitin Synthase III activity and chitin chain length. EUKARYOTIC CELL 2006; 6:328-36. [PMID: 17142567 PMCID: PMC1797950 DOI: 10.1128/ec.00203-06] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Chs4p (Cal2/Csd4/Skt5) was identified as a protein factor physically interacting with Chs3p, the catalytic subunit of chitin synthase III (CSIII), and is indispensable for its enzymatic activity in vivo. Chs4p contains a putative farnesyl attachment site at the C-terminal end (CVIM motif) conserved in Chs4p of Saccharomyces cerevisiae and other fungi. Several previous reports questioned the role of Chs4p prenylation in chitin biosynthesis. In this study we reinvestigated the function of Chs4p prenylation. We provide evidence that Chs4p is farnesylated by showing that purified Chs4p is recognized by anti-farnesyl antibody and is a substrate for farnesyl transferase (FTase) in vitro and that inactivation of FTase increases the amount of unmodified Chs4p in yeast cells. We demonstrate that abolition of Chs4p prenylation causes a approximately 60% decrease in CSIII activity, which is correlated with a approximately 30% decrease in chitin content and with increased resistance to the chitin binding compound calcofluor white. Furthermore, we show that lack of Chs4p prenylation decreases the average chain length of the chitin polymer. Prenylation of Chs4p, however, is not a factor that mediates plasma membrane association of the protein. Our results provide evidence that the prenyl moiety attached to Chs4p is a factor modulating the activity of CSIII both in vivo and in vitro.
Collapse
Affiliation(s)
- Kariona A Grabińska
- Department of Molecular and Cell Biology, School of Dental Medicine, Boston University, 715 Albany Street, Evans 408, Boston, MA 02118, USA.
| | | | | |
Collapse
|
79
|
Gelb MH, Brunsveld L, Hrycyna CA, Michaelis S, Tamanoi F, Van Voorhis WC, Waldmann H. Therapeutic intervention based on protein prenylation and associated modifications. Nat Chem Biol 2006; 2:518-28. [PMID: 16983387 PMCID: PMC2892741 DOI: 10.1038/nchembio818] [Citation(s) in RCA: 156] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In eukaryotic cells, a specific set of proteins are modified by C-terminal attachment of 15-carbon farnesyl groups or 20-carbon geranylgeranyl groups that function both as anchors for fixing proteins to membranes and as molecular handles for facilitating binding of these lipidated proteins to other proteins. Additional modification of these prenylated proteins includes C-terminal proteolysis and methylation, and attachment of a 16-carbon palmitoyl group; these modifications augment membrane anchoring and alter the dynamics of movement of proteins between different cellular membrane compartments. The enzymes in the protein prenylation pathway have been isolated and characterized. Blocking protein prenylation is proving to be therapeutically useful for the treatment of certain cancers, infection by protozoan parasites and the rare genetic disease Hutchinson-Gilford progeria syndrome.
Collapse
Affiliation(s)
- Michael H Gelb
- Department of Chemistry, University of Washington, Seattle, Washington 98195, USA.
| | | | | | | | | | | | | |
Collapse
|
80
|
Puntambekar DS, Giridhar R, Yadav MR. Understanding the antitumor activity of novel tricyclicpiperazinyl derivatives as farnesyltransferase inhibitors using CoMFA and CoMSIA. Eur J Med Chem 2006; 41:1279-92. [PMID: 16919851 DOI: 10.1016/j.ejmech.2006.07.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 07/02/2006] [Accepted: 07/03/2006] [Indexed: 10/24/2022]
Abstract
3D-QSAR studies of some tricyclicpiperazinyl derivatives as farnesyltransferase inhibitors were performed by comparative molecular field analysis (CoMFA) and comparative molecular similarity indices (CoMSIA) methods to rationalize the structural requirements responsible for the inhibitory activity of these compounds. The global minimum energy conformer of the template molecule 35, the most active and pharmacokinetically stable molecule of the series, was obtained by simulated annealing method and used to build structures of the molecules in the dataset. The CoMFA model obtained after the removal of outliers produced statistically significant results with cross-validated and conventional correlation coefficients of 0.550 and 0.969, respectively. The combination of steric, electrostatic, hydrogen bond acceptor and hydrophobic fields in CoMSIA gave the best results with cross-validated and conventional correlation coefficients of 0.611 and 0.986, respectively. The predictive ability of CoMFA and CoMSIA were determined using a test set of 24 tricyclicpiperazinyl derivatives giving predictive correlation coefficients of 0.543 and 0.663, respectively, indicating good predictive power. Further the robustness of the model was verified by bootstrapping analysis. Based on the CoMFA and CoMSIA analysis we have identified some key features in the tricyclicpiperazinyl series that are responsible for farnesyltransferase inhibitory activity that may be used to design more potent tricyclicpiperazinyl derivatives and predict their activity prior to synthesis.
Collapse
Affiliation(s)
- D S Puntambekar
- Pharmacy Department, Faculty of Technology and Engineering, The MS University of Baroda, Vadodara-390001, Gujarat, India
| | | | | |
Collapse
|
81
|
Pechlivanis M, Kuhlmann J. Hydrophobic modifications of Ras proteins by isoprenoid groups and fatty acids--More than just membrane anchoring. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2006; 1764:1914-31. [PMID: 17110180 DOI: 10.1016/j.bbapap.2006.09.017] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2006] [Revised: 09/26/2006] [Accepted: 09/29/2006] [Indexed: 01/25/2023]
Abstract
During the last years, post-translational modification of peripheral membrane proteins with hydrophobic side groups has been attributed to a couple of additional functions than just simple anchoring into lipid bilayers. In particular isoprenylation and N- and S-acylation did quicken interest in terms of specific recognition elements for protein-protein interactions and as hydrophobic switches that allow for temporal regulated association with distinct target structures. Furthermore new insights into the heterogeneity of natural membranes have connected the physical properties of e.g. farnesyl or palmitoyl side chains with a preference for such sub-compartments as lipid rafts or caveolae. In this review the impact of the two frequently realized modifications by isoprenylation and S-acylation on the process of cellular signal transduction is exemplified with proteins of the Ras and Rab family of small GTP-binding proteins.
Collapse
Affiliation(s)
- Markos Pechlivanis
- Department of Structural Biology, Max Planck Institute for Molecular Physiology, D-44227 Dortmund, Germany
| | | |
Collapse
|
82
|
van Hellemond JJ, Tielens AGM. Adaptations in the lipid metabolism of the protozoan parasite Trypanosoma brucei. FEBS Lett 2006; 580:5552-8. [PMID: 16920110 DOI: 10.1016/j.febslet.2006.07.056] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2006] [Accepted: 07/14/2006] [Indexed: 11/19/2022]
Abstract
Trypanosomes are unicellular parasites and like all decent parasites, they try to obtain from the host as much material as possible, including lipids. However, the needs of a parasite are not always the same as those of the host, and therefore, mostly, some biosynthetic work still has to be done by the parasite itself. Very often at least modifications of the lipid components that are acquired from the host have to be made. Furthermore, next to the lipids Trypanosoma brucei indeed obtains from the host, some other lipid components have to be synthesized de novo. Especially the processes where the metabolism of T. brucei differs from that of the host, will be discussed, as at least some of them are excellent targets for the development of urgently needed new chemotherapeutics.
Collapse
Affiliation(s)
- Jaap J van Hellemond
- Department of Biochemistry and Cell Biology, Faculty of Veterinary Medicine and Institute of Biomembranes, Utrecht University, P.O. Box 80176, 3508 TD Utrecht, The Netherlands
| | | |
Collapse
|
83
|
Wenk MR. Lipidomics of host-pathogen interactions. FEBS Lett 2006; 580:5541-51. [PMID: 16859687 DOI: 10.1016/j.febslet.2006.07.007] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2006] [Revised: 07/02/2006] [Accepted: 07/03/2006] [Indexed: 12/16/2022]
Abstract
The cell biology of intracellular pathogens (viruses, bacteria, eukaryotic parasites) has provided us with molecular information of host-pathogen interactions. As a result it is becoming increasingly evident that lipids play important roles at various stages of host-pathogen interactions. They act in first line recognition and host cell signaling during pathogen docking, invasion and intracellular trafficking. Lipid metabolism is a housekeeping function in energy homeostasis and biomembrane synthesis during pathogen replication and persistence. Lipids of enormous chemical diversity play roles as immunomodulatory factors. Thus, novel biochemical analytics in combination with cell and molecular biology are a promising recipe for dissecting the roles of lipids in host-pathogen interactions.
Collapse
Affiliation(s)
- Markus R Wenk
- Department of Biochemistry, National University of Singapore, Yong Loo Lin School of Medicine, 8 Medical Drive, Block MD7, Singapore 117597, Singapore.
| |
Collapse
|
84
|
Lane KT, Beese LS. Thematic review series: lipid posttranslational modifications. Structural biology of protein farnesyltransferase and geranylgeranyltransferase type I. J Lipid Res 2006; 47:681-99. [PMID: 16477080 DOI: 10.1194/jlr.r600002-jlr200] [Citation(s) in RCA: 184] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
More than 100 proteins necessary for eukaryotic cell growth, differentiation, and morphology require posttranslational modification by the covalent attachment of an isoprenoid lipid (prenylation). Prenylated proteins include members of the Ras, Rab, and Rho families, lamins, CENPE and CENPF, and the gamma subunit of many small heterotrimeric G proteins. This modification is catalyzed by the protein prenyltransferases: protein farnesyltransferase (FTase), protein geranylgeranyltransferase type I (GGTase-I), and GGTase-II (or RabGGTase). In this review, we examine the structural biology of FTase and GGTase-I (the CaaX prenyltransferases) to establish a framework for understanding the molecular basis of substrate specificity and mechanism. These enzymes have been identified in a number of species, including mammals, fungi, plants, and protists. Prenyltransferase structures include complexes that represent the major steps along the reaction path, as well as a number of complexes with clinically relevant inhibitors. Such complexes may assist in the design of inhibitors that could lead to treatments for cancer, viral infection, and a number of deadly parasitic diseases.
Collapse
Affiliation(s)
- Kimberly T Lane
- Department of Biochemistry, Duke University Medical Center, Durham, NC 27710, USA
| | | |
Collapse
|