51
|
Lee JY, Lee YY, Park JY, Shim SH, Kim SI, Kong TW, Lim CK, Cho HW, Suh DH. Major clinical research advances in gynecologic cancer in 2022: highlight on late-line PARP inhibitor withdrawal in ovarian cancer, the impact of ARIEL-4, and SOLO-3. J Gynecol Oncol 2023; 34:e51. [PMID: 36890294 PMCID: PMC9995865 DOI: 10.3802/jgo.2023.34.e51] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/20/2023] [Accepted: 02/23/2023] [Indexed: 03/06/2023] Open
Abstract
In the 2022 series, we summarized the major clinical research advances in gynecologic oncology based on communications at the conference of Asian Society of Gynecologic Oncology Review Course. The review consisted of 1) Ovarian cancer: long-term follow-up data, new poly (ADP-ribose) polymerase (PARP) inhibitors, overall survival (OS) issues with PARP inhibitor monotherapy, hyperthermic intraperitoneal chemotherapy, immunotherapy, and antibody-drug conjugate; 2) Cervical cancer: surgery in early stage disease, therapy for locally advanced stage and advanced, metastatic, or recurrent setting; and 3) Corpus cancer: follow-up regimen, immune checkpoint inhibitor, WEE1 inhibitor, selective inhibitor of nuclear export. A special note was made on the withdrawal of PARP inhibitor from the market for heavily pretreated ovarian cancer patients based on the final OS results of ARIEL-4 and SOLO-3 due to concerns of increased risk of death.
Collapse
Affiliation(s)
- Jung-Yun Lee
- Department of Obstetrics and Gynecology, Yonsei University College of Medicine, Seoul, Korea
| | - Yoo-Young Lee
- Department of Obstetrics and Gynecology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Jeong-Yeol Park
- Department of Obstetrics and Gynecology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea
| | - Seung-Hyuk Shim
- Department of Obstetrics and Gynecology, Research Institute of Medical Science, Konkuk University School of Medicine, Seoul, Korea
| | - Se Ik Kim
- Department of Obstetrics and Gynecology, Seoul National University Hospital, Seoul, Korea
| | - Tae-Wook Kong
- Department of Obstetrics and Gynecology, Ajou University School of Medicine, Suwon, Korea
| | - Chul Kwon Lim
- Department of Obstetrics and Gynecology, Eulji Medical Center, Eulji University School of Medicine, Daejeon, Korea
| | - Hyun Woong Cho
- Department of Obstetrics and Gynecology, Guro Hospital, Korea University College of Medicine, Seoul, Korea
| | - Dong Hoon Suh
- Department of Obstetrics and Gynecology, Seoul National University Bundang Hospital, Seongnam, Korea.
| |
Collapse
|
52
|
Koppikar S, Oaknin A, Babu KG, Lorusso D, Gupta S, Wu LY, Rajabto W, Harano K, Hong SH, Malik RA, Strebel H, Aggarwal IM, Lai CH, Dejthevaporn T, Tangjitgamol S, Cheng WF, Chay WY, Benavides D, Hashim NM, Moon YW, Yunokawa M, Anggraeni TD, Wei W, Curigliano G, Maheshwari A, Mahantshetty U, Sheshadri S, Peters S, Yoshino T, Pentheroudakis G. Pan-Asian adapted ESMO Clinical Practice Guidelines for the diagnosis, treatment and follow-up of patients with endometrial cancer. ESMO Open 2023; 8:100774. [PMID: 36696825 PMCID: PMC10024150 DOI: 10.1016/j.esmoop.2022.100774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 12/06/2022] [Indexed: 01/25/2023] Open
Abstract
The most recent version of the European Society for Medical Oncology (ESMO) Clinical Practice Guidelines for the diagnosis, treatment and follow-up of patients with endometrial cancer was published in 2022. It was therefore decided, by both the ESMO and the Indian Society of Medical and Paediatric Oncology (ISMPO), to convene a virtual meeting in July 2022 to adapt the ESMO 2022 guidelines to take into account the variations in the management of endometrial cancer in Asia. These guidelines represent the consensus opinion of a panel of Asian experts representing the oncological societies of China (CSCO), India (ISMPO), Indonesia (ISHMO), Japan (JSMO), Korea (KSMO), Malaysia (MOS), the Philippines (PSMO), Singapore (SSO), Taiwan (TOS) and Thailand (TSCO). Voting was based on scientific evidence and was conducted independently of the current treatment practices and treatment access constraints in the different Asian countries, which were discussed when appropriate. The aim of this guideline manuscript is to provide guidance for the optimisation and harmonisation of the management of patients with endometrial cancer across the different regions of Asia, drawing on the evidence provided by Western and Asian trials whilst respecting the variations in clinical presentation, diagnostic practices including molecular profiling and disparities in access to therapeutic options, including drug approvals and reimbursement strategies.
Collapse
Affiliation(s)
- S Koppikar
- Department of Medical Oncology, Lilavati Hospital and Research Centre, Mumbai, India; Department of Medical Oncology, Bombay Hospital Institute of Medical Sciences, Mumbai, India.
| | - A Oaknin
- Gynaecologic Cancer Programme, Vall d'Hebron Institute of Oncology (VHIO), Hospital Universitari Vall d'Hebron, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - K Govind Babu
- Department of Medical Oncology, HCG Hospital and St. Johns Medical College, Bengaluru, India
| | - D Lorusso
- Department of Life Science and Public Health, Catholic University of Sacred Heart, Largo Agostino Gemelli, Rome; Department of Women and Child Health, Division of Gynaecologic Oncology, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - S Gupta
- Department of Medical Oncology, Tata Memorial Centre and Homi Bhabha National Institute, Mumbai, India
| | - L-Y Wu
- Department of Gynecologic Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - W Rajabto
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Dr. Cipto Mangunkusumo General Hospital/Faculty of Medicine Universitas Indonesia, Jakarta, Indonesia
| | - K Harano
- Department of Medical Oncology, National Cancer Center Hospital East, Kashiwa, Japan
| | - S-H Hong
- Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - R A Malik
- Clinical Oncology Unit, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - H Strebel
- Division of Medical Oncology, Department of Internal Medicine, University of the Philippines, Philippine General Hospital, Manila, The Philippines
| | - I M Aggarwal
- Department of Gynaecologic Oncology, KK Women's and Children's Hospital, Singapore, Singapore
| | - C-H Lai
- Department of Obstetrics and Gynecology, Chang Gung Memorial Hospital, Linkou Branch, Taoyuan, Taiwan
| | - T Dejthevaporn
- Medical Oncology Unit, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - S Tangjitgamol
- Department of Obstetrics and Gynecology, Faculty of Medicine Vajira Hospital, Navamindradhiraj University, Bangkok, Thailand; Obstetrics and Gynecology Center, Medpark Hospital, Bangkok, Thailand
| | - W F Cheng
- Department of Obstetrics and Gynecology, National Taiwan University Hospital, Taipei, Taiwan
| | - W Y Chay
- Division of Medical Oncology, National Cancer Centre, Singapore, Singapore
| | - D Benavides
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, U.P. College of Medicine and Philippine General Hospital, Manila, The Philippines
| | - N M Hashim
- Oncology and Radiotherapy Department, KPJ Johor Specialist Hospital, Johor Bahru, Malaysia
| | - Y W Moon
- Department of Hematology and Oncology, CHA Bundang Medical Center (CBMC), CHA University, Seongnam, Gyeonggi-do, Republic of Korea
| | - M Yunokawa
- Department of Gynecology and Medical Oncology, The Cancer Institute Hospital of Japanese Foundation for Cancer Research (JFCR), Tokyo, Japan
| | - T D Anggraeni
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Dr. Cipto Mangunkusumo General Hospital/Faculty of Medicine Universitas Indonesia, Jakarta, Indonesia
| | - W Wei
- Department of Gynecologic Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Centre for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, China
| | - G Curigliano
- European Institute of Oncology, IRCCS, Milano, Italy; Department of Oncology and Hemato-Oncology, University of Milano, Milano, Italy
| | - A Maheshwari
- Department of Gynecologic Oncology, Tata Memorial Centre and Homi Bhabha National Institute, Mumbai, India
| | - U Mahantshetty
- Department of Radiation Oncology, Homi Bhabha Cancer Hospital and Research Hospital, Vishakhapatnam, India
| | - S Sheshadri
- Department of Pathology, Kidwai Memorial Institute of Oncology, Bengaluru, India
| | - S Peters
- Oncology Department, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - T Yoshino
- Department of Gastroenterology and Gastrointestinal Oncology, National Cancer Center Hospital East, Kashiwa, Japan
| | | |
Collapse
|
53
|
Gordhandas S, Zammarrelli WA, Rios-Doria EV, Green A, Makker V. Current Evidence-Based Systemic Therapy for Advanced and Recurrent Endometrial Cancer. J Natl Compr Canc Netw 2023; 21:217-226. [PMID: 36791759 PMCID: PMC10361357 DOI: 10.6004/jnccn.2022.7254] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 12/16/2022] [Indexed: 02/17/2023]
Abstract
Endometrial cancer (EC) is the most common gynecologic malignancy, with worldwide increasing incidence and disease-associated mortality. Although most patients with EC are diagnosed with early-stage disease, systemic treatment options for patients with advanced or recurrent EC have historically been limited. EC-focused clinical trials and the ensuing therapeutic landscape have expanded since The Cancer Genome Atlas (TCGA) identified 4 distinct EC subgroups associated with differential survival. This endeavor revolutionized our understanding of the genomic characterization of EC as well as molecular drivers of this heterogeneous malignancy, leading to precision oncology approaches to therapeutics and advancement in treatment options. This review describes the current status of and recent advancements in therapeutic options for patients with advanced and recurrent EC. The NCCN Guidelines for Uterine Neoplasms provide detailed recommendations regarding the diagnosis, workup, and management of EC.
Collapse
Affiliation(s)
- Sushmita Gordhandas
- Gynecology Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - William A. Zammarrelli
- Gynecology Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Eric V. Rios-Doria
- Gynecology Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Angela Green
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Department of Medicine, Weill Cornell Medical College, New York, NY 10065, USA
| | - Vicky Makker
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Department of Medicine, Weill Cornell Medical College, New York, NY 10065, USA
| |
Collapse
|
54
|
Upregulation of NDUFAF2 in Lung Adenocarcinoma Is a Novel Independent Prognostic Biomarker. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2023; 2023:2912968. [PMID: 36703939 PMCID: PMC9873462 DOI: 10.1155/2023/2912968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/31/2022] [Accepted: 01/03/2023] [Indexed: 01/19/2023]
Abstract
Background NADH dehydrogenase (ubiquinone) 1 alpha subcomplex assembly factor 2 (NDUFAF2) acts as a molecular chaperone for the assembly of complex I on the mitochondrial membrane, which is involved in the transfer of electrons in the respiratory chain. However, whether NDUFAF2 plays a role in lung adenocarcinoma (LUAD) is largely unexplored. Methods Expression profiles were obtained from the TCGA and GEO databases and integrated via R3.6.3 and several bioinformatics platforms. Western blotting analysis and immunohistochemistry staining were used to examine the expressions of NDUFAF2 in clinical samples. Moreover, the diagnostic and prognostic value of NDUFAF2 expression level was also assessed. GO, KEGG, and gene set enrichment analysis (GSEA) were adopted to investigate NDUFAF2-related molecular functions, signaling pathways, and life activity processes. Results NDUFAF2 was predominantly expressed in LUAD, and it is identified as a promising biomarker in the diagnosis of LUAD and its prognostic prediction. Overexpression of NDUFAF2 was correlated with N stage, T stage, and pathologic stage in LUAD, leading to worse overall survival (OS). Besides, the level of NDUFAF2 was independently associated with OS through a multivariate Cox analysis (HR = 1.538, 95% (1.086-2.177), P = 0.015). GO analysis revealed enrichment in innate immune response in mucosa and mucosal immune response, and GSEA indicated enrichment in G2_M_checkpoints, DNA replication, diseases of mitotic cell cycle, retinoblastoma gene in cancer, cell cycle pathway, and cell cycle. Furthermore, the expression level of NDUFAF2 was negatively correlated with infiltration levels of Tem, Tcm, NK CD56bright cells, and B cells. In contrast, the expression level of NDUFAF2 was positively correlated with the infiltration level of DCs and Th2 cells in LUAD patients. Conclusions Collectively, NDUFAF2 is a promising independent prognostic biomarker and target in LUAD. In addition, NDUFAF2 might affect the prognosis of LUAD via DNA replication, diseases of mitotic cell cycle, cell cycle pathway, and cell cycle.
Collapse
|
55
|
Li J, Lu J, Xu M, Yang S, Yu T, Zheng C, Huang X, Pan Y, Chen Y, Long J, Zhang C, Huang H, Dai Q, Li B, Wang W, Yao S, Pan C. ODF2L acts as a synthetic lethal partner with WEE1 inhibition in epithelial ovarian cancer models. J Clin Invest 2023; 133:161544. [PMID: 36378528 PMCID: PMC9843051 DOI: 10.1172/jci161544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 11/08/2022] [Indexed: 11/16/2022] Open
Abstract
WEE1 has emerged as an attractive target in epithelial ovarian cancer (EOC), but how EOC cells may alter their sensitivity to WEE1 inhibition remains unclear. Here, through a cell cycle machinery-related gene RNAi screen, we found that targeting outer dense fiber of sperm tails 2-like (ODF2L) was a synthetic lethal partner with WEE1 kinase inhibition in EOC cells. Knockdown of ODF2L robustly sensitized cells to treatment with the WEE1 inhibitor AZD1775 in EOC cell lines in vitro as well as in xenografts in vivo. Mechanistically, the increased sensitivity to WEE1 inhibition upon ODF2L loss was accompanied by accumulated DNA damage. ODF2L licensed the recruitment of PKMYT1, a functionally redundant kinase of WEE1, to the CDK1-cyclin B complex and thus restricted the activity of CDK1 when WEE1 was inhibited. Clinically, upregulation of ODF2L correlated with CDK1 activity, DNA damage levels, and sensitivity to WEE1 inhibition in patient-derived EOC cells. Moreover, ODF2L levels predicted the response to WEE1 inhibition in an EOC patient-derived xenograft model. Combination treatment with tumor-targeted lipid nanoparticles that packaged ODF2L siRNA and AZD1775 led to the synergistic attenuation of tumor growth in the ID8 ovarian cancer syngeneic mouse model. These data suggest that WEE1 inhibition is a promising precision therapeutic strategy for EOC cells expressing low levels of ODF2L.
Collapse
Affiliation(s)
- Jie Li
- Department of Obstetrics and Gynecology, The First Affiliated Hospital
| | - Jingyi Lu
- Department of Biochemistry and Molecular Biology, Zhongshan School of Medicine, and
| | - Manman Xu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital
| | - Shiyu Yang
- Department of Biochemistry and Molecular Biology, Zhongshan School of Medicine, and
| | - Tiantian Yu
- Department of Biochemistry and Molecular Biology, Zhongshan School of Medicine, and
| | - Cuimiao Zheng
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Xi Huang
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Yuwen Pan
- Department of Obstetrics and Gynecology, The First Affiliated Hospital
| | - Yangyang Chen
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Junming Long
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Chunyu Zhang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital
| | - Hua Huang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital
| | - Qingyuan Dai
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Bo Li
- Department of Biochemistry and Molecular Biology, Zhongshan School of Medicine, and,Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Wei Wang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital
| | - Shuzhong Yao
- Department of Obstetrics and Gynecology, The First Affiliated Hospital
| | - Chaoyun Pan
- Department of Biochemistry and Molecular Biology, Zhongshan School of Medicine, and,Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
56
|
Tu JL, Wu BH, Wu HB, Wang JE, Zhang ZL, Gao KY, Zhang LX, Chen QR, Zhou YC, Tan JH, Huang ZS, Chen SB. Design, synthesis and evaluation of N3-substituted quinazolinone derivatives as potential Bloom's Syndrome protein (BLM) helicase inhibitor for sensitization treatment of colorectal cancer. Eur J Med Chem 2023; 246:114944. [PMID: 36459756 DOI: 10.1016/j.ejmech.2022.114944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 11/12/2022] [Accepted: 11/17/2022] [Indexed: 11/22/2022]
Abstract
The homologous recombination repair (HRR) pathway is critical for repairing double-strand breaks (DSB). Inhibition of the HRR pathway is usually considered a promising strategy for anticancer therapy. The Bloom's Syndrome Protein (BLM), a DNA helicase, is essential for promoting the HRR pathway. Previously, we discovered quinazolinone derivative 9h as a potential BLM inhibitor, which suppressed the proliferation of colorectal cancer (CRC) cell HCT116. Herein, a new series of quinazolinone derivatives with N3-substitution was designed and synthesized to improve the anticancer activity and explore the structure-activity relationship (SAR). After evaluating their BLM inhibitory activity, the SAR was discussed, leading to identifying compound 21 as a promising BLM inhibitor. 21 exhibited the potent BLM-dependent cytotoxicity against the CRC cells but weak against normal cells. Further evaluation revealed that 21 could disrupt the HRR level while inhibiting BLM located on the DSB site and trigger DNA damage in the CRC cells. This compound effectively suppressed the proliferation and invasion of CRC cells, along with cell cycle arrest and apoptosis. Consequently, 21 might be a promising candidate for treating CRC, and the BLM might be a new potential therapeutic target for CRC.
Collapse
Affiliation(s)
- Jia-Li Tu
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou, 510006, China
| | - Bi-Han Wu
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou, 510006, China
| | - Heng-Bo Wu
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou, 510006, China
| | - Jia-En Wang
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou, 510006, China
| | - Zi-Lin Zhang
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou, 510006, China
| | - Kun-Yu Gao
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou, 510006, China
| | - Lu-Xuan Zhang
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou, 510006, China
| | - Qin-Rui Chen
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou, 510006, China
| | - Ying-Chen Zhou
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou, 510006, China
| | - Jia-Heng Tan
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou, 510006, China
| | - Zhi-Shu Huang
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou, 510006, China
| | - Shuo-Bin Chen
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou, 510006, China.
| |
Collapse
|
57
|
Nishikawa S, Iwakuma T. Drugs Targeting p53 Mutations with FDA Approval and in Clinical Trials. Cancers (Basel) 2023; 15:429. [PMID: 36672377 PMCID: PMC9856662 DOI: 10.3390/cancers15020429] [Citation(s) in RCA: 32] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/01/2023] [Accepted: 01/06/2023] [Indexed: 01/11/2023] Open
Abstract
Mutations in the tumor suppressor p53 (p53) promote cancer progression. This is mainly due to loss of function (LOS) as a tumor suppressor, dominant-negative (DN) activities of missense mutant p53 (mutp53) over wild-type p53 (wtp53), and wtp53-independent oncogenic activities of missense mutp53 by interacting with other tumor suppressors or oncogenes (gain of function: GOF). Since p53 mutations occur in ~50% of human cancers and rarely occur in normal tissues, p53 mutations are cancer-specific and ideal therapeutic targets. Approaches to target p53 mutations include (1) restoration or stabilization of wtp53 conformation from missense mutp53, (2) rescue of p53 nonsense mutations, (3) depletion or degradation of mutp53 proteins, and (4) induction of p53 synthetic lethality or targeting of vulnerabilities imposed by p53 mutations (enhanced YAP/TAZ activities) or deletions (hyperactivated retrotransposons). This review article focuses on clinically available FDA-approved drugs and drugs in clinical trials that target p53 mutations and summarizes their mechanisms of action and activities to suppress cancer progression.
Collapse
Affiliation(s)
- Shigeto Nishikawa
- Department of Pediatrics, Division of Hematology & Oncology, Children’s Mercy Research Institute, Kansas City, MO 64108, USA
| | - Tomoo Iwakuma
- Department of Pediatrics, Division of Hematology & Oncology, Children’s Mercy Research Institute, Kansas City, MO 64108, USA
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| |
Collapse
|
58
|
da Costa AABA, Chowdhury D, Shapiro GI, D'Andrea AD, Konstantinopoulos PA. Targeting replication stress in cancer therapy. Nat Rev Drug Discov 2023; 22:38-58. [PMID: 36202931 PMCID: PMC11132912 DOI: 10.1038/s41573-022-00558-5] [Citation(s) in RCA: 118] [Impact Index Per Article: 118.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/25/2022] [Indexed: 02/06/2023]
Abstract
Replication stress is a major cause of genomic instability and a crucial vulnerability of cancer cells. This vulnerability can be therapeutically targeted by inhibiting kinases that coordinate the DNA damage response with cell cycle control, including ATR, CHK1, WEE1 and MYT1 checkpoint kinases. In addition, inhibiting the DNA damage response releases DNA fragments into the cytoplasm, eliciting an innate immune response. Therefore, several ATR, CHK1, WEE1 and MYT1 inhibitors are undergoing clinical evaluation as monotherapies or in combination with chemotherapy, poly[ADP-ribose]polymerase (PARP) inhibitors, or immune checkpoint inhibitors to capitalize on high replication stress, overcome therapeutic resistance and promote effective antitumour immunity. Here, we review current and emerging approaches for targeting replication stress in cancer, from preclinical and biomarker development to clinical trial evaluation.
Collapse
Affiliation(s)
| | - Dipanjan Chowdhury
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Geoffrey I Shapiro
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Alan D D'Andrea
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.
- Center for DNA Damage and Repair, Dana-Farber Cancer Institute, Boston, MA, USA.
| | | |
Collapse
|
59
|
Giudice E, Salutari V, Ricci C, Nero C, Carbone MV, Musacchio L, Ghizzoni V, Perri MT, Camarda F, Tronconi F, Lorusso D, Scambia G. Recent progress in the use of pharmacotherapy for endometrial cancer. Expert Opin Pharmacother 2023; 24:83-94. [PMID: 35912837 DOI: 10.1080/14656566.2022.2106782] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
INTRODUCTION Endometrial cancer (EC) is the most common gynecological cancer in developed countries. The ESGO/ESTRO/ESP updated evidence-based guidelines in 2020, introducing molecular classification to guide EC treatment. The genomic-based approach has identified four prognostic subgroups of EC. Each of these may benefit from a tailored treatment depending on the molecular profile, the histotype, and stage of disease for the adjuvant and the metastatic/recurrent setting. Several clinical trials are now ongoing to identify the best treatment according to the molecular profile of EC. AREAS COVERED This review analyzes tailored treatment for EC according to the molecular profile, both in the adjuvant and in the metastatic/recurrent setting. The authors review the results of clinical studies and highlight ongoing trials. EXPERT OPINION Several new agents are under evaluation in order to personalize EC treatment according to specific molecular profiles in the adjuvant, advanced, and recurrent settings. Clinical trials investigating the impact of molecular classification have yielded encouraging results. EC can no longer be considered a single tumor entity susceptible to a single treatment modality but rather be split into four distinct types, requiring tailored treatments.
Collapse
Affiliation(s)
- Elena Giudice
- Institute of Obstetrics and Gynecology, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Vanda Salutari
- Department of Woman, Child and Public Health, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Caterina Ricci
- Department of Woman, Child and Public Health, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Camilla Nero
- Department of Woman, Child and Public Health, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Maria Vittoria Carbone
- Department of Woman, Child and Public Health, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Lucia Musacchio
- Department of Woman, Child and Public Health, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Viola Ghizzoni
- Institute of Obstetrics and Gynecology, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Maria Teresa Perri
- Institute of Obstetrics and Gynecology, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Floriana Camarda
- Medical Oncology, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Francesca Tronconi
- Department of Medical Oncology, Università Politecnica delle Marche, Ancona, Italy
| | - Domenica Lorusso
- Institute of Obstetrics and Gynecology, Università Cattolica del Sacro Cuore, Rome, Italy.,Department of Woman, Child and Public Health, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Giovanni Scambia
- Institute of Obstetrics and Gynecology, Università Cattolica del Sacro Cuore, Rome, Italy.,Department of Woman, Child and Public Health, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| |
Collapse
|
60
|
Targeted Therapies in the Treatment of Uterine Serous Carcinoma. Curr Treat Options Oncol 2022; 23:1804-1817. [PMID: 36447064 DOI: 10.1007/s11864-022-01030-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/19/2022] [Indexed: 12/05/2022]
Abstract
OPINION STATEMENT Despite the dismal prognosis of uterine serous carcinoma (USC), recent advances in molecular classification and targeted treatments have demonstrated improvements in survival outcomes for patients both in the upfront and recurrent treatment settings. After appropriate surgical staging and surgical cytoreduction as indicated, correct pathologic and molecular classification of USC is important to provide the most appropriate systemic adjuvant treatment. HER2-targeted agents are one of the most important advances in the treatment of USC in decades. Thus, for HER2-positive tumors, the addition of trastuzumab to conventional chemotherapy is indicated in those with advanced stage and/or recurrent disease. Treatment with pembrolizumab and lenvatinib suggests a 50% response rate in women with recurrent disease which serves as a promising targeted treatment strategy. Overall, emerging targeted therapeutic options with antibody-drug conjugates (i.e. targeting HER2, folic acid receptor alpha, or Trop-2), combinations of immunotherapies and tyrosine kinase inhibitors, PARP inhibitors, WEE1 inhibitors, and AKT inhibitors shed further promise in advancements of effective disease-modifying treatments for this unmet medical need for patients with USC. Several trials evaluating these targeted agents are ongoing, and those results are eagerly awaited. As such, enrollment of patients in clinical trials is highly recommended as it will provide patients with a higher level of personalized cancer care.
Collapse
|
61
|
Rubinstein M, Shen S, Monk BJ, Tan DSP, Nogueira-Rodrigues A, Aoki D, Sehouli J, Makker V. Looking beyond carboplatin and paclitaxel for the treatment of advanced/recurrent endometrial cancer. Gynecol Oncol 2022; 167:540-546. [PMID: 36280455 PMCID: PMC10373231 DOI: 10.1016/j.ygyno.2022.10.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 09/30/2022] [Accepted: 10/10/2022] [Indexed: 11/04/2022]
Abstract
Endometrial cancer incidence and mortality are rising among all ethnic groups. Carboplatin plus paclitaxel is the established frontline treatment for advanced/recurrent disease; however, subsequent treatment with traditional cytotoxic chemotherapy is challenging. The molecular characterization of endometrial cancer has provided important insights into the biological drivers of carcinogenesis, which has allowed for the development of newer precision immunotherapies and targeted therapies, including pembrolizumab, dostarlimab, and lenvatinib. Until recently, platinum rechallenge was often considered at the time of recurrence, given the lack of other available therapeutic options; however, "platinum sensitivity" in endometrial cancer is subjective and largely based on expert opinion and/or practitioner experience. Small retrospective studies have tried to provide guidance on the utility of platinum rechallenge, but they are limited by variable patient characteristics and small sample sizes. The applicability of these retrospective studies to contemporary clinical practice is difficult in the setting of changing patient demographics, a better understanding of endometrial cancer drivers, and the recent approvals of immune checkpoint inhibitors and the combination of lenvatinib plus pembrolizumab in the second-line setting. The primary focus of this review is to distill the available data regarding platinum-doublet chemotherapy rechallenge and highlight recent pivotal developments in endometrial cancer treatment, as well as future directions.
Collapse
Affiliation(s)
- Maria Rubinstein
- Department of Medicine, Memorial Sloan Kettering Cancer Center, Weill Cornell Medical Center, New York, NY, USA; Department of Medicine, Weill Cornell Medical College, New York, NY, USA.
| | - Sherry Shen
- Department of Medicine, Memorial Sloan Kettering Cancer Center, Weill Cornell Medical Center, New York, NY, USA
| | - Bradley J Monk
- HonorHealth Research Institute, University of Arizona, Creighton University, Phoenix, AZ, USA
| | - David S P Tan
- National University Cancer Institute, Singapore; National University Hospital, Yong Loo Lin School of Medicine, and Cancer Science Institute, National University of Singapore (NUS), Singapore
| | | | - Daisuke Aoki
- Department of Obstetrics and Gynecology, Keio University School of Medicine, Tokyo, Japan
| | - Jalid Sehouli
- Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Vicky Makker
- Department of Medicine, Memorial Sloan Kettering Cancer Center, Weill Cornell Medical Center, New York, NY, USA; Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| |
Collapse
|
62
|
Tronconi F, Nero C, Giudice E, Salutari V, Musacchio L, Ricci C, Carbone MV, Ghizzoni V, Perri MT, Camarda F, Gentile M, Berardi R, Scambia G, Lorusso D. Advanced and recurrent endometrial cancer: State of the art and future perspectives. Crit Rev Oncol Hematol 2022; 180:103851. [DOI: 10.1016/j.critrevonc.2022.103851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 09/02/2022] [Accepted: 10/12/2022] [Indexed: 11/06/2022] Open
|
63
|
Zhang Q, Lin X, Jiang K, Deng J, Ke L, Wu Z, Xia P, Li Q, Yu L, Ni P, Lv W, Hu J. PD0166285 sensitizes esophageal squamous cell carcinoma to radiotherapy by dual inhibition of WEE1 and PKMYT1. Front Oncol 2022. [DOI: 10.3389/fonc.2022.1061988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
BackgroundEsophageal squamous cell carcinoma (ESCC) is an aggressive tumor with a 5-year survival rate of only 20%. More than 80% of ESCC patients possess TP53 mutation, which abolishes the G1/S checkpoint and accelerates the cell cycle. Thus, WEE1 and PKMYT1, regulators of G2/M phase in cell cycle, play essential roles in TP53-mutated cancer cells. PD0166285(PD) is a pyridopyrimidine compound that can inhibit WEE1 and PKMYT1 simultaneously, however, the effects of PD on ESCC, either as monotherapy or in combination therapy with radiotherapy, remain unclear.MethodsTo measure the anti-tumor efficacy of PD in ESCC cells, cell viability, cell cycle and cell apoptosis assays were examined in KYSE150 and TE1 cells with PD treatment. The combination therapy of PD and irradiation was also performed in ESCC cells to find whether PD can sensitize ESCC cells to irradiation. Vivo assays were also performed to investigate the efficacy of PD.ResultsWe found that the IC50 values of PD among ESCC cells ranged from 234 to 694 nM, PD can regulate cell cycle and induce cell apoptosis in ESCC cells in a dose-dependent manner. When combined with irradiation, PD sensitized ESCC cells to irradiation by abolishing G2/M phase arrest, inducing a high ratio of mitosis catastrophe, eventually leading to cell death. We also demonstrated that PD can attenuate DNA damage repair by inhibiting Rad51, further research also found the interaction of WEE1 and Rad51. In vivo assays, PD inhibited the tumor growth in mice, combination therapy showed better therapeutic efficacy.ConclusionPD0166285 can exert antitumor effect by inhibiting the function of WEE1 and PKMYT1 in ESCC cells, and also sensitize ESCC cells to irradiation not only by abolishing G2/M arrest but also attenuating DNA repair directly. We believe PD0166285 can be a potent treatment option for ESCC in the future.
Collapse
|
64
|
Wilson J, Loizou JI. Exploring the genetic space of the DNA damage response for cancer therapy through CRISPR-based screens. Mol Oncol 2022; 16:3778-3791. [PMID: 35708734 PMCID: PMC9627789 DOI: 10.1002/1878-0261.13272] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/11/2022] [Accepted: 06/14/2022] [Indexed: 12/24/2022] Open
Abstract
The concepts of synthetic lethality and viability have emerged as powerful approaches to identify vulnerabilities and resistances within the DNA damage response for the treatment of cancer. Historically, interactions between two genes have had a longstanding presence in genetics and have been identified through forward genetic screens that rely on the molecular basis of the characterized phenotypes, typically caused by mutations in single genes. While such complex genetic interactions between genes have been studied extensively in model organisms, they have only recently been prioritized as therapeutic strategies due to technological advancements in genetic screens. Here, we discuss synthetic lethal and viable interactions within the DNA damage response and present how CRISPR-based genetic screens and chemical compounds have allowed for the systematic identification and targeting of such interactions for the treatment of cancer.
Collapse
Affiliation(s)
- Jordan Wilson
- Center for Cancer Research, Comprehensive Cancer CentreMedical University of ViennaAustria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of SciencesViennaAustria
| | - Joanna I. Loizou
- Center for Cancer Research, Comprehensive Cancer CentreMedical University of ViennaAustria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of SciencesViennaAustria
| |
Collapse
|
65
|
Chambers SK. Advances in Chemotherapy and Targeted Therapies in Endometrial Cancer. Cancers (Basel) 2022; 14:cancers14205020. [PMID: 36291804 PMCID: PMC9599945 DOI: 10.3390/cancers14205020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/09/2022] [Accepted: 10/12/2022] [Indexed: 11/16/2022] Open
Abstract
Endometrial cancer is now recognized to be several diseases with differing biology and responses to treatment. Improved molecular characterization has furthered the development and testing of targeted therapies in the different cohorts of endometrial cancer. Lessons are being learned from other cancers that share similar molecular typing, and hence, potentially similar tumor behavior. This commentary serves as a broad overview of the types of advances to which our patients now have access.
Collapse
Affiliation(s)
- Setsuko K Chambers
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, The University of Arizona Cancer Center, University of Arizona, Tucson, AZ 85724, USA
| |
Collapse
|
66
|
Serra V, Wang AT, Castroviejo-Bermejo M, Polanska UM, Palafox M, Herencia-Ropero A, Jones GN, Lai Z, Armenia J, Michopoulos F, Llop-Guevara A, Brough R, Gulati A, Pettitt SJ, Bulusu KC, Nikkilä J, Wilson Z, Hughes A, Wijnhoven PW, Ahmed A, Bruna A, Gris-Oliver A, Guzman M, Rodríguez O, Grueso J, Arribas J, Cortés J, Saura C, Lau A, Critchlow S, Dougherty B, Caldas C, Mills GB, Barrett JC, Forment JV, Cadogan E, Lord CJ, Cruz C, Balmaña J, O'Connor MJ. Identification of a Molecularly-Defined Subset of Breast and Ovarian Cancer Models that Respond to WEE1 or ATR Inhibition, Overcoming PARP Inhibitor Resistance. Clin Cancer Res 2022; 28:4536-4550. [PMID: 35921524 PMCID: PMC9561606 DOI: 10.1158/1078-0432.ccr-22-0568] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 06/10/2022] [Accepted: 08/01/2022] [Indexed: 01/07/2023]
Abstract
PURPOSE PARP inhibitors (PARPi) induce synthetic lethality in homologous recombination repair (HRR)-deficient tumors and are used to treat breast, ovarian, pancreatic, and prostate cancers. Multiple PARPi resistance mechanisms exist, most resulting in restoration of HRR and protection of stalled replication forks. ATR inhibition was highlighted as a unique approach to reverse both aspects of resistance. Recently, however, a PARPi/WEE1 inhibitor (WEE1i) combination demonstrated enhanced antitumor activity associated with the induction of replication stress, suggesting another approach to tackling PARPi resistance. EXPERIMENTAL DESIGN We analyzed breast and ovarian patient-derived xenoimplant models resistant to PARPi to quantify WEE1i and ATR inhibitor (ATRi) responses as single agents and in combination with PARPi. Biomarker analysis was conducted at the genetic and protein level. Metabolite analysis by mass spectrometry and nucleoside rescue experiments ex vivo were also conducted in patient-derived models. RESULTS Although WEE1i response was linked to markers of replication stress, including STK11/RB1 and phospho-RPA, ATRi response associated with ATM mutation. When combined with olaparib, WEE1i could be differentiated from the ATRi/olaparib combination, providing distinct therapeutic strategies to overcome PARPi resistance by targeting the replication stress response. Mechanistically, WEE1i sensitivity was associated with shortage of the dNTP pool and a concomitant increase in replication stress. CONCLUSIONS Targeting the replication stress response is a valid therapeutic option to overcome PARPi resistance including tumors without an underlying HRR deficiency. These preclinical insights are now being tested in several clinical trials where the PARPi is administered with either the WEE1i or the ATRi.
Collapse
Affiliation(s)
- Violeta Serra
- Experimental Therapeutics Group, Vall d'Hebron Institute of Oncology, Barcelona, Spain
- CIBERONC, Vall d'Hebron Institute of Oncology, Barcelona, Spain
| | | | | | | | - Marta Palafox
- Experimental Therapeutics Group, Vall d'Hebron Institute of Oncology, Barcelona, Spain
| | - Andrea Herencia-Ropero
- Experimental Therapeutics Group, Vall d'Hebron Institute of Oncology, Barcelona, Spain
- Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, Barcelona, Spain
| | | | - Zhongwu Lai
- AstraZeneca Oncology R&D, Waltham, Massachusetts
| | | | | | - Alba Llop-Guevara
- Experimental Therapeutics Group, Vall d'Hebron Institute of Oncology, Barcelona, Spain
| | - Rachel Brough
- The CRUK Gene Function Laboratory and Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, United Kingdom
| | - Aditi Gulati
- The CRUK Gene Function Laboratory and Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, United Kingdom
| | - Stephen J. Pettitt
- The CRUK Gene Function Laboratory and Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, United Kingdom
| | | | | | - Zena Wilson
- AstraZeneca Oncology R&D, Cambridge, United Kingdom
| | - Adina Hughes
- AstraZeneca Oncology R&D, Cambridge, United Kingdom
| | | | - Ambar Ahmed
- AstraZeneca Oncology R&D, Waltham, Massachusetts
| | - Alejandra Bruna
- Cancer Research UK, Cambridge Institute, Cambridge, United Kingdom
| | - Albert Gris-Oliver
- Experimental Therapeutics Group, Vall d'Hebron Institute of Oncology, Barcelona, Spain
| | - Marta Guzman
- Experimental Therapeutics Group, Vall d'Hebron Institute of Oncology, Barcelona, Spain
| | - Olga Rodríguez
- Experimental Therapeutics Group, Vall d'Hebron Institute of Oncology, Barcelona, Spain
| | - Judit Grueso
- Experimental Therapeutics Group, Vall d'Hebron Institute of Oncology, Barcelona, Spain
| | - Joaquin Arribas
- CIBERONC, Vall d'Hebron Institute of Oncology, Barcelona, Spain
- Growth Factors Laboratory, Vall d'Hebron Institute of Oncology, Barcelona, Spain
| | - Javier Cortés
- Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Cristina Saura
- Department of Medical Oncology, Hospital Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
- Breast Cancer and Melanoma Group, Vall d'Hebron Institute of Oncology, Barcelona, Spain
| | - Alan Lau
- AstraZeneca Oncology R&D, Cambridge, United Kingdom
| | | | | | - Carlos Caldas
- Cancer Research UK, Cambridge Institute, Cambridge, United Kingdom
| | - Gordon B. Mills
- Department of Cell Development and Cancer Biology, Knight Cancer Institute, Oregon Health and Sciences University, Portland, Oregon
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | | | | | | | - Christopher J. Lord
- The CRUK Gene Function Laboratory and Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, United Kingdom
| | - Cristina Cruz
- Experimental Therapeutics Group, Vall d'Hebron Institute of Oncology, Barcelona, Spain
- Department of Medical Oncology, Hospital Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
- High Risk and Familial Cancer, Vall d'Hebron Institute of Oncology, Barcelona, Spain
| | - Judith Balmaña
- Department of Medical Oncology, Hospital Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
- High Risk and Familial Cancer, Vall d'Hebron Institute of Oncology, Barcelona, Spain
| | | |
Collapse
|
67
|
Sueca-Comes M, Rusu EC, Grabowska AM, Bates DO. Looking Under the Lamppost: The Search for New Cancer Targets in the Human Kinome. Pharmacol Rev 2022; 74:1136-1145. [PMID: 36180110 DOI: 10.1124/pharmrev.121.000410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 02/02/2022] [Accepted: 02/15/2022] [Indexed: 11/22/2022] Open
Abstract
The number of cancer drugs is increasing as new chemical entities are developed to target molecules, often protein kinases, driving cancer progression. In 2009, Fedorov et al. identified that of the protein kinases in the human kinome, most of the focus has been on a small subset. They highlighted that many poorly investigated protein kinases were cancer drivers, but there was no relationship between publications and involvement in cancer development or progression. Since 2009, there has been a doubling in the number of publications, patents, and drugs targeting the kinome. To determine whether this was an expansion in knowledge of well-studied targets-searching in the light under the lamppost-or an explosion of investigations into previously poorly investigated targets, we searched the literature for publications on each kinase, updating Federov et al.'s assessment of the druggable kinome. The proportion of papers focusing on the 50 most-studied kinases had not changed, and the makeup of those 50 had barely changed. The majority of new drugs (80%) were against the same group of 50 kinases identified as targets 10 years ago, and the proportion of studies investigating previously poorly investigated kinases (<1%) was unchanged. With three exceptions [p38 mitogenactivated protein kinase (p38a), AMP-activated protein kinase catalytic α-subunit 1,2, and B-Raf proto-oncogene (BRAF) serine/threonine kinase], >95% of publications addressing kinases still focused on a relatively small proportion (<50%) of the human kinome independently of their involvement as cancer drivers. There is, therefore, still extensive scope for discovery of therapeutics targeting different protein kinases in cancer and still a bias toward well-characterized targets over the innovative searchlight into the unknown. SIGNIFICANCE STATEMENT: This study presents evidence that drug discovery efforts in cancer are still to some extent focused on a narrow group of well-studied kinases 10 years after the identification of multiple novel cancer targets in the human kinome. This suggests that there is still room for researchers in academia, industry, and the not-for-profit sector to develop new and diverse therapies targeting kinases for cancer.
Collapse
Affiliation(s)
- Mireia Sueca-Comes
- Division of Cancer and Stem Cells, Centre for Cancer Sciences, Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom (M.S.-C., A.M.G., D.O.B.); Institute of Integrative Systems Biology (I2Sysbio), University of Valencia and Consejo Superior de Investigaciones Científicas, Valencia, Spain (E.C.R.); and SeqPlexing SL, Valencia, Spain (E.C.R.)
| | - Elena Cristina Rusu
- Division of Cancer and Stem Cells, Centre for Cancer Sciences, Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom (M.S.-C., A.M.G., D.O.B.); Institute of Integrative Systems Biology (I2Sysbio), University of Valencia and Consejo Superior de Investigaciones Científicas, Valencia, Spain (E.C.R.); and SeqPlexing SL, Valencia, Spain (E.C.R.)
| | - Anna M Grabowska
- Division of Cancer and Stem Cells, Centre for Cancer Sciences, Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom (M.S.-C., A.M.G., D.O.B.); Institute of Integrative Systems Biology (I2Sysbio), University of Valencia and Consejo Superior de Investigaciones Científicas, Valencia, Spain (E.C.R.); and SeqPlexing SL, Valencia, Spain (E.C.R.)
| | - David O Bates
- Division of Cancer and Stem Cells, Centre for Cancer Sciences, Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom (M.S.-C., A.M.G., D.O.B.); Institute of Integrative Systems Biology (I2Sysbio), University of Valencia and Consejo Superior de Investigaciones Científicas, Valencia, Spain (E.C.R.); and SeqPlexing SL, Valencia, Spain (E.C.R.)
| |
Collapse
|
68
|
Ngoi NYL, Westin SN, Yap TA. Targeting the DNA damage response beyond poly(ADP-ribose) polymerase inhibitors: novel agents and rational combinations. Curr Opin Oncol 2022; 34:559-569. [PMID: 35787597 PMCID: PMC9371461 DOI: 10.1097/cco.0000000000000867] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE OF REVIEW Poly(ADP-ribose) polymerase (PARP) inhibitors have transformed treatment paradigms in multiple cancer types defined by homologous recombination deficiency (HRD) and have become the archetypal example of synthetic lethal targeting within the DNA damage response (DDR). Despite this success, primary and acquired resistance to PARP inhibition inevitability threaten the efficacy and durability of response to these drugs. Beyond PARP inhibitors, recent advances in large-scale functional genomic screens have led to the identification of a steadily growing list of genetic dependencies across the DDR landscape. This has led to a wide array of novel synthetic lethal targets and corresponding inhibitors, which hold promise to widen the application of DDR inhibitors beyond HRD and potentially address PARP inhibitor resistance. RECENT FINDINGS In this review, we describe key synthetic lethal interactions that have been identified across the DDR landscape, summarize the early phase clinical development of the most promising DDR inhibitors, and highlight relevant combinations of DDR inhibitors with chemotherapy and other novel cancer therapies, which are anticipated to make an impact in rationally selected patient populations. SUMMARY The DDR landscape holds multiple opportunities for synthetic lethal targeting with multiple novel DDR inhibitors being evaluated on early phase clinical trials. Key challenges remain in optimizing the therapeutic window of ATR and WEE1 inhibitors as monotherapy and in combination approaches.
Collapse
Affiliation(s)
- Natalie Y L Ngoi
- Department of Investigational Cancer Therapeutics, Division of Cancer Medicine
| | - Shannon N Westin
- Department of Gynecologic Oncology and Reproductive Medicine, Division of Surgery
| | - Timothy A Yap
- Department of Investigational Cancer Therapeutics, Division of Cancer Medicine
- The Institute for Applied Cancer Science
- Khalifa Institute for Personalized Cancer Therapy, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
69
|
Oaknin A, Bosse TJ, Creutzberg CL, Giornelli G, Harter P, Joly F, Lorusso D, Marth C, Makker V, Mirza MR, Ledermann JA, Colombo N. Endometrial cancer: ESMO Clinical Practice Guideline for diagnosis, treatment and follow-up. Ann Oncol 2022; 33:860-877. [PMID: 35690222 DOI: 10.1016/j.annonc.2022.05.009] [Citation(s) in RCA: 214] [Impact Index Per Article: 107.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 04/27/2022] [Accepted: 05/19/2022] [Indexed: 12/24/2022] Open
Affiliation(s)
- A Oaknin
- Gynaecologic Cancer Programme, Vall d'Hebron Institute of Oncology (VHIO), Hospital Universitari Vall d'Hebron, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - T J Bosse
- Departments of Pathology, Leiden University Medical Center, Leiden, The Netherlands
| | - C L Creutzberg
- Radiation Oncology, Leiden University Medical Center, Leiden, The Netherlands
| | - G Giornelli
- Department of Oncology, Instituto Alexander Fleming, Buenos Aires, Argentina
| | - P Harter
- Department of Gynecology & Gynecologic Oncology, Ev. Kliniken Essen-Mitte, Essen, Germany
| | - F Joly
- ANTICIPE, Cancer and Cognition Platform, Normandie University, Caen, France; Medical Oncology Department, Centre François Baclesse, Caen, France
| | - D Lorusso
- Department of Life Science and Public Health, Catholic University of Sacred Heart, Largo Agostino Gemelli, Rome, Italy; Department of Women and Child Health, Division of Gynaecologic Oncology, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - C Marth
- Department of Obstetrics and Gynecology, Medical University Innsbruck, Innsbruck, Austria
| | - V Makker
- Gynecologic Medical Oncology Service, Memorial Sloan Kettering Cancer Center, New York, USA; Department of Medicine, Weill Cornell Medical College, New York, USA
| | - M R Mirza
- Department of Oncology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - J A Ledermann
- Cancer Institute, University College London (UCL), London, UK; Department of Oncology, UCL Hospitals, London, UK
| | - N Colombo
- Department of Gynecologic Oncology, Istituto Europeo di Oncologia IRCCS, Milan, Italy; Department of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy
| |
Collapse
|
70
|
Garg V, Jayaraj AS, Kumar L. Novel approaches for treatment of endometrial carcinoma. Curr Probl Cancer 2022; 46:100895. [PMID: 35986972 DOI: 10.1016/j.currproblcancer.2022.100895] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 07/26/2022] [Accepted: 07/26/2022] [Indexed: 11/03/2022]
Abstract
Endometrial cancer (EC) is common malignancy in women and its incidence is slowly on the rise. Accurate surgical staging, with aggressive cytoreduction when indicated, remains the most critical step in the treatment. Careful pathological evaluation and/or molecular risk stratification guides for proper systemic adjuvant radiotherapy ± chemotherapy. Recurrent and metastatic EC has dismal prognosis and palliative therapies (chemotherapy, hormonal therapy or radiation) forms the backbone of treatment. There is an unmet need of newer therapies to improve survival in such cases. A number of tyrosine kinase inhibitors are currently under evaluation. Recent data on therapeutic targeting of HER2 positive serous EC is exciting. Data on check point inhibitors particularly based on biomarker select population has raised hope for potentially effective treatment for women with high risk endometrial cancer .
Collapse
Affiliation(s)
- Vikas Garg
- Department of Medical Oncology and Gynaecology, All India Institute of Medical Sciences, New Delhi, India
| | - Aarthi S Jayaraj
- Department of Medical Oncology and Gynaecology, All India Institute of Medical Sciences, New Delhi, India
| | - Lalit Kumar
- Department of Medical Oncology and Gynaecology, All India Institute of Medical Sciences, New Delhi, India.
| |
Collapse
|
71
|
Wu CE, Chen CP, Huang WK, Pan YR, Aptullahoglu E, Yeh CN, Lunec J. p53 as a biomarker and potential target in gastrointestinal stromal tumors. Front Oncol 2022; 12:872202. [PMID: 35965531 PMCID: PMC9372431 DOI: 10.3389/fonc.2022.872202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 07/06/2022] [Indexed: 12/07/2022] Open
Abstract
KIT and PDGFRA play a major role in the oncogenic process in gastrointestinal stroma tumors (GIST) and small molecules have been employed with great success to target the KIT and PDGFRA pathways in this cancer. However, approximately 10% of patients with GIST are resistant to current targeted drug therapy. There is a need to explore other potential targets. Although p53 alterations frequently occur in most cancers, studies regarding p53 in GIST have been limited. The CDKN2A/MDM2/p53 axis regulates cell cycle progression and DNA damage responses, which in turn control tumor growth. This axis is the major event required for transformation from low- to high-risk GIST. Generally, p53 mutation is infrequent in GIST, but p53 overexpression has been reported to be associated with high-risk GIST and unfavorable prognosis, implying that p53 should play a critical role in GIST. Also, Wee1 regulates the cell cycle and the antitumor activity of Wee1 inhibition was reported to be p53 mutant dependent. In addition, Wee1 was reported to have potential activity in GIST through the regulation of KIT protein and this mechanism may be dependent on p53 status. In this article, we review previous reports regarding the role of p53 in GIST and propose targeting the p53 pathway as a novel additional treatment strategy for GIST.
Collapse
Affiliation(s)
- Chiao-En Wu
- Division of Hematology-Oncology, Department of Internal Medicine, Chang Gung Memorial Hospital at Linkou, Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Chiao-Ping Chen
- Division of Hematology-Oncology, Department of Internal Medicine, Chang Gung Memorial Hospital at Linkou, Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Wen-Kuan Huang
- Division of Hematology-Oncology, Department of Internal Medicine, Chang Gung Memorial Hospital at Linkou, Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Yi-Ru Pan
- Department of General Surgery and Liver Research Center, Chang Gung Memorial Hospital at Linkou, Chang Gung University, Taoyuan, Taiwan
| | - Erhan Aptullahoglu
- Department of Molecular Biology and Genetics, Bilecik Seyh Edebali University, Bilecik, Turkey
| | - Chun-Nan Yeh
- Department of General Surgery and Liver Research Center, Chang Gung Memorial Hospital at Linkou, Chang Gung University, Taoyuan, Taiwan
- *Correspondence: Chun-Nan Yeh, ; John Lunec,
| | - John Lunec
- Newcastle University Cancer Center, Bioscience Institute, Medical Faculty, Newcastle University, Newcastle upon Tyne, United Kingdom
- *Correspondence: Chun-Nan Yeh, ; John Lunec,
| |
Collapse
|
72
|
Swift BE, Gien LT. Incorporating Molecular Diagnostics into Treatment Paradigms for Endometrial Cancer. Curr Treat Options Oncol 2022; 23:1121-1134. [DOI: 10.1007/s11864-022-00993-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/16/2022] [Indexed: 12/27/2022]
|
73
|
DNA Damage Response Inhibitors in Cholangiocarcinoma: Current Progress and Perspectives. Cells 2022; 11:cells11091463. [PMID: 35563769 PMCID: PMC9101358 DOI: 10.3390/cells11091463] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 04/16/2022] [Accepted: 04/24/2022] [Indexed: 12/27/2022] Open
Abstract
Cholangiocarcinoma (CCA) is a poorly treatable type of cancer and its incidence is dramatically increasing. The lack of understanding of the biology of this tumor has slowed down the identification of novel targets and the development of effective treatments. Based on next generation sequencing profiling, alterations in DNA damage response (DDR)-related genes are paving the way for DDR-targeting strategies in CCA. Based on the notion of synthetic lethality, several DDR-inhibitors (DDRi) have been developed with the aim of accumulating enough DNA damage to induce cell death in tumor cells. Observing that DDRi alone could be insufficient for clinical use in CCA patients, the combination of DNA-damaging regimens with targeted approaches has started to be considered, as evidenced by many emerging clinical trials. Hence, novel therapeutic strategies combining DDRi with patient-specific targeted drugs could be the next level for treating cholangiocarcinoma.
Collapse
|
74
|
Markert T, Kolin DL, Konstantinopoulos PA. Uterine carcinosarcoma associated with a germline nibrin (NBN) mutation. Gynecol Oncol Rep 2022; 40:100979. [PMID: 35434237 PMCID: PMC9006248 DOI: 10.1016/j.gore.2022.100979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 03/30/2022] [Accepted: 04/01/2022] [Indexed: 11/18/2022] Open
Abstract
We report a patient with uterine carcinosarcoma associated with a germline NBN mutation. Tumor also exhibited a high tumor mutational burden (>10 mutations/Mb) Patient responded to platinum rechallenge, PARP inhibitor maintenance and immunotherapy. Patient remains in alive and with disease control for > 4 years after diagnosis.
We report a 62-year-old patient with uterine carcinosarcoma associated with a germline mutation in the NBN gene which is involved in the homologous recombination repair (HRR) pathway. This patient responded well to several different treatment strategies including platinum-based chemotherapy twice, PARP inhibitor therapy and immunotherapy, and is currently alive and with disease control, more than four years after diagnosis. This case is the first report of uterine carcinosarcoma associated with a germline mutation in NBN and highlights how specific genomic alterations may guide treatment decisions that may alter the natural history of an otherwise devastating disease.
Collapse
Affiliation(s)
| | | | - Panagiotis A. Konstantinopoulos
- DFCI, United States
- Corresponding author at: Director of Center of BRCA and Related Genes, Director of Translational Research, Division of Gynecologic Oncology, Dana-Farber Cancer Institute, Associate Professor of Medicine, Harvard Medical School, Yawkey Center for Cancer Care, YC-1424, 450 Brookline Ave, Boston, MA, 02215, United States.
| |
Collapse
|
75
|
Miyake K, Takano N, Kazama H, Kikuchi H, Hiramoto M, Tsukahara K, Miyazawa K. Ricolinostat enhances adavosertib‑induced mitotic catastrophe in TP53‑mutated head and neck squamous cell carcinoma cells. Int J Oncol 2022; 60:54. [PMID: 35348191 PMCID: PMC8997343 DOI: 10.3892/ijo.2022.5344] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 03/10/2022] [Indexed: 12/24/2022] Open
Abstract
TP53 mutation is one of the most frequent gene mutations in head and neck squamous cell carcinoma (HNSCC) and could be a potential therapeutic target. Recently, the WEE1 G2 checkpoint kinase (WEE1) inhibitor adavosertib (Adv) has attracted attention because of its selective cytotoxicity against TP53-mutated cells and has shown promising activity in early phase clinical trials. In the present study, it was demonstrated that combined treatment with Adv and a selective histone deacetylase 6 (HDAC6) inhibitor, ricolinostat (RCS), synergistically enhanced cell death induction in four out of five HNSCC cell lines with TP53 mutation (CAL27, SAS, HSC-3, and OSC-19), one HNSCC cell line with impaired TP53 function by HPV-infection (UPCI-SCC154), and TP53-knockout human lung cancer cell line (A549 TP53-KO), but not in TP53 wild-type A549 cells. Time-lapse imaging showed that RCS enhanced the Adv-induced mitotic catastrophe. Consistent with this, RCS treatment suppressed checkpoint kinase 1 (Chk1) (Ser345) phosphorylation and co-administration of RCS with Adv suppressed cyclin-dependent kinase 1 (Tyr15) phosphorylation along with increased expression of γ-H2A.X, a marker of DNA double-strand breaks in CAL27 cells. These data showed that RCS enhanced Adv-induced premature mitotic entry and cell death induction in the mitotic phase. However, although HDAC6 knockdown enhanced Adv-induced cell death with γ-H2A.X elevation, HDAC6 knockdown did not repress Chk1 phosphorylation in CAL27 cells. Our data demonstrated that the co-administration of RCS with Adv in HNSCC cells resulted in the suppression of Chk1 activity, leading to synergistically enhanced apoptosis via mitotic catastrophe in a p53-dependent manner. This enhanced cell death appeared to be partially mediated by the inhibition of HDAC6 activity by RCS.
Collapse
Affiliation(s)
- Keitaro Miyake
- Department of Otorhinolaryngology, Head and Neck Surgery, Tokyo Medical University Hospital, Shinjuku‑ku, Tokyo 160‑0023, Japan
| | - Naoharu Takano
- Department of Biochemistry, Tokyo Medical University, Shinjuku‑ku, Tokyo 160‑8402, Japan
| | - Hiromi Kazama
- Department of Biochemistry, Tokyo Medical University, Shinjuku‑ku, Tokyo 160‑8402, Japan
| | - Hiroyuki Kikuchi
- Department of Preventive Medicine and Public Health, Tokyo Medical University, Shinjuku‑ku, Tokyo 160‑8402, Japan
| | - Masaki Hiramoto
- Department of Biochemistry, Tokyo Medical University, Shinjuku‑ku, Tokyo 160‑8402, Japan
| | - Kiyoaki Tsukahara
- Department of Otorhinolaryngology, Head and Neck Surgery, Tokyo Medical University Hospital, Shinjuku‑ku, Tokyo 160‑0023, Japan
| | - Keisuke Miyazawa
- Department of Biochemistry, Tokyo Medical University, Shinjuku‑ku, Tokyo 160‑8402, Japan
| |
Collapse
|
76
|
Ponce RKM, Thomas NJ, Bui NQ, Kondo T, Okimoto RA. WEE1 kinase is a therapeutic vulnerability in CIC-DUX4 undifferentiated sarcoma. JCI Insight 2022; 7:152293. [PMID: 35315355 PMCID: PMC8986087 DOI: 10.1172/jci.insight.152293] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 02/09/2022] [Indexed: 01/08/2023] Open
Abstract
CIC-DUX4 rearrangements define an aggressive and chemotherapy-insensitive subset of undifferentiated sarcomas. The CIC-DUX4 fusion drives oncogenesis through direct transcriptional upregulation of cell cycle and DNA replication genes. Notably, CIC-DUX4–mediated CCNE1 upregulation compromises the G1/S transition to confer a dependence on the G2/M cell cycle checkpoint. Through an integrative transcriptional and kinase activity screen using patient-derived specimens, we now show that CIC-DUX4 sarcomas depend on the G2/M checkpoint regulator WEE1 as part of an adaptive survival mechanism. Specifically, CIC-DUX4 sarcomas depended on WEE1 activity to limit DNA damage and unscheduled mitotic entry. Consequently, genetic or pharmacologic WEE1 inhibition in vitro and in vivo led to rapid DNA damage–associated apoptotic induction of patient-derived CIC-DUX4 sarcomas. Thus, we identified WEE1 as a vulnerability targetable by therapeutic intervention in CIC-DUX4 sarcomas.
Collapse
Affiliation(s)
| | | | - Nam Q Bui
- Department of Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Tadashi Kondo
- Division of Rare Cancer Research, National Cancer Center Research Institute, Tokyo, Japan
| | - Ross A Okimoto
- Department of Medicine, UCSF, San Francisco, California, USA.,Helen Diller Family Comprehensive Cancer Center, UCSF, San Francisco, California, USA
| |
Collapse
|
77
|
Martorana F, Da Silva LA, Sessa C, Colombo I. Everything Comes with a Price: The Toxicity Profile of DNA-Damage Response Targeting Agents. Cancers (Basel) 2022; 14:cancers14040953. [PMID: 35205700 PMCID: PMC8870347 DOI: 10.3390/cancers14040953] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 02/10/2022] [Accepted: 02/11/2022] [Indexed: 01/27/2023] Open
Abstract
Simple Summary DNA damage induces genome instability, which may elicit cancer development. Defects in the DNA repair machinery further enhance cancer predisposition, but can also be exploited as a therapeutic target. Indeed, targeted agents against specific components of DNA repair, such as PARP inhibitors, are employed in various tumor types, while others, such as ATR, CHK1 or WEE1 inhibitors, are in clinical development. Even though these molecules have proven to be effective in different settings, they display several on- and off-target toxicities, shared by the whole pharmacological class or are drug specific. Among these effects, hematological and gastrointestinal toxicities are the most common, while others are less frequent but potentially life-threatening (e.g., myelodysplastic syndromes). Particular caution is needed in the case of combinatorial therapeutic approaches, which are currently being developed in clinical trials. In any case, it is necessary to recognize and properly manage adverse events of these drugs. This review provides a comprehensive overview on the safety profile of DDR-targeting agents, including indications for their management in clinical practice. Abstract Targeting the inherent vulnerability of cancer cells with an impaired DNA Damage Repair (DDR) machinery, Poly-ADP-Ribose-Polymerase (PARP) inhibitors have yielded significant results in several tumor types, eventually entering clinical practice for the treatment of ovarian, breast, pancreatic and prostate cancer. More recently, inhibitors of other key components of DNA repair, such as ATR, CHK1 and WEE1, have been developed and are currently under investigation in clinical trials. The inhibition of DDR inevitably induces on-target and off-target adverse events. Hematological and gastrointestinal toxicities as well as fatigue are common with all DDR-targeting agents, while other adverse events are drug specific, such as hypertension with niraparib and transaminase elevation with rucaparib. Cases of pneumonitis and secondary hematological malignancies have been reported with PARP inhibitors and, despite being overly rare, they deserve particular attention due to their severity. Safety also represents a crucial issue for the development of combination regimens incorporating DDR-targeting agents with other treatments, such as chemotherapy, anti-angiogenics or immunotherapy. As such, overlapping and cumulative toxicities should be considered, especially when more than two classes of drugs are combined. Here, we review the safety profile of DDR-targeting agents when used as single agents or in combination and we provide principles of toxicity management.
Collapse
Affiliation(s)
- Federica Martorana
- Department of Clinical and Experimental Medicine, University of Catania, 95123 Catania, Italy;
| | - Leandro Apolinario Da Silva
- Service of Medical Oncology, Oncology Institute of Southern Switzerland (IOSI), EOC, 6500 Bellinzona, Switzerland; (L.A.D.S.); (C.S.)
| | - Cristiana Sessa
- Service of Medical Oncology, Oncology Institute of Southern Switzerland (IOSI), EOC, 6500 Bellinzona, Switzerland; (L.A.D.S.); (C.S.)
| | - Ilaria Colombo
- Service of Medical Oncology, Oncology Institute of Southern Switzerland (IOSI), EOC, 6500 Bellinzona, Switzerland; (L.A.D.S.); (C.S.)
- Correspondence: ; Tel.: +41-91-811-8194
| |
Collapse
|
78
|
Choi W, Lee ES. Therapeutic Targeting of DNA Damage Response in Cancer. Int J Mol Sci 2022; 23:ijms23031701. [PMID: 35163621 PMCID: PMC8836062 DOI: 10.3390/ijms23031701] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 01/25/2022] [Accepted: 01/29/2022] [Indexed: 02/07/2023] Open
Abstract
DNA damage response (DDR) is critical to ensure genome stability, and defects in this signaling pathway are highly associated with carcinogenesis and tumor progression. Nevertheless, this also provides therapeutic opportunities, as cells with defective DDR signaling are directed to rely on compensatory survival pathways, and these vulnerabilities have been exploited for anticancer treatments. Following the impressive success of PARP inhibitors in the treatment of BRCA-mutated breast and ovarian cancers, extensive research has been conducted toward the development of pharmacologic inhibitors of the key components of the DDR signaling pathway. In this review, we discuss the key elements of the DDR pathway and how these molecular components may serve as anticancer treatment targets. We also summarize the recent promising developments in the field of DDR pathway inhibitors, focusing on novel agents beyond PARP inhibitors. Furthermore, we discuss biomarker studies to identify target patients expected to derive maximal clinical benefits as well as combination strategies with other classes of anticancer agents to synergize and optimize the clinical benefits.
Collapse
Affiliation(s)
- Wonyoung Choi
- Research Institute, National Cancer Center, Goyang 10408, Korea;
- Center for Clinical Trials, National Cancer Center, Goyang 10408, Korea
| | - Eun Sook Lee
- Research Institute, National Cancer Center, Goyang 10408, Korea;
- Center for Breast Cancer, National Cancer Center, Goyang 10408, Korea
- Correspondence: ; Tel.: +82-31-920-1633
| |
Collapse
|
79
|
Elbæk CR, Petrosius V, Benada J, Erichsen L, Damgaard RB, Sørensen CS. WEE1 kinase protects the stability of stalled DNA replication forks by limiting CDK2 activity. Cell Rep 2022; 38:110261. [PMID: 35045293 DOI: 10.1016/j.celrep.2021.110261] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 10/15/2021] [Accepted: 12/21/2021] [Indexed: 12/26/2022] Open
Abstract
Cellular feedback systems ensure genome maintenance during DNA replication. When replication forks stall, newly replicated DNA is protected by pathways that limit excessive DNA nuclease attacks. Here we show that WEE1 activity guards against nascent DNA degradation at stalled forks. Furthermore, we identify WEE1-dependent suppression of cyclin-dependent kinase 2 (CDK2) as a major activity counteracting fork degradation. We establish DNA2 as the nuclease responsible for excessive fork degradation in WEE1-inhibited cells. In addition, WEE1 appears to be unique among CDK activity suppressors in S phase because neither CHK1 nor p21 promote fork protection as WEE1 does. Our results identify a key role of WEE1 in protecting stalled forks, which is separate from its established role in safeguarding DNA replication initiation. Our findings highlight how WEE1 inhibition evokes massive genome challenges during DNA replication, and this knowledge may improve therapeutic strategies to specifically eradicate cancer cells that frequently harbor elevated DNA replication stress.
Collapse
Affiliation(s)
- Camilla Reiter Elbæk
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Ole Maaløesvej 5, Copenhagen N 2200, Denmark; Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, Kongens Lyngby 2800, Denmark
| | - Valdemaras Petrosius
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Ole Maaløesvej 5, Copenhagen N 2200, Denmark
| | - Jan Benada
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Ole Maaløesvej 5, Copenhagen N 2200, Denmark
| | - Louisa Erichsen
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Ole Maaløesvej 5, Copenhagen N 2200, Denmark
| | - Rune Busk Damgaard
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, Kongens Lyngby 2800, Denmark
| | - Claus Storgaard Sørensen
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Ole Maaløesvej 5, Copenhagen N 2200, Denmark.
| |
Collapse
|
80
|
Liu J, Peng Y, Wei W. Cell cycle on the crossroad of tumorigenesis and cancer therapy. Trends Cell Biol 2022; 32:30-44. [PMID: 34304958 PMCID: PMC8688170 DOI: 10.1016/j.tcb.2021.07.001] [Citation(s) in RCA: 181] [Impact Index Per Article: 90.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/28/2021] [Accepted: 07/01/2021] [Indexed: 01/03/2023]
Abstract
Aberrancy in cell cycle progression is one of the fundamental mechanisms underlying tumorigenesis, making regulators of the cell cycle machinery rational anticancer therapeutic targets. A growing body of evidence indicates that the cell cycle regulatory pathway integrates into other hallmarks of cancer, including metabolism remodeling and immune escape. Thus, therapies against cell cycle machinery components can not only repress the division of cancer cells, but also reverse cancer metabolism and restore cancer immune surveillance. Besides the ongoing effects on the development of small molecule inhibitors (SMIs) of the cell cycle machinery, proteolysis targeting chimeras (PROTACs) have recently been used to target these oncogenic proteins related to cell cycle progression. Here, we discuss the rationale of cell cycle targeting therapies, particularly PROTACs, to more efficiently retard tumorigenesis.
Collapse
Affiliation(s)
- Jing Liu
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Yunhua Peng
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Wenyi Wei
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA.
| |
Collapse
|
81
|
Corr B, Cosgrove C, Spinosa D, Guntupalli S. Endometrial cancer: molecular classification and future treatments. BMJ MEDICINE 2022; 1:e000152. [PMID: 36936577 PMCID: PMC9978763 DOI: 10.1136/bmjmed-2022-000152] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Accepted: 09/15/2022] [Indexed: 12/31/2022]
Abstract
The treatment for endometrial cancer is rapidly evolving with the development of molecular analysis and novel strategies. Surgical resection, cytotoxic chemotherapy, endocrine or hormonal treatment, and radiation have been the staples of treatment for decades. However, precision based approaches for tumours are rapidly becoming a part of these strategies. Biomarker driven treatments are now a part of primary and recurrent treatment algorithms. This review aims to describe the current state of molecular analysis and treatment for endometrial cancer as well as to elucidate potential approaches for the near future.
Collapse
|
82
|
Takahashi N, Hatakeyama K, Nagashima T, Ohshima K, Urakami K, Yamaguchi K, Hirashima Y. Activation of oxidative phosphorylation in TP53-inactive endometrial carcinomas with a poor prognosis. Int J Gynecol Cancer 2021; 31:1557-1563. [PMID: 34725206 DOI: 10.1136/ijgc-2021-002983] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 10/13/2021] [Indexed: 11/04/2022] Open
Abstract
OBJECTIVE We aimed to identify pathways for potential therapeutic targets by conducting molecular profiling of endometrial carcinomas in patients with poor prognosis. METHODS The classification of endometrial carcinomas has undergone a paradigm shift with the advent of next generation sequencing based molecular profiling. Although this emerging classification reflects poor prognosis in patients with endometrial carcinoma, knowledge of affected biological pathways is still lacking. In this study, 85 patients with endometrial carcinomas at the Shizuoka Cancer Center were evaluated from January 2014 to March 2019 and classified based on The Cancer Genome Atlas subgroups. The accumulation of germline and somatic mutations was determined using next generation sequencing. Gene expression profiling was used to determine the effect of TP53 inactivation on the recurrence of endometrial carcinoma. Additionally, the biological pathways associated with TP53 inactivation were estimated by pathway analysis based on gene expression. RESULTS Based on The Cancer Genome Atlas classification, the ratio of polymerase-epsilon to copy number-high subgroups and the frequency of PTEN and TP53 mutations differed in patients, and mutations of ARHGAP35 observed in normal endometrium were accumulated in the polymerase-epsilon and microsatellite instability subgroups. We revealed that copy number-high reflects TP53 inactivation in endometrial carcinomas, and that TP53-inactive tumors with or without TP53 mutations have poor prognosis. Furthermore, overexpression of aurora kinase A and activation of oxidative phosphorylation were found in TP53-inactivated endometrial carcinomas, suggesting that the PI3K/mTOR and autophagy pathways are potential drug targets. CONCLUSION Our analysis revealed a relationship between pathways involved in oxidative phosphorylation and poor prognosis and provides insight into potential drug targets.
Collapse
Affiliation(s)
- Nobutaka Takahashi
- Department of Gynecology, Shizuoka Cancer Center, Sunto-gun, Shizuoka, Japan
| | - Keiichi Hatakeyama
- Medical Genetics Division, Shizuoka Cancer Center Research Institute, Sunto-gun, Shizuoka, Japan
| | - Takeshi Nagashima
- Cancer Diagnostics Research Division, Shizuoka Cancer Center Research Institute, Sunto-gun, Shizuoka, Japan.,SRL Inc, Shinjuku-ku, Tokyo, Japan
| | - Keiichi Ohshima
- Medical Genetics Division, Shizuoka Cancer Center Research Institute, Sunto-gun, Shizuoka, Japan
| | - Kenichi Urakami
- Cancer Diagnostics Research Division, Shizuoka Cancer Center Research Institute, Sunto-gun, Shizuoka, Japan
| | | | - Yasuyuki Hirashima
- Department of Gynecology, Shizuoka Cancer Center, Sunto-gun, Shizuoka, Japan
| |
Collapse
|
83
|
Liu J, Oza AM, Colombo N, Oaknin A. ADAGIO: a phase IIb international study of the Wee1 inhibitor adavosertib in women with recurrent or persistent uterine serous carcinoma. Int J Gynecol Cancer 2021; 32:89-92. [PMID: 34716177 DOI: 10.1136/ijgc-2021-003144] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/13/2021] [Indexed: 11/04/2022] Open
Abstract
BACKGROUND Uterine serous carcinoma is a distinct histologic subtype of endometrial cancer with an aggressive phenotype, poor prognosis, and limited therapeutic options. A previous proof-of-concept phase II trial of the Wee1 inhibitor adavosertib in uterine serous carcinoma demonstrated evidence of durable clinical activity. PRIMARY OBJECTIVE To evaluate the efficacy of adavosertib in women with recurrent or persistent uterine serous carcinoma. STUDY HYPOTHESIS We hypothesize that adavosertib will demonstrate significant clinical activity, as measured by objective response rate, in women with recurrent or persistent uterine serous carcinoma. TRIAL DESIGN Eligible participants will receive adavosertib monotherapy until disease progression or unacceptable toxicity, starting at the recommended phase II dosing of adavosertib 300 mg daily days 1 through 5 and 8 through 12 of a 21-day cycle. Participants will have restaging studies every 6 weeks for the first 48 weeks and then every 9 weeks thereafter. MAJOR INCLUSION/EXCLUSION CRITERIA Patients with histologically confirmed recurrent or persistent uterine serous carcinoma, including endometrial carcinoma of mixed histology where the serous component comprises at least 10% of the tumor, and who have received at least one prior platinum-based chemotherapy regimen for the management of uterine serous carcinoma, are eligible for inclusion in the trial. Participants must have measurable disease by Response Evaluation Criteria in Solid Tumors (RECIST) 1.1 criteria. Participants with carcinosarcoma are not eligible. PRIMARY ENDPOINT The primary endpoint is the objective response rate by RECIST 1.1 criteria, as determined by blinded independent central review. SAMPLE SIZE Approximately 120 patients will be enrolled in this trial. ESTIMATED DATES FOR COMPLETING AND PRESENTING RESULTS Study completion and presentation of results are projected to be at the end of 2022. TRIAL REGISTRATION ClinicalTrials.gov: NCT04590248.
Collapse
Affiliation(s)
- Joyce Liu
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Amit M Oza
- Medical Oncology & Hematology, Princess Margaret Hospital Cancer Centre, Toronto, Ontario, Canada
| | - Nicoletta Colombo
- Medical Gynecologic Oncology Unit, University of Milan-Bicocca, Milano, Italy.,IEO European Institute of Oncology IRCCS, Milan, Italy
| | - Ana Oaknin
- Vall d'Hebron University Hospital, Barcelona, Catalunya, Spain
| |
Collapse
|
84
|
Development of New Cancer Treatment by Identifying and Focusing the Genetic Mutations or Altered Expression in Gynecologic Cancers. Genes (Basel) 2021; 12:genes12101593. [PMID: 34680987 PMCID: PMC8535522 DOI: 10.3390/genes12101593] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 10/05/2021] [Accepted: 10/07/2021] [Indexed: 12/29/2022] Open
Abstract
With the advent of next-generation sequencing (NGS), The Cancer Genome Atlas (TCGA) research network has given gynecologic cancers molecular classifications, which impacts clinical practice more and more. New cancer treatments that identify and target pathogenic abnormalities of genes have been in rapid development. The most prominent progress in gynecologic cancers is the clinical efficacy of poly(ADP-ribose) polymerase (PARP) inhibitors, which have shown breakthrough benefits in reducing hazard ratios (HRs) (HRs between 0.2 and 0.4) of progression or death from BRCA1/2 mutated ovarian cancer. Immune checkpoint inhibition is also promising in cancers that harbor mismatch repair deficiency (dMMR)/microsatellite instability (MSI). In this review, we focus on the druggable genetic alterations in gynecologic cancers by summarizing literature findings and completed and ongoing clinical trials.
Collapse
|
85
|
Cui Y, Zhang C, Ma S, Li Z, Wang W, Li Y, Ma Y, Fang J, Wang Y, Cao W, Guan F. RNA m6A demethylase FTO-mediated epigenetic up-regulation of LINC00022 promotes tumorigenesis in esophageal squamous cell carcinoma. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2021; 40:294. [PMID: 34544449 PMCID: PMC8451109 DOI: 10.1186/s13046-021-02096-1] [Citation(s) in RCA: 80] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 09/06/2021] [Indexed: 12/09/2022]
Abstract
Background Long non-coding RNA (LncRNA) controls cell proliferation and plays a significant role in the initiation and progression of esophageal squamous cell carcinoma (ESCC). N6-methyladenosine (m6A) modification now is recognized as a master driver of RNA function to maintain homeostasis in cancer cells. However, how m6A regulates LncRNA function and its role in tumorigenesis of ESCC remain unclear. Methods Multiple ESCC datasets were used to analyze gene expression in tumor tissues and normal tissues. Kaplan-Meier method and the ROC curve were conducted to evaluate the prognostic value and diagnostic value of LINC00022 in ESCC, respectively. Both gain-of-function and loss-of-function experiments were employed to investigate the effects of LINC00022 on ESCC growth in vitro and in vivo. Bioinformatics analysis, colorimetric m6A assay, RIP, MeRIP and co-IP was performed to explore the epigenetic mechanism of LINC00022 up-regulation in ESCC. Results Here we report that m6A demethylation of LncRNA LINC00022 by fat mass and obesity-associated protein (FTO) promotes tumor growth of ESCC in vivo. Clinically, we revealed that LINC00022 was up-regulated in primary ESCC samples and was predictive of poor clinical outcome for ESCC patients. Mechanistically, LINC00022 directly binds to p21 protein and promotes its ubiquitination-mediated degradation, thereby facilitating cell-cycle progression and proliferation. Further, the elevated FTO in ESCC decreased m6A methylation of LINC00022 transcript, leading to the inhibition of LINC00022 decay via the m6A reader YTHDF2. Over-expression of FTO was shown to drive LINC00022-dependent cell proliferation and tumor growth of ESCC. Conclusions Thus, this study demonstrated m6A-mediated epigenetic modification of LncRNA contributes to the tumorigenesis in ESCC and LINC00022, specific target of m6A, serves as a potential biomarker for this malignancy. Supplementary Information The online version contains supplementary material available at 10.1186/s13046-021-02096-1.
Collapse
Affiliation(s)
- Yuanbo Cui
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, China. .,Translational Medicine Center, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, 450007, China.
| | - Chunyan Zhang
- Department of Clinical Laboratory, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, 450007, China
| | - Shanshan Ma
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Zhe Li
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Wenjie Wang
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Ya Li
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Yingchao Ma
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Jiarui Fang
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Yaping Wang
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Wei Cao
- Translational Medicine Center, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, 450007, China. .,Henan Diagnostic Reagents of Tumor Pathology Research Center, Zhengzhou, 450007, China.
| | - Fangxia Guan
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, China.
| |
Collapse
|
86
|
Divulging the Critical Role of HuR in Pancreatic Cancer as a Therapeutic Target and a Means to Overcome Chemoresistance. Cancers (Basel) 2021; 13:cancers13184634. [PMID: 34572861 PMCID: PMC8471481 DOI: 10.3390/cancers13184634] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 09/10/2021] [Accepted: 09/14/2021] [Indexed: 12/21/2022] Open
Abstract
Simple Summary With pancreatic cancer incidence constantly rising, constituting one of the most lethal type of cancers worldwide, the need for discovering novel therapeutic targets and approaches becomes of the utmost importance. Meanwhile, modern eating habits, hyperadiposity, mutational burden affecting core signaling pathways and the unique tumor microenvironment of pancreatic cancer tissues intermingle and form a disease that is lethal and hard to treat. The importance of HuR in pancreatic cancer has repeatedly been observed and represents a key molecule in pancreatic carcinogenesis and chemoresistance. Therefore, creating and obtaining new therapeutic skills against HuR protein could prove to be the answer to pancreatic cancer therapy. Abstract Pancreatic cancer is set to become the most lethal and common type of cancer worldwide. This is partly attributed to the mutational burden that affects core signaling pathways and the crosstalk of tumor cells with their surrounding microenvironment, but it is also due to modern eating habits. Hyperadiposity along with the constant rise in metabolic syndrome’s incidence contribute to a state of metaflammation that impacts immune cells and causes them to shift towards an immunosuppressive phenotype that, ultimately, allows tumor cells to evade immune control. Unfortunately, among the conventional therapeutic modalities and the novel therapeutic agents introduced, pancreatic cancer still holds one of the lowest response rates to therapy. Human antigen R (HuR), an RNA binding protein (RBP), has been repeatedly found to be implicated in pancreatic carcinogenesis and chemotherapy resistance through the posttranscriptional binding and regulation of mRNA target genes. Additionally, its overexpression has been linked to adverse clinical outcomes, in terms of tumor grade, stage, lymph node status and metastasis. These properties suggest the prospective role that HuR’s therapeutic targeting can play in facilitating pancreatic neoplasia and could provide the means to overcome chemoresistance.
Collapse
|
87
|
Jamieson A, Bosse T, McAlpine JN. The emerging role of molecular pathology in directing the systemic treatment of endometrial cancer. Ther Adv Med Oncol 2021; 13:17588359211035959. [PMID: 34408794 PMCID: PMC8366203 DOI: 10.1177/17588359211035959] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 07/12/2021] [Indexed: 12/14/2022] Open
Abstract
Following the discovery of the four molecular subtypes of endometrial cancer (EC) by The Cancer Genome Atlas (TCGA) in 2013, subsequent studies used surrogate markers to develop and validate a clinically relevant EC classification tool to recapitulate TCGA subtypes. Molecular classification combines focused sequencing (POLE) and immunohistochemistry (mismatch repair and p53 proteins) to assign patients with EC to one of four molecular subtypes: POLEmut, MMRd, p53abn and NSMP (no specific molecular profile). Unlike histopathological evaluation, the molecular subtyping of EC offers an objective and reproducible classification system that has been shown to have prognostic value and therapeutic implications. It is an exciting time in EC care where we have moved beyond treatment based on histomorphology alone, and molecular classification will now finally allow assessment of treatment efficacy within biologically similar tumours. It is now recommended that molecular classification should be considered for all ECs, and should be performed routinely in all high grade tumours. It is also recommended to incorporate molecular classification into standard pathology reporting and treatment decision-making algorithms. In this review, we will discuss how the molecular classification of EC can be used to guide both conventional and targeted therapy in this new molecular era.
Collapse
Affiliation(s)
- Amy Jamieson
- Department of Gynaecology and Obstetrics, Division of Gynaecologic Oncology, University of British Columbia, Vancouver, BC, Canada
| | - Tjalling Bosse
- Department of Pathology, Leiden University, Leiden, The Netherlands
| | - Jessica N McAlpine
- Department of Gynaecology and Obstetrics, Division of Gynaecologic Oncology, University of British Columbia, 2775 Laurel St, Vancouver, BC V6L-1Z5, Canada
| |
Collapse
|
88
|
Ngoi NYL, Pham MM, Tan DSP, Yap TA. Targeting the replication stress response through synthetic lethal strategies in cancer medicine. Trends Cancer 2021; 7:930-957. [PMID: 34215565 DOI: 10.1016/j.trecan.2021.06.002] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/28/2021] [Accepted: 06/01/2021] [Indexed: 12/11/2022]
Abstract
The replication stress response (RSR) involves a downstream kinase cascade comprising ataxia telangiectasia-mutated (ATM), ATM and rad3-related (ATR), checkpoint kinases 1 and 2 (CHK1/2), and WEE1-like protein kinase (WEE1), which cooperate to arrest the cell cycle, protect stalled forks, and allow time for replication fork repair. In the presence of elevated replicative stress, cancers are increasingly dependent on RSR to maintain genomic integrity. An increasing number of drug candidates targeting key RSR nodes, as monotherapy through synthetic lethality, or through rational combinations with immune checkpoint inhibitors and targeted therapies, are demonstrating promising efficacy in early phase trials. RSR targeting is also showing potential in reversing PARP inhibitor resistance, an important area of unmet clinical need. In this review, we introduce the concept of targeting the RSR, detail the current landscape of monotherapy and combination strategies, and discuss emerging therapeutic approaches, such as targeting Polθ.
Collapse
Affiliation(s)
- Natalie Y L Ngoi
- Department of Haematology-Oncology, National University Cancer Institute, National University Health System, Singapore
| | - Melissa M Pham
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - David S P Tan
- Department of Haematology-Oncology, National University Cancer Institute, National University Health System, Singapore
| | - Timothy A Yap
- Department of Investigational Cancer Therapeutics (Phase I Clinical Trials Program), Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; Khalifa Institute for Personalized Cancer Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; The Institute for Applied Cancer Science, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
89
|
Lynch KN, Liu JF, Kesten N, Chow KH, Shetty A, He R, Afreen MF, Yuan L, Matulonis UA, Growdon WB, Muto MG, Horowitz NS, Feltmate CM, Worley MJ, Berkowitz RS, Crum CP, Rueda BR, Hill SJ. Enhanced Efficacy of Aurora Kinase Inhibitors in G2/M Checkpoint Deficient TP53 Mutant Uterine Carcinomas Is Linked to the Summation of LKB1-AKT-p53 Interactions. Cancers (Basel) 2021; 13:cancers13092195. [PMID: 34063609 PMCID: PMC8125555 DOI: 10.3390/cancers13092195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 04/27/2021] [Accepted: 04/30/2021] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Cancers arising from the lining of the uterus, endometrial cancers, are the most common gynecologic malignancy in the United States. Once endometrial cancer escapes the uterus and grows in distant locations, there are limited therapeutic options. The most aggressive and lethal endometrial cancers carry alterations in the protein p53, which is a critical guardian of many cellular functions. The role of these p53 alterations in endometrial cancer is not well understood. The goal of this work was to use p53 altered models of endometrial cancer to understand which, if any, therapeutically targetable vulnerabilities these p53 alterations may confer in endometrial cancer. Here we show that many of these p53 altered cells have problems with cell division which can be targeted with novel single and combination therapies. These discoveries may lead to relevant new therapies for difficult to treat advanced stage endometrial cancers. Abstract Uterine carcinoma (UC) is the most common gynecologic malignancy in the United States. TP53 mutant UCs cause a disproportionate number of deaths due to limited therapies for these tumors and the lack of mechanistic understanding of their fundamental vulnerabilities. Here we sought to understand the functional and therapeutic relevance of TP53 mutations in UC. We functionally profiled targetable TP53 dependent DNA damage repair and cell cycle control pathways in a panel of TP53 mutant UC cell lines and patient-derived organoids. There were no consistent defects in DNA damage repair pathways. Rather, most models demonstrated dependence on defective G2/M cell cycle checkpoints and subsequent upregulation of Aurora kinase-LKB1-p53-AKT signaling in the setting of baseline mitotic defects. This combination makes them sensitive to Aurora kinase inhibition. Resistant lines demonstrated an intact G2/M checkpoint, and combining Aurora kinase and WEE1 inhibitors, which then push these cells through mitosis with Aurora kinase inhibitor-induced spindle defects, led to apoptosis in these cases. Overall, this work presents Aurora kinase inhibitors alone or in combination with WEE1 inhibitors as relevant mechanism driven therapies for TP53 mutant UCs. Context specific functional assessment of the G2/M checkpoint may serve as a biomarker in identifying Aurora kinase inhibitor sensitive tumors.
Collapse
Affiliation(s)
- Katherine N. Lynch
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; (K.N.L.); (J.F.L.); (N.K.); (M.F.A.); (U.A.M.)
- Division of Molecular and Cellular Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Joyce F. Liu
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; (K.N.L.); (J.F.L.); (N.K.); (M.F.A.); (U.A.M.)
- Department of Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Nikolas Kesten
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; (K.N.L.); (J.F.L.); (N.K.); (M.F.A.); (U.A.M.)
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Kin-Hoe Chow
- Center for Patient Derived Models, Dana-Farber Cancer Institute, Boston, MA 02215, USA; (K.-H.C.); (A.S.)
| | - Aniket Shetty
- Center for Patient Derived Models, Dana-Farber Cancer Institute, Boston, MA 02215, USA; (K.-H.C.); (A.S.)
| | - Ruiyang He
- Department of Biochemistry, Cambridge University, Cambridge CB2 1QW, UK;
| | - Mosammat Faria Afreen
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; (K.N.L.); (J.F.L.); (N.K.); (M.F.A.); (U.A.M.)
- Division of Molecular and Cellular Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Liping Yuan
- Department of Pathology, Brigham and Women’s Hospital, Boston, MA 02115, USA; (L.Y.); (C.P.C.)
| | - Ursula A. Matulonis
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; (K.N.L.); (J.F.L.); (N.K.); (M.F.A.); (U.A.M.)
- Department of Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Whitfield B. Growdon
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Massachusetts General Hospital, Boston, MA 02114, USA; (W.B.G.); (B.R.R.)
- Vincent Center for Reproductive Biology, Department of Obstetrics and Gynecology, Massachusetts General Hospital, Boston, MA 02114, USA
- Obstetrics, Gynecology and Reproductive Biology, Harvard Medical School, Boston, MA 02115, USA; (M.G.M.); (N.S.H.); (C.M.F.); (M.J.W.J.); (R.S.B.)
| | - Michael G. Muto
- Obstetrics, Gynecology and Reproductive Biology, Harvard Medical School, Boston, MA 02115, USA; (M.G.M.); (N.S.H.); (C.M.F.); (M.J.W.J.); (R.S.B.)
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Neil S. Horowitz
- Obstetrics, Gynecology and Reproductive Biology, Harvard Medical School, Boston, MA 02115, USA; (M.G.M.); (N.S.H.); (C.M.F.); (M.J.W.J.); (R.S.B.)
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Colleen M. Feltmate
- Obstetrics, Gynecology and Reproductive Biology, Harvard Medical School, Boston, MA 02115, USA; (M.G.M.); (N.S.H.); (C.M.F.); (M.J.W.J.); (R.S.B.)
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Michael J. Worley
- Obstetrics, Gynecology and Reproductive Biology, Harvard Medical School, Boston, MA 02115, USA; (M.G.M.); (N.S.H.); (C.M.F.); (M.J.W.J.); (R.S.B.)
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Ross S. Berkowitz
- Obstetrics, Gynecology and Reproductive Biology, Harvard Medical School, Boston, MA 02115, USA; (M.G.M.); (N.S.H.); (C.M.F.); (M.J.W.J.); (R.S.B.)
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Christopher P. Crum
- Department of Pathology, Brigham and Women’s Hospital, Boston, MA 02115, USA; (L.Y.); (C.P.C.)
- Department of Pathology, Harvard Medical School, Boston, MA 02115, USA
| | - Bo R. Rueda
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Massachusetts General Hospital, Boston, MA 02114, USA; (W.B.G.); (B.R.R.)
- Vincent Center for Reproductive Biology, Department of Obstetrics and Gynecology, Massachusetts General Hospital, Boston, MA 02114, USA
- Obstetrics, Gynecology and Reproductive Biology, Harvard Medical School, Boston, MA 02115, USA; (M.G.M.); (N.S.H.); (C.M.F.); (M.J.W.J.); (R.S.B.)
| | - Sarah J. Hill
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; (K.N.L.); (J.F.L.); (N.K.); (M.F.A.); (U.A.M.)
- Division of Molecular and Cellular Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Department of Pathology, Brigham and Women’s Hospital, Boston, MA 02115, USA; (L.Y.); (C.P.C.)
- Department of Pathology, Harvard Medical School, Boston, MA 02115, USA
- Corresponding Author: Sarah J. Hill, Dana-Farber Cancer Institute, Smith 834, 450 Brookline Ave., Boston, MA 02215. Tel.: 617-272-5451; Fax: 617-582-8601; E-mail:
| |
Collapse
|