51
|
Dai L, Cao Y, Chen Y, Parsons C, Qin Z. Targeting xCT, a cystine-glutamate transporter induces apoptosis and tumor regression for KSHV/HIV-associated lymphoma. J Hematol Oncol 2014; 7:30. [PMID: 24708874 PMCID: PMC4234972 DOI: 10.1186/1756-8722-7-30] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Accepted: 03/30/2014] [Indexed: 12/16/2022] Open
Abstract
Kaposi’s sarcoma-associated herpesvirus (KSHV) is the etiological agent of primary effusion lymphoma (PEL), which represents a rapidly progressing malignancy arising in HIV-infected patients. Conventional chemotherapy for PEL treatment induces unwanted toxicity and is ineffective — PEL continues to portend nearly 100% mortality within a period of months, which requires novel therapeutic strategies. The amino acid transporter, xCT, is essential for the uptake of cystine required for intracellular glutathione (GSH) synthesis and for maintaining the intracellular redox balance. Inhibition of xCT induces growth arrest in a variety of cancer cells, although its role in virus-associated malignancies including PEL remains unclear. In the current study, we identify that xCT is expressed on the surface of patient-derived KSHV+ PEL cells, and targeting xCT induces caspase-dependent cell apoptosis. Further experiments demonstrate the underlying mechanisms including host and viral factors: reducing intracellular GSH while increasing reactive oxygen species (ROS), repressing cell-proliferation-related signaling, and inducing viral lytic genes. Using an immune-deficient xenograft model, we demonstrate that an xCT selective inhibitor, Sulfasalazine (SASP), prevents PEL tumor progression in vivo. Together, our data provide innovative and mechanistic insights into the role of xCT in PEL pathogenesis, and the framework for xCT-focused therapies for AIDS-related lymphoma in future.
Collapse
Affiliation(s)
| | | | | | | | - Zhiqiang Qin
- Research Center for Translational Medicine and Key Laboratory of Arrhythmias of the Ministry of Education of China, East Hospital, Tongji University School of Medicine, 150 Jimo Road, Shanghai 200120, China.
| |
Collapse
|
52
|
Kwee JK. A paradoxical chemoresistance and tumor suppressive role of antioxidant in solid cancer cells: a strange case of Dr. Jekyll and Mr. Hyde. BIOMED RESEARCH INTERNATIONAL 2014; 2014:209845. [PMID: 24800215 PMCID: PMC3996321 DOI: 10.1155/2014/209845] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Revised: 03/16/2014] [Accepted: 03/17/2014] [Indexed: 01/14/2023]
Abstract
Modulation of intracellular antioxidant concentration is a double-edged sword, with both sides exploited for potential therapeutic benefits. While antioxidants may hamper the efficacy of chemotherapy by scavenging reactive oxygen species and free radicals, it is also possible that antioxidants alleviate unwanted chemotherapy-induced toxicity, thus allowing for increased chemotherapy doses. Under normoxic environment, antioxidants neutralize toxic oxidants, such as reactive oxygen species (ROS), maintaining them within narrow boundaries level. This redox balance is achieved by various scavenging systems such as enzymatic system (e.g., superoxide dismutases, catalase, and peroxiredoxins), nonenzymatic systems (e.g., glutathione, cysteine, and thioredoxin), and metal-binding proteins (e.g., ferritin, metallothionein, and ceruloplasmin) that sequester prooxidant metals inhibiting their participation in redox reactions. On the other hand, therapeutic strategies that promote oxidative stress and eventually tumor cells apoptosis have been explored based on availability of chemotherapy agents that inhibit ROS-scavenging systems. These contradictory assertions suggest that antioxidant supplementation during chemotherapy treatment can have varied outcomes depending on the tumor cellular context. Therefore, understanding the antioxidant-driven molecular pathways might be crucial to design new therapeutic strategies to fight cancer progression.
Collapse
Affiliation(s)
- Jolie Kiemlian Kwee
- Coordenação de Pesquisa, Instituto Nacional de Câncer, Rua André Cavalcante 37, 20231-050, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
53
|
Quadri S, Stratford RE, Boué SM, Cole RB. Identification of glyceollin metabolites derived from conjugation with glutathione and glucuronic acid in male ZDSD rats by online liquid chromatography-electrospray ionization tandem mass spectrometry. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2014; 62:2692-700. [PMID: 24617284 PMCID: PMC3983382 DOI: 10.1021/jf403498f] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Revised: 02/08/2014] [Accepted: 02/18/2014] [Indexed: 05/24/2023]
Abstract
Glyceollin-related metabolites produced in rats following oral glyceollin administration were screened in plasma, feces, and urine, and these metabolites were identified by precursor and product ion scanning using liquid chromatography coupled online with electrospray ionization tandem mass spectrometry (LC-ESI-MS/MS). Precursor ion scanning in the negative ion (NI) mode was used to identify all glyceollin metabolites based on production of a diagnostic radical product ion (m/z 148) upon decomposition. Using this approach, precursor peaks of interest were found at m/z 474 and 531. Tandem mass spectra of these two peaks allowed us to characterize them as byproducts of glutathione conjugation. The peak at m/z 474 was identified as the deprotonated cysteinyl conjugate of glyceollins with an addition of an oxygen atom, whereas m/z 531 was identified as the deprotonated cysteinylglyceine glyceollin conjugate plus an oxygen. These results were confirmed by positive ion (PI) mode analyses. Mercapturic acid conjugates of glyceollins were also identified in NI mode. In addition, glucuronidation of glyceollins was observed, giving a peak at m/z 513 corresponding to the deprotonated conjugate. Production of glucuronic acid conjugates of glyceollins was confirmed in vitro in rat liver microsomes. Neither glutathione conjugation byproducts nor glucuronic acid conjugates of glyceollins have been previously reported.
Collapse
Affiliation(s)
- Syeda
S. Quadri
- Department
of Chemistry, University of New Orleans, 2000 Lakeshore Dr., New Orleans, Louisiana 70148, United States
| | - Robert E. Stratford
- College
of Pharmacy, Xavier University of Louisiana, 1 Drexel Dr., New Orleans, Louisiana 70125, United States
| | - Stephen M. Boué
- Southern Regional
Research Center, U.S.D.A., 1100 Robert
E. Lee Blvd. New Orleans, Louisiana 70124, United States
| | - Richard B. Cole
- Department
of Chemistry, University of New Orleans, 2000 Lakeshore Dr., New Orleans, Louisiana 70148, United States
- Institut
Parisien de Chimie Moléculaire (UMR 8232), Université Pierre et Marie Curie (Paris 6), 4 Place Jussieu, 75252 Paris, France
| |
Collapse
|
54
|
Castellani P, Balza E, Rubartelli A. Inflammation, DAMPs, tumor development, and progression: a vicious circle orchestrated by redox signaling. Antioxid Redox Signal 2014; 20:1086-97. [PMID: 23373831 DOI: 10.1089/ars.2012.5164] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
SIGNIFICANCE Increasing evidence indicates that cancer development and progression are promoted by the joint action of redox distress and inflammation, supporting the potential impact of therapies aimed at restoring the redox homeostasis and fighting inflammation. RECENT ADVANCES Most of the literature of the last 40 years converges to the view that continuous oxidative stress and chronic inflammation sustain each other, leads to transformation of a normal cell to a neoplastic cell, and promotes tumor progression. Some recent findings, however, support an alternative model whereby the increased production of reactive oxygen species (ROS) is an attempt to defend more than a pathogenetic factor in cancer. Rather, tumor development and progression may be promoted by an excess of antioxidants, induced in both transformed cells and recruited inflammatory cells as an adaptive response to ROS. CRITICAL ISSUES Although the link among redox stress, chronic inflammation, and cancer is widely recognized, the underlying mechanisms are far to be understood. The redox unbalance of the microenvironment is likely to modulate the bioactivity of damage-associated molecular pattern molecules such as HMGB1, which are released by stressed tissues and play pleiotropic functions on tumor and inflammatory cells, but how this occur, and the relevant consequences, are still unclear. FUTURE DIRECTIONS In vivo measurement of cell redox status is an important challenge for future investigations. The improvement of the methodologies for ROS and antioxidant detection will allow a better understanding of the redox-related events in the tumor microenvironment with tremendous application potential in the development of rational combination therapies for cancer treatment.
Collapse
|
55
|
Wurz GT, DeGregorio MW. Activating adaptive cellular mechanisms of resistance following sublethal cytotoxic chemotherapy: implications for diagnostic microdosing. Int J Cancer 2014; 136:1485-93. [PMID: 24510760 DOI: 10.1002/ijc.28773] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Accepted: 01/30/2014] [Indexed: 11/07/2022]
Abstract
As Phase 0 studies have proven to be reasonably predictive of therapeutic dose pharmacokinetics, the application of microdosing has expanded into metabolism, drug-drug interactions and now diagnostics. One potentially serious issue with this application of microdosing that has not been previously discussed is the possibility of activating cellular mechanisms of drug resistance. Here, we provide an overview of Phase 0 microdosing and drug resistance, with an emphasis on cisplatin resistance, followed by a discussion of the potential for inducing acquired resistance to platinum-based or other types of chemotherapy in cancer patients participating in Phase 0 diagnostic microdosing studies. A number of alternative approaches to diagnostic microdosing, such as the human tumor cloning assay and the use of peripheral blood mononuclear cells as a surrogate for measuring DNA adducts, are discussed that would avoid exposing cancer patients to low doses of first-line chemotherapy and the possible risk of triggering cellular mechanisms of acquired resistance. Until it has been established that diagnostic microdosing in cancer patients poses no risk of acquired drug resistance, such studies should be approached with caution.
Collapse
Affiliation(s)
- Gregory T Wurz
- Division of Hematology and Oncology Department of Internal Medicine, University of California, Davis, Sacramento, CA
| | | |
Collapse
|
56
|
Li J, Zhang D, Jefferson PA, Ward KM, Ayene IS. A bioactive probe for glutathione-dependent antioxidant capacity in breast cancer patients: implications in measuring biological effects of arsenic compounds. J Pharmacol Toxicol Methods 2013; 69:39-48. [PMID: 24149024 DOI: 10.1016/j.vascn.2013.10.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Revised: 10/08/2013] [Accepted: 10/10/2013] [Indexed: 01/17/2023]
Abstract
INTRODUCTION Glutathione, a major cellular non-protein thiol (NPSH), serves a central role in repairing damage induced by cancer drugs, pollutants and radiation and in the detoxification of several cancer chemotherapeutic drugs and toxins. Current methods measure glutathione levels only, which require cellular extraction, rather than the glutathione recycling dependent antioxidant activity in intact cells. Here, we present a novel method using a bioactive probe of the oxidative pentose phosphate cycle, termed the OxPhos™ test, to quantify glutathione recycling dependent antioxidant activity in whole blood and intact human and rodent cells without the need for the isolation and cytoplasm extraction of cells. METHODS OxPhos™ test kit (Rockland Immunochemicals, USA), which uses hydroxyethyldisulfide (HEDS) as a probe for the oxidative pentose phosphate cycle, was used in these studies. The results with OxPhos™ test kit in human blood and intact cells were compared with total thiol and high pressure liquid chromatography/electrochemical detection of HEDS metabolism. RESULTS The OxPhos™ test measured glutathione-dependent antioxidant activity both in intact human and rodent cells and breast cancer patient's blood with a better correlation coefficient and biological variability than the thiol assay. Additionally, human blood and mammalian cells treated with various arsenicals showed a concentration-dependent decrease in activity. DISCUSSION The results demonstrate the application of this test for measuring the antioxidant capacity of blood and the effects of environmental pollutants/toxins. It opens up new avenues for an easy and reliable assessment of glutathione-dependent antioxidant capacity in various diseases such as stroke, blood borne diseases, infection, cardiovascular disease and other oxidative stress related diseases and as a prognostic indicator of chemotherapy response and toxicity. The use of this approach in pharmacology/toxicology including screening drugs that improve the glutathione-dependent antioxidant capacity and not just the glutathione level is clinically relevant since mammalian cells require glutathione dependent pathways for antioxidant activity.
Collapse
Affiliation(s)
- Jie Li
- Lankenau Institute for Medical Research, 100 Lancaster Avenue, Wynnewood PA 19096 USA
| | - Donglan Zhang
- Lankenau Institute for Medical Research, 100 Lancaster Avenue, Wynnewood PA 19096 USA
| | - Pearl A Jefferson
- Lankenau Institute for Medical Research, 100 Lancaster Avenue, Wynnewood PA 19096 USA; Department of Biological Sciences, Drexel University, Philadelphia, PA 19104, USA
| | - Kathleen M Ward
- Lankenau Institute for Medical Research, 100 Lancaster Avenue, Wynnewood PA 19096 USA
| | - Iraimoudi S Ayene
- Lankenau Institute for Medical Research, 100 Lancaster Avenue, Wynnewood PA 19096 USA; Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA.
| |
Collapse
|
57
|
Shrivastava R, Yasir M, Tripathi M, Singh P. In silico interaction of methyl isocyanate with immune protein responsible for Mycobacterium tuberculosis infection using molecular docking. Toxicol Ind Health 2013; 32:162-7. [PMID: 24081639 DOI: 10.1177/0748233713498447] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
This article reports in silico analysis of methyl isocyanate (MIC) on different key immune proteins against Mycobacterium tuberculosis. The analysis shows that MIC is released in the Bhopal gas tragedy in 1984, which is highly toxic and extremely hazardous to human health. In this study, we have selected immune proteins to perform molecular docking with the help of Autodock 4.0. Results show that the CD40 ligand and alpha5beta1 integrin have higher inhibition compared to plasminogen activator urokinase, human glutathione synthetase, mitogen-activated protein kinase (P38 MAPK 14), surfactant protein-B, -D (SP-D), and pulmonary SP-D. MIC interacted with His-125, Try-146 residue of CD40 ligand and Ala-149, and Arg-152 residue of alpha5beta1 integrin and affects the proteins functioning by binding on their active sites. These inhibitory conformations were energetically and statistically favored and supported the evidence from wet laboratory experiments reported in the literature. We can conclude that MIC directly or indirectly affects these proteins, which shows that survivals of the disaster suffer from the diseases like tuberculosis infection and lung cancer.
Collapse
Affiliation(s)
- Rahul Shrivastava
- Department of Chemical Engineering and Biotechnology, Maulana Azad National Institute of Technology, Bhopal, Madhya Pradesh, India
| | - Mohammad Yasir
- Department of Chemical Engineering and Biotechnology, Maulana Azad National Institute of Technology, Bhopal, Madhya Pradesh, India
| | - Manish Tripathi
- Department of Chemical Engineering and Biotechnology, Maulana Azad National Institute of Technology, Bhopal, Madhya Pradesh, India
| | - Pushpendra Singh
- Department of Chemical Engineering and Biotechnology, Maulana Azad National Institute of Technology, Bhopal, Madhya Pradesh, India
| |
Collapse
|
58
|
Pussegoda K, Ross CJ, Visscher H, Yazdanpanah M, Brooks B, Rassekh SR, Zada YF, Dubé MP, Carleton BC, Hayden MR. Replication of TPMT and ABCC3 genetic variants highly associated with cisplatin-induced hearing loss in children. Clin Pharmacol Ther 2013; 94:243-51. [PMID: 23588304 PMCID: PMC4006820 DOI: 10.1038/clpt.2013.80] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Accepted: 04/04/2013] [Indexed: 01/12/2023]
Abstract
Cisplatin is a widely used chemotherapeutic agent for the treatment of solid tumors. A serious complication of cisplatin treatment is permanent hearing loss. The aim of this study was to replicate previous genetic findings in an independent cohort of 155 pediatric patients. Associations were replicated for genetic variants in TPMT (rs12201199, P = 0.0013, odds ratio (OR) 6.1) and ABCC3 (rs1051640, P = 0.036, OR 1.8). A predictive model combining variants in TPMT, ABCC3, and COMT with clinical variables (patient age, vincristine treatment, germ-cell tumor, and cranial irradiation) significantly improved the prediction of hearing-loss development as compared with using clinical risk factors alone (area under the curve (AUC) 0.786 vs. 0.708, P = 0.00048). The novel combination of genetic and clinical factors predicted the risk of hearing loss with a sensitivity of 50.3% and a specificity of 92.7%. These findings provide evidence to support the importance of TPMT, COMT, and ABCC3 in the prediction of cisplatin-induced hearing loss in children.
Collapse
Affiliation(s)
- K Pussegoda
- Department of Medical Genetics, Centre for Molecular Medicine and Therapeutics, University of British Columbia, Vancouver, British Columbia, Canada
- Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - CJ Ross
- Department of Medical Genetics, Centre for Molecular Medicine and Therapeutics, University of British Columbia, Vancouver, British Columbia, Canada
- Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
- Division of Translational Therapeutics, Department of Pediatrics, University of British Columbia, Vancouver, British Columbia, Canada
| | - H Visscher
- Department of Medical Genetics, Centre for Molecular Medicine and Therapeutics, University of British Columbia, Vancouver, British Columbia, Canada
- Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - M Yazdanpanah
- Department of Medical Genetics, Centre for Molecular Medicine and Therapeutics, University of British Columbia, Vancouver, British Columbia, Canada
- Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
- British Columbia Clinical Genomics Network, University of British Columbia, Vancouver, British Columbia, Canada
| | - B Brooks
- Department of Audiology and Speech Pathology, British Columbia Children’s Hospital, Vancouver, British Columbia, Canada
| | - SR Rassekh
- Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
- Division of Pediatric Hematology/Oncology/Bone Marrow Transplant, Department of Pediatrics, British Columbia Children’s Hospital, Vancouver, British Columbia, Canada
| | - YF Zada
- Montreal Heart Institute Research Centre and Université de Montreal, Montreal, Quebec, Canada
| | - M-P Dubé
- Montreal Heart Institute Research Centre and Université de Montreal, Montreal, Quebec, Canada
| | - BC Carleton
- Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
- Division of Translational Therapeutics, Department of Pediatrics, University of British Columbia, Vancouver, British Columbia, Canada
- Pharmaceutical Outcomes Programme, British Columbia Children’s Hospital, Vancouver, British Columbia, Canada
| | - MR Hayden
- Department of Medical Genetics, Centre for Molecular Medicine and Therapeutics, University of British Columbia, Vancouver, British Columbia, Canada
- Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | | |
Collapse
|
59
|
Prousky J. The treatment of pulmonary diseases and respiratory-related conditions with inhaled (nebulized or aerosolized) glutathione. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2013; 5:27-35. [PMID: 18317545 PMCID: PMC2249747 DOI: 10.1093/ecam/nem040] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2006] [Accepted: 02/13/2007] [Indexed: 11/14/2022]
Abstract
Reduced glutathione or simply glutathione (γ-glutamylcysteinylglycine; GSH) is found in the cytosol of most cells of the body. GSH in the epithelial lining fluid (ELF) of the lower respiratory tract is thought to be the first line of defense against oxidative stress. Inhalation (nebulized or aerosolized) is the only known method that increases GSH's levels in the ELF. A review of the literature was conducted to examine the clinical effectiveness of inhaled GSH as a treatment for various pulmonary diseases and respiratory-related conditions. This report also discusses clinical and theoretical indications for GSH inhalation, potential concerns with this treatment, its presumed mechanisms of action, optimal doses to be administered and other important details. Reasons for inhaled GSH's effectiveness include its role as a potent antioxidant, and possibly improved oxygenation and host defenses. Theoretical uses of this treatment include Farmer's lung, pre- and postexercise, multiple chemical sensitivity disorder and cigarette smoking. GSH inhalation should not be used as a treatment for primary lung cancer. Testing for sulfites in the urine is recommended prior to GSH inhalation. Minor side effects such as transient coughing and an unpleasant odor are common with this treatment. Major side effects such as bronchoconstriction have only occurred among asthma patients presumed to be sulfite-sensitive. The potential applications of inhaled GSH are numerous when one considers just how many pulmonary diseases and respiratory-related conditions are affected by deficient antioxidant status or an over production of oxidants, poor oxygenation and/or impaired host defenses. More studies are clearly warranted.
Collapse
Affiliation(s)
- Jonathan Prousky
- The Canadian College of Naturopathic Medicine, 1255 Sheppard Avenue East, Toronto, ON M2K 1E2, Canada and International Primary Health Care, The External Program, University of London, London, UK
| |
Collapse
|
60
|
Role of conventional chemosensitivity test and tissue biomarker expression in predicting response to treatment of peritoneal carcinomatosis from colon cancer. Clin Colorectal Cancer 2013; 12:122-7. [PMID: 23332421 DOI: 10.1016/j.clcc.2012.11.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Revised: 10/02/2012] [Accepted: 11/26/2012] [Indexed: 01/28/2023]
Abstract
UNLABELLED Peritoneal carcinomatosis (PC) is observed in approximately 10% of patients with colorectal cancer at the time of primary cancer resection. Most of these patients receive 5-fluorouracil (5-FU)- or oxaliplatin-containing chemotherapy regimens as first-, second-, or third-line treatment. In the present study, sensitivity and resistance to drugs used to treat PC were better defined by a conventional chemosensitivity test than by biomarker expression. BACKGROUND 5-Fluorouracil- or oxaliplatin-based regimens are the treatments of choice in patients with PC from colon cancer. There are currently no useful preclinical evaluations to guide the decision-making process for tailored therapy. The aim of the present study was to compare the advantages and limits of a conventional in vitro chemosensitivity test with those of a panel of biomolecular markers in predicting clinical response to different drugs used to treat colon cancer-derived PC. PATIENTS AND METHODS Fresh surgical biopsy specimens were obtained from 28 patients with peritoneal carcinomatosis from colon cancer. TS, TP, DPD, MDR1, MRP-1, MGMT, BRCA1, ERCC1, GSTP1, and XPD gene expression levels were determined by real-time reverse transcription polymerase chain reaction. An in vitro chemosensitivity test was used to define a sensitivity or resistance profile to the drugs used to treat each patient. RESULTS Expression levels of the genes analyzed were generally poorly related to each other. TS and ERCC1 expression was inversely related to response to 5-FU-and/or oxaliplatin-containing regimens. Significant predictivity in terms of sensitivity but poor predictivity of resistance (56.2%) (P=.037) were observed for ERCC1 expression (90%), and high predictivity of resistance (100%) but very low predictivity of sensitivity (40%) (P=.014) were registered for TS. The best overall and significant predictivity was observed for chemosensitivity test results (62.5% sensitivity and 89% resistance; P=.005). CONCLUSIONS Sensitivity and resistance to drugs used in vivo was better defined by the chemosensitivity test than by biomarker expression.
Collapse
|
61
|
|
62
|
Li J, Ward KM, Zhang D, Dayanandam E, Denittis AS, Prendergast GC, Ayene IS. A bioactive probe of the oxidative pentose phosphate cycle: novel strategy to reverse radioresistance in glucose deprived human colon cancer cells. Toxicol In Vitro 2012; 27:367-77. [PMID: 22926048 DOI: 10.1016/j.tiv.2012.08.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2012] [Revised: 08/04/2012] [Accepted: 08/07/2012] [Indexed: 11/25/2022]
Abstract
The specific effects of glucose deprivation on oxidative pentose phosphate cycle (OPPC) function, thiol homeostasis, protein function and cell survival remain unclear due to lack of a glucose-sensitive chemical probe. Using p53 wild type and mutant human colon cells, we determined the effects of hydroxyethyl disulfide (HEDS) on NADPH, GSH, GSSG, total glutathione, total non-protein and protein thiol levels, the function of the DNA repair protein Ku, and the susceptibility to radiation-induced free radicals under normal glucose or glucose-deprived conditions. HEDS is rapidly detoxified in normal glucose but triggered a p53-independent metabolic stress in glucose depleted state that caused loss of NADPH, protein and non-protein thiol homeostasis and Ku function, and enhanced sensitivity of both p53 wild type and mutant cells to radiation induced oxidative stress. Additionally, high concentration of HEDS alone induced cell death in p53 wild type cells without significant effect on p53 mutant cells. HEDS offers a useful tool to gain insights into how glucose metabolism affects OPPC dependent stress-induced cellular functions and injury, including in tumor cells, where our findings imply a novel therapeutic approach to target glucose deprived tumor. Our work introduces a novel probe to address cancer metabolism and ischemic pathology.
Collapse
Affiliation(s)
- Jie Li
- Lankenau Institute for Medical Research, 100 Lancaster Avenue, Wynnewood, PA 19096, USA
| | | | | | | | | | | | | |
Collapse
|
63
|
Nichenametla SN, Muscat JE, Liao JG, Lazarus P, Richie JP. A functional trinucleotide repeat polymorphism in the 5'-untranslated region of the glutathione biosynthetic gene GCLC is associated with increased risk for lung and aerodigestive tract cancers. Mol Carcinog 2012; 52:791-9. [PMID: 22610501 DOI: 10.1002/mc.21923] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2011] [Revised: 02/22/2012] [Accepted: 04/19/2012] [Indexed: 02/01/2023]
Abstract
Glutathione (GSH), the major intracellular antioxidant, protects against cancer development by detoxifying carcinogens and free radicals and strengthening the immune system. Recently, a GAG-trinucleotide repeat polymorphism in the 5'-untranslated region of the gene for the rate-limiting enzyme for GSH biosynthesis, γ-glutamine cysteine ligase (GCL), was shown to be associated with lowered GCL activity and GSH levels in vitro and in vivo. We tested the hypothesis that this functional polymorphism in GCL is associated with the risk for lung and aerodigestive tract cancers. To this end, we conducted a case-control study that included 375 lung cancer cases, 200 aerodigestive tract cancer cases, and 537 controls. GAG repeat genotype (4, 7, 8, 9, and 10 repeat alleles) was determined by capillary electrophoresis of PCR products from the repeat region of the GCL catalytic subunit (GCLC). Odds ratios (OR) were calculated by logistic regression and adjusted for risk factors, including age, sex, body mass index, and smoking history. The GAG-7/7 genotype was associated with a 1.9-fold increased risk of lung cancer and 2.6-fold increased risk of aerodigestive tract cancer compared to the wild-type GAG-9/9 (P < 0.05). Similarly, the GAG-7 allele was associated with an increased risk of lung cancer (OR = 1.5, P = 0.01) and aerodigestive tract cancer (OR = 2.3, P < 0.001) compared to subjects without GAG-7 allele. These findings suggest that GSH synthesis affects the risk of lung and aerodigestive tract cancers, and further implicates a role for oxidative stress in the development of these cancers.
Collapse
Affiliation(s)
- Sailendra N Nichenametla
- Department of Public Health Sciences, Penn State Hershey Cancer Institute, Penn State University College of Medicine, Hershey, Pennsylvania
| | | | | | | | | |
Collapse
|
64
|
Li Y, Sun Z, Cunningham JM, Aubry MC, Wampfler JA, Croghan GA, Johnson C, Wu D, Aakre JA, Molina J, Wang L, Pankratz VS, Yang P. Genetic variations in multiple drug action pathways and survival in advanced stage non-small cell lung cancer treated with chemotherapy. Clin Cancer Res 2011; 17:3830-40. [PMID: 21636554 DOI: 10.1158/1078-0432.ccr-10-2877] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
PURPOSE Variations in genes related to biological activity of anticancer drugs could influence treatment responses and lung cancer prognosis. Genetic variants in four biological pathways, that is, glutathione metabolism, DNA repair, cell cycle, and epidermal growth factor receptor (EGFR), were systematically investigated to examine their association with survival in advanced stage non-small cell lung cancer (NSCLC) treated with chemotherapy. EXPERIMENTAL DESIGN A total of 894 tagging single-nucleotide polymorphisms (SNP) in 70 genes from the four pathways were genotyped and analyzed in a 1,076-patient cohort. Association with overall survival was analyzed at SNP and whole-gene levels within all patients and major chemotherapy agent combination groups. RESULTS A poorer overall survival was observed in patients with genetic variations in GSS (glutathione pathway) and MAP3K1 (EGFR pathway; HR = 1.45; 95% CI = 1.20-1.77 and HR = 1.25; 95% CI = 1.05-1.50, respectively). In the stratified analysis on patients receiving platinum plus taxane treatment, we observed a hazardous effect on overall survival by the MAP3K1 variant (HR = 1.38; 95% CI = 1.11-1.72) and a protective effect by RAF1 (HR = 0.64; 95% CI = 0.50-0.82) in the EGFR pathway. In patients receiving platinum plus gemcitabine treatment, RAF1 and GPX5 (glutathione pathway) genetic variations showed protective effects on survival (HR = 0.54; 95% CI = 0.38-0.77; HR = 0.67; 95% CI = 0.52-0.85, respectively); in contrast, NRAS (EGFR pathway) and GPX7 (glutathione pathway) variations showed hazardous effects on overall survival (HR = 1.91; 95% CI = 1.30-2.80; HR = 1.83; 95% CI = 1.27-2.63, respectively). All genes that harbored these significant SNPs remained significant by whole-gene analysis. CONCLUSION Common genetic variations in genes of EGFR and glutathione pathways may be associated with overall survival among patients with advanced stage NSCLC treated with platinum, taxane, and/or gemicitabine combinations.
Collapse
Affiliation(s)
- Yafei Li
- Department of Health Sciences Research, Rochester, Minnesota, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
65
|
Morgan B, Sobotta MC, Dick TP. Measuring E(GSH) and H2O2 with roGFP2-based redox probes. Free Radic Biol Med 2011; 51:1943-51. [PMID: 21964034 DOI: 10.1016/j.freeradbiomed.2011.08.035] [Citation(s) in RCA: 214] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2011] [Revised: 08/29/2011] [Accepted: 08/31/2011] [Indexed: 12/13/2022]
Abstract
Redox biochemistry plays an important role in a wide range of cellular events. However, investigation of cellular redox processes is complicated by the large number of cellular redox couples, which are often not in equilibrium with one another and can vary significantly between subcellular compartments and cell types. Further, it is becoming increasingly clear that different redox systems convey different biological information; thus it makes little sense to talk of an overall "cellular redox state". To gain a more differentiated understanding of cellular redox biology, quantitative, redox couple-specific, in vivo measurements are necessary. Unfortunately our ability to investigate specific redox couples or redox-reactive molecules with the necessary degree of spatiotemporal resolution is very limited. The development of genetically encoded redox biosensors offers a promising new way to investigate redox biology. Recently developed redox-sensitive green fluorescent proteins (roGFPs), genetically fused to redox-active proteins, allow rapid equilibration of the roGFP moiety with a specific redox couple. Two probes based on this principle are now available: Grx1-roGFP2 for the measurement of glutathione redox potential (E(GSH)) and roGFP2-Orp1 for measuring changes in H(2)O(2) concentration. Here we provide a detailed protocol for the use of these probes in both yeast and mammalian systems using either plate-reader- or microscopy-based measurements.
Collapse
Affiliation(s)
- Bruce Morgan
- Division of Redox Regulation, DKFZ–ZMBH Alliance, German Cancer Research Center, Heidelberg, Germany
| | | | | |
Collapse
|
66
|
Venè R, Castellani P, Delfino L, Lucibello M, Ciriolo MR, Rubartelli A. The cystine/cysteine cycle and GSH are independent and crucial antioxidant systems in malignant melanoma cells and represent druggable targets. Antioxid Redox Signal 2011; 15:2439-53. [PMID: 21529243 DOI: 10.1089/ars.2010.3830] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
AIMS Cancer chemoresistance is often due to upregulation of antioxidant systems. Therapeutic targeting of these systems is however hampered by their redundancy. Here, we have performed a functional dissection of the antioxidant systems in different melanoma cases aimed at the identification of the most effective redox active drug. RESULTS We have identified two crucial antioxidant mechanisms: glutathione (GSH), the major intracellular redox buffer, and the cystine/cysteine cycle, which switches the extracellular redox state from an oxidized to a reduced state. The two mechanisms are independent in melanoma cells and may be substitutes for each other, but targeting both of them is lethal. Exposure to the pro-oxidant compound As(2)O(3) induces an antioxidant response. However, while in these cells the intracellular redox balance remains almost unaffected, a reduced environment is generated extracellularly. GSH depletion by buthioninesulfoximine (BSO), or cystine/cysteine cycle inhibition by (S)-4-carboxyphenylglycine (sCPG), enhanced the sensitivity to As(2)O(3). Remarkably, sCPG also prevented the remodeling of the microenvironment redox state. INNOVATION We propose that the definition of the prevalent antioxidant system(s) in tumors is crucial for the design of tailored therapies involving redox-directed drugs in association with pro-oxidant drugs. CONCLUSION In melanoma cells, BSO is the best enhancer of As(2)O(3) sensitivity. However, since the strong remodeling of the microenvironmental redox state caused by As(2)O(3) may promote tumor progression, the concomitant use of cystine/cysteine cycle blockers is recommended.
Collapse
Affiliation(s)
- Roberta Venè
- Cell Biology Unit, National Cancer Research Institute, Genova, Italy
| | | | | | | | | | | |
Collapse
|
67
|
de Andrade M, Li Y, Marks RS, Deschamps C, Scanlon PD, Olswold CL, Jiang R, Swensen SJ, Sun Z, Cunningham JM, Wampfler JA, Limper AH, Midthun DE, Yang P. Genetic variants associated with the risk of chronic obstructive pulmonary disease with and without lung cancer. Cancer Prev Res (Phila) 2011; 5:365-73. [PMID: 22044695 DOI: 10.1158/1940-6207.capr-11-0243] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Chronic obstructive pulmonary disease (COPD) is a strong risk factor for lung cancer. Published studies about variations of genes encoding glutathione metabolism, DNA repair, and inflammatory response pathways in susceptibility to COPD were inconclusive. We evaluated 470 single-nucleotide polymorphisms (SNP) from 56 genes of these three pathways in 620 cases and 893 controls to identify susceptibility markers for COPD risk, using existing resources. We assessed SNP- and gene-level effects adjusting for sex, age, and smoking status. Differential genetic effects on disease risk with and without lung cancer were also assessed; cumulative risk models were established. Twenty-one SNPs were found to be significantly associated with risk of COPD (P < 0.01); gene-based analyses confirmed two genes (GCLC and GSS) and identified three additional genes (GSTO2, ERCC1, and RRM1). Carrying 12 high-risk alleles may increase risk by 2.7-fold; eight SNPs altered COPD risk without lung cancer by 3.1-fold and 4 SNPs altered the risk with lung cancer by 2.3-fold. Our findings indicate that multiple genetic variations in the three selected pathways contribute to COPD risk through GCLC, GSS, GSTO2, ERCC1, and RRM1 genes. Functional studies are needed to elucidate the mechanisms of these genes in the development of COPD, lung cancer, or both.
Collapse
|
68
|
Phan VH, Tan C, Rittau A, Xu H, McLachlan AJ, Clarke SJ. An update on ethnic differences in drug metabolism and toxicity from anti-cancer drugs. Expert Opin Drug Metab Toxicol 2011; 7:1395-410. [PMID: 21950349 DOI: 10.1517/17425255.2011.624513] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
INTRODUCTION Based on recent emerging evidence of inter-ethnic differences in drug response and toxicity, ethnic diversity in pharmacokinetics, pharmacogenomics and clinical outcomes are being increasingly investigated. Ultimately, this will promote improved understanding of inter-individual differences in the pharmacokinetics and tolerance of cytotoxic drugs. AREAS COVERED This article reviews potential explanations for the observed ethnic differences in treatment outcomes and provides clinical data to support this concept. A literature search was implemented on PubMed and PharmGKB to investigate the areas of ethnic differences in pharmacogenomics, pharmacogenetics and clinical outcomes of cancer therapies. EXPERT OPINION There has been a relative paucity of clinical evidence linking genetic polymorphisms of genes encoding drug-metabolizing enzymes to the pharmacokinetics, pharmacodynamics and tolerance of anti-cancer drugs. Future research should focus on studies using large sample sizes, in the hope that they will provide results of high clinical significance. Due to the potential for ethnic differences to impact on both toxicities and benefits of systemic cancer therapies, the development of new therapeutic agents should include patients from diverse geographical ancestries in each phase of drug development.
Collapse
Affiliation(s)
- Viet Hong Phan
- The University of Sydney, Concord Repatriation General Hospital, Sydney Cancer Centre, Concord, NSW, Sydney, Australia
| | | | | | | | | | | |
Collapse
|
69
|
Pankratz VS, Sun Z, Aakre J, Li Y, Johnson C, Garces YI, Aubry MC, Molina JR, Wigle DA, Yang P. Systematic evaluation of genetic variants in three biological pathways on patient survival in low-stage non-small cell lung cancer. J Thorac Oncol 2011; 6:1488-95. [PMID: 21792076 PMCID: PMC3158278 DOI: 10.1097/jto.0b013e318223bf05] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
INTRODUCTION Studies from selected candidate genes suggest that single-nucleotide polymorphisms (SNPs) involved in glutathione metabolism, DNA repair, or inflammatory responses may affect overall survival (OS) in stages I to II or low-stage non-small cell lung cancer (LS-NSCLC); however, results are inconclusive. In this study, we took a systematic pathway-based approach to simultaneously evaluate the impact of genetic variation from these three pathways on OS after LS-NSCLC diagnosis. METHODS DNA from 647 patients with LS-NSCLC was genotyped for 480 SNPs (tag-SNPs) tagging 57 genes from the three candidate pathways. Associations of tag-SNPs with OS were assessed at the individual SNP and whole gene levels, adjusting for age, tumor stage, surgery type, and adjuvant therapy. The genotype combinations of the SNPs associated with OS were also estimated. RESULTS Among the 412 tag-SNPs that were successfully genotyped and passed quality assessments, 28 showed association with OS (p < 0.05). Two of the 28 were estimated to have less than a 20% chance of being false positives (rs3768490 in GSTM5: p = 1.32 × 10, q = 0.06; rs1729786 in ABCC4: p = 9.25 × 10, q = 0.20). Gene-based analysis suggested that in addition to GSTM5 and ABCC4, variation in two other genes, PTGS2 and GSTA2, was also associated with OS. CONCLUSIONS We describe further evidence that variations in genes involved in the glutathione and inflammatory response pathways are associated with OS in patients with LS-NSCLC. Further studies are warranted to verify our findings and elucidate their functional mechanisms and clinical utility leading to improved survival for patients with lung cancer.
Collapse
Affiliation(s)
- V Shane Pankratz
- Division of Biomedical Statistics and Informatics, Jinling Hospital, Nanjing University, School of Medicine, Nanjing, People's Republic of China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
70
|
Ma X, Zhang J, Liu S, Huang Y, Chen B, Wang D. Nrf2 knockdown by shRNA inhibits tumor growth and increases efficacy of chemotherapy in cervical cancer. Cancer Chemother Pharmacol 2011; 69:485-94. [DOI: 10.1007/s00280-011-1722-9] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2011] [Accepted: 07/29/2011] [Indexed: 12/19/2022]
|
71
|
The role of paclitaxel in the development and treatment of multidrug resistant cancer cell lines. Biomed Pharmacother 2011; 65:345-53. [DOI: 10.1016/j.biopha.2011.04.015] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2011] [Accepted: 04/05/2011] [Indexed: 12/17/2022] Open
|
72
|
Arienti C, Tesei A, Verdecchia GM, Framarini M, Virzì S, Grassi A, Scarpi E, Turci L, Silvestrini R, Amadori D, Zoli W. Peritoneal carcinomatosis from ovarian cancer: chemosensitivity test and tissue markers as predictors of response to chemotherapy. J Transl Med 2011; 9:94. [PMID: 21689426 PMCID: PMC3141502 DOI: 10.1186/1479-5876-9-94] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2011] [Accepted: 06/20/2011] [Indexed: 01/16/2023] Open
Abstract
Background Platinum-based regimens are the treatments of choice in ovarian cancer, which remains the leading cause of death from gynecological malignancies in the Western world. The aim of the present study was to compare the advantages and limits of a conventional chemosensitivity test with those of new biomolecular markers in predicting response to platinum regimens in a series of patients with peritoneal carcinomatosis from ovarian cancer. Methods Fresh surgical biopsy specimens were obtained from 30 patients with primary or recurrent peritoneal carcinomatosis from ovarian cancer. ERCC1, GSTP1, MGMT, XPD, and BRCA1 gene expression levels were determined by Real-Time RT-PCR. An in vitro chemosensitivity test was used to define a sensitivity or resistance profile to the drugs used to treat each patient. Results MGMT and XPD expression was directly and significantly related to resistance to platinum-containing treatment (p = 0.036 and p = 0.043, respectively). Significant predictivity in terms of sensitivity and resistance was observed for MGMT expression (75.0% and 72.5%, respectively; p = 0.03), while high predictivity of resistance (90.9%) but very low predictivity of sensitivity (37.5%) (p = 0.06) were observed for XPD. The best overall and significant predictivity was observed for chemosensitivity test results (85.7% sensitivity and 91.3% resistance; p = 0.0003). Conclusions The in vitro assay showed a consistency with results observed in vivo in 27 out of the 30 patients analyzed. Sensitivity and resistance profiles of different drugs used in vivo would therefore seem to be better defined by the in vitro chemosensitivity test than by expression levels of markers.
Collapse
Affiliation(s)
- Chiara Arienti
- Biosciences Laboratory, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (I.R.S.T.), Meldola, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
73
|
Yang H, Wang W, Zhang Y, Zhao J, Lin E, Gao J, He J. The role of NF-E2-related factor 2 in predicting chemoresistance and prognosis in advanced non-small-cell lung cancer. Clin Lung Cancer 2011; 12:166-71. [PMID: 21663859 DOI: 10.1016/j.cllc.2011.03.012] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2010] [Revised: 09/02/2010] [Accepted: 09/13/2010] [Indexed: 11/30/2022]
Abstract
BACKGROUND NF-E2-related factor 2 (Nrf2) plays an important role in platinum chemoresistance by activating transcription of target genes through binding to the antioxidant response element (ARE) in gene promoters, moreover it could stimulate tumor growth in non-small-cell lung cancer (NSCLC). The objective of this study was to elucidate the correlation between Nrf2 expression and platinum-based chemotherapy response as well as the prognostic significance of Nrf2 levels. PATIENTS AND METHODS Immunohistochemical analysis of Nrf2 in tumor specimens was performed in a total of 60 patients with stage IIIB or IV NSCLC. RESULTS Positive staining for Nrf2 was found in nearly all cases, just at different levels. High Nrf2 expression was noted in 34 of 60 patients (56.7%). The expression of Nrf2 correlated with age (P = .014), stage (P = .017), and performance status (P = .014). The response rate of platinum-based chemotherapy in patients with < 75% positive staining was significantly higher than that in patients with 75%-100% positive staining (P = .003; r = 0.447). Furthermore, a high percentage of Nrf2 staining was the independent prognostic factor in progression survival (P = .000) analysis. CONCLUSION We suggest that the assessment of Nrf2 expression may be useful for evaluating chemoresistance and tumor progression in patients with advanced stage NSCLC.
Collapse
Affiliation(s)
- Haihong Yang
- Department of Cardiothoracic Surgery, State Key Laboratory of Respiratory Disease, Guangzhou Institution of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical College, Guangzhou, China
| | | | | | | | | | | | | |
Collapse
|
74
|
Abstract
Lung cancer in never smokers (LCINS) has lately been recognized as a unique disease based on rapidly gained knowledge from genomic changes to treatment responses. The focus of this article is on current knowledge and challenges with regard to LCINS expanded from recent reviews highlighting five areas: (1) distribution of LCINS by temporal trends, geographic regions, and populations; (2) three well-recognized environmental risk factors; (3) other plausible environmental risk factors; (4) prior chronic lung diseases and infectious diseases as risk factors; and (5) lifestyles as risk or protective factors. This article will also bring attention to recently published literature in two pioneering areas: (1) histological characteristics, clinical features with emerging new effective therapies, and social and psychological stigma; and (2) searching for susceptibility genes using integrated genomic approaches.
Collapse
Affiliation(s)
- Ping Yang
- Department of Health Sciences Research, College of Medicine, Mayo Clinic, Rochester, Minnesota 55905, USA.
| |
Collapse
|
75
|
Copy number variants in pharmacogenetic genes. Trends Mol Med 2011; 17:244-51. [PMID: 21388883 DOI: 10.1016/j.molmed.2011.01.007] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2010] [Revised: 01/14/2011] [Accepted: 01/14/2011] [Indexed: 01/07/2023]
Abstract
Variation in drug efficacy and toxicity remains an important clinical concern. Presently, single nucleotide polymorphisms (SNPs) only explain a portion of this problem, even in situations where the pharmacological trait is clearly heritable. The Human CNV Project identified copy number variations (CNVs) across approximately 12% of the human genome, and these CNVs were considered causes of diseases. Although the contribution of CNVs to the pathogenesis of many common diseases is questionable, CNVs play a clear role in drug-related genes by altering drug metabolizing and drug response. In this review, we provide a comprehensive evaluation of the clinical relevance of CNVs to drug efficacy, toxicity, and disease prevalence in world populations, and discuss the implication of using CNVs as a diagnostic tool in clinical intervention.
Collapse
|
76
|
Köberle B, Tomicic MT, Usanova S, Kaina B. Cisplatin resistance: Preclinical findings and clinical implications. Biochim Biophys Acta Rev Cancer 2010; 1806:172-82. [PMID: 20647037 DOI: 10.1016/j.bbcan.2010.07.004] [Citation(s) in RCA: 186] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2010] [Revised: 07/07/2010] [Accepted: 07/12/2010] [Indexed: 02/03/2023]
Affiliation(s)
- Beate Köberle
- Institute of Toxicology, University Medical Center Mainz, Germany.
| | | | | | | |
Collapse
|
77
|
Sar DG, Montes-Bayón M, Blanco-González E, Sanz-Medel A. Quantitative methods for studying DNA interactions with chemotherapeutic cisplatin. Trends Analyt Chem 2010. [DOI: 10.1016/j.trac.2010.07.019] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
78
|
Sun Z, Chen J, Aakre J, Marks RS, Garces YY, Jiang R, Idowu O, Cunningham JM, Liu Y, Pankratz VS, Yang P. Genetic variation in glutathione metabolism and DNA repair genes predicts survival of small-cell lung cancer patients. Ann Oncol 2010; 21:2011-2016. [PMID: 20439344 DOI: 10.1093/annonc/mdq212] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Small-cell lung cancer (SCLC) carries the worst prognosis among lung cancer diagnoses. Combined radiation and chemotherapy is the standard of care; however, treatment outcomes vary. Variability in the rate at which chemotherapy agents are metabolized and in the capacity of repairing DNA damage has been hypothesized to be partly responsible for the treatment response variation. Genes in the glutathione metabolism and DNA repair pathways were tested through tag single-nucleotide polymorphisms (SNPs) to assess their association with survival in SCLC. PATIENTS AND METHODS Blood DNA from 248 patients with primary SCLC was genotyped for 419 tag SNPs from 49 genes in the glutathione and DNA repair pathways. Association analyses with patient survival were carried out at single-SNP, whole-gene, and haplotype levels after adjusting for age, gender, tumor stage, treatment modalities, and smoking history. RESULTS Among the 375 SNPs successfully genotyped, 21 SNPs, located on 11 genes, showed significant association with survival. Whole-gene analyses confirmed 3 of the 11 genes: GSS, ABCC2, and XRCC1. Haplotype analyses of these three genes identified haplotype combinations and genomic locations underlying the observed SNP associations. CONCLUSION Genetic variations in genes involved in the glutathione and DNA repair pathways are associated with SCLC survival.
Collapse
Affiliation(s)
- Z Sun
- Department of Health Sciences Research, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - J Chen
- Department of Health Sciences Research, Mayo Clinic College of Medicine, Rochester, MN, USA; Department of Medical Oncology, The Second Affiliated Hospital, Dalian Medical University, Dalian; Department of Medical Oncology, The First Affiliated Hospital, China Medical University, Shenyang, People's Republic of China
| | - J Aakre
- Department of Health Sciences Research, Mayo Clinic College of Medicine, Rochester, MN, USA
| | | | - Y Y Garces
- Department of Radiation Oncology, Mayo Clinic College of Medicine, Rochester, MN
| | - R Jiang
- Department of Health Sciences Research, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - O Idowu
- Department of Health Sciences Research, Mayo Clinic College of Medicine, Rochester, MN, USA; SUNY Downstate Medical Center, Brooklyn, NY
| | - J M Cunningham
- Genomics Shared Resource, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Y Liu
- Department of Health Sciences Research, Mayo Clinic College of Medicine, Rochester, MN, USA; Department of Medical Oncology, The First Affiliated Hospital, China Medical University, Shenyang, People's Republic of China
| | - V S Pankratz
- Department of Health Sciences Research, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - P Yang
- Department of Health Sciences Research, Mayo Clinic College of Medicine, Rochester, MN, USA.
| |
Collapse
|
79
|
Abstract
In cancer therapy vastly different kinds of treatment regimens, but as a rule scientifically validated and reviewed, play a central role dependent on the tumor entity. Besides the options of schoolbook medicine complementary, alternative and supportive treatment options are becoming more frequently used in routine clinical practice. Numerous concepts and agents, partly verified in studies and partly based on empirical experiences are being applied. It is our intention to give a survey of the most common agents and concepts and to point out the risks and capabilities.
Collapse
Affiliation(s)
- T Schnöller
- Klinik für Urologie und Kinderurologie, Universität Ulm, Ulm, Deutschland.
| | | | | | | |
Collapse
|
80
|
Moyer AM, Sun Z, Batzler AJ, Li L, Schaid DJ, Yang P, Weinshilboum RM. Glutathione pathway genetic polymorphisms and lung cancer survival after platinum-based chemotherapy. Cancer Epidemiol Biomarkers Prev 2010; 19:811-21. [PMID: 20200426 DOI: 10.1158/1055-9965.epi-09-0871] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Lung cancer is commonly treated with platinum compounds. The "glutathione pathway" participates in the metabolism of platinum compounds. We set out to test the hypotheses that single nucleotide polymorphisms (SNPs) or copy number polymorphisms for genes within the glutathione pathway might influence survival in lung cancer patients treated with these drugs. METHODS Germline DNA samples from 973 lung cancer patients were genotyped for 290 glutathione pathway SNPs. GSTT1 copy number was also assayed. We determined the association of these polymorphisms with survival for lung cancer patients, followed by functional genomic validation. RESULTS We observed suggestive associations between survival and GSTT1 copy number (P = 0.017), and GSTA5, GSTM4, and ABCC4 SNPs, adjusted for covariates (P = 0.018, 0.002, and 0.002, respectively) or not (P = 0.005, 0.011, and 0.002). One hundred lymphoblastoid cell lines were then treated with cisplatin, and IC(50) values were significantly associated with the GSTM4 SNP (P = 0.019). Furthermore, GSTM4, GSTT1, and ABCC4 overexpression significantly decreased cisplatin sensitivity in lung cancer and HEK293T cell lines. CONCLUSIONS These results suggest that GSTM4 polymorphisms are biomarkers for the prediction of cisplatin response. ABCC4 polymorphisms, as well as GSTT1 copy number, may also help to predict cisplatin response, but further validation is required. These results represent a step toward the individualized chemotherapy of lung cancer.
Collapse
Affiliation(s)
- Ann M Moyer
- Division of Clinical Pharmacology, Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA
| | | | | | | | | | | | | |
Collapse
|
81
|
García Sar D, Montes-Bayón M, Blanco González E, Sierra LM, Aguado L, Comendador MA, Koellensperger G, Hann S, Sanz-Medel A. Quantitative profiling of in vivo generated cisplatin-DNA adducts using different isotope dilution strategies. Anal Chem 2010; 81:9553-60. [PMID: 19886652 DOI: 10.1021/ac901360f] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Platinum compounds are the major group of metal-based chemotherapeutic drug used in current practice and still a topic of intense investigation. The relative contribution of structurally defined cisplatin adducts with DNA to induce apoptosis and the cellular processing of these lesions is still poorly understood mostly due to the lack of sensitive and accurate analytical tools for in vivo studies. In this regard, two novel sensitive and selective strategies are proposed here to quantify cisplatin-DNA adducts generated in Drosophila melanogaster larvae and in head and neck squamous cell carcinoma cultures. The methods involve the isolation and enzymatic digestion of the DNA in the samples exposed to cisplatin and further quantification by high-performance liquid chromatography with inductively coupled plasma mass spectrometric detection (HPLC-ICPMS). Two different strategies, based on isotope dilution analysis (IDA), have been attempted and evaluated for quantification: species-unspecific (the postcolumn addition of a 194Pt-enriched solution) and the species-specific (by means of a synthesized isotopically enriched cisplatin (194Pt) adduct). For the second approach, the synthesis and characterization of the cisplatin adduct in a custom oligonucleotide containing the sequence (5'-TCCGGTCC-3') was necessary. The adducted oligo was then added to the DNA samples either before or after enzymatic hydrolysis. The results obtained using these two strategies (mixing before and after enzymatic treatment) permit to address, quantitatively, the column recoveries as well as the efficiency of the enzymatic hydrolysis. Species-specific spiking before enzymatic digestion provided accurate and precise analytical results to clearly differentiate between Drosophila samples and carcinoma cell cultures exposed to different cisplatin concentrations.
Collapse
Affiliation(s)
- D García Sar
- Department of Physical and Analytical Chemistry, Faculty of Chemistry, University of Oviedo, C/Julian Claveria 8, 33006 Oviedo, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
82
|
Zhang P, Singh A, Yegnasubramanian S, Esopi D, Kombairaju P, Bodas M, Wu H, Bova SG, Biswal S. Loss of Kelch-like ECH-associated protein 1 function in prostate cancer cells causes chemoresistance and radioresistance and promotes tumor growth. Mol Cancer Ther 2010; 9:336-46. [PMID: 20124447 DOI: 10.1158/1535-7163.mct-09-0589] [Citation(s) in RCA: 323] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Loss-of-function mutations in the nuclear factor erythroid-2-related factor 2 (Nrf2) inhibitor Kelch-like ECH-associated protein 1 (Keap1) result in increased Nrf2 activity in non-small cell lung cancer and confer therapeutic resistance. We detected point mutations in Keap1 gene, leading to nonconservative amino acid substitutions in prostate cancer cells. We found novel transcriptional and posttranscriptional mechanisms of Keap1 inactivation, such as promoter CpG island hypermethylation and aberrant splicing of Keap1, in DU-145 cells. Very low levels of Keap1 mRNA were detected in DU-145 cells, which significantly increased by treatment with DNA methyltransferase inhibitor 5-aza-deoxycytidine. The loss of Keap1 function led to an enhanced activity of Nrf2 and its downstream electrophile/drug detoxification pathway. Inhibition of Nrf2 expression in DU-145 cells by RNA interference attenuated the expression of glutathione, thioredoxin, and the drug efflux pathways involved in counteracting electrophiles, oxidative stress, and detoxification of a broad spectrum of drugs. DU-145 cells constitutively expressing Nrf2 short hairpin RNA had lower levels of total glutathione and higher levels of intracellular reactive oxygen species. Attenuation of Nrf2 function in DU-145 cells enhanced sensitivity to chemotherapeutic drugs and radiation-induced cell death. In addition, inhibition of Nrf2 greatly suppressed in vitro and in vivo tumor growth of DU-145 prostate cancer cells. Thus, targeting the Nrf2 pathway in prostate cancer cells may provide a novel strategy to enhance chemotherapy and radiotherapy responsiveness and ameliorate the growth and tumorigenicity, leading to improved clinical outcomes.
Collapse
Affiliation(s)
- Ping Zhang
- Division of Toxicology, Bloomberg School of Public Health, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, Maryland, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
83
|
Ilonen IK, Räsänen JV, Sihvo EI, Knuuttila A, Salmenkivi KM, Ahotupa MO, Kinnula VL, Salo JA. Oxidative stress in non-small cell lung cancer: role of nicotinamide adenine dinucleotide phosphate oxidase and glutathione. Acta Oncol 2010; 48:1054-61. [PMID: 19308756 DOI: 10.1080/02841860902824909] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
BACKGROUND Cigarette smoke is strongly associated with NSCLC, but the carcinogenesis of NSCLC is poorly understood. METHODS To discover the role of oxidative stress and anti-oxidative defense in NSCLC, we measured NADPH oxidase (NOX) activity, myeloperoxidase activity, 8-OHdG, and glutathione content from lung specimens. These came from 32 patients: 22 NSCLC patients and ten controls without cancer. RESULTS In NSCLC patients, NOX activity was significantly higher both in the malignant (p = 0.001) and non-malignant (p = 0.044) samples from NSCLC patients, than in the control specimens. Myeloperoxidase activity was lower (p = 0.001) and glutathione content (p = 0.009) higher in malignant tissue. No significant difference was observable in 8-OHdG content between patient groups. CONCLUSIONS Increase in NOX activity in the malignant tissues was independent of smoking history and myeloperoxidase activity, suggesting its independent role in NSCLC pathogenesis.
Collapse
|
84
|
Wu X, Gu J. Pharmacogenetics of Lung Cancer. Lung Cancer 2010. [DOI: 10.1007/978-1-60761-524-8_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
85
|
López-Lázaro M. A new view of carcinogenesis and an alternative approach to cancer therapy. Mol Med 2009; 16:144-53. [PMID: 20062820 DOI: 10.2119/molmed.2009.00162] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2009] [Accepted: 12/26/2009] [Indexed: 12/12/2022] Open
Abstract
During the last few decades, cancer research has focused on the idea that cancer is caused by genetic alterations and that this disease can be treated by reversing or targeting these alterations. The small variations in cancer mortality observed during the previous 30 years indicate, however, that the clinical applications of this approach have been very limited so far. The development of future gene-based therapies that may have a major impact on cancer mortality may be compromised by the high number and variability of genetic alterations recently found in human tumors. This article reviews evidence that tumor cells, in addition to acquiring a complex array of genetic changes, develop an alteration in the metabolism of oxygen. Although both changes play an essential role in carcinogenesis, the altered oxygen metabolism of cancer cells is not subject to the high genetic variability of tumors and may therefore be a more reliable target for cancer therapy. The utility of this novel approach for the development of therapies that selectively target tumor cells is discussed.
Collapse
Affiliation(s)
- Miguel López-Lázaro
- Department of Pharmacology, Faculty of Pharmacy, University of Seville, Seville, Spain.
| |
Collapse
|
86
|
Savas S, Liu G. Genetic variations as cancer prognostic markers: review and update. Hum Mutat 2009; 30:1369-77. [PMID: 19639655 DOI: 10.1002/humu.21078] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Cancer molecular epidemiology traditionally studies the relationship between genetic variations and cancer risk. However, recent studies have also focused on disease outcomes. The application and design of disease outcome studies have been an extension of disease risk assessment. Yet there are a number of unique considerations important in outcome assessments. We review how genetic approaches used for disease susceptibility, such as candidate gene and genome-wide association study (GWAS) approaches, can be adapted carefully to systematically identify cancer prognostic and predictive alleles. We discuss the interrelatedness among the disease susceptibility, treatment response, and prognosis at the genetic level and focus on how the emerging technologies and approaches can uniquely benefit the genetic prognosis studies.
Collapse
Affiliation(s)
- Sevtap Savas
- Department of Medical Biophysics, Division of Applied Molecular Oncology, Ontario Cancer Institute, Toronto, Ontario, Canada.
| | | |
Collapse
|
87
|
Evaluation of glutathione metabolic genes on outcomes in advanced non-small cell lung cancer patients after initial treatment with platinum-based chemotherapy: an NCCTG-97-24-51 based study. J Thorac Oncol 2009; 4:479-85. [PMID: 19347979 DOI: 10.1097/jto.0b013e31819c7a2c] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
INTRODUCTION We evaluated the role of glutathione-related genotypes on overall survival, time to progression, adverse events, and quality of life (QOL) in stage IIIB/IV non-small cell lung cancer patients who were stable or responding from initial treatment with platinum-based chemotherapy and subsequently randomized to receive daily oral carboxyaminoimidazole or a placebo. METHODS Of the 186 total patients, 113 had initial treatment with platinum therapy and DNA samples of whom 46 also had QOL data. These samples were analyzed using six polymorphic DNA markers that encode five important enzymes in the glutathione metabolic pathway. Patient QOL was assessed using the Functional Assessment of Cancer Therapy-Lung and the UNISCALE QOL questionnaires. A clinically significant decline in QOL was defined as a 10% decrease from baseline to week-8. Multivariate analyses were used to evaluate the association of the genotypes on the four endpoints. RESULTS Patients carrying a GCLC 77 genotype had a worse overall survival (hazard ratio (HR) = 1.5, p = 0.05). Patients carrying the GPX1-CC genotype had a clinically significant decline in the UNISCALE (odds ratio (OR): 7.5; p = 0.04), total Functional Assessment of Cancer Therapy-Lung score (OR: 11.0; p = 0.04), physical (OR: 7.1; p = 0.03), functional (OR: 5.2; p = 0.04), and emotional well-being constructs (OR: 23.8; p = 0.01). CONCLUSIONS Genotypes of glutathione-related enzymes, especially GCLC, may be used as host factors in predicting patients' survival after platinum-based chemotherapy. GPX1 may be an inherited factor in predicting patients' QOL. Further investigation to define and measure the effects of these genes in chemotherapeutic regimens, drug toxicities, disease progression, and QOL are critical.
Collapse
|
88
|
Purine analogs sensitize the multidrug resistant cell line (NCI-H460/R) to doxorubicin and stimulate the cell growth inhibitory effect of verapamil. Invest New Drugs 2009; 28:482-92. [PMID: 19533022 DOI: 10.1007/s10637-009-9277-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2009] [Accepted: 05/25/2009] [Indexed: 10/20/2022]
Abstract
The resistant cell line NCI-H460/R and its counterpart NCI-H460 were used to investigate the ability of purine analogs to overcome multidrug resistance (MDR) that seriously limit the efficacy of lung cancer regimens with chemotherapeutic agents. Two purine analogs, sulfinosine (SF) and 8-Cl-cAMP, exerted dose-dependent effects on cell growth in both parental and resistant cell lines. They significantly decreased mdr1 expression in NCI-H460/R cells. Low concentrations (1 microM) of SF and 8-Cl-cAMP in combination with doxorubicin (DOX) exerted synergistic growth inhibition in both cell lines. Pretreatment with SF and 8-Cl-cAMP improved the sensitivity to DOX more than verapamil (VER), the standard modulator of MDR. The increased accumulation of DOX observed after the treatment with SF and 8-Cl-cAMP was consistent with the results obtained with VER. VER stimulated the effect of 8-Cl-cAMP on DOX cytotoxicity and mdr1 expression. Combinations of either SF or 8-Cl-cAMP with VER at clinically acceptable concentrations exhibited synergistic effects on cell growth inhibition in the resistant cell line. SF and 8-Cl-cAMP modulated MDR in NCI-H460/R cells, especially when applied before DOX administration. This feature, together with their ability to reverse MDR, renders the purine analogs (in combination with VER) as potential candidates for improving the clinical activity of existing lung cancer therapeutics.
Collapse
|
89
|
Tan AC, Jimeno A, Lin SH, Wheelhouse J, Chan F, Solomon A, Rajeshkumar NV, Rubio-Viqueira B, Hidalgo M. Characterizing DNA methylation patterns in pancreatic cancer genome. Mol Oncol 2009; 3:425-38. [PMID: 19497796 DOI: 10.1016/j.molonc.2009.03.004] [Citation(s) in RCA: 119] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2009] [Revised: 03/06/2009] [Accepted: 03/09/2009] [Indexed: 12/31/2022] Open
Abstract
We performed a global methylation profiling assay on 1505 CpG sites across 807 genes to characterize DNA methylation patterns in pancreatic cancer genome. We found 289 CpG sites that were differentially methylated in normal pancreas, pancreatic tumors and cancer cell lines. We identified 23 and 35 candidate genes that are regulated by hypermethylation and hypomethylation in pancreatic cancer, respectively. We also identified candidate methylation markers that alter the expression of genes critical to gemcitabine susceptibility in pancreatic cancer. These results indicate that aberrant DNA methylation is a frequent epigenetic event in pancreatic cancer; and by using global methylation profiling assay, it is possible to identify these markers for diagnostic and therapeutic purposes in this disease.
Collapse
Affiliation(s)
- Aik Choon Tan
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
90
|
Ekhart C, Rodenhuis S, Smits PH, Beijnen JH, Huitema AD. An overview of the relations between polymorphisms in drug metabolising enzymes and drug transporters and survival after cancer drug treatment. Cancer Treat Rev 2009; 35:18-31. [DOI: 10.1016/j.ctrv.2008.07.003] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2008] [Revised: 07/09/2008] [Accepted: 07/22/2008] [Indexed: 11/16/2022]
|
91
|
Abstract
Primary lung cancer is very heterogeneous in its clinical presentation, histopathology, and treatment response; and like other diseases, the prognosis consists of two essential facets: survival and quality of life (QOL). Lung cancer survival is mostly determined by disease stage and treatment modality, and the 5-Year survival rate has been in a plateau of 15% for three decades. QOL is focused on life aspects that are affected by health conditions and medical interventions; the balance of physical functioning and suffering from treatment side effects has long been a concern of care providers as well as patients. Obviously needed are easily measurable biologic markers to stratify patients before treatment for optimal results in survival and QOL and to monitor treatment responses and toxicities. Targeted therapies toward the mechanisms of tumor development, growth, and metastasis are promising and actively translated into clinical practice. Long-term lung cancer (LTLC) survivors are people who are alive 5 Years after the diagnosis. Knowledge about the health and QOL in LTLC survivors is limited because outcome research in lung cancer has been focused mainly on short-term survival. The independent or combined effects of lung cancer treatment, aging, smoking and drinking, comorbid conditions, and psychosocial factors likely cause late effects, including organ malfunction, chronic fatigue, pain, or premature death among lung cancer survivors. New knowledge to be gained should help lung cancer survivors, their healthcare providers, and their caregivers by providing evidence for establishing clinical recommendations to enhance their long-term survival and health-related QOL.
Collapse
Affiliation(s)
- Ping Yang
- Mayo Clinic, College of Medicine, Rochester, MN, USA
| |
Collapse
|
92
|
Singh A, Boldin-Adamsky S, Thimmulappa RK, Rath SK, Ashush H, Coulter J, Blackford A, Goodman SN, Bunz F, Watson WH, Gabrielson E, Feinstein E, Biswal S. RNAi-mediated silencing of nuclear factor erythroid-2-related factor 2 gene expression in non-small cell lung cancer inhibits tumor growth and increases efficacy of chemotherapy. Cancer Res 2008; 68:7975-84. [PMID: 18829555 DOI: 10.1158/0008-5472.can-08-1401] [Citation(s) in RCA: 299] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Nuclear factor erythroid-2-related factor 2 (Nrf2) is a redox-sensitive transcription factor that regulates the expression of electrophile and xenobiotic detoxification enzymes and efflux proteins, which confer cytoprotection against oxidative stress and apoptosis in normal cells. Loss of function mutations in the Nrf2 inhibitor, Kelch-like ECH-associated protein (Keap1), results in constitutive activation of Nrf2 function in non-small cell lung cancer. In this study, we show that constitutive activation of Nrf2 in lung cancer cells promotes tumorigenicity and contributes to chemoresistance by up-regulation of glutathione, thioredoxin, and the drug efflux pathways involved in detoxification of electrophiles and broad spectrum of drugs. RNAi-mediated reduction of Nrf2 expression in lung cancer cells induces generation of reactive oxygen species, suppresses tumor growth, and results in increased sensitivity to chemotherapeutic drug-induced cell death in vitro and in vivo. Inhibiting Nrf2 expression using naked siRNA duplexes in combination with carboplatin significantly inhibits tumor growth in a subcutaneous model of lung cancer. Thus, targeting Nrf2 activity in lung cancers, particularly those with Keap1 mutations, could be a promising strategy to inhibit tumor growth and circumvent chemoresistance.
Collapse
Affiliation(s)
- Anju Singh
- Department of Environmental Health Sciences, Division of Toxicology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland 21205, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
93
|
Nichenametla SN, Ellison I, Calcagnotto A, Lazarus P, Muscat JE, Richie JP. Functional significance of the GAG trinucleotide-repeat polymorphism in the gene for the catalytic subunit of gamma-glutamylcysteine ligase. Free Radic Biol Med 2008; 45:645-50. [PMID: 18549827 PMCID: PMC2562218 DOI: 10.1016/j.freeradbiomed.2008.05.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2008] [Revised: 05/02/2008] [Accepted: 05/15/2008] [Indexed: 01/22/2023]
Abstract
Gamma-glutamylcysteine ligase (GCL) is the rate-limiting enzyme in glutathione (GSH) synthesis. A GAG-repeat polymorphism in the 5' UTR of the gene coding for the catalytic subunit of GCL (GCLC) has been associated with altered GSH levels in vitro. Thus, we hypothesized that this polymorphism is associated with altered GCL activity and blood GSH levels in vivo. A total of 256 healthy United States black and white adults were genotyped for the GAG polymorphism and blood GSH levels were measured. In a subset of 107 individuals, blood GCL activity was determined. Five alleles with 4, 7, 8, 9, and 10 GAG repeats were observed. The most prevalent genotype was 7/9 (40%) followed by 7/7 (32%) and 9/9 (11%). GSH levels were 15% lower in 9/9 individuals than 7/9 individuals (P=0.05). GCL activity was 21% lower in 9/9 individuals than 7/7 individuals (P=0.04). A decreasing trend of GCL activity was observed in the order of 7/7>7/9>9/9 (P=0.04). These findings show that 9/9 individuals have lower blood GSH levels, which is likely due to a decrease in GCL activity. Such individuals might be more susceptible to oxidative stress-related diseases than individuals with other genotypes.
Collapse
Affiliation(s)
- Sailendra N Nichenametla
- Cancer Prevention and Control Program, Penn State Cancer Institute, Department of Public Health Sciences, Penn State University College of Medicine, Hershey, PA 17033, USA
| | | | | | | | | | | |
Collapse
|
94
|
Pesić M, Andjelković T, Banković J, Marković ID, Rakić L, Ruzdijić S. Sulfinosine enhances doxorubicin efficacy through synergism and by reversing multidrug resistance in the human non-small cell lung carcinoma cell line (NCI-H460/R). Invest New Drugs 2008; 27:99-110. [PMID: 18493718 DOI: 10.1007/s10637-008-9140-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2008] [Accepted: 04/14/2008] [Indexed: 11/29/2022]
Abstract
A resistant non-small cell lung carcinoma cell line-NSCLC (NCI-H460/R) was established in order to investigate the potential of sulfinosine (SF) to overcome multidrug resistance (MDR). The cytotoxicity of doxorubicin (DOX) in NCI-H460/R cells was enhanced by interaction with SF. SF improved the sensitivity of resistant cells to DOX when NCI-H460/R cells were pretreated with SF. Synergism was accompanied by the accumulation of cells in S and G(2)/M phases. Pretreatment with SF was more potent in improving the sensitivity to DOX than verapamil (VER). The decrease of mdr1 and topo II alpha expression (assessed by RT-PCR), was consistent with the DOX accumulation assay and cell cycle analysis. Also, SF significantly decreased intracellular glutathione (GSH) concentration. These results point to SF as a potential agent of MDR reversal and a valuable drug for improving chemotherapy of NSCLC.
Collapse
Affiliation(s)
- Milica Pesić
- Institute for Biological Research, Department of Neurobiology, University of Belgrade, Bulevar Despota Stefana 142, 11060, Belgrade, Republic of Serbia
| | | | | | | | | | | |
Collapse
|
95
|
Lo M, Wang YZ, Gout PW. The x(c)- cystine/glutamate antiporter: a potential target for therapy of cancer and other diseases. J Cell Physiol 2008; 215:593-602. [PMID: 18181196 DOI: 10.1002/jcp.21366] [Citation(s) in RCA: 323] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The x(c) (-) cystine/glutamate antiporter is a major plasma membrane transporter for the cellular uptake of cystine in exchange for intracellular glutamate. Its main functions in the body are mediation of cellular cystine uptake for synthesis of glutathione essential for cellular protection from oxidative stress and maintenance of a cystine:cysteine redox balance in the extracellular compartment. In the past decade it has become evident that the x(c) (-) transporter plays an important role in various aspects of cancer, including: (i) growth and progression of cancers that have a critical growth requirement for extracellular cystine/cysteine, (ii) glutathione-based drug resistance, (iii) excitotoxicity due to excessive release of glutamate, and (iv) uptake of herpesvirus 8, a causative agent of Kaposi's sarcoma. The x(c) (-) transporter also plays a role in certain CNS and eye diseases. This review focuses on the expression and function of the x(c) (-) transporter in cells and tissues with particular emphasis on its role in disease pathogenesis. The potential use of x(c) (-) inhibitors (e.g., sulfasalazine) for arresting tumor growth and/or sensitizing cancers is discussed.
Collapse
Affiliation(s)
- Maisie Lo
- Department of Experimental Medicine, University of British Columbia, Vancouver, BC, Canada
| | | | | |
Collapse
|
96
|
Abstract
When the antitumor activity of cisplatin was discovered, no one would have thought of the existence of specific proteins able to transport Pt across the cell membrane or to specifically recognize DNA modified by this drug. However, such proteins do exist and, furthermore, are specific for the Pt substrate considered. It follows that proteins are deeply involved in managing the biological activity of cisplatin. It is expected that, after the first 20 years in which most of the efforts were devoted to understanding its mode of interaction with DNA and consequent structural and functional alterations, the role of proteins will be more deeply scavenged. How cisplatin can survive the attack of the many platinophiles present in the extracellular and intracellular media is the issue addressed in this article. Significantly, differences are observed between cisplatin, carboplatin, and oxaliplatin.
Collapse
|
97
|
Franco R, Schoneveld OJ, Pappa A, Panayiotidis MI. The central role of glutathione in the pathophysiology of human diseases. Arch Physiol Biochem 2007; 113:234-58. [PMID: 18158646 DOI: 10.1080/13813450701661198] [Citation(s) in RCA: 358] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Reduced glutathione (L-gamma-glutamyl-L-cysteinyl-glycine, GSH) is the prevalent low-molecular-weight thiol in mammalian cells. It is formed in a two-step enzymatic process including, first, the formation of gamma-glutamylcysteine from glutamate and cysteine, by the activity of the gamma-glutamylcysteine synthetase; and second, the formation of GSH by the activity of GSH synthetase which uses gamma-glutamylcysteine and glycine as substrates. While its synthesis and metabolism occur intracellularly, its catabolism occurs extracellularly by a series of enzymatic and plasma membrane transport steps. Glutathione metabolism and transport participates in many cellular reactions including: antioxidant defense of the cell, drug detoxification and cell signaling (involved in the regulation of gene expression, apoptosis and cell proliferation). Alterations in its concentration have also been demonstrated to be a common feature of many pathological conditions including diabetes, cancer, AIDS, neurodegenerative and liver diseases. Additionally, GSH catabolism has been recently reported to modulate redox-sensitive components of signal transduction cascades. In this manuscript, we review the current state of knowledge on the role of GSH in the pathogenesis of human diseases with the aim to underscore its relevance in translational research for future therapeutic treatment design.
Collapse
Affiliation(s)
- R Franco
- Laboratory of Signal Transduction, National Institute of Environmental Health Sciences, National Institutes of Health, 111 T.W. Alexander Drive, Research Triangle Park, NC 27709, USA
| | | | | | | |
Collapse
|
98
|
Liu R, Blower PE, Pham AN, Fang J, Dai Z, Wise C, Green B, Teitel CH, Ning B, Ling W, Lyn-Cook BD, Kadlubar FF, Sadée W, Huang Y. Cystine-glutamate transporter SLC7A11 mediates resistance to geldanamycin but not to 17-(allylamino)-17-demethoxygeldanamycin. Mol Pharmacol 2007; 72:1637-46. [PMID: 17875604 DOI: 10.1124/mol.107.039644] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The cystine-glutamate transporter SLC7A11 has been implicated in chemoresistance, by supplying cystine to the cell for glutathione maintenance. In the NCI-60 cell panel, SLC7A11 expression shows negative correlation with growth inhibitory potency of geldanamycin but not with its analog 17-(allylamino)-17-demethoxygeldanamycin (17-AAG), which differs in the C-17 substituent in that the the methoxy moiety of geldanamycin is replaced by an amino group. Structure and potency analysis classified 18 geldanamycin analogs into two subgroups, "17-O/H" (C-17 methoxy or unsubstituted) and "17-N" (C-17 amino), showing distinct SLC7A11 correlation. We used three 17-O/H analogs and four 17-N analogs to test the role of the 17-substituents in susceptibility to SLC7A11-mediated resistance. In A549 cells, which are resistant to geldanamycin and strongly express SLC7A11, inhibition of SLC7A11 by (S)-4-carboxyphenylglycine or small interfering RNA increased sensitivity to 17-O/H, but had no effect on 17-N analogs. Ectopic expression of SLC7A11 in HepG2 cells, which are sensitive to geldanamycin and express low SLC7A11, confers resistance to geldanamycin, but not to 17-AAG. Antioxidant N-acetylcysteine, a precursor for glutathione synthesis, completely suppressed cytotoxic effects of 17-O/H but had no effect on 17-N analogs, whereas the prooxidant ascorbic acid had the opposite effect. Compared with 17-AAG, geldanamycin led to significantly more intracellular reactive oxygen species (ROS) production, which was quenched by addition of N-acetylcysteine. We conclude that SLC7A11 confers resistance selectively to 17-O/H (e.g., geldanamycin) but not to 17-N (e.g., 17-AAG) analogs partly as a result of differential dependence on ROS for cytotoxicity. Distinct mechanisms could significantly affect antitumor response and organ toxicity of these compounds in vivo.
Collapse
Affiliation(s)
- Ruqing Liu
- Division of Pharmacogenomics and Molecular Epidemiology, National Center for Toxicological Research, Food and Drug Administration, Jefferson, Arkansas, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
99
|
Abstract
The accidental discovery of the anticancer properties of cisplatin and its clinical introduction in the 1970s represent a major landmark in the history of successful anticancer drugs. Although carboplatin--a second-generation analogue that is safer but shows a similar spectrum of activity to cisplatin--was introduced in the 1980s, the pace of further improvements slowed for many years. However, in the past several years interest in platinum drugs has increased. Key developments include the elucidation of mechanisms of tumour resistance to these drugs, the introduction of new platinum-based agents (oxaliplatin, satraplatin and picoplatin), and clinical combination studies using platinum drugs with resistance modulators or new molecularly targeted drugs.
Collapse
Affiliation(s)
- Lloyd Kelland
- Cancer Research Technology Development Laboratories, Wolfson Institute for Biomedical Research, University College London, Gower Street, London, WC1E 6BT, UK.
| |
Collapse
|
100
|
Le Pla RC, Ritchie KJ, Henderson CJ, Wolf CR, Harrington CF, Farmer PB. Development of a liquid chromatography-electrospray ionization tandem mass spectrometry method for detecting oxaliplatin-DNA intrastrand cross-links in biological samples. Chem Res Toxicol 2007; 20:1177-82. [PMID: 17636892 DOI: 10.1021/tx700088j] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Cellular resistance, both intrinsic and acquired, poses a problem in the effectiveness of platinum-based chemotherapy. The cytotoxic activity of Pt-based chemotherapeutic agents is derived from their ability to react with cellular DNA. Oxaliplatin binds to the N7 position of the purine DNA bases, forming mainly intrastrand cross-links between either two adjacent guanines (GG), an adjacent adenine and guanine (AG), or two guanines separated by an unmodified nucleotide (GNG). We report the development of a liquid chromatography-electrospray ionization tandem mass spectrometry (LC-ESI-MS/MS) method for measuring GG and AG intrastrand cross-links formed by oxaliplatin. The limits of detection for GG-oxPt and AG-oxPt were 23 and 19 adducts per 10 (8) nucleotides, respectively. We compare the formation and persistence of intrastrand cross-links between wild-type and glutathione transferase P null mice (GSTP null) treated with oxaliplatin. No significant difference was observed in the level of intrastrand cross-links formed by oxaliplatin between the mouse strains in liver, kidney, and lung DNA. Adduct levels were greatest in liver and lowest in lung tissue.
Collapse
Affiliation(s)
- Rachel C Le Pla
- Cancer Biomarkers and Prevention Group, Biocentre, University of Leicester, University Road, Leicester, U.K.
| | | | | | | | | | | |
Collapse
|