51
|
Sun H, Zhou R, Zheng Y, Wen Z, Zhang D, Zeng D, Wu J, Huang Z, Rong X, Huang N, Sun L, Bin J, Liao Y, Shi M, Liao W. CRIP1 cooperates with BRCA2 to drive the nuclear enrichment of RAD51 and to facilitate homologous repair upon DNA damage induced by chemotherapy. Oncogene 2021; 40:5342-5355. [PMID: 34262130 PMCID: PMC8390368 DOI: 10.1038/s41388-021-01932-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 06/09/2021] [Accepted: 06/28/2021] [Indexed: 02/06/2023]
Abstract
Homologous recombination (HR) repair is an important determinant of chemosensitivity. However, the mechanisms underlying HR regulation remain largely unknown. Cysteine-rich intestinal protein 1 (CRIP1) is a member of the LIM/double-zinc finger protein family and is overexpressed and associated with prognosis in several tumor types. However, to date, the functional role of CRIP1 in cancer biology is poorly understood. Here we found that CRIP1 downregulation causes HR repair deficiency with concomitant increase in cell sensitivity to cisplatin, epirubicin, and the poly ADP-ribose polymerase (PARP) inhibitor olaparib in gastric cancer cells. Mechanistically, upon DNA damage, CRIP1 is deubiquitinated and upregulated by activated AKT signaling. CRIP1, in turn, promotes nuclear enrichment of RAD51, which is a prerequisite step for HR commencement, by stabilizing BRCA2 to counteract FBXO5-targeted RAD51 degradation and by binding to the core domain of RAD51 (RAD51184-257) in coordination with BRCA2, to facilitate nuclear export signal masking interactions between BRCA2 and RAD51. Moreover, through mass spectrometry screening, we found that KPNA4 is at least one of the carriers controlling the nucleo-cytoplasmic distribution of the CRIP1-BRCA2-RAD51 complex in response to chemotherapy. Consistent with these findings, RAD51 inhibitors block the CRIP1-mediated HR process, thereby restoring chemotherapy sensitivity of gastric cancer cells with high CRIP1 expression. Analysis of patient specimens revealed an abnormally high level of CRIP1 expression in GC tissues compared to that in the adjacent normal mucosa and a significant negative association between CRIP1 expression and survival time in patient cohorts with different types of solid tumors undergoing genotoxic treatments. In conclusion, our study suggests an essential function of CRIP1 in promoting HR repair and facilitating gastric cancer cell adaptation to genotoxic therapy.
Collapse
Affiliation(s)
- Huiying Sun
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, PR China
| | - Rui Zhou
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, PR China.
| | - Yannan Zheng
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, PR China
| | - Zhaowei Wen
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, PR China
| | - Dingling Zhang
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, PR China
| | - Dongqiang Zeng
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, PR China
| | - Jianhua Wu
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, PR China
| | - Zhenhua Huang
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, PR China
| | - Xiaoxiang Rong
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, PR China
| | - Na Huang
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, PR China
| | - Li Sun
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, PR China
| | - Jianping Bin
- Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, PR China
| | - Yulin Liao
- Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, PR China
| | - Min Shi
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, PR China
| | - Wangjun Liao
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, PR China.
| |
Collapse
|
52
|
Lin JX, Xu YC, Lin W, Xue FQ, Ye JX, Zang WD, Cai LS, You J, Xu JH, Cai JC, Tang YH, Xie JW, Li P, Zheng CH, Huang CM. Effectiveness and Safety of Apatinib Plus Chemotherapy as Neoadjuvant Treatment for Locally Advanced Gastric Cancer: A Nonrandomized Controlled Trial. JAMA Netw Open 2021; 4:e2116240. [PMID: 34241629 PMCID: PMC8271357 DOI: 10.1001/jamanetworkopen.2021.16240] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 05/03/2021] [Indexed: 02/03/2023] Open
Abstract
Importance Apatinib is a novel treatment option for chemotherapy-refractory advanced gastric cancer (GC), but it has not been evaluated in patients with locally advanced GC. Objective To investigate the effectiveness and safety of apatinib combined with S-1 plus oxaliplatin (SOX) as a neoadjuvant treatment for locally advanced GC. Design, Setting, and Participants This multicenter, prospective, single-group, open-label, phase 2 nonrandomized controlled trial was conducted in 10 centers in southern China. Patients with M0 and either clinical T2 to T4 or N+ disease were enrolled between July 1, 2017, and June 30, 2019. Statistical analysis was performed from December 1, 2019, to January 31, 2020. Interventions Eligible patients received apatinib (500 mg orally once daily on days 1 to 21 and discontinued in the last cycle) plus SOX (S-1: 40-60 mg orally twice daily on days 1 to 14; oxaliplatin: 130 mg/m2 intravenously on day 1) every 3 weeks for 2 to 5 cycles. A D2 gastrectomy was performed 2 to 4 weeks after the last cycle. Main Outcomes and Measures The primary end point was R0 resection rate. Secondary end points were the response rate, toxic effects, and surgical outcome. Results A total of 48 patients (mean [SD] age, 63.2 [8.2] years; 37 men [77.1%]) were enrolled in this study. Forty patients underwent surgery (38 had gastrectomy, and 2 had exploratory laparotomy), with an R0 resection rate of 75.0% (95% CI, 60.4%-86.4%). The radiologic response rate was 75.0%, and T downstaging was observed in 16 of 44 patients (36.4%). The pathological response rate was 54.2% (95% CI, 39.2%-68.6%); moreover, this rate was significantly higher in patients who achieved a radiologic response compared with those who did not (12 [80.0%] vs 1 [20.0%]; P = .03) and in those who had an Eastern Cooperative Oncology Group Performance Status score of 0 (20 [76.9%] vs 10 [45.5%]; P = .03) or had tumors located in the upper one-third of the stomach (16 [61.5%] vs 7 [31.8%]; P = .04). Patients who achieved a pathological response (vs those who did not) had significantly less blood loss (median [range]: 60 [10-200] mL vs 80 [20-300] mL; P = .04) and significantly more lymph nodes harvested (median [range]: 40 [24-67] vs 32 [19-51]; P = .04) during surgery. Postoperative complications were observed in 7 of 38 patients (18.4%). Grade 3 toxic effects occurred in 16 of 48 patients (33.3%), and no grade 4 toxic effects or preoperative deaths were observed. Conclusions and Relevance This nonrandomized controlled trial found that apatinib combined with SOX was effective and had an acceptable safety profile as a neoadjuvant treatment for locally advanced GC. A large-scale randomized clinical trial may be needed to confirm the findings. Trial Registration ClinicalTrials.gov Identifier: NCT03192735.
Collapse
Affiliation(s)
- Jian-Xian Lin
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian Province, China
- Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, Fujian Province, China
| | - Yan-Chang Xu
- Department of Gastrointestinal Surgery, The First Hospital of Putian, Putian, Fujian Province, China
| | - Wei Lin
- Department of Gastrointestinal Surgery and Gastrointestinal Surgery Research Institute, The Affiliated Hospital of Putian University, Putian, Fujian Province, China
| | - Fang-Qin Xue
- Department of Gastrointestinal Surgery, Fujian Provincial Hospital, Fuzhou, Fujian Province, China
| | - Jian-Xin Ye
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian Province, China
| | - Wei-Dong Zang
- Department of Gastrointestinal Surgery, Fujian Provincial Cancer Hospital, Fuzhou, Fujian Province, China
| | - Li-Sheng Cai
- Department of General Surgery, Zhangzhou Affiliated Hospital of Fujian Medical University, Zhangzhou, Fujian Province, China
| | - Jun You
- Department of Gastrointestinal Oncology Surgery, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian Province, China
| | - Jian-Hua Xu
- Department of Oncology Surgery, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, China
| | - Jian-Chun Cai
- Department of Gastrointestinal Surgery, Zhongshan Hospital Affiliated to Xiamen University, Xiamen, Fujian Province, China
| | - Yi-Hui Tang
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian Province, China
| | - Jian-Wei Xie
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian Province, China
- Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, Fujian Province, China
| | - Ping Li
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian Province, China
- Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, Fujian Province, China
| | - Chao-Hui Zheng
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian Province, China
- Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, Fujian Province, China
| | - Chang-Ming Huang
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian Province, China
- Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, Fujian Province, China
| |
Collapse
|
53
|
Lin S, Liu T, Chen J, Li G, Dang J. Comparative efficacy of treatments for previously treated patients with advanced esophageal and esophagogastric junction cancer: A network meta-analysis. PLoS One 2021; 16:e0252751. [PMID: 34086780 PMCID: PMC8177625 DOI: 10.1371/journal.pone.0252751] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 05/21/2021] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND It remains unclear which treatment is the most effective for previously treated patients with advanced esophageal and esophagogastric junction (EGJ) cancer. We conducted a network meta-analysis to address this important issue. METHODS PubMed, Embase, Cochrane Library, and Web of Science databases were searched for relevant phase II and III randomized controlled trials (RCTs). Overall survival (OS) was the primary outcome of interest, which was reported as hazard ratio (HR) and 95% confidence intervals (CIs). RESULTS Sixteen RCTs involving 3372 patients and evaluating 15 treatments were included in this network meta-analysis. Ramucirumab+chemotherapy (CT) (HR = 0.52, 95% CI: 0.35-0.77) and use of programmed death receptor 1 (PD-1) inhibitors, including camrelizumab (HR = 0.71, 95% CI: 0.57-0.88), sintilimab (HR = 0.70, 95% CI: 0.50-0.98), nivolumab (HR = 0.76, 95% CI: 0.62-0.94), and pembrolizumab (HR = 0.84, 95% CI: 0.72-0.98), conferred better OS than CT; however, this OS benefit was not observed for PD-L1 inhibitor (avelumab) and other target agents (trastuzumab, everolimus, gefitinib, and anlotinib). In subgroup analysis, ramucirumab+CT and pembrolizumab showed significant improvement in OS, when compared to CT, in esophageal/EGJ adenocarcinoma (AC) cases; moreover, all PD-1 inhibitors had significant OS advantage over CT in treating esophageal squamous cell carcinoma (SCC). Based on treatment ranking in terms of OS, ramucirumab+CT and camrelizumab were ranked the best treatments for patients with AC and SCC, respectively. CONCLUSIONS Ramucirumab+CT and PD-1 inhibitors were superior to CT for previously treated cases of advanced esophageal/EGJ cancer. Ramucirumab+CT seemed to be the most effective treatment in patients with esophageal/EGJ AC, while use of PD-1 inhibitors, especially camrelizumab, was likely to be the optimal treatment in patients with esophageal SCC.
Collapse
Affiliation(s)
- Shuiyu Lin
- Department of Radiation Oncology, The First Hospital of China Medical University, Shenyang, China
| | - Tingting Liu
- Department of Radiation Oncology, Anshan Cancer Hospital, Anshan, China
| | - Jun Chen
- Department of Radiation Oncology, Shenyang Chest Hospital, Shenyang, China
| | - Guang Li
- Department of Radiation Oncology, The First Hospital of China Medical University, Shenyang, China
| | - Jun Dang
- Department of Radiation Oncology, The First Hospital of China Medical University, Shenyang, China
| |
Collapse
|
54
|
Martins WK, Silva MDND, Pandey K, Maejima I, Ramalho E, Olivon VC, Diniz SN, Grasso D. Autophagy-targeted therapy to modulate age-related diseases: Success, pitfalls, and new directions. CURRENT RESEARCH IN PHARMACOLOGY AND DRUG DISCOVERY 2021; 2:100033. [PMID: 34909664 PMCID: PMC8663935 DOI: 10.1016/j.crphar.2021.100033] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 04/15/2021] [Accepted: 05/02/2021] [Indexed: 02/08/2023] Open
Abstract
Autophagy is a critical metabolic process that supports homeostasis at a basal level and is dynamically regulated in response to various physiological and pathological processes. Autophagy has some etiologic implications that support certain pathological processes due to alterations in the lysosomal-degradative pathway. Some of the conditions related to autophagy play key roles in highly relevant human diseases, e.g., cardiovascular diseases (15.5%), malignant and other neoplasms (9.4%), and neurodegenerative conditions (3.7%). Despite advances in the discovery of new strategies to treat these age-related diseases, autophagy has emerged as a therapeutic option after preclinical and clinical studies. Here, we discuss the pitfalls and success in regulating autophagy initiation and its lysosome-dependent pathway to restore its homeostatic role and mediate therapeutic effects for cancer, neurodegenerative, and cardiac diseases. The main challenge for the development of autophagy regulators for clinical application is the lack of specificity of the repurposed drugs, due to the low pharmacological uniqueness of their target, including those that target the PI3K/AKT/mTOR and AMPK pathway. Then, future efforts must be conducted to deal with this scenery, including the disclosure of key components in the autophagy machinery that may intervene in its therapeutic regulation. Among all efforts, those focusing on the development of novel allosteric inhibitors against autophagy inducers, as well as those targeting autolysosomal function, and their integration into therapeutic regimens should remain a priority for the field.
Collapse
Affiliation(s)
- Waleska Kerllen Martins
- Laboratory of Cell and Membrane (LCM), Anhanguera University of São Paulo (UNIAN), Rua Raimundo Pereira de Magalhães, 3,305. Pirituba, São Paulo, 05145-200, Brazil
| | - Maryana do Nascimento da Silva
- Laboratory of Cell and Membrane (LCM), Anhanguera University of São Paulo (UNIAN), Rua Raimundo Pereira de Magalhães, 3,305. Pirituba, São Paulo, 05145-200, Brazil
| | - Kiran Pandey
- Center for Neural Science, New York University, Meyer Building, Room 823, 4 Washington Place, New York, NY, 10003, USA
| | - Ikuko Maejima
- Laboratory of Molecular Traffic, Institute for Molecular and Cellular Regulation, Gunma University, 3-39-15 Showa Machi, Maebashi, Gunma, 3718512, Japan
| | - Ercília Ramalho
- Laboratory of Cell and Membrane (LCM), Anhanguera University of São Paulo (UNIAN), Rua Raimundo Pereira de Magalhães, 3,305. Pirituba, São Paulo, 05145-200, Brazil
| | - Vania Claudia Olivon
- Laboratory of Pharmacology and Physiology, UNIDERP, Av. Ceará, 333. Vila Miguel Couto, Campo Grande, MS, 79003-010, Brazil
| | - Susana Nogueira Diniz
- Laboratory of Molecular Biology and Functional Genomics, Anhanguera University of São Paulo (UNIAN), Rua Raimundo Pereira de Magalhães, 3,305. Pirituba, São Paulo, 05145-200, Brazil
| | - Daniel Grasso
- Instituto de Estudios de la Inmunidad Humoral (IDEHU), Universidad de Buenos Aires, CONICET, Junín 954 p4, Buenos Aires, C1113AAD, Argentina
| |
Collapse
|
55
|
Nakamura Y, Shitara K, Lee J. The Right Treatment of the Right Patient: Integrating Genetic Profiling Into Clinical Decision Making in Advanced Gastric Cancer in Asia. Am Soc Clin Oncol Educ Book 2021; 41:1-8. [PMID: 34010049 DOI: 10.1200/edbk_321247] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Gastric cancer is a major global health burden, especially when patients are diagnosed with recurrent or metastatic gastric cancer. Despite recent advances in treatment options with palliative chemotherapy, the median overall survival of patients with gastric cancer remains within 1 or 2 years after the diagnosis of metastatic disease. Gastric cancer is significantly more prevalent in eastern Asia (e.g., Japan and Korea). Next-generation sequencing (NGS) is rapidly being adopted as part of clinical practice in Korea and Japan, especially in patients with gastric cancer. Approximately 10% to 15% of the patients with gastric cancer who undergo NGS of their tumor specimen are allocated to target-matched clinical trials in Japan and Korea. In Japan and Korea, a cell-free DNA NGS panel is also actively being investigated as an alternative NGS test for patients with gastric cancer, which may reflect the tumor heterogeneity of gastric cancer. In Japan and Korea, multiple biomarkers, such as HER2, mismatch repair, Epstein-Barr virus, PD-L1 (combined positive score), EGFR, FGFR2, and CLDN18.2, are routinely assessed through immunohistochemistry or in situ hybridization before initiation of the first-line treatment in all patients with gastric cancer. Most tertiary cancer centers in Korea routinely perform HER2, mismatch repair, Epstein-Barr virus, and PD-L1 NGS before palliative chemotherapy in patients with gastric cancer. Biomarker evaluation for all patients with metastatic gastric cancer enables clinicians to identify available biomarker-based clinical trials early during the course of treatment, which expands treatment opportunities while patients are medically fit for clinical trials, if available. Comprehensive genomic profiling using a tissue or circulating tumor DNA NGS panel is considered necessary during second-line or subsequent treatment. It is hoped that a comprehensive molecular profiling strategy will facilitate greater use of precision medicine through molecularly targeted therapies for patients with gastric cancer in the near future.
Collapse
Affiliation(s)
- Yoshiaki Nakamura
- Department of Gastroenterology and Gastrointestinal Oncology, National Cancer Center Hospital East, Kashiwa, Japan.,Translational Research Support Section, National Cancer Center Hospital East, Kashiwa, Japan
| | - Kohei Shitara
- Department of Gastroenterology and Gastrointestinal Oncology, National Cancer Center Hospital East, Kashiwa, Japan
| | - Jeeyun Lee
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea.,Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University, Suwon, Korea
| |
Collapse
|
56
|
Nishimura S, Yashiro M, Sera T, Yamamoto Y, Kushitani Y, Sugimoto A, Kushiyama S, Togano S, Kuroda K, Okuno T, Murakami Y, Ohira M. Serine threonine kinase 11/liver kinase B1 mutation in sporadic scirrhous-type gastric cancer cells. Carcinogenesis 2021; 41:1616-1623. [PMID: 32236518 DOI: 10.1093/carcin/bgaa031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 03/20/2020] [Accepted: 03/30/2020] [Indexed: 01/24/2023] Open
Abstract
Scirrhous-type gastric carcinoma (SGC), which is characterized by the rapid proliferation of cancer cells accompanied by extensive fibrosis, shows extremely poor survival. A reason for the poor prognosis of SGC is that the driver gene responsible for SGC has not been identified. To identify the characteristic driver gene of SGC, we examined the genomic landscape of six human SGC cell lines of OCUM-1, OCUM-2M, OCUM-8, OCUM-9, OCUM-12 and OCUM-14, using multiplex gene panel testing by next-generation sequencing. In this study, the non-synonymous mutations of serine threonine kinase 11/liver kinase B1 (STK11/LKB1) gene were detected in OCUM-12, OCUM-2M and OCUM-14 among the six SGC cell lines. Capillary sequencing analysis confirmed the non-sense or missense mutation of STK11/LKB1 in the three cell lines. Western blot analysis showed that LKB1 expression was decreased in OCUM-12 cells and OCUM-14 cells harboring STK11/LKB1 mutation. The mammalian target of rapamycin (mTOR) inhibitor significantly inhibited the proliferation of OCUM-12 and OCUM-14 cells. The correlations between STK11/LKB1 expression and clinicopathologic features of gastric cancer were examined using 708 primary gastric carcinomas by immunochemical study. The low STK11/LKB1 expression group was significantly associated with SGC, high invasion depth and frequent nodal involvement, in compared with the high STK11/LKB1 expression group. Collectively, our study demonstrated that STK11/LKB1 mutation might be responsible for the progression of SGC, and suggested that mTOR signaling by STK11/LKB1 mutation might be one of therapeutic targets for patients with SGC.
Collapse
Affiliation(s)
- Sadaaki Nishimura
- Molecular Oncology and Therapeutics, Osaka City University Graduate School of Medicine, Osaka, Japan.,Department of Gastroenterological Surgery, Osaka City University Graduate School of Medicine, Osaka, Japan.,Cancer Center for Translational Research, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Masakazu Yashiro
- Molecular Oncology and Therapeutics, Osaka City University Graduate School of Medicine, Osaka, Japan.,Department of Gastroenterological Surgery, Osaka City University Graduate School of Medicine, Osaka, Japan.,Cancer Center for Translational Research, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Tomohiro Sera
- Molecular Oncology and Therapeutics, Osaka City University Graduate School of Medicine, Osaka, Japan.,Department of Gastroenterological Surgery, Osaka City University Graduate School of Medicine, Osaka, Japan.,Cancer Center for Translational Research, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Yurie Yamamoto
- Department of Gastroenterological Surgery, Osaka City University Graduate School of Medicine, Osaka, Japan.,Cancer Center for Translational Research, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Yukako Kushitani
- Molecular Oncology and Therapeutics, Osaka City University Graduate School of Medicine, Osaka, Japan.,Department of Gastroenterological Surgery, Osaka City University Graduate School of Medicine, Osaka, Japan.,Cancer Center for Translational Research, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Atsushi Sugimoto
- Molecular Oncology and Therapeutics, Osaka City University Graduate School of Medicine, Osaka, Japan.,Department of Gastroenterological Surgery, Osaka City University Graduate School of Medicine, Osaka, Japan.,Cancer Center for Translational Research, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Shuhei Kushiyama
- Molecular Oncology and Therapeutics, Osaka City University Graduate School of Medicine, Osaka, Japan.,Department of Gastroenterological Surgery, Osaka City University Graduate School of Medicine, Osaka, Japan.,Cancer Center for Translational Research, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Shingo Togano
- Molecular Oncology and Therapeutics, Osaka City University Graduate School of Medicine, Osaka, Japan.,Department of Gastroenterological Surgery, Osaka City University Graduate School of Medicine, Osaka, Japan.,Cancer Center for Translational Research, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Kenji Kuroda
- Molecular Oncology and Therapeutics, Osaka City University Graduate School of Medicine, Osaka, Japan.,Department of Gastroenterological Surgery, Osaka City University Graduate School of Medicine, Osaka, Japan.,Cancer Center for Translational Research, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Tomohisa Okuno
- Molecular Oncology and Therapeutics, Osaka City University Graduate School of Medicine, Osaka, Japan.,Department of Gastroenterological Surgery, Osaka City University Graduate School of Medicine, Osaka, Japan.,Cancer Center for Translational Research, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Yoshiki Murakami
- Department of Molecular Pathology, Tokyo Medical University, Tokyo, Japan
| | - Masaichi Ohira
- Department of Gastroenterological Surgery, Osaka City University Graduate School of Medicine, Osaka, Japan
| |
Collapse
|
57
|
Turgeman I, Ben-Aharon I. Evolving treatment paradigms in esophageal cancer. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:903. [PMID: 34164537 PMCID: PMC8184467 DOI: 10.21037/atm.2020.03.110] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 02/28/2020] [Indexed: 12/23/2022]
Abstract
A heterogenous disease with a dismal prognosis, esophageal cancer poses a major health challenge worldwide. In recent years, the treatment landscape for esophageal adenocarcinoma and squamous cell carcinoma (SCC) has undergone major evolution, with the elucidation of underlying biologic pathways and predispositions. Neoadjuvant chemoradiation has emerged as a leading approach for the management of locoregional esophageal cancer, while perioperative chemotherapy has shown promising outcomes specifically in adenocarcinoma of the lower esophagus and gastroesophageal junction (GEJ). Studies also explore the implementation of chemoradiation in various sequential preoperative strategies, as well as in the adjuvant setting. Definitive chemoradiation is considered a valid alternative for non-surgical candidates with SCC. Clinical trials currently evaluating the potential benefits of different approaches may shed light on existing controversies regarding optimal management of locoregional disease. For patients with metastatic cancer, chemotherapy remains the backbone of antineoplastic treatment alongside palliative care, moreover the discovery of novel biological targets has led to the initiation of targeted and immune therapy for specific subpopulations. Taken together, an era of burgeoning clinical trials and changing paradigms has evolved in esophageal oncology. Multidisciplinary collaboration is key to effective combination and sequencing of treatment modalities tailored per patient and per tumor histology. This work aims to provide a comprehensive overview of state-of-the-art oncological management of esophageal cancer, with consideration of new challenges and obstacles to be overcome.
Collapse
Affiliation(s)
- Ilit Turgeman
- Division of Oncology, Rambam Health Care Campus, Haifa, Israel
| | - Irit Ben-Aharon
- Division of Oncology, Rambam Health Care Campus, Haifa, Israel
- Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
58
|
Mezynski MJ, Farrelly AM, Cremona M, Carr A, Morgan C, Workman J, Armstrong P, McAuley J, Madden S, Fay J, Sheehan KM, Kay EW, Holohan C, Elamin Y, Rafee S, Morris PG, Breathnach O, Grogan L, Hennessy BT, Toomey S. Targeting the PI3K and MAPK pathways to improve response to HER2-targeted therapies in HER2-positive gastric cancer. J Transl Med 2021; 19:184. [PMID: 33933113 PMCID: PMC8088633 DOI: 10.1186/s12967-021-02842-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 04/18/2021] [Indexed: 12/24/2022] Open
Abstract
Background Aberrant PI3K signalling is implicated in trastuzumab resistance in HER2-positive gastric cancer (GC). The role of PI3K or MEK inhibitors in sensitising HER2-positive GCs to trastuzumab or in overcoming trastuzumab resistance is unclear. Methods Using mass spectrometry-based genotyping we analysed 105 hotspot, non-synonymous somatic mutations in PIK3CA and ERBB-family (EGFR, ERBB2, ERBB3 and ERBB4) genes in gastric tumour samples from 69 patients. A panel of gastric cell lines (N87, OE19, ESO26, SNU16, KATOIII) were profiled for anti-proliferative response to the PI3K inhibitor copanlisib and the MEK1/2 inhibitor refametinib alone and in combination with anti-HER2 therapies. Results Patients with HER2-positive GC had significantly poorer overall survival compared to HER2-negative patients (15.9 months vs. 35.7 months). Mutations in PIK3CA were only identified in HER2-negative tumours, while ERBB-family mutations were identified in HER2-positive and HER2-negative tumours. Copanlisib had anti-proliferative effects in 4/5 cell lines, with IC50s ranging from 23.4 (N87) to 93.8 nM (SNU16). All HER2-positive cell lines except SNU16 were sensitive to lapatinib (IC50s 0.04 µM–1.5 µM). OE19 cells were resistant to trastuzumab. The combination of lapatinib and copanlisib was synergistic in ESO-26 and OE-19 cells (ED50: 0.83 ± 0.19 and 0.88 ± 0.13, respectively) and additive in NCI-N87 cells (ED50:1.01 ± 0.55). The combination of copanlisib and trastuzumab significantly improved growth inhibition compared to either therapy alone in NCI-N87, ESO26 and OE19 cells (p < 0.05). Conclusions PI3K or MEK inhibition alone or in combination with anti-HER2 therapy may represent an improved treatment strategy for some patients with HER2-positive GC, and warrants further investigation in a clinical trial setting. Supplementary Information The online version contains supplementary material available at 10.1186/s12967-021-02842-1.
Collapse
Affiliation(s)
- M Janusz Mezynski
- Medical Oncology Group, Department of Molecular Medicine, Royal College of Surgeons in Ireland, RCSI Smurfit Building, Beaumont Hospital, Dublin 9, Ireland
| | - Angela M Farrelly
- Medical Oncology Group, Department of Molecular Medicine, Royal College of Surgeons in Ireland, RCSI Smurfit Building, Beaumont Hospital, Dublin 9, Ireland
| | - Mattia Cremona
- Medical Oncology Group, Department of Molecular Medicine, Royal College of Surgeons in Ireland, RCSI Smurfit Building, Beaumont Hospital, Dublin 9, Ireland
| | - Aoife Carr
- Medical Oncology Group, Department of Molecular Medicine, Royal College of Surgeons in Ireland, RCSI Smurfit Building, Beaumont Hospital, Dublin 9, Ireland
| | - Clare Morgan
- Medical Oncology Group, Department of Molecular Medicine, Royal College of Surgeons in Ireland, RCSI Smurfit Building, Beaumont Hospital, Dublin 9, Ireland
| | - Julie Workman
- Medical Oncology Group, Department of Molecular Medicine, Royal College of Surgeons in Ireland, RCSI Smurfit Building, Beaumont Hospital, Dublin 9, Ireland
| | - Paul Armstrong
- Medical Oncology Group, Department of Molecular Medicine, Royal College of Surgeons in Ireland, RCSI Smurfit Building, Beaumont Hospital, Dublin 9, Ireland
| | - Jennifer McAuley
- Medical Oncology Group, Department of Molecular Medicine, Royal College of Surgeons in Ireland, RCSI Smurfit Building, Beaumont Hospital, Dublin 9, Ireland
| | - Stephen Madden
- Data Science Centre, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Joanna Fay
- Department of Histopathology, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Katherine M Sheehan
- Department of Histopathology, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Elaine W Kay
- Department of Histopathology, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Ciara Holohan
- Department of Medical Oncology, St. James's Hospital, Dublin, Ireland
| | - Yasir Elamin
- Medical Oncology Group, Department of Molecular Medicine, Royal College of Surgeons in Ireland, RCSI Smurfit Building, Beaumont Hospital, Dublin 9, Ireland
| | - Shereen Rafee
- Department of Medical Oncology, St. James's Hospital, Dublin, Ireland
| | - Patrick G Morris
- Department of Medical Oncology, Beaumont Hospital, Dublin, Ireland
| | - Oscar Breathnach
- Department of Medical Oncology, Beaumont Hospital, Dublin, Ireland
| | - Liam Grogan
- Department of Medical Oncology, Beaumont Hospital, Dublin, Ireland
| | - Bryan T Hennessy
- Medical Oncology Group, Department of Molecular Medicine, Royal College of Surgeons in Ireland, RCSI Smurfit Building, Beaumont Hospital, Dublin 9, Ireland.,Department of Medical Oncology, Beaumont Hospital, Dublin, Ireland
| | - Sinead Toomey
- Medical Oncology Group, Department of Molecular Medicine, Royal College of Surgeons in Ireland, RCSI Smurfit Building, Beaumont Hospital, Dublin 9, Ireland.
| |
Collapse
|
59
|
PTEN is a predictive biomarker of trastuzumab resistance and prognostic factor in HER2-overexpressing gastroesophageal adenocarcinoma. Sci Rep 2021; 11:9013. [PMID: 33907203 PMCID: PMC8079403 DOI: 10.1038/s41598-021-88331-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Accepted: 03/31/2021] [Indexed: 12/22/2022] Open
Abstract
Poor trastuzumab (Tmab) response of patients with human epidermal growth factor receptor 2-overexpressing gastric or gastroesophageal junction adenocarcinoma (HER2-GEA) is associated with the inhibition of phosphatase and tensin homolog (PTEN) expression. In this multicenter, retrospective observational study, pathological samples of patients with HER2-GEA receiving Tmab-combined chemotherapy were immunohistochemically analyzed for PTEN expression. The primary endpoints were disease control rate (DCR), progression-free survival (PFS), and overall survival (OS). We assessed the effect of conventional chemotherapy and Tmab alone or combined with PI3K pathway inhibitors in vitro in HER2-GEA cells with or without PTEN expression. Twenty-nine and 116 patients were in the PTEN-loss and PTEN-positive groups, respectively. In patients with the target region, DCR was significantly lower in PTEN-loss patients than in PTEN-positive patients (67% and 87%, respectively, p = 0.049). The multivariate analysis demonstrated that PTEN loss was significantly associated with shorter PFS (HR = 1.63, p = 0.035) and OS (HR = 1.83, p = 0.022). PTEN knockdown did not affect the cytostatic effect of 5-FU and cisplatin, whereas Tmab combined with the PI3K/mTOR inhibitor NPV-BEZ235 suppressed PTEN-knockdown cell proliferation. In patients with HER2-GEA, PTEN loss is a predictive biomarker of Tmab resistance and prognostic factor. Molecular-targeted therapy with a PI3K/mTOR inhibitor would be effective for HER2-GEA with PTEN loss.
Collapse
|
60
|
Bone Metastases from Gastric Cancer: What We Know and How to Deal with Them. J Clin Med 2021; 10:jcm10081777. [PMID: 33921760 PMCID: PMC8073984 DOI: 10.3390/jcm10081777] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 03/28/2021] [Accepted: 04/12/2021] [Indexed: 12/14/2022] Open
Abstract
Gastric cancer (GC) is the third cause of cancer-related death worldwide; the prognosis is poor especially in the case of metastatic disease. Liver, lymph nodes, peritoneum, and lung are the most frequent sites of metastases from GC; however, bone metastases from GC have been reported in the literature. Nevertheless, it is unclear how the metastatic sites may affect the prognosis. In particular, knowledge about the impact of bone metastases on GC patients’ outcome is scant, and this may be related to the rarity of bone lesions and/or their underestimation at the time of diagnosis. In fact, there is still a lack of specific recommendation for their detection at the diagnosis. Then, the majority of the evidences in this field came from retrospective analysis on very heterogeneous study populations. In this context, the aim of this narrative review is to delineate an overview about the evidences existing about bone metastases in GC patients, focusing on their incidence and biology, the prognostic role of bone involvement, and their possible implication in the treatment choice.
Collapse
|
61
|
Baghery Saghchy Khorasani A, Pourbagheri-Sigaroodi A, Pirsalehi A, Safaroghli-Azar A, Zali MR, Bashash D. The PI3K/Akt/mTOR signaling pathway in gastric cancer; from oncogenic variations to the possibilities for pharmacologic interventions. Eur J Pharmacol 2021; 898:173983. [PMID: 33647255 DOI: 10.1016/j.ejphar.2021.173983] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 02/13/2021] [Accepted: 02/23/2021] [Indexed: 12/24/2022]
Abstract
Genetic and epigenetic alterations have been under concentrated investigations for many years in order to unearth the molecules regulating human cancer pathogenesis. However, the identification of a wide range of dysregulated genes and their protein products has raised a question regarding how the results of this large collection of alterations could converge into a formation of one malignancy. The answer may be found in the signaling cascades that regulate the survival and metabolism of the cells. Aberrancies of each participant molecule of such cascades may well result in augmented viability and unlimited proliferation of cancer cells. Among various signaling pathways, the phosphatidylinositol-3-kinase (PI3K) axis has been shown to be activated in about one-third of human cancers. One of the malignancies that is mostly affected by this axis is gastric cancer (GC), one of the most fatal cancers worldwide. In the present review, we aimed to illustrate the significance of the PI3K/Akt/mTOR axis in the pathogenesis of GC and also provided a wide perspective about the application of the inhibitors of this axis in the therapeutic strategies of this malignancy.
Collapse
Affiliation(s)
| | - Atieh Pourbagheri-Sigaroodi
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ali Pirsalehi
- Department of Internal Medicine, School of Medicine, Ayatollah Taleghani Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ava Safaroghli-Azar
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Zali
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Davood Bashash
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
62
|
Molecular targeted treatment and drug delivery system for gastric cancer. J Cancer Res Clin Oncol 2021; 147:973-986. [PMID: 33550445 DOI: 10.1007/s00432-021-03520-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 01/10/2021] [Indexed: 12/24/2022]
Abstract
Gastric cancer is still a major cancer worldwide. The early diagnosis rate of gastric cancer in most high incidence countries is low. At present, the overall treatment effect of gastric cancer is poor, and the median overall survival remains low. Most of the patients with gastric cancer are in an advanced stage when diagnosed, and drug treatment has become the main means. Thus, new targeted drugs and therapeutic strategies are the hope of improving the therapeutic effect of gastric cancer. In this review, we summarize the new methods and advances of targeted therapy for gastric cancer, including novel molecular targeted therapeutic agents and drug delivery systems, with a major focus on the development of drug delivery systems (drug carriers and targeting peptides). Elaborating these new methods and advances will contribute to the management of gastric cancer.
Collapse
|
63
|
Rosenbaum MW, Gonzalez RS. Targeted therapy for upper gastrointestinal tract cancer: current and future prospects. Histopathology 2021; 78:148-161. [PMID: 33382497 DOI: 10.1111/his.14244] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Gastric and oesophageal carcinoma remain major causes of worldwide mortality and morbidity. Despite incredible progress in understanding tumour biology, few targeted treatment options have proved effective in prolonging survival, and adjuvant therapy is largely interchangeable in these carcinomas. Through large-scale sequencing by the Cancer Genome Atlas and the Asian Cancer Research Group, numerous potential molecular targets have been discovered. Of the approved targeted therapies for gastric and oesophageal cancer, pathologists play a role in patient selection for the majority of them. Trastuzumab has been approved as a first-line therapy in conjunction with standard treatment in adenocarcinomas with either 3+ HER2/neu expression by immunohistochemistry or ERBB2 amplification by FISH. PD-L1 immunohistochemistry showing a combined positive score of 1 or greater qualifies patients for third-line pembrolizumab therapy, and identification of microsatellite instability-high carcinomas may qualify patients for second-line pembrolizumab. Ramucirumab, targeting VEGFR2, has also been approved for second-line therapy in gastric carcinoma. Non-surgical therapy for gastrointestinal stromal tumours relies mainly upon tyrosine kinase inhibitors, while new targeted therapy options for neuroendocrine neoplasms have recently emerged. Potential future options for targeted therapy in all these malignancies are being investigated in clinical trials, as this review will discuss.
Collapse
Affiliation(s)
- Matthew W Rosenbaum
- Department of Pathology, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Raul S Gonzalez
- Department of Pathology, Beth Israel Deaconess Medical Center, Boston, MA, USA
| |
Collapse
|
64
|
Park S, Nam CM, Kim SG, Mun JE, Rha SY, Chung HC. Comparative efficacy and tolerability of third-line treatments for advanced gastric cancer: A systematic review with Bayesian network meta-analysis. Eur J Cancer 2020; 144:49-60. [PMID: 33338727 DOI: 10.1016/j.ejca.2020.10.030] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 10/11/2020] [Accepted: 10/20/2020] [Indexed: 12/31/2022]
Abstract
BACKGROUND The most effective agent for the third-line treatment of advanced/metastatic gastric cancer (AGC) has not yet been determined. The aim of this network meta-analysis is to compare the relative efficacy and tolerability of third-line treatments for AGC. MATERIALS AND METHODS We conducted a comprehensive literature review of randomised clinical trials (RCTs) using four electronic databases. Overall survival (OS), progression-free survival (PFS), objective response rate (ORR) and adverse events (AEs) were used as efficacy or tolerability outcomes. A Bayesian network meta-analysis with a random-effects model was used. RESULTS Seven RCTs involving 2601 patients and nine treatments were included. The results suggested that 1 mg/kg nivolumab (nivolumab1) + 3 mg/kg ipilimumab (ipilimumab3) (hazard ratio [HR] 0.59, 95% credible interval [Crl] 0.38-0.91) was the most effective treatment, followed by nivolumab (HR 0.63, 95% Crl 0.50-0.79), for prolonging OS. Regorafenib (HR 0.40, 95% Crl 0.28-0.58) was most likely to improve PFS, followed by apatinib (HR 0.45, 95% Crl 0.33-0.60). Nivolumab1 + ipilimumab3 and nivolumab were better at improving ORR, whereas nivolumab1 + ipilimumab3 had the highest toxicity based on the AEs. For benefit-risk ratio, nivolumab, apatinib or regorafenib appeared to be the best options. Chemotherapy or two different dose combinations of nivolumab and ipilimumab were ranked as the next options because of poor tolerability, despite good efficacy. CONCLUSION Immunotherapy (nivolumab) or antiangiogenic agents (regorafenib and apatinib) are associated with benefits for benefit-risk ratio as third-line monotherapy. This study might serve as a guideline to aid in the selection of third-line treatments for AGC.
Collapse
Affiliation(s)
- Sejung Park
- Department of Biostatistics and Computing, Yonsei University College of Medicine, Seoul, South Korea; Songdang Institute for Cancer Research, Yonsei University College of Medicine, Seoul, South Korea.
| | - Chung Mo Nam
- Department of Preventive Medicine, Yonsei University College of Medicine, Seoul, South Korea.
| | - Seul-Gi Kim
- Division of Medical Oncology, Department of Internal Medicine, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, South Korea.
| | - Ji Eun Mun
- Department of Biostatistics and Computing, Yonsei University College of Medicine, Seoul, South Korea.
| | - Sun Young Rha
- Songdang Institute for Cancer Research, Yonsei University College of Medicine, Seoul, South Korea; Division of Medical Oncology, Department of Internal Medicine, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, South Korea; Brain Korea 21 PLUS Project for Medical Sciences, Yonsei University College of Medicine, Seoul, South Korea.
| | - Hyun Cheol Chung
- Songdang Institute for Cancer Research, Yonsei University College of Medicine, Seoul, South Korea; Division of Medical Oncology, Department of Internal Medicine, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, South Korea.
| |
Collapse
|
65
|
Sexton RE, Al Hallak MN, Diab M, Azmi AS. Gastric cancer: a comprehensive review of current and future treatment strategies. Cancer Metastasis Rev 2020; 39:1179-1203. [PMID: 32894370 PMCID: PMC7680370 DOI: 10.1007/s10555-020-09925-3] [Citation(s) in RCA: 358] [Impact Index Per Article: 89.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 08/12/2020] [Indexed: 02/07/2023]
Abstract
Gastric cancer remains a major unmet clinical problem with over 1 million new cases worldwide. It is the fourth most commonly occurring cancer in men and the seventh most commonly occurring cancer in women. A major fraction of gastric cancer has been linked to variety of pathogenic infections including but not limited to Helicobacter pylori (H. pylori) or Epstein Barr virus (EBV). Strategies are being pursued to prevent gastric cancer development such as H. pylori eradication, which has helped to prevent significant proportion of gastric cancer. Today, treatments have helped to manage this disease and the 5-year survival for stage IA and IB tumors treated with surgery are between 60 and 80%. However, patients with stage III tumors undergoing surgery have a dismal 5-year survival rate between 18 and 50% depending on the dataset. These figures indicate the need for more effective molecularly driven treatment strategies. This review discusses the molecular profile of gastric tumors, the success, and challenges with available therapeutic targets along with newer biomarkers and emerging targets.
Collapse
Affiliation(s)
- Rachel E Sexton
- Department of Oncology, Karmanos Cancer Institute, Wayne State University School of Medicine, 4100 John R, HWCRC 732, Detroit, MI, 48201, USA
| | - Mohammed Najeeb Al Hallak
- Department of Oncology, Karmanos Cancer Institute, Wayne State University School of Medicine, 4100 John R, HWCRC 732, Detroit, MI, 48201, USA
| | - Maria Diab
- Department of Oncology, Karmanos Cancer Institute, Wayne State University School of Medicine, 4100 John R, HWCRC 732, Detroit, MI, 48201, USA
| | - Asfar S Azmi
- Department of Oncology, Karmanos Cancer Institute, Wayne State University School of Medicine, 4100 John R, HWCRC 732, Detroit, MI, 48201, USA.
| |
Collapse
|
66
|
Turnock S, Turton DR, Martins CD, Chesler L, Wilson TC, Gouverneur V, Smith G, Kramer-Marek G. 18F-meta-fluorobenzylguanidine ( 18F-mFBG) to monitor changes in norepinephrine transporter expression in response to therapeutic intervention in neuroblastoma models. Sci Rep 2020; 10:20918. [PMID: 33262374 PMCID: PMC7708446 DOI: 10.1038/s41598-020-77788-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 11/13/2020] [Indexed: 02/07/2023] Open
Abstract
Targeted radiotherapy with 131I-mIBG, a substrate of the human norepinephrine transporter (NET-1), shows promising responses in heavily pre-treated neuroblastoma (NB) patients. Combinatorial approaches that enhance 131I-mIBG tumour uptake are of substantial clinical interest but biomarkers of response are needed. Here, we investigate the potential of 18F-mFBG, a positron emission tomography (PET) analogue of the 123I-mIBG radiotracer, to quantify NET-1 expression levels in mouse models of NB following treatment with AZD2014, a dual mTOR inhibitor. The response to AZD2014 treatment was evaluated in MYCN amplified NB cell lines (Kelly and SK-N-BE(2)C) by Western blot (WB) and immunohistochemistry. PET quantification of 18F-mFBG uptake post-treatment in vivo was performed, and data correlated with NET-1 protein levels measured ex vivo. Following 72 h AZD2014 treatment, in vitro WB analysis indicated decreased mTOR signalling and enhanced NET-1 expression in both cell lines, and 18F-mFBG revealed a concentration-dependent increase in NET-1 function. AZD2014 treatment failed however to inhibit mTOR signalling in vivo and did not significantly modulate intratumoural NET-1 activity. Image analysis of 18F-mFBG PET data showed correlation to tumour NET-1 protein expression, while further studies are needed to elucidate whether NET-1 upregulation induced by blocking mTOR might be a useful adjunct to 131I-mIBG therapy.
Collapse
Affiliation(s)
- Stephen Turnock
- Preclinical Molecular Imaging, Division of Radiotherapy and Imaging, The Institute of Cancer Research, 123 Old Brompton Road, London, SW7 3RP, UK
| | - David R Turton
- PET Radiochemistry, Division of Radiotherapy and Imaging, The Institute of Cancer Research, 123 Old Brompton Road, London, SW7 3RP, UK
| | - Carlos Daniel Martins
- Preclinical Molecular Imaging, Division of Radiotherapy and Imaging, The Institute of Cancer Research, 123 Old Brompton Road, London, SW7 3RP, UK
| | - Louis Chesler
- Division of Clinical Studies, The Institute of Cancer Research, 123 Old Brompton Road, London, SW7 3RP, UK
| | - Thomas C Wilson
- Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, UK
| | - Véronique Gouverneur
- Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, UK
| | - Graham Smith
- PET Radiochemistry, Division of Radiotherapy and Imaging, The Institute of Cancer Research, 123 Old Brompton Road, London, SW7 3RP, UK
| | - Gabriela Kramer-Marek
- Preclinical Molecular Imaging, Division of Radiotherapy and Imaging, The Institute of Cancer Research, 123 Old Brompton Road, London, SW7 3RP, UK.
| |
Collapse
|
67
|
Serra O, Smyth EC, Lordick F. Progress and challenges in gastroesophageal cancer. Curr Probl Cancer 2020; 44:100590. [DOI: 10.1016/j.currproblcancer.2020.100590] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 04/20/2020] [Indexed: 12/29/2022]
|
68
|
Tomita Y, Moldovan M, Chang Lee R, Hsieh AH, Townsend A, Price T. Salvage systemic therapy for advanced gastric and oesophago-gastric junction adenocarcinoma. Cochrane Database Syst Rev 2020; 11:CD012078. [PMID: 33210731 PMCID: PMC8094513 DOI: 10.1002/14651858.cd012078.pub2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
BACKGROUND Salvage systemic therapy has become the new standard of care in patients with advanced gastric and oesophago-gastric junction (OGJ) adenocarcinoma, following disease progression on first-line fluoropyrimidine and platinum-containing chemotherapy. Pharmacological agents proven to be effective in this setting include both chemotherapy and biological therapy, however, the consensus on the best salvage systemic therapy has not been reached. OBJECTIVES To assess the effects of systemic chemotherapy and biological therapy, either alone or in combination, on overall survival (OS) and progression-free survival (PFS) in patients with advanced gastric and OGJ adenocarcinoma, whose disease has progressed on, or relapsed after first-line fluoropyrimidine and platinum-containing chemotherapy. Adverse events (AEs), tumour response rate (TRR) and quality of life (QoL) associated with systemic chemotherapy and/or biological therapy were additionally assessed. SEARCH METHODS We searched the Cochrane Central Register of Controlled Trials (CENTRAL), MEDLINE, EMBASE, trial registries and proceedings of the major oncology conferences up to October 2020. We additionally handsearched the reference lists of studies. No language restriction was applied. SELECTION CRITERIA We included randomised controlled trials (RCTs) comparing salvage systemic therapy (chemotherapy and/or biological therapy) and either another type of salvage systemic therapy, placebo, best supportive care (BSC) or no treatment in patients with gastric and OGJ adenocarcinoma refractory to first-line fluoropyrimidine and platinum-containing chemotherapy. DATA COLLECTION AND ANALYSIS Two review authors independently performed selection of eligible studies and the primary author extracted study characteristics and outcome data from included studies. We assessed the quality and risk of bias of eligible studies according to the Cochrane Handbook for Systematic Reviews of Interventions. We expressed pooled estimates of effect using hazard ratio (HR) calculated using an inverse variance random-effects model for time-to-event data, and risk ratio (RR) calculated using Mantel-Haenszel random-effects model for binary data. The certainty of evidence was graded using GRADEpro. MAIN RESULTS We identified 17 RCTs with 5110 participants for inclusion in this review. Tweenty-nine studies are ongoing and twenty studies are awaiting classification. No studies examined the following comparisons: chemotherapy combined with biological therapy versus placebo, BSC or no treatment, chemotherapy combined with biological therapy versus biological therapy, biological therapy versus biological therapy and chemotherapy combined with biological therapy versus chemotherapy combined with biological therapy. Chemotherapy versus placebo, best supportive care or no treatment Chemotherapy probably improves OS (HR = 0.66, 95% CI 0.52 to 0.83, moderate-certainty evidence) based on two studies involving 547 participants and improves PFS (HR = 0.57, 95% CI 0.47 to 0.69, high-certainty evidence) based on one study involving 507 participants over placebo and BSC. Chemotherapy probably increases serious AEs (SAEs) (RR = 1.38, 95% CI 1.20 to 1.59, moderate-certainty evidence) based on one study involving 503 participants. Biological therapy versus placebo, best supportive care or no treatment Biological therapy improves OS (HR = 0.55, 95% CI 0.41 to 0.73, high-certainty evidence) and probably improves PFS (HR = 0.33, 95% CI 0.19 to 0.57, moderate-certainty evidence) over placebo based on three studies involving 781 participants. There is currently insufficient evidence for increased SAEs from biological therapy (RR = 1.14, 95% CI 0.95 to 1.37, low-certainty evidence) based on two studies involving 638 participants. Chemotherapy versus biological therapy This comparison only considered immunotherapy. There is probably no evidence of a difference for OS (HR = 0.82, 95% CI 0.66 to 1.02, moderate-certainty evidence) between chemotherapy and immunotherapy, and immunotherapy probably reduces PFS (HR = 1.27, 95% CI 1.03 to 1.57, moderate-certainty evidence) based on one study involving 395 participants. SAEs may be less frequent with immunotherapy compared to chemotherapy (RR = 0.41, 95% CI 0.30 to 0.57, low-certainty evidence). Chemotherapy combined with biological therapy versus chemotherapy Addition of biological therapy to chemotherapy probably does not improve OS (HR = 0.93, 95% CI 0.83 to 1.04, moderate-certainty evidence) and we are uncertain whether it improves PFS (HR = 0.87, 95% CI 0.74 to 1.02, very low-certainty evidence) based on seven studies involving 2743 participants. We are similarly uncertain whether combined chemotherapy and biological therapy increases SAEs (RR = 1.17, 95% CI 0.95 to 1.44, very low-certainty evidence) based on four studies involving 1618 participants. Chemotherapy versus chemotherapy There is no evidence of a difference for OS and PFS between irinotecan and paclitaxel (HR = 1.13, 95% CI 0.86 to 1.48, low-certainty evidence for OS; HR = 1.14, 95% CI 0.88 to 1.48, low-certainty evidence for PFS) based on one study involving 219 participants. Similarly, there is no evidence to indicate improved OS and PFS from addition of another chemotherapy to docetaxel (HR = 1.05, 95% CI 0.72 to 1.54, low-certainty evidence for OS; HR = 0.75, 95% CI 0.52 to 1.09, low-certainty evidence for PFS) based on two studies involving 121 participants. Grade ≥ 3 neutropenia occurred commonly with both mono- and poly-chemotherapy except for docetaxel-S1 and EOX chemotherapy. AUTHORS' CONCLUSIONS Survival outcome of patients with advanced gastric and OGJ adenocarcinoma whose disease progressed on first-line fluoropyrimidine and platinum-containing chemotherapy can be improved by chemotherapy and biological therapy. Biological therapy, in particular, achieves this without clear increase in SAEs or QoL impairment. Whether biological therapy is preferred over chemotherapy is still unclear and there is no evidence of a difference for OS outcome, although immunotherapy may be associated with less SAEs. Addition of biological therapy to chemotherapy and poly-chemotherapy are associated with frequent treatment-related toxicity without clear survival benefit.
Collapse
Affiliation(s)
- Yoko Tomita
- Medical Oncology, The Queen Elizabeth Hospital and University of Adelaide, Woodville, Adelaide, Australia
| | - Max Moldovan
- South Australian Health and Medical Research Institute, Adelaide, Australia
| | - Rachael Chang Lee
- Department of Medical Oncology, Adelaide Cancer Centre, Windsor Gardens, Australia
| | - Amy Hc Hsieh
- Medical Oncology, The Queen Elizabeth Hospital and University of Adelaide, Woodville, Adelaide, Australia
| | - Amanda Townsend
- Medical Oncology, The Queen Elizabeth Hospital and University of Adelaide, Woodville, Adelaide, Australia
| | - Timothy Price
- Medical Oncology, The Queen Elizabeth Hospital and University of Adelaide, Woodville, Adelaide, Australia
| |
Collapse
|
69
|
Ignatova E, Seriak D, Fedyanin M, Tryakin A, Pokataev I, Menshikova S, Vakhabova Y, Smirnova K, Tjulandin S, Ajani JA. Epstein-Barr virus-associated gastric cancer: disease that requires special approach. Gastric Cancer 2020; 23:951-960. [PMID: 32514646 DOI: 10.1007/s10120-020-01095-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 06/01/2020] [Indexed: 02/07/2023]
Abstract
Epstein-Barr virus-associated gastric cancer [EBV-associated GC, EBV( +) GC] is a distinct molecular subtype of gastrointestinal (GI) cancers. It accounts for up to 10% of all molecular subtypes of gastric cancer (GC). It has unique genetic and epigenetic features, which determine its definitive phenotype with male and younger age predominance, proximal stomach localization, and diffuse adenocarcinoma histology. EBV( +) GC also has a unique epigenetic profile and mutational status with frequent mutations of PIK3CA, ARID1A and BCOR, and PD-L1 and PD-L2 amplifications, as well. The aim of this review is to highlight clinical significance of EBV( +) GC and prognostic role of EBV infection, and to determine potentially appropriate drug therapy for this disease.
Collapse
Affiliation(s)
- Ekaterina Ignatova
- Department of Clinical Pharmacology and Chemotherapy, Federal State Budgetary Institution «N.N. Blokhin National Medical Research Center of Oncology» of the Ministry of Health of the Russian Federation, 24, Kashirskoye shosse, Moscow, Russian Federation.
| | - Daria Seriak
- Federal State Autonomous Educational Institution of Higher Education I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), Moscow, Russian Federation
| | - Mikhail Fedyanin
- Department of Clinical Pharmacology and Chemotherapy, Federal State Budgetary Institution «N.N. Blokhin National Medical Research Center of Oncology» of the Ministry of Health of the Russian Federation, 24, Kashirskoye shosse, Moscow, Russian Federation
| | - Alexey Tryakin
- Department of Clinical Pharmacology and Chemotherapy, Federal State Budgetary Institution «N.N. Blokhin National Medical Research Center of Oncology» of the Ministry of Health of the Russian Federation, 24, Kashirskoye shosse, Moscow, Russian Federation
| | - Ilya Pokataev
- Department of Clinical Pharmacology and Chemotherapy, Federal State Budgetary Institution «N.N. Blokhin National Medical Research Center of Oncology» of the Ministry of Health of the Russian Federation, 24, Kashirskoye shosse, Moscow, Russian Federation
| | - Sofia Menshikova
- Department of Anticancer Drug Treatment, AO K31 City, Moscow, Russian Federation
| | - Yuliya Vakhabova
- Chemotherapy Department of Tumors Drug Treatment, Moscow Scientific Research Oncological Institution N.a. P.A. Herzen, Branch of Federal State Budgetary Institution "National Medical Research Center of Radiology" of Ministry of Healthcare of Russian Federation, Moscow, Russian Federation
| | - Ksenia Smirnova
- Laboratory of Viral Carcinogenesis, Federal State Budgetary Institution «N.N. Blokhin National Medical Research Center of Oncology» of the Ministry of Health of the Russian Federation, Moscow, Russian Federation
| | - Sergey Tjulandin
- Department of Clinical Pharmacology and Chemotherapy, Federal State Budgetary Institution «N.N. Blokhin National Medical Research Center of Oncology» of the Ministry of Health of the Russian Federation, 24, Kashirskoye shosse, Moscow, Russian Federation
| | - Jaffer A Ajani
- Department of Gastrointestinal Medical Oncology, University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX, 77030, USA
| |
Collapse
|
70
|
Khalafi S, Lockhart AC, Livingstone AS, El-Rifai W. Targeted Molecular Therapies in the Treatment of Esophageal Adenocarcinoma, Are We There Yet? Cancers (Basel) 2020; 12:E3077. [PMID: 33105560 PMCID: PMC7690268 DOI: 10.3390/cancers12113077] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 10/14/2020] [Accepted: 10/20/2020] [Indexed: 02/07/2023] Open
Abstract
Esophageal adenocarcinoma is one of the leading causes of cancer-related deaths worldwide. The incidence of esophageal adenocarcinoma has increased at an alarming rate in the Western world and long-term survival remains poor. Current treatment approaches involve a combination of surgery, chemotherapy, and radiotherapy. Unfortunately, standard first-line approaches are met with high rates of recurrence and metastasis. More recent investigations into the distinct molecular composition of these tumors have uncovered key genetic and epigenetic alterations involved in tumorigenesis and progression. These discoveries have driven the development of targeted therapeutic agents in esophageal adenocarcinoma. While many agents have been studied, therapeutics targeting the human epidermal growth factor receptor (HER2) and vascular endothelial growth factor (VEGF) pathways have demonstrated improved survival. More recent advances in immunotherapies have also demonstrated survival advantages with monoclonal antibodies targeting the programmed death ligand 1 (PD-L1). In this review we highlight recent advances of targeted therapies, specifically agents targeting receptor tyrosine kinases, small molecule kinase inhibitors, and immune checkpoint inhibitors. While targeted therapeutics and immunotherapies have significantly improved survival, the benefits are limited to patients whose tumors express biomarkers such as PD-L1 and HER2. Survival remains poor for the remainder of patients with esophageal adenocarcinoma, underscoring the critical need for development of novel treatment strategies.
Collapse
Affiliation(s)
- Shayan Khalafi
- Department of Surgery, Miler School of Medicine, University of Miami, Miami, FL 33136, USA; (S.K.); (A.S.L.)
| | - Albert Craig Lockhart
- Department of Medicine, Miler School of Medicine, University of Miami, Miami, FL 33136, USA;
- Sylvester Comprehensive Cancer Center, Miler School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Alan S. Livingstone
- Department of Surgery, Miler School of Medicine, University of Miami, Miami, FL 33136, USA; (S.K.); (A.S.L.)
| | - Wael El-Rifai
- Department of Surgery, Miler School of Medicine, University of Miami, Miami, FL 33136, USA; (S.K.); (A.S.L.)
- Department of Medicine, Miler School of Medicine, University of Miami, Miami, FL 33136, USA;
- Department of Veterans Affairs, Miami Healthcare System, Miami, FL 33136, USA
| |
Collapse
|
71
|
Tamai T, Kaneko M, Narukawa M. Comparison of efficacy outcomes of anticancer drugs between Japanese patients and the overall population. Int J Clin Oncol 2020; 26:296-304. [PMID: 33057897 DOI: 10.1007/s10147-020-01804-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 10/02/2020] [Indexed: 10/23/2022]
Abstract
BACKGROUND It is important to recognize regional and racial differences in drug efficacy and safety when performing multi-regional clinical trials (MRCTs). To understand regional differences, we compared the efficacy results in Japanese patients and the overall population in the MRCTs of anticancer drugs. METHODS All new approvals of oncology drugs in Japan from January 2009 to December 2018 were searched using the Pharmaceuticals and Medical Devices Agency web site to find phase 3 MRCTs for the analysis. As the supporting data source, a literature search was performed in PubMed and Google Scholar. Linear regression analysis was performed and Pearson correlation coefficients (r) were calculated to compare the overall survival (OS), progression-free survival (PFS), and objective response rate (ORR) between Japanese patients and the overall population. RESULTS Seventy MRCTs were identified. The correlation of hazard ratios (HRs) for OS between Japanese patients and the overall population was moderate (r = 0.45), and OS was 1.31 times longer in Japanese patients than in the overall population, although the correlation of median OS was strong (r = 0.91). The HRs for PFS were moderately correlated (r = 0.70) and the correlation of median PFS was strong (r = 0.90). The correlation of ORR was very strong (r = 0.96). CONCLUSION The PFS and ORR were consistent between Japanese patients and the overall population. A longer median OS was observed in Japanese patients. Our results would be a useful reference when planning and conducting MRCTs that include Japan for global simultaneous drug development.
Collapse
Affiliation(s)
- Toshiyuki Tamai
- School of Pharmacy, Kitasato University, 5-9-1, Shirogane, Minato-ku, Tokyo, 108-8641, Japan.
| | - Masayuki Kaneko
- School of Pharmacy, Kitasato University, 5-9-1, Shirogane, Minato-ku, Tokyo, 108-8641, Japan
| | - Mamoru Narukawa
- School of Pharmacy, Kitasato University, 5-9-1, Shirogane, Minato-ku, Tokyo, 108-8641, Japan
| |
Collapse
|
72
|
Sun Y, Li S, Yu W, Zhao Z, Gao J, Chen C, Wei M, Liu T, Li L, Liu L. N 6-methyladenosine-dependent pri-miR-17-92 maturation suppresses PTEN/TMEM127 and promotes sensitivity to everolimus in gastric cancer. Cell Death Dis 2020; 11:836. [PMID: 33037176 PMCID: PMC7547657 DOI: 10.1038/s41419-020-03049-w] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 09/21/2020] [Accepted: 09/23/2020] [Indexed: 12/13/2022]
Abstract
N6-methyladenosine (m6A) is the most common epigenetic RNA modification with essential roles in cancer progression. However, roles of m6A and its regulator METTL3 on non-coding RNA in gastric cancer are unknown. In this study, we found elevated levels of m6A and METTL3 in gastric cancer. Increased METTL3 expression indicated poor outcomes of patients and high malignancy in vitro and in vivo. Mechanically, m6A facilitated processing of pri-miR-17-92 into the miR-17-92 cluster through an m6A/DGCR8-dependent mechanism. The m6A modification that mediated this process occurred on the A879 locus of pri-miR-17-92. The miR-17-92 cluster activated the AKT/mTOR pathway by targeting PTEN or TMEM127. Compared with those with low levels of METTL3, METTL3-high tumors showed preferred sensitivity to an mTOR inhibitor, everolimus. These results reveal a perspective on epigenetic regulations of non-coding RNA in gastric cancer progression and provide a theoretical rationale for use of everolimus in the treatment of m6A/METTL3-high gastric cancer.
Collapse
Affiliation(s)
- Yiting Sun
- Department of Medical Oncology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China.,Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100021, China
| | - Song Li
- Department of Medical Oncology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Wenbin Yu
- Department of General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Zeyi Zhao
- Department of Medical Oncology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Jing Gao
- Department of Medical Oncology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Cheng Chen
- Department of General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Meng Wei
- Department of General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Teng Liu
- Department of General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Lanbo Li
- Animal Laboratory, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Lian Liu
- Department of Medical Oncology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China.
| |
Collapse
|
73
|
Precision Medicine to Treat Advanced Gastroesophageal Adenocarcinoma: A Work in Progress. J Clin Med 2020; 9:jcm9093049. [PMID: 32971757 PMCID: PMC7564841 DOI: 10.3390/jcm9093049] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 09/11/2020] [Accepted: 09/14/2020] [Indexed: 12/20/2022] Open
Abstract
Gastroesophageal adenocarcinoma (GEA) represents a heterogeneous disease and, when diagnosed as locally advanced or metastatic, it is characterized by poor prognosis. During the last few years, several molecular classifications have been proposed to try to personalize treatment for those patients diagnosed with advanced disease. Nevertheless, despite the great effort, precision medicine is still far from being a reality. The improvement in the molecular analysis due to the application of high throughput technologies based on DNA and RNA sequencing has opened a novel scenario leading to the personalization of treatment. The possibility to target epidermal growth factor receptor (HER)2, Claudine, Fibroblast Growth Factor Receptors (FGFR), and other alterations with a molecular matched therapy could significantly improve clinical outcomes over advanced gastric cancer patients. On the other hand, the development of immunotherapy could also represent a promising strategy in a selected population. In this review, we sought to describe the novel pathways implicated in GEA progression and the results of the molecular matched therapies.
Collapse
|
74
|
Kong N, Tao W, Ling X, Wang J, Xiao Y, Shi S, Ji X, Shajii A, Gan ST, Kim NY, Duda DG, Xie T, Farokhzad OC, Shi J. Synthetic mRNA nanoparticle-mediated restoration of p53 tumor suppressor sensitizes p53-deficient cancers to mTOR inhibition. Sci Transl Med 2020; 11:11/523/eaaw1565. [PMID: 31852795 DOI: 10.1126/scitranslmed.aaw1565] [Citation(s) in RCA: 158] [Impact Index Per Article: 39.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Revised: 08/23/2019] [Accepted: 11/20/2019] [Indexed: 12/22/2022]
Abstract
Loss of function in tumor suppressor genes is commonly associated with the onset/progression of cancer and treatment resistance. The p53 tumor suppressor gene, a master regulator of diverse cellular pathways, is frequently altered in various cancers, for example, in ~36% of hepatocellular carcinomas (HCCs) and ~68% of non-small cell lung cancers (NSCLCs). Current methods for restoration of p53 expression, including small molecules and DNA therapies, have yielded progressive success, but each has formidable drawbacks. Here, a redox-responsive nanoparticle (NP) platform is engineered for effective delivery of p53-encoding synthetic messenger RNA (mRNA). We demonstrate that the synthetic p53-mRNA NPs markedly delay the growth of p53-null HCC and NSCLC cells by inducing cell cycle arrest and apoptosis. We also reveal that p53 restoration markedly improves the sensitivity of these tumor cells to everolimus, a mammalian target of rapamycin (mTOR) inhibitor that failed to show clinical benefits in advanced HCC and NSCLC. Moreover, cotargeting of tumor-suppressing p53 and tumorigenic mTOR signaling pathways results in marked antitumor effects in vitro and in multiple animal models of HCC and NSCLC. Our findings indicate that restoration of tumor suppressors by the synthetic mRNA NP delivery strategy could be combined together with other therapies for potent combinatorial cancer treatment.
Collapse
Affiliation(s)
- Na Kong
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.,School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Wei Tao
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| | - Xiang Ling
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Junqing Wang
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Yuling Xiao
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Sanjun Shi
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Xiaoyuan Ji
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.,Department of Cancer Pharmacology, Holistic Integrative Pharmacy Institutes, College of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Aram Shajii
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Silvia Tian Gan
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.,Department of Biology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Na Yoon Kim
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Dan G Duda
- Steele Laboratories for Tumor Biology, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Tian Xie
- Department of Cancer Pharmacology, Holistic Integrative Pharmacy Institutes, College of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China.
| | - Omid C Farokhzad
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA. .,King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Jinjun Shi
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
75
|
Chen Y, Zhou X. Research progress of mTOR inhibitors. Eur J Med Chem 2020; 208:112820. [PMID: 32966896 DOI: 10.1016/j.ejmech.2020.112820] [Citation(s) in RCA: 114] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 08/16/2020] [Accepted: 09/03/2020] [Indexed: 12/25/2022]
Abstract
Mammalian target of rapamycin (mTOR) is a highly conserved Serine/Threonine (Ser/Thr) protein kinase, which belongs to phosphatidylinositol-3-kinase-related kinase (PIKK) protein family. mTOR exists as two types of protein complex: mTORC1 and mTORC2, which act as central controller regulating processes of cell metabolism, growth, proliferation, survival and autophagy. The mTOR inhibitors block mTOR signaling pathway, producing anti-inflammatory, anti-proliferative, autophagy and apoptosis induction effects, thus mTOR inhibitors are mainly used in cancer therapy. At present, mTOR inhibitors are divided into four categories: Antibiotic allosteric mTOR inhibitors (first generation), ATP-competitive mTOR inhibitors (second generation), mTOR/PI3K dual inhibitors (second generation) and other new mTOR inhibitors (third generation). In this article, these four categories of mTOR inhibitors and their structures, properties and some clinical researches will be introduced. Among them, we focus on the structure of mTOR inhibitors and try to analyze the structure-activity relationship. mTOR inhibitors are classified according to their chemical structure and their contents are introduced systematically. Moreover, some natural products that have direct or indirect mTOR inhibitory activities are introduced together. In this article, we analyzed the target, binding mode and structure-activity relationship of each generation of mTOR inhibitors and proposed two hypothetic scaffolds (the inverted-Y-shape scaffold and the C-shape scaffold) for the second generation of mTOR inhibitors. These findings may provide some help or reference for drug designing, drug modification or the future development of mTOR inhibitor.
Collapse
Affiliation(s)
- Yifan Chen
- School of Pharmaceutical Sciences, Jilin University, Changchun, 130021, China
| | - Xiaoping Zhou
- School of Pharmaceutical Sciences, Jilin University, Changchun, 130021, China.
| |
Collapse
|
76
|
Parisi A, Porzio G, Ficorella C. Multimodality Treatment in Metastatic Gastric Cancer: From Past to Next Future. Cancers (Basel) 2020; 12:E2598. [PMID: 32932914 PMCID: PMC7563615 DOI: 10.3390/cancers12092598] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 09/01/2020] [Accepted: 09/09/2020] [Indexed: 02/07/2023] Open
Abstract
Gastric cancer (GC) still remains an incurable disease in almost two-thirds of the cases. However, a deeper knowledge of its biology in the last few years has revealed potential biomarkers suitable for tailored treatment with targeted agents. This aspect, together with the improvement in early supportive care and a wiser use of the available cytotoxic drugs across multiple lines of treatment, has resulted in incremental and progressive survival benefits. Furthermore, slowly but surely, targeted therapies and immune checkpoint inhibitors are revising the therapeutic scenario even in metastatic GC and especially in particular subgroups. Moreover, important study results regarding the possible role of an integrated approach combining systemic, surgical, and locoregional treatment in carefully selected oligometastatic GC patients are awaited. This review summarizes the state-of-the-art and the major ongoing trials involving a multimodal treatment of metastatic GC.
Collapse
Affiliation(s)
- Alessandro Parisi
- Medical Oncology, St. Salvatore Hospital, University of L’Aquila, 67100 L’Aquila, Italy; (G.P.); (C.F.)
- Department of Biotechnology and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy
| | - Giampiero Porzio
- Medical Oncology, St. Salvatore Hospital, University of L’Aquila, 67100 L’Aquila, Italy; (G.P.); (C.F.)
- Department of Biotechnology and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy
| | - Corrado Ficorella
- Medical Oncology, St. Salvatore Hospital, University of L’Aquila, 67100 L’Aquila, Italy; (G.P.); (C.F.)
- Department of Biotechnology and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy
| |
Collapse
|
77
|
Hsu A, Zayac AS, Eturi A, Almhanna K. Treatment for metastatic adenocarcinoma of the stomach and gastroesophageal junction: 2020. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:1109. [PMID: 33145328 PMCID: PMC7575962 DOI: 10.21037/atm-20-1159] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Accepted: 05/13/2020] [Indexed: 12/18/2022]
Abstract
Gastric and gastroesophageal junction (GEJ) cancer is one of the most common malignancy worldwide. In unresectable or metastatic disease, the prognosis is poor and is generally less than a year. Standard front-line chemotherapy includes two- or three-drug regimens with the addition of trastuzumab in HER2-positive disease. With an increased understanding of the biology of cancer over the past few decades, targeted therapies have made their way into the treatment paradigm of many cancers. They been examined in the first- and second-line settings in the treatment of gastroesophageal cancer though has yielded few viable treatment options. One success is ramucirumab either as monotherapy or in combination with paclitaxel is the preferred choice in second-line therapy. While immunotherapy has been considered a breakthrough in oncology over the past decade, the response rates in gastric and gastroesophageal cancers have been relatively low compared to other cancers, resulting in its limited approval and mostly reserved for second-line therapy or beyond. In this article, we will review the standard first- and second-line treatment regimens. Furthermore, this article will review the use of targeted therapies and immunotherapy in treatment of gastric and gastroesophageal cancers. Lastly, we will touch upon future treatment strategies that are currently under investigation.
Collapse
Affiliation(s)
- Andrew Hsu
- Division of Hematology/Oncology, The Warren Alpert Medical School of Brown University, Lifespan Cancer Institute, Rhode Island Hospital, Providence, RI, USA
| | - Adam S. Zayac
- Division of Hematology/Oncology, The Warren Alpert Medical School of Brown University, Lifespan Cancer Institute, Rhode Island Hospital, Providence, RI, USA
| | - Aditya Eturi
- Department of Medicine, The Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Khaldoun Almhanna
- Division of Hematology/Oncology, The Warren Alpert Medical School of Brown University, Lifespan Cancer Institute, Rhode Island Hospital, Providence, RI, USA
| |
Collapse
|
78
|
Hsu A, Chudasama R, Almhanna K, Raufi A. Targeted therapies for gastroesophageal cancers. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:1104. [PMID: 33145323 PMCID: PMC7576008 DOI: 10.21037/atm-20-3265] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 06/30/2020] [Indexed: 12/18/2022]
Abstract
Gastroesophageal cancers are some of the most common malignancies worldwide. A significant portion of patients are diagnosed with advanced or metastatic disease given the insidious nature of gastroesophageal cancers. In the instance where surgical resection for cure is no longer an option, the prognosis is poor and generally less than a year. Traditionally, standard front-line chemotherapy included two- to three-drug regimens with modest improvements in overall survival. Over the past two decades, with increased understanding of the biology of cancer, targeted therapies have been developed to stop the actions of molecules that are key in the growth and spread of cancer cells and have been successful in a number of cancers. In gastroesophageal cancer, these gains have been more modest with limited approval-trastuzumab being incorporated into front-line use in HER2-positive disease, and ramucirumab alone or in combination with paclitaxel becoming the preferred second-line regimen in progressive disease. However, with increased understanding of the biology of cancer, new and promising targeted therapies have emerged along with novel strategies in combining targeted therapies with traditional chemotherapy and immunotherapy. In this article, we will review the use of targeted therapies in the treatment of gastroesophageal cancer and touch upon future treatment strategies and therapeutics currently under investigation.
Collapse
Affiliation(s)
- Andrew Hsu
- Division of Hematology/Oncology, The Warren Alpert Medical School of Brown University, Lifespan Cancer Institute, Rhode Island Hospital, Providence, RI, USA
| | - Rani Chudasama
- Division of Hematology/Oncology, The Warren Alpert Medical School of Brown University, Lifespan Cancer Institute, Rhode Island Hospital, Providence, RI, USA
| | - Khaldoun Almhanna
- Division of Hematology/Oncology, The Warren Alpert Medical School of Brown University, Lifespan Cancer Institute, Rhode Island Hospital, Providence, RI, USA
| | - Alexander Raufi
- Division of Hematology/Oncology, The Warren Alpert Medical School of Brown University, Lifespan Cancer Institute, Rhode Island Hospital, Providence, RI, USA
| |
Collapse
|
79
|
Liu S, Wang Q, Zhang G, Du J, Hu B, Zhang Z. Using hyperspectral imaging automatic classification of gastric cancer grading with a shallow residual network. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2020; 12:3844-3853. [PMID: 32685943 DOI: 10.1039/d0ay01023e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The gastric cancer grading of patients determines their clinical treatment plan. We use hyperspectral imaging (HSI) gastric cancer section data to automatically classify the three different cancer grades (low grade, intermediate grade, and high grade) and healthy tissue. This paper proposed the use of HSI data combined with a shallow residual network (SR-Net) as the classifier. We collected hyperspectral data from gastric sections of 30 participants, with the wavelength range of hyperspectral data being 374 nm to 990 nm. We compared the classification results between hyperspectral data and color images. The results show that using hyperspectral data and a SR-Net an average classification accuracy of 91.44% could be achieved, which is 13.87% higher than that of the color image. In addition, we applied a modified SR-Net incorporated direct down-sampling, asymmetric filters, and global average pooling to reduce the parameters and floating-point operations. Compared with the regular residual network with the same number of blocks, the floating-point operations of a SR-Net are one order of magnitude less. The experimental results show that hyperspectral data with a SR-Net can achieve cutting-edge performance with minimum computational cost and therefore have potential in the study of gastric cancer grading.
Collapse
Affiliation(s)
- Song Liu
- Key Laboratory of Spectral Imaging Technology of CAS, Xi'an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi'an 710119, China.
| | | | | | | | | | | |
Collapse
|
80
|
Fard SS, Saliminejad K, Sotoudeh M, Soleimanifard N, Kouchaki S, Yazdanbod M, Mahmoodzadeh H, Ghavamzadeh A, Malekzadeh R, Chahardouli B, Alimoghaddam K, Ghaffari SH. The Correlation between EGFR and Androgen Receptor Pathways: A Novel Potential Prognostic Marker in Gastric Cancer. Anticancer Agents Med Chem 2020; 19:2097-2107. [PMID: 31566139 DOI: 10.2174/1871520619666190930142820] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 06/21/2019] [Accepted: 08/07/2019] [Indexed: 12/13/2022]
Abstract
BACKGROUND Despite worthy biologic rationale and numerous studies introducing therapeutic strategies targeting Epidermal Growth Factor Receptor (EGFR), phase III clinical trials have claimed that these current anti-EGFR agents did not significantly improve overall survival of Gastric Cancer (GC) patients. Therefore, to discover flawless candidates of anti-EGFR therapy and ideal prognostic markers, innovative studies are warranted. METHODS The aim of this study was to assess the expression profile of EGFR in GC, adjacent non-tumor and normal gastric tissues by qRT-PCR, investigating the association of EGFR expression with clinicopathological features, evaluating possible molecular interaction between EGFR and Androgen Receptor (AR), and elucidating novel prognostic marker using Cox regression model. RESULTS Among 60 GC patients, 70% (42/60) overexpressed EGFR relative to normal gastric tissues. EGFR overexpression was significantly correlated with the AR overexpression in GC patients. Although EGFR overexpression was remarkably associated with unfavorable outcomes (HR= 4.067, 95% CI= 1.228-13.467, p= 0.022), it was not an independent prognostic factor adjusted for other variables. However, we provided evidences that simultaneous evaluation of EGFR and AR expression, could independently predict the outcome of GC patients and could use as a precise prognostic marker. Moreover, it was revealed that induction or inhibition of AR signaling could alter the mRNA expression of EGFR in GC cell lines. CONCLUSION By targeting AR and EGFR using a potent AR inhibitor such as Enzalutamide, we postulate the possible crosstalk between EGFR and AR pathways in GC. Moreover, our study provided evidences elucidating a novel promising marker, simultaneous evaluation of EGFR and AR expression, which could properly predict prognosis of gastric cancer patients.
Collapse
Affiliation(s)
- Shahrzad S Fard
- Hematology, Oncology and Stem Cell Transplantation Research Institute, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Kioomars Saliminejad
- Hematology, Oncology and Stem Cell Transplantation Research Institute, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Masoud Sotoudeh
- Digestive Oncology Research Center, Digestive Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Shaghayegh Kouchaki
- Hematology, Oncology and Stem Cell Transplantation Research Institute, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Habibollah Mahmoodzadeh
- Department of Surgical Oncology, Cancer Institute, Imam Khomeini Hospital Complex, University of Medical Sciences, Tehran, Iran
| | - Ardeshir Ghavamzadeh
- Hematology, Oncology and Stem Cell Transplantation Research Institute, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Reza Malekzadeh
- Digestive Oncology Research Center, Digestive Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Bahram Chahardouli
- Hematology, Oncology and Stem Cell Transplantation Research Institute, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Kamran Alimoghaddam
- Hematology, Oncology and Stem Cell Transplantation Research Institute, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed H Ghaffari
- Hematology, Oncology and Stem Cell Transplantation Research Institute, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
81
|
Abstract
OPINION STATEMENT Despite a decreasing incidence in the USA, gastric cancer is highly prevalent worldwide. Furthermore, gastric cancer remains highly lethal with median survival of less than 1 year for metastatic disease. The backbone of therapy against metastatic gastric cancer remains cytotoxic chemotherapy, but recent advances in the molecular understanding of gastric cancer have renewed hope within that targeted agents can be leveraged to improve survival and reduce toxicity. For example, in patients with human epidermal growth factor-2 (HER2)-positive gastric cancer, the addition of trastuzumab to frontline chemotherapy improves survival. In the second line, oncologists can now administer a vascular endothelial growth factor (VEGF) receptor inhibitor, ramucirumab, as a single agent or in combination with chemotherapy, and the immune checkpoint inhibitor pembrolizumab is approved in multiple settings dependent on the Programmed Death Ligand 1 (PD-L1) status. For patients with metastatic disease, our approach to standard of care in the first-line setting is a 5FU/platinum doublet with trastuzumab for HER2-positive tumors. In the second-line setting, most patients receive ramucirumab + paclitaxel, but those that are MSI high receive pembrolizumab. For squamous cell carcinoma of the esophagus with high PD-L1 status (combined positive score (CPS) ≥ 10), we recommend pembrolizumab in the second line. While for PD-L1 ≥ 1% gastroesophageal adenocarcinoma, we do not recommend pembrolizumab before the third-line setting, although this may change in the near future for CPS ≥ 10. The future landscape for targeted therapy in gastric cancer is promising. Numerous clinical trials evaluating the combination immune therapy with molecularly targeted agents are generating much excitement. Moreover, genomic data from The Cancer Center Genome (TCGA) and Asian Cancer Research Group (ACRG) classifications is being used to identify molecular subtypes to enable future clinical trials to include biomarker-enriched patient populations.
Collapse
|
82
|
Kim KJ, Kim JW, Sung JH, Suh KJ, Lee JY, Kim SH, Lee JO, Kim JW, Kim YJ, Kim JH, Bang SM, Lee JS, Kim HK, Lee KW. PI3K-targeting strategy using alpelisib to enhance the antitumor effect of paclitaxel in human gastric cancer. Sci Rep 2020; 10:12308. [PMID: 32704014 PMCID: PMC7378194 DOI: 10.1038/s41598-020-68998-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 07/03/2020] [Indexed: 02/06/2023] Open
Abstract
PIK3CA mutations are frequently observed in various human cancers including gastric cancer (GC). This study was conducted to investigate the anti-tumor effects of alpelisib, a PI3K p110α-specific inhibitor, using preclinical models of GC. In addition, the combined effects of alpelisib and paclitaxel on GC were evaluated. Among the SNU1, SNU16, SNU484, SNU601, SNU638, SNU668, AGS, and MKN1 GC cells, three PIK3CA-mutant cells were predominantly sensitive to alpelisib. Alpelisib monotherapy decreased AKT and S6K1 phosphorylation and induced G0/G1 phase arrest regardless of PIK3CA mutational status. The alpelisib and paclitaxel combination demonstrated synergistic anti-proliferative effects, preferentially on PIK3CA-mutant cells, resulting in increased DNA damage response and apoptosis. In addition, alpelisib and paclitaxel combination potentiated anti-migratory activity in PIK3CA-mutant cells. Alpelisib partially reversed epithelial–mesenchymal transition markers in PIK3CA-mutant cells. In a xenograft model of MKN1 cells, the alpelisib and paclitaxel combination significantly enhanced anti-tumor activity by decreasing Ki-67 expression and increasing apoptosis. Moreover, this combination tended to prolong the survival of tumor-bearing mice. Our data suggest promising anti-tumor efficacy of alpelisib alone or in combination with paclitaxel in PIK3CA-mutant GC cells.
Collapse
Affiliation(s)
- Kui-Jin Kim
- Biomedical Research Institute, Seoul National University Bundang Hospital, Seongnam, 13620, Republic of Korea
| | - Ji-Won Kim
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, 82 Gumi-ro 173 Beon-gil Bundang-gu, Seongnam, 13620, Republic of Korea
| | - Ji Hea Sung
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, 82 Gumi-ro 173 Beon-gil Bundang-gu, Seongnam, 13620, Republic of Korea
| | - Koung Jin Suh
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, 82 Gumi-ro 173 Beon-gil Bundang-gu, Seongnam, 13620, Republic of Korea
| | - Ji Yun Lee
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, 82 Gumi-ro 173 Beon-gil Bundang-gu, Seongnam, 13620, Republic of Korea
| | - Se Hyun Kim
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, 82 Gumi-ro 173 Beon-gil Bundang-gu, Seongnam, 13620, Republic of Korea
| | - Jeong-Ok Lee
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, 82 Gumi-ro 173 Beon-gil Bundang-gu, Seongnam, 13620, Republic of Korea
| | - Jin Won Kim
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, 82 Gumi-ro 173 Beon-gil Bundang-gu, Seongnam, 13620, Republic of Korea
| | - Yu Jung Kim
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, 82 Gumi-ro 173 Beon-gil Bundang-gu, Seongnam, 13620, Republic of Korea
| | - Jee Hyun Kim
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, 82 Gumi-ro 173 Beon-gil Bundang-gu, Seongnam, 13620, Republic of Korea
| | - Soo-Mee Bang
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, 82 Gumi-ro 173 Beon-gil Bundang-gu, Seongnam, 13620, Republic of Korea
| | - Jong Seok Lee
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, 82 Gumi-ro 173 Beon-gil Bundang-gu, Seongnam, 13620, Republic of Korea
| | - Hark Kyun Kim
- National Cancer Center Graduate School of Cancer Science and Policy, National Cancer Center, Goyang, 10408, Republic of Korea
| | - Keun-Wook Lee
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, 82 Gumi-ro 173 Beon-gil Bundang-gu, Seongnam, 13620, Republic of Korea.
| |
Collapse
|
83
|
Yamada Y. Present status and perspective of chemotherapy for patients with unresectable advanced or metastatic gastric cancer in Japan. Glob Health Med 2020; 2:156-163. [PMID: 33330800 PMCID: PMC7731092 DOI: 10.35772/ghm.2019.01025] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 03/28/2020] [Accepted: 04/10/2020] [Indexed: 05/01/2023]
Abstract
Patients with unresectable advanced or recurrent gastric cancer have a poor prognosis with overall survival times increasing by only a few months after anti-cancer drug therapy in the last four decades. The survival times from previous clinical trials for untreated metastatic gastric cancer in Japan are generally better than those reported from trials in European and North or South American countries. Therefore, the proportion of Japanese patients enrolled in recent global trials of novel anti-cancer drugs should be increased in order to identify drugs that specifically prolong the survival of such patients. S-1 plus oxaliplatin (SOX) therapy is the most commonly used standard first-line treatment for advanced gastric cancer in Japan. SOX induces mild nausea and vomiting, even in elderly patients, that can be treated by maintaining oral intake with adequate anti-emetic treatment usually given in an outpatient clinic. Neutropenia, nausea, and vomiting in SOX therapy were more frequently observed in female patients compared with males. Intensive toxic chemotherapy such as triplet therapy never prolonged overall survival or maintained a favorable quality of life. The current strategies used against metastatic gastric cancer need to be modified in regard to innovative treatments with current drugs, keeping in mind each categorized treatment population. In a real world of a diverse society even if the same treatment is performed, the outcome of the individual patient is different. It is important for each society to implement established treatment, knowing that the evidence from global trials aimed at drug approval does not necessarily show external validity.
Collapse
Affiliation(s)
- Yasuhide Yamada
- Address correspondence to:Yasuhide Yamada, Comprehensive Cancer Center, National Center for Global Health and Medicine, 1-21-1 Toyama, Shinjuku-ku, Tokyo 162-8655, Japan. E-mail:
| |
Collapse
|
84
|
Zu X, Ma X, Xie X, Lu B, Laster K, Liu K, Dong Z, Kim DJ. 2,6-DMBQ is a novel mTOR inhibitor that reduces gastric cancer growth in vitro and in vivo. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2020; 39:107. [PMID: 32517736 PMCID: PMC7285595 DOI: 10.1186/s13046-020-01608-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Accepted: 05/28/2020] [Indexed: 12/13/2022]
Abstract
Background Fermented wheat germ extract has been reported to exert various pharmacological activities, including anti-oxidant, anti-cell growth and cell apoptosis in various cancer cells. Although 2,6-dimethoxy-1,4-benzoquinone (2,6-DMBQ) is a benzoquinone compound and found in fermented wheat germ extract, its anticancer effects and molecular mechanism(s) against gastric cancer have not been investigated. Methods Anticancer effects of 2,6-DMBQ were determined by MTT, soft agar, cell cycle and Annexin V analysis. Potential candidate proteins were screened via in vitro kinase assay and Western blotting. mTOR knockdown cell lines were established by lentiviral infection with shmTOR. The effect of 2,6-DMBQ on tumor growth was assessed using gastric cancer patient-derived xenograft models. Results 2,6-DMBQ significantly reduced cell growth and induced G1 phase cell cycle arrest and apoptosis in gastric cancer cells. 2,6-DMBQ reduced the activity of mTOR in vitro. The inhibition of cell growth by 2,6-DMBQ is dependent upon the expression of the mTOR protein. Remarkably, 2,6-DMBQ strongly reduced patient-derived xenograft gastric tumor growth in an in vivo mouse model. Conclusions 2,6-DMBQ is an mTOR inhibitor that can be useful for treating gastric cancer. It has therapeutic implications for gastric cancer patients.
Collapse
Affiliation(s)
- Xueyin Zu
- The Pathophysiology Department, The School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450008, Henan, China.,China-US (Henan) Hormel Cancer Institute, Zhengzhou, 450008, Henan, China
| | - Xiaoli Ma
- The Pathophysiology Department, The School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450008, Henan, China.,China-US (Henan) Hormel Cancer Institute, Zhengzhou, 450008, Henan, China
| | - Xiaomeng Xie
- The Pathophysiology Department, The School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450008, Henan, China.,China-US (Henan) Hormel Cancer Institute, Zhengzhou, 450008, Henan, China
| | - Bingbing Lu
- The Pathophysiology Department, The School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450008, Henan, China.,China-US (Henan) Hormel Cancer Institute, Zhengzhou, 450008, Henan, China
| | - Kyle Laster
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, 450008, Henan, China
| | - Kangdong Liu
- The Pathophysiology Department, The School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450008, Henan, China.,China-US (Henan) Hormel Cancer Institute, Zhengzhou, 450008, Henan, China.,The Affiliated Cancer Hospital, Zhengzhou University, Zhengzhou, 450008, Henan, China.,The Collaborative Innovation Center of Henan Province for Cancer Chemoprevention, Zhengzhou, 450008, Henan, China
| | - Zigang Dong
- The Pathophysiology Department, The School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450008, Henan, China. .,China-US (Henan) Hormel Cancer Institute, Zhengzhou, 450008, Henan, China. .,The Affiliated Cancer Hospital, Zhengzhou University, Zhengzhou, 450008, Henan, China. .,The Collaborative Innovation Center of Henan Province for Cancer Chemoprevention, Zhengzhou, 450008, Henan, China. .,International joint research center of cancer chemoprevention, Zhengzhou, China.
| | - Dong Joon Kim
- The Pathophysiology Department, The School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450008, Henan, China. .,China-US (Henan) Hormel Cancer Institute, Zhengzhou, 450008, Henan, China. .,The Collaborative Innovation Center of Henan Province for Cancer Chemoprevention, Zhengzhou, 450008, Henan, China.
| |
Collapse
|
85
|
Machlowska J, Baj J, Sitarz M, Maciejewski R, Sitarz R. Gastric Cancer: Epidemiology, Risk Factors, Classification, Genomic Characteristics and Treatment Strategies. Int J Mol Sci 2020; 21:E4012. [PMID: 32512697 PMCID: PMC7312039 DOI: 10.3390/ijms21114012] [Citation(s) in RCA: 663] [Impact Index Per Article: 165.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 05/31/2020] [Accepted: 06/01/2020] [Indexed: 02/06/2023] Open
Abstract
Gastric cancer (GC) is one of the most common malignancies worldwide and it is the fourth leading cause of cancer-related death. GC is a multifactorial disease, where both environmental and genetic factors can have an impact on its occurrence and development. The incidence rate of GC rises progressively with age; the median age at diagnosis is 70 years. However, approximately 10% of gastric carcinomas are detected at the age of 45 or younger. Early-onset gastric cancer is a good model to study genetic alterations related to the carcinogenesis process, as young patients are less exposed to environmental carcinogens. Carcinogenesis is a multistage disease process specified by the progressive development of mutations and epigenetic alterations in the expression of various genes, which are responsible for the occurrence of the disease.
Collapse
Affiliation(s)
- Julita Machlowska
- Center for Medical Genomics OMICRON, Jagiellonian University Medical College, 31-034 Kraków, Poland;
- Department of Human Anatomy, Medical University of Lublin, 20-090 Lublin, Poland; (J.B.); (R.M.)
| | - Jacek Baj
- Department of Human Anatomy, Medical University of Lublin, 20-090 Lublin, Poland; (J.B.); (R.M.)
| | - Monika Sitarz
- Department of Conservative Dentistry with Endodontics, Medical University of Lublin, 20-090 Lublin, Poland;
| | - Ryszard Maciejewski
- Department of Human Anatomy, Medical University of Lublin, 20-090 Lublin, Poland; (J.B.); (R.M.)
| | - Robert Sitarz
- Department of Human Anatomy, Medical University of Lublin, 20-090 Lublin, Poland; (J.B.); (R.M.)
- Department of Surgery, Center of Oncology of the Lublin Region St. Jana z Dukli, 20-090 Lublin, Poland
| |
Collapse
|
86
|
Liu H, Yao Y, Zhang J, Li J. MEK inhibition overcomes everolimus resistance in gastric cancer. Cancer Chemother Pharmacol 2020; 85:1079-1087. [PMID: 32444897 DOI: 10.1007/s00280-020-04078-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 05/07/2020] [Indexed: 12/31/2022]
Abstract
BACKGROUND Although substantial evidence has shown that the mammalian target of rapamycin (mTOR) pathway is an important therapeutic target in gastric cancer, the overall response rates in patients to mTOR inhibitor everolimus have been less than initially expected. We hypothesized that the limited efficacy of everolimus in gastric cancer is due to the activation of extracellular signal-regulated kinase (ERK). METHODS ERK activation was investigated using western blot. The effects of dual inhibition of ERK and mTOR via genetic and pharmacological approaches were determined using cellular assays and xenograft mouse model. RESULTS We observed the decreased phosphorylation of mTOR, rS6, and 4EBP1 and increased phosphorylation of ERK and p90RSK in gastric cancer cells exposed to everolimus at clinically relevant concentration. Using both in vitro cell culture assays and in vivo xenograft mouse model, we found that trametinib overcame everolimus resistance by either effectively targeting resistant cells or further enhancing everolimus' efficacy in sensitive cells. Mechanism studies confirmed that trametinib overcame everolimus resistance via specifically inhibiting ERK and regulating ERK-mediated Bcl-2 family proteins in gastric cancer cells. CONCLUSIONS Inhibition of mTOR pathway can induce "paradoxical" activation of ERK in gastric cancer, and this activation can be reversed by trametinib. Since both drugs are clinically available, our findings might accelerate the initiation of clinical trials on gastric cancer using everolimus and trametinib combination.
Collapse
Affiliation(s)
- Hongfang Liu
- Department of Oncology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, 39 Jingzhou Street, Xiangyang, 441021, Hubei, People's Republic of China
| | - Yang Yao
- Department of Oncology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, 39 Jingzhou Street, Xiangyang, 441021, Hubei, People's Republic of China
| | - Juan Zhang
- Department of Oncology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, 39 Jingzhou Street, Xiangyang, 441021, Hubei, People's Republic of China.
| | - Jing Li
- Department of Oncology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, 39 Jingzhou Street, Xiangyang, 441021, Hubei, People's Republic of China.
| |
Collapse
|
87
|
Nie S, Yang G, Lu H. Current Molecular Targeted Agents for Advanced Gastric Cancer. Onco Targets Ther 2020; 13:4075-4088. [PMID: 32494161 PMCID: PMC7229784 DOI: 10.2147/ott.s246412] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Accepted: 04/20/2020] [Indexed: 12/26/2022] Open
Abstract
Gastric cancer is the third leading cause of malignant tumor-related mortality worldwide. Traditional cytotoxic agents prolong the overall survival and progression-free survival of patients with advanced gastric cancer (AGC) compared to that with best supportive care. Due to the occurrence of serious adverse drug reactions that result in discontinued treatment, the survival benefit in AGC remains unsatisfactory. Systemic chemotherapy regimens have changed greatly, especially since the introduction of trastuzumab. Nevertheless, HER2 positivity is present in only approximately 20% of tumors. Due to the genetic heterogeneity and complexity of patients, there are many studies in progress that are exploring novel targeted drugs as an alternative to chemotherapy or adjuvant treatment in early-stage, progressive, and advanced gastric cancer. On the basis of the differences in gene expression profiles among patients, searching for specific and sensitive predictive biomarkers is important for identifying patients who will benefit from a specific targeted drug. With the development of targeted therapies and available chemotherapeutic drugs, there is no doubt that, over time, more patients will achieve better survival outcomes. Recently, immune checkpoint blockade has been well developed as a promising anticancer strategy. This review outlines the currently available information on clinically tested molecular targeted drugs and immune checkpoint inhibitors for AGC to provide support for decision-making in clinical practice.
Collapse
Affiliation(s)
- Shanshan Nie
- Center for Clinical Pharmacology, The Third Xiangya Hospital of Central South University, Changsha, Hunan, People’s Republic of China
| | - Guoping Yang
- Center for Clinical Pharmacology, The Third Xiangya Hospital of Central South University, Changsha, Hunan, People’s Republic of China
| | - Hongwei Lu
- Department of Cardiology, The Third Xiangya Hospital of Central South University, Changsha, Hunan, People’s Republic of China
- Center for Experimental Medical Research, The Third Xiangya Hospital of Central South University, Changsha, Hunan, People’s Republic of China
| |
Collapse
|
88
|
MSI and EBV Positive Gastric Cancer's Subgroups and Their Link With Novel Immunotherapy. J Clin Med 2020; 9:jcm9051427. [PMID: 32403403 PMCID: PMC7291039 DOI: 10.3390/jcm9051427] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 04/28/2020] [Accepted: 05/05/2020] [Indexed: 02/06/2023] Open
Abstract
Gastric cancers have been historically classified based on histomorphologic features. The Cancer Genome Atlas network reported the comprehensive identification of genetic alterations associated with gastric cancer, identifying four distinct subtypes- Epstein-Barr virus (EBV)-positive, microsatellite-unstable/instability (MSI), genomically stable and chromosomal instability. In particular, EBV-positive and MSI gastric cancers seem responsive to novel immunotherapies drugs. The aim of this review is to describe MSI and EBV positive gastric cancer's subgroups and their relationship with novel immunotherapy.
Collapse
|
89
|
Lorenzen S, Knorrenschild JR, Pauligk C, Hegewisch-Becker S, Seraphin J, Thuss-Patience P, Kopp HG, Dechow T, Vogel A, Luley KB, Pink D, Stahl M, Kullmann F, Hebart H, Siveke J, Egger M, Homann N, Probst S, Goetze TO, Al-Batran SE. Phase III randomized, double-blind study of paclitaxel with and without everolimus in patients with advanced gastric or esophagogastric junction carcinoma who have progressed after therapy with a fluoropyrimidine/platinum-containing regimen (RADPAC). Int J Cancer 2020; 147:2493-2502. [PMID: 32339253 DOI: 10.1002/ijc.33025] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 03/17/2020] [Accepted: 03/31/2020] [Indexed: 12/27/2022]
Abstract
The RADPAC trial evaluated paclitaxel with everolimus in patients with advanced gastroesophageal cancer (GEC) who have progressed after therapy with a fluoropyrimidine/platinum-containing regimen. Patients were randomly assigned to receive paclitaxel (80 mg/m2 ) on day 1, 8 and 15 plus everolimus (10 mg daily, arm B) d1-d28 or placebo (arm A), repeated every 28 days. Primary end point was overall survival (OS). Efficacy was assessed in the intention-to-treat population and safety in all patients who received at least one dose of treatment. This trial is registered with ClinicalTrials.gov, number NCT01248403. Between October 2011 and September 2015, 300 patients (median age: 62 years; median lines prior therapy: 2; 47.7% of patients had prior taxane therapy) were randomly assigned (arm A, 150, arm B, 150). In the intention to treat population, there was no significant difference in progression-free survival (PFS; everolimus, 2.2 vs placebo, 2.07 months, HR 0.88, P = .3) or OS (everolimus, 6.1 vs placebo, 5.0 months, HR 0.93, P = .54). For patients with prior taxane use, everolimus improved PFS (everolimus, 2.7 vs placebo 1.8 months, HR 0.69, P = .03) and OS (everolimus, 5.8 vs placebo 3.9 months, HR 0.73, P = .07). Combination of paclitaxel and everolimus was associated with significantly more grade 3-5 mucositis (13.3% vs 0.7%; P < .001). The addition of everolimus to paclitaxel did not improve outcomes in pretreated metastatic gastric/gastroesophageal junction (GEJ) cancer. Activity was seen in the taxane pretreated group. Additional biomarker studies are planned to look for subgroups that may have a benefit.
Collapse
Affiliation(s)
- Sylvie Lorenzen
- Third Department of Internal Medicine (Hematology/Medical Oncology), Klinikum Rechts der Isar, Technische Universität München, Munich, Germany
| | | | - Claudia Pauligk
- Krankenhaus Nordwest, University Cancer Center, Frankfurt, Germany.,Institut für Klinische Krebsforschung IKF GmbH at Krankenhaus Nordwest, Frankfurt, Germany
| | | | | | - Peter Thuss-Patience
- Department of Hematology, Oncology and Tumor Immunology, Charite-University Medicine Berlin, Berlin, Germany
| | | | | | | | | | - Daniel Pink
- Helios Klinikum Bad Saarow, Department of Internal Medicine- Hematology, Oncology and Stem Cell Transplantation, Greifswald University Hospital, Greifswald, Germany
| | - Michael Stahl
- Department of Medical Oncology, Evang. Kliniken Essen-Mitte gGmbH, Essen, Germany
| | - Frank Kullmann
- First Department of Medicine, Nordoberpfalz Hospital, Weiden, Germany
| | | | - Jens Siveke
- Second Department of Internal Medicine, Technical University, Munich, Germany.,Institute for Developmental Cancer Therapeutics, West German Cancer Center, University Hospital Essen, Essen, Germany
| | | | - Nils Homann
- Department of Internal Medicine II, Academic Teaching Hospital Wolfsburg, Wolfsburg, Germany
| | | | - Thorsten Oliver Goetze
- Krankenhaus Nordwest, University Cancer Center, Frankfurt, Germany.,Institut für Klinische Krebsforschung IKF GmbH at Krankenhaus Nordwest, Frankfurt, Germany
| | - Salah-Eddin Al-Batran
- Krankenhaus Nordwest, University Cancer Center, Frankfurt, Germany.,Institut für Klinische Krebsforschung IKF GmbH at Krankenhaus Nordwest, Frankfurt, Germany
| |
Collapse
|
90
|
Cartwright E, Athauda A, Chau I. Emerging precision therapies for gastric cancer. EXPERT REVIEW OF PRECISION MEDICINE AND DRUG DEVELOPMENT 2020. [DOI: 10.1080/23808993.2020.1760089] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
| | - Avani Athauda
- Department of Medicine, Royal Marsden Hospital, London and Surrey, UK
| | - Ian Chau
- Department of Medicine, Royal Marsden Hospital, London and Surrey, UK
| |
Collapse
|
91
|
Gómez-Ulloa D, Amonkar M, Kothari S, Cheung WY, Chau I, Zalcberg JR, Lara Suriñach N, Falcone A. Real-world treatment patterns, healthcare resource use and clinical outcomes of patients receiving second line therapy for advanced or metastatic gastric cancer. BMC Gastroenterol 2020; 20:133. [PMID: 32370803 PMCID: PMC7201990 DOI: 10.1186/s12876-020-01232-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 03/24/2020] [Indexed: 02/18/2023] Open
Abstract
BACKGROUND Second-line (2 L) chemotherapies for advanced or metastatic gastric cancer have shown improved survival but there is no commonly accepted standard of care. This study examines real-world patient characteristics, treatment patterns, healthcare resource use (HCRU) and clinical outcomes in this setting. METHODS Retrospective chart reviews were performed at participating institutions from Australia, Canada, Italy and UK for adult patients receiving 2 L treatment for advanced/metastatic disease from January 2013 to July 2015. Data were collected for 12 months or until death. RESULTS Two hundred eighty patients were included, mean age was 60.9 years and 68.9% were male. Half (51.8%) received monotherapy in 2 L, of whom 69.0% received taxanes. Irinotecan monotherapy was common in Australia (30.0% of monotherapy patients) and Canada (43.8%), but infrequent in Italy and UK. Doublet chemotherapy was used in 36.4% of 2 L patients, most commonly fluoropyrimidine + irinotecan. Use of targeted therapies (trastuzumab, ramucirumab) was infrequent except in Italy. Estimated median real-world progression-free survival (rwPFS) and real-world overall survival (rwOS) from the time of 2 L treatment initiation was 3.09 (95% CI: 2.76-3.68) and 6.54 (5.29-7.76) months, respectively, and estimated 12-month rwPFS and rwOS rate was 8 and 26%, respectively. Only a minority (26.8%) of patients were hospitalized during the follow-up period, with the lowest hospitalization in Italy (16.7%). Laboratory and imaging tests were performed for 93.2 and 70.4%, respectively. CONCLUSIONS About half of patients received monotherapy as 2 L chemotherapy for advanced/metastatic gastric cancer and a third received doublets. Real-world clinical outcomes for 2 L treatment are poor and HCRU is considerable.
Collapse
Affiliation(s)
| | | | | | | | - Ian Chau
- Royal Marsden Hospital, London & Surrey, UK
| | - John R Zalcberg
- Alfred Health and School of Public Health, Monash University, Melbourne, Australia
| | | | | |
Collapse
|
92
|
Arai H, Nakajima TE. Recent Developments of Systemic Chemotherapy for Gastric Cancer. Cancers (Basel) 2020; 12:E1100. [PMID: 32354119 PMCID: PMC7281322 DOI: 10.3390/cancers12051100] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 04/18/2020] [Accepted: 04/22/2020] [Indexed: 12/14/2022] Open
Abstract
Gastric cancer (GC) is a molecularly heterogeneous disease. Its molecular background, epidemiology, and standard of care are quite different between Eastern and Western countries. Many efforts have been made in developing more effective surgeries and adjuvant chemotherapies for resectable GC in each region. Recently, an intensive combination of cytotoxic agents has been established as a new standard of adjuvant treatment. Meanwhile, palliative chemotherapy is a uniform standard treatment for unresectable GC worldwide. Recently, one of the most remarkable advances in therapy for unresectable GC has been the approval of immune checkpoint inhibitors (ICIs). The use of ICIs as frontline treatment is currently being investigated. In addition, novel combinations of ICIs and targeted drugs are being evaluated in clinical trials. Despite these advances, the complex biology of GC has resulted in the failure of targeted therapies, with the exceptions of HER2-targeted trastuzumab and VEGFR2-targeted ramucirumab. GC harbors many redundant oncogenic pathways, and small subsets of tumors are driven by different specific pathways. Therefore, a combination strategy simultaneously inhibiting several pathways and/or stricter patient selection for better response to targeted drugs are needed to improve clinical outcomes in this field.
Collapse
Affiliation(s)
- Hiroyuki Arai
- Department of Clinical Oncology, St. Marianna University School of Medicine, 2-16-1 Sugao, Miyamae-ku, Kawasaki, Kanagawa 216-8511, Japan;
| | - Takako Eguchi Nakajima
- Department of Clinical Oncology, St. Marianna University School of Medicine, 2-16-1 Sugao, Miyamae-ku, Kawasaki, Kanagawa 216-8511, Japan;
- Kyoto University Hospital, Kyoto Innovation Center for Next Generation Clinical Trials and iPS Cell Therapy (Ki-CONNECT), 54 Kawaharacho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| |
Collapse
|
93
|
Catenacci DVT, Rasco D, Lee J, Rha SY, Lee KW, Bang YJ, Bendell J, Enzinger P, Marina N, Xiang H, Deng W, Powers J, Wainberg ZA. Phase I Escalation and Expansion Study of Bemarituzumab (FPA144) in Patients With Advanced Solid Tumors and FGFR2b-Selected Gastroesophageal Adenocarcinoma. J Clin Oncol 2020; 38:2418-2426. [PMID: 32167861 PMCID: PMC7367551 DOI: 10.1200/jco.19.01834] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
PURPOSE To evaluate the safety, pharmacokinetics, and preliminary activity of bemarituzumab in patients with FGFR2b-overexpressing gastric and gastroesophageal junction adenocarcinoma (GEA). PATIENTS AND METHODS FPA144-001 was a phase I, open-label, multicenter trial consisting of the following 3 parts: part 1a involved dose escalation in patients with recurrent solid tumors at doses ranging from 0.3 to 15 mg/kg; part 1b involved dose escalation in patients with advanced-stage GEA; and part 2 involved dose expansion in patients with advanced-stage GEA that overexpressed FGFR2b at various levels (4 cohorts; high, medium, low, and no FGFR2b overexpression) and 1 cohort of patients with FGFR2b-overexpressing advanced-stage bladder cancer. RESULTS Seventy-nine patients were enrolled; 19 were enrolled in part 1a, 8 in part 1b, and 52 in part 2. No dose-limiting toxicities were reported, and the recommended dose was identified as 15 mg/kg every 2 weeks based on safety, tolerability, pharmacokinetic parameters, and clinical activity. The most frequent treatment-related adverse events (TRAEs) were fatigue (17.7%), nausea (11.4%), and dry eye (10.1%). Grade 3 TRAEs included nausea (2 patients) and anemia, neutropenia, increased AST, increased alkaline phosphatase, vomiting, and an infusion reaction (1 patient each). Three (10.7%) of 28 patients assigned to a cohort receiving a dose of ≥ 10 mg/kg every 2 weeks for ≥ 70 days reported reversible grade 2 corneal TRAEs. No TRAEs of grade ≥ 4 were reported. Five (17.9%; 95% CI, 6.1% to 36.9%) of 28 patients with high FGFR2b-overexpressing GEA had a confirmed partial response. CONCLUSION Overall, bemarituzumab seems to be well tolerated and demonstrated single-agent activity as late-line therapy in patients with advanced-stage GEA. Bemarituzumab is currently being evaluated in combination with chemotherapy in a phase III trial as front-line therapy for patients with high FGFR2b-overexpressing advanced-stage GEA.
Collapse
Affiliation(s)
| | - Drew Rasco
- The START Center for Cancer Care, San Antonio, TX
| | - Jeeyun Lee
- Samsung Medical Center, Seoul, South Korea
| | - Sun Young Rha
- Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seoul, South Korea
| | - Keun-Wook Lee
- Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seoul, South Korea
| | - Yung Jue Bang
- Seoul National University College of Medicine, Seoul, South Korea
| | - Johanna Bendell
- Sarah Cannon Research Institute/Tennessee Oncology, Nashville, TN
| | | | | | - Hong Xiang
- Five Prime Therapeutics, South San Francisco, CA
| | - Wei Deng
- Five Prime Therapeutics, South San Francisco, CA
| | | | | |
Collapse
|
94
|
Sun Y, Li S, Yu W, Chen C, Liu T, Li L, Zhang D, Zhao Z, Gao J, Wang X, Shi D, Liu L. CD148 Serves as a Prognostic Marker of Gastric Cancer and Hinders Tumor Progression by Dephosphorylating EGFR. J Cancer 2020; 11:2667-2678. [PMID: 32201537 PMCID: PMC7065996 DOI: 10.7150/jca.40955] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Accepted: 01/24/2020] [Indexed: 01/06/2023] Open
Abstract
CD148 is a member of the receptor-type protein tyrosine phosphatase family encoded by the PTPRJ gene and has controversial impacts on cancers. In this study, we investigated the clinical significance of CD148 in gastric cancer and the possible mechanisms. Suppressed CD148 expression indicated adverse pathological features and poor outcomes in gastric cancer patients. CD148 overexpression impeded tumor proliferation, motility, and invasiveness, while CD148 knock-down or knockout promoted the ability of gastric cancer cells to grow and metastasize in vitro and in vivo. Mechanistically, CD148 negatively regulated EGFR phosphorylation of multiple tyrosine residues, including Y1173, Y1068, and Y1092, and remarkably inhibited downstream PI3K/AKT and MEK/ERK pathways. In silico analysis revealed that gene deletions or missense/truncated mutations of PTPRJ gene rarely occurred in gastric cancers. Instead, a 3' UTR-specific methylation might regulate CD148 expression, and the potential regulators were TET2 and TET3. Collectively, our results suggest that CD148 is a convincing prognostic marker as well as a potential therapeutic target for gastric cancer.
Collapse
Affiliation(s)
- Yiting Sun
- Department of Medical Oncology, Cancer Center, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, China.,Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100021, China
| | - Song Li
- Department of Medical Oncology, Cancer Center, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, China
| | - Wenbin Yu
- Department of General Surgery, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, China
| | - Cheng Chen
- Department of General Surgery, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, China
| | - Teng Liu
- Department of General Surgery, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, China
| | - Lanbo Li
- Animal Laboratory, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, China
| | - Di Zhang
- Department of Medical Oncology, Cancer Center, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, China
| | - Zeyi Zhao
- Department of Medical Oncology, Cancer Center, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, China
| | - Jing Gao
- Department of Medical Oncology, Cancer Center, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, China
| | - Xiao Wang
- Department of Pathology, School of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Duanbo Shi
- Department of Pathology, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, China
| | - Lian Liu
- Department of Medical Oncology, Cancer Center, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, China
| |
Collapse
|
95
|
Ding L, Wang L, Li Z, Jiang X, Xu Y, Han N. The positive feedback loop of RHPN1-AS1/miR-1299/ETS1 accelerates the deterioration of gastric cancer. Biomed Pharmacother 2020; 124:109848. [PMID: 31982726 DOI: 10.1016/j.biopha.2020.109848] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 12/31/2019] [Accepted: 01/06/2020] [Indexed: 01/11/2023] Open
Abstract
Gastric cancer (GC) is the most prevailing malignant tumor of digestive tract and accounts for a considerable part of cancer-relevant deaths worldwide. An increasing number of literatures highlight the important role of lncRNAs in the occurrence and development of GC. Considering that the function of RHPN1-AS1 in GC remains to be fully inquired, we purposed to investigate the potential and mechanism of RHPN1-AS1 in GC. The expression of RHPN1-AS1 was significantly upregulated in GC samples and cells. High RHPN1-AS1 level was strongly correlated with advanced stages of GC and predicted poor outcomes of GC. Furthermore, depletion of RHPN1-AS1 inhibited cell proliferation and cell cycle whereas promoted cell apoptosis. Subcellular fractionation analysis expounded the main expression of RHPN1-AS1 in GC cell cytoplasm. Herein, we conjectured that RHPN1-AS1 might exert its performance in GC through the ceRNA network. Our findings demonstrated that RHPN1-AS1 enhanced ETS1 expression via sponging miR-1299. More importantly, the transcriptional activation of RHPN1-AS1 was mediated by ETS1. Results of recue assays validated that RHPN1-AS1/miR-1299/ETS1 positive feedback loop aggravated the malignant behaviors of GC, revealing RHPN1-AS1 as a latent effective target for the treatment of GC patients.
Collapse
Affiliation(s)
- Lei Ding
- Department of Radiology, China-Japan Union Hospital of Jilin University, Changchun, Jilin Province, China
| | - Ling Wang
- Department of Gynecology reported and Obstetrics, The Second Hospital of Jilin University, Changchun, Jilin Province, China
| | - Zhiqi Li
- Department of Radiology, RIMAG Medical Imaging Corporation, China
| | - Xuefeng Jiang
- Department of Gastroenterology, China-Japan Union Hospital of Jilin University, Changchun, Jilin Province, China
| | - Yangchun Xu
- Department of Dermatology, The Second Hospital of Jilin University, Changchun, Jilin Province, China.
| | - Ning Han
- Department of Radiology, China-Japan Union Hospital of Jilin University, Changchun, Jilin Province, China.
| |
Collapse
|
96
|
Wang XZ, Zeng ZY, Ye X, Sun J, Zhang ZM, Kang WM. Interpretation of the development of neoadjuvant therapy for gastric cancer based on the vicissitudes of the NCCN guidelines. World J Gastrointest Oncol 2020; 12:37-53. [PMID: 31966912 PMCID: PMC6960069 DOI: 10.4251/wjgo.v12.i1.37] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Revised: 09/09/2019] [Accepted: 09/26/2019] [Indexed: 02/05/2023] Open
Abstract
Gastric cancer is one of the most common digestive system tumors in China, and locally advanced gastric cancer (LAGC) accounts for a high proportion of newly diagnosed cases. Although surgery is the main treatment for gastric cancer, surgical excision alone cannot achieve satisfactory outcomes in LAGC patients. Neoadjuvant therapy (NAT) has gradually become the standard treatment for patients with LAGC, and this treatment can not only achieve tumor downstaging and improve surgical rate and the R0 resection rate, but it also significantly improves the long-term prognosis of patients. Peri/preoperative neoadjuvant chemotherapy and preoperative chemoradiotherapy are both recommended according to a large number of studies, and the regimens have also been evolved in the past decades. Since the NCCN guidelines for gastric cancer are one of the most authoritative evidence-based guidelines worldwide, here, we demonstrate the development course and major breakthroughs of NAT for gastric cancer based on the vicissitudes of the NCCN guidelines from 2007 to 2019, and also discuss the future of NAT.
Collapse
Affiliation(s)
- Xian-Ze Wang
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100730, China
| | - Zi-Yang Zeng
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100730, China
| | - Xin Ye
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100730, China
| | - Juan Sun
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100730, China
| | - Zi-Mu Zhang
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100730, China
| | - Wei-Ming Kang
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100730, China
| |
Collapse
|
97
|
Ye DM, Xu G, Ma W, Li Y, Luo W, Xiao Y, Liu Y, Zhang Z. Significant function and research progress of biomarkers in gastric cancer. Oncol Lett 2020; 19:17-29. [PMID: 31897111 PMCID: PMC6924079 DOI: 10.3892/ol.2019.11078] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 09/26/2019] [Indexed: 12/24/2022] Open
Abstract
Gastric cancer is one of the most common gastrointestinal tumor types, and the incidence and mortality rates are higher in men compared with women. Various studies have revealed that gastric cancer is a spectrum of tumor types, which have biological and genetic diversity. It has proven to be difficult to improve the overall survival and disease-free survival of patients with gastric cancer through the use of traditional surgery and chemoradiation, as gastric cancer is usually identified at an advanced stage. In consequence, the outcome is frequently poor. Thus, novel biomarkers and anticancer targets are required to improve the outcome. As the identification of biomarkers has increased due to advances in research and the greater availability of bioinformatics and functional genomics, the potential therapeutic regimens available have also increased concurrently. These advances have also improved the ability to predict responses to chemotherapy, targeted therapy and immunotherapy, whilst other biomarkers predict post-treatment survival and recurrence based on their expression. This review focuses closely on the important functions of biomarkers in the timely diagnosis and treatment of gastric cancer, in addition to the advances in the study of certain novel markers in gastric cancer.
Collapse
Affiliation(s)
- Dong Mei Ye
- Key Laboratory of Cancer Cellular and Molecular Pathology, Cancer Research Institute of Hengyang Medical College, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Gaosheng Xu
- Department of Surgery, Yueyang Maternal and Child Health Hospital, Yueyang, Hunan 414000, P.R. China
| | - Wei Ma
- Department of Surgery, Yueyang Maternal and Child Health Hospital, Yueyang, Hunan 414000, P.R. China
| | - Yuxuan Li
- Key Laboratory of Cancer Cellular and Molecular Pathology, Cancer Research Institute of Hengyang Medical College, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Weiru Luo
- Hengyang Medical College, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Yiyang Xiao
- Hengyang Medical College, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Yong Liu
- Department of Pathology, Jiangxi Provincial People's Hospital Affiliated to Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Zhiwei Zhang
- Key Laboratory of Cancer Cellular and Molecular Pathology, Cancer Research Institute of Hengyang Medical College, University of South China, Hengyang, Hunan 421001, P.R. China
| |
Collapse
|
98
|
Lv H, Zhou QH, Zhong DS. A pooled analysis of molecularly targeted agents for treatment of metastatic oesophago-gastric cancer in elderly patients. Arch Med Sci 2020; 16:253-259. [PMID: 32190134 PMCID: PMC7069423 DOI: 10.5114/aoms.2020.93341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Accepted: 07/08/2017] [Indexed: 11/17/2022] Open
Abstract
INTRODUCTION The aim of the present study was to assess the efficacy of molecularly targeted agents (MTAs) in the treatment of elderly patients with metastatic oesophago-gastric cancer (mOGC). MATERIAL AND METHODS We systematically searched electronic databases and abstracts presented at American Society of Clinical Oncology (ASCO) meetings up to January 31, 2017. Hazard ratios (HRs) were used to estimate overall survival (OS) and progression-free survival (PFS). Subgroup analysis and publication bias were also evaluated. All statistical analysis was conducted using Comprehensive Meta Analysis software (Version 2.0). RESULTS A total of 2,149 elderly patients with mOGC from thirteen trials were included. Compared to non-MTA-containing regimens, OS was significantly improved in the MTA-containing regimens (HR = 0.86, 95% CI: 0.75-0.99, p = 0.037), but not for PFS (HR = 1.05, 95% CI: 0.85-1.30, p = 0.67). In addition, subgroup analysis indicated that MTA-containing regimens as second-line therapy in elderly mOGC patients significantly improved PFS (HR = 0.58; 95% CI: 0.39-0.85, p = 0.005) and OS (HR = 0.82, 95% CI: 0.70-0.96, p = 0.016), but did not significantly improve PFS (HR = 1.36; 95% CI: 1.06-1.76, p = 0.017) and OS (HR = 0.98, 95% CI: 0.77-1.27, p = 0.90) for MTA-containing regimens as first-line therapy in these patients. No publication bias was detected by Begg's and Egger's tests for OS and PFS. CONCLUSIONS Our results indicate that the MTA-containing therapies significantly improve OS but not for PFS in elderly mOGC patients. Sub-group analysis shows that improved efficacy is only observed in the second-line setting and not in the first-line setting. Our findings support the use of angiogenesis as second-line treatment for elderly mOGC patients.
Collapse
Affiliation(s)
- Hui Lv
- Department of Oncology, Tianjin Medical University General Hospital, Tianjin, China
| | - Qing-Hua Zhou
- Department of Oncology, Tianjin Medical University General Hospital, Tianjin, China
| | - Dian-Sheng Zhong
- Department of Oncology, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
99
|
Bhaoighill MN, Dunlop EA. Mechanistic target of rapamycin inhibitors: successes and challenges as cancer therapeutics. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2019; 2:1069-1085. [PMID: 35582282 PMCID: PMC9019212 DOI: 10.20517/cdr.2019.87] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Revised: 11/18/2019] [Accepted: 11/26/2019] [Indexed: 12/22/2022]
Abstract
Delineating the contributions of specific cell signalling cascades to the development and maintenance of tumours has greatly informed our understanding of tumorigenesis and has advanced the modern era of targeted cancer therapy. It has been revealed that one of the key pathways regulating cell growth, the phosphatidylinositol 3-kinase/mechanistic target of rapamycin (PI3K/mTOR) signalling axis, is commonly dysregulated in cancer. With a specific, well-tolerated inhibitor of mTOR available, the impact of inhibiting this pathway at the level of mTOR has been tested clinically. This review highlights some of the promising results seen with mTOR inhibitors in the clinic and assesses some of the challenges that remain in predicting patient outcome following mTOR-targeted therapy.
Collapse
Affiliation(s)
| | - Elaine A Dunlop
- Division of Cancer and Genetics, Cardiff University, Cardiff, CF14 4XN, UK
| |
Collapse
|
100
|
Tewari D, Patni P, Bishayee A, Sah AN, Bishayee A. Natural products targeting the PI3K-Akt-mTOR signaling pathway in cancer: A novel therapeutic strategy. Semin Cancer Biol 2019; 80:1-17. [PMID: 31866476 DOI: 10.1016/j.semcancer.2019.12.008] [Citation(s) in RCA: 302] [Impact Index Per Article: 60.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 12/01/2019] [Accepted: 12/03/2019] [Indexed: 02/07/2023]
Abstract
The phosphatidylinositol 3-kinase (PI3K)-Akt and the mammalian target of rapamycin (mTOR) represent two vital intracellular signaling pathways, which are associated with various aspects of cellular functions. These functions play vital roles in quiescence, survival, and growth in normal physiological circumstances as well as in various pathological disorders, including cancer. These two pathways are so intimately connected to each other that in some instances these are considered as one unique pathway crucial for cell cycle regulation. The purpose of this review is to emphasize the role of PI3K-Akt-mTOR signaling pathway in different cancer conditions and the importance of natural products targeting the PI3K-Akt-mTOR signaling pathway. This review also aims to draw the attention of scientists and researchers to the assorted beneficial effects of the numerous classes of natural products for the development of new and safe drugs for possible cancer therapy. We also summarize and critically analyze various preclinical and clinical studies on bioactive compounds and constituents, which are derived from natural products, to target the PI3K-Akt-mTOR signaling pathway for cancer prevention and intervention.
Collapse
Affiliation(s)
- Devesh Tewari
- Department of Pharmacognosy, School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144 411, Punjab, India.
| | - Pooja Patni
- Sharda School of Pharmacy, Gujarat Technical University, Gandhinagar 382 610, Gujarat, India
| | | | - Archana N Sah
- Department of Pharmaceutical Sciences, Faculty of Technology, Bhimtal Campus, Kumaun University, Nainital 263 136, Uttarakhand, India
| | - Anupam Bishayee
- Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA.
| |
Collapse
|