51
|
Manosroi W, Tan JW, Rariy CM, Sun B, Goodarzi MO, Saxena AR, Williams JS, Pojoga LH, Lasky-Su J, Cui J, Guo X, Taylor KD, Chen YDI, Xiang AH, Hsueh WA, Raffel LJ, Buchanan TA, Rotter JI, Williams GH, Seely EW. The Association of Estrogen Receptor-β Gene Variation With Salt-Sensitive Blood Pressure. J Clin Endocrinol Metab 2017; 102:4124-4135. [PMID: 28938457 PMCID: PMC5673274 DOI: 10.1210/jc.2017-00957] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2017] [Accepted: 08/29/2017] [Indexed: 11/19/2022]
Abstract
CONTEXT Hypertension in young women is uncommon compared with young men and older women. Estrogen appears to protect most women against hypertension, with incidence increasing after menopause. Because some premenopausal women develop hypertension, estrogen may play a different role in these women. Genetic variations in the estrogen receptor (ER) are associated with cardiovascular disease. ER-β, encoded by ESR2, is the ER predominantly expressed in vascular smooth muscle. OBJECTIVE To determine an association of single nucleotide polymorphisms in ESR2 with salt sensitivity of blood pressure (SSBP) and estrogen status in women. METHODS Candidate gene association study with ESR2 and SSBP conducted in normotensive and hypertensive women and men in two cohorts: International Hypertensive Pathotype (HyperPATH) (n = 584) (discovery) and Mexican American Hypertension-Insulin Resistance Study (n = 662) (validation). Single nucleotide polymorphisms in ESR1 (ER-α) were also analyzed. Analysis conducted in younger (<51 years, premenopausal, "estrogen-replete") and older women (≥51 years, postmenopausal, "estrogen-deplete"). Men were analyzed to control for aging. RESULTS Multivariate analyses of HyperPATH data between variants of ESR2 and SSBP documented that ESR2 rs10144225 minor (risk) allele carriers had a significantly positive association with SSBP driven by estrogen-replete women (β = +4.4 mm Hg per risk allele, P = 0.004). Findings were confirmed in Hypertension Insulin-Resistance Study premenopausal women. HyperPATH cohort analyses revealed risk allele carriers vs noncarriers had increased aldosterone/renin ratios. No associations were detected with ESR1. CONCLUSIONS The variation at rs10144225 in ESR2 was associated with SSBP in premenopausal women (estrogen-replete) and not in men or postmenopausal women (estrogen-deplete). Inappropriate aldosterone levels on a liberal salt diet may mediate the SSBP.
Collapse
Affiliation(s)
- Worapaka Manosroi
- Division of Endocrinology, Diabetes, and Hypertension, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115
- Division of Endocrinology and Metabolism, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Jia Wei Tan
- Division of Endocrinology, Diabetes, and Hypertension, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115
- Cell and Molecular Biology Laboratory, Department of Cellular Biology and Pharmacology, Faculty of Medicine and Health Sciences, UCSI University, Cheras 56000, Kuala Lumpur, Malaysia
| | - Chevon M. Rariy
- Division of Endocrinology, Diabetes, and Hypertension, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115
| | - Bei Sun
- Division of Endocrinology, Diabetes, and Hypertension, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115
| | - Mark O. Goodarzi
- Division of Endocrinology, Diabetes and Metabolism, Cedars-Sinai Medical Center, Los Angeles, California 90048
| | - Aditi R. Saxena
- Division of Endocrinology, Diabetes, and Hypertension, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115
| | - Jonathan S. Williams
- Division of Endocrinology, Diabetes, and Hypertension, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115
| | - Luminita H. Pojoga
- Division of Endocrinology, Diabetes, and Hypertension, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115
| | - Jessica Lasky-Su
- Channing Laboratory, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts 02115
| | - Jinrui Cui
- Division of Endocrinology, Diabetes and Metabolism, Cedars-Sinai Medical Center, Los Angeles, California 90048
| | - Xiuqing Guo
- Institute for Translational Genomics and Population Sciences, Harbor-UCLA Medical Center, Torrance, California 90502
- Department of Pediatrics, Los Angeles Biomedical Research Institute, Harbor-UCLA Medical Center, Torrance, California 90502
| | - Kent D. Taylor
- Institute for Translational Genomics and Population Sciences, Harbor-UCLA Medical Center, Torrance, California 90502
- Department of Pediatrics, Los Angeles Biomedical Research Institute, Harbor-UCLA Medical Center, Torrance, California 90502
| | - Yii-Der I. Chen
- Institute for Translational Genomics and Population Sciences, Harbor-UCLA Medical Center, Torrance, California 90502
- Department of Pediatrics, Los Angeles Biomedical Research Institute, Harbor-UCLA Medical Center, Torrance, California 90502
| | - Anny H. Xiang
- Department of Research and Evaluation, Kaiser Permanente Southern California, Pasadena, California 91101
| | - Willa A. Hsueh
- Department of Research and Evaluation, Kaiser Permanente Southern California, Pasadena, California 91101
- Division of Endocrinology, Diabetes and Metabolism and Diabetes and Metabolism Research Center, The Ohio State University, Columbus, Ohio 43210
| | - Leslie J. Raffel
- Division of Genetic and Genomic Medicine, Department of Pediatrics, University of California, Irvine, California 92868
| | - Thomas A. Buchanan
- Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, Los Angeles, California 90089
| | - Jerome I. Rotter
- Institute for Translational Genomics and Population Sciences, Harbor-UCLA Medical Center, Torrance, California 90502
- Department of Pediatrics, Los Angeles Biomedical Research Institute, Harbor-UCLA Medical Center, Torrance, California 90502
| | - Gordon H. Williams
- Division of Endocrinology, Diabetes, and Hypertension, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115
| | - Ellen W. Seely
- Division of Endocrinology, Diabetes, and Hypertension, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115
| |
Collapse
|
52
|
Turner RJ, Kerber IJ. A theory of eu-estrogenemia: a unifying concept. Menopause 2017; 24:1086-1097. [PMID: 28562489 PMCID: PMC5571883 DOI: 10.1097/gme.0000000000000895] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 02/22/2017] [Accepted: 02/22/2017] [Indexed: 12/25/2022]
Abstract
OBJECTIVE The aim of the study was to propose a unifying theory for the role of estrogen in postmenopausal women through examples in basic science, randomized controlled trials, observational studies, and clinical practice. METHODS Review and evaluation of the literature relating to estrogen. DISCUSSION The role of hormone therapy and ubiquitous estrogen receptors after reproductive senescence gains insight from basic science models. Observational studies and individualized patient care in clinical practice may show outcomes that are not reproduced in randomized clinical trials. The understanding gained from the timing hypothesis for atherosclerosis, the critical window theory in neurosciences, randomized controlled trials, and numerous genomic and nongenomic actions of estrogen discovered in basic science provides new explanations to clinical challenges that practitioners face. Consequences of a hypo-estrogenemic duration in women's lives are poorly understood. The Study of Women Across the Nation suggests its magnitude is greater than was previously acknowledged. We propose that the healthy user bias was the result of surgical treatment (hysterectomy with oophorectomy) for many gynecological maladies followed by pharmacological and physiological doses of estrogen to optimize patient quality of life. The past decade of research has begun to demonstrate the role of estrogen in homeostasis. CONCLUSIONS The theory of eu-estrogenemia provides a robust framework to unify the timing hypothesis, critical window theory, randomized controlled trials, the basic science of estrogen receptors, and clinical observations of patients over the past five decades.
Collapse
Affiliation(s)
- Ralph J. Turner
- Department of Surgery, University of Texas Health Science Center at Tyler, Tyler, TX
| | - Irwin J. Kerber
- Department of Obstetrics and Gynecology, University of Texas Southwestern Medical School, Dallas, TX
| |
Collapse
|
53
|
DuPont JJ, Jaffe IZ. 30 YEARS OF THE MINERALOCORTICOID RECEPTOR: The role of the mineralocorticoid receptor in the vasculature. J Endocrinol 2017; 234. [PMID: 28634267 PMCID: PMC5518626 DOI: 10.1530/joe-17-0009] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Since the mineralocorticoid receptor (MR) was cloned 30 years ago, it has become clear that MR is expressed in extra-renal tissues, including the cardiovascular system, where it is expressed in all cells of the vasculature. Understanding the role of MR in the vasculature has been of particular interest as clinical trials show that MR antagonism improves cardiovascular outcomes out of proportion to changes in blood pressure. The last 30 years of research have demonstrated that MR is a functional hormone-activated transcription factor in vascular smooth muscle cells and endothelial cells. This review summarizes advances in our understanding of the role of vascular MR in regulating blood pressure and vascular function, and its contribution to vascular disease. Specifically, vascular MR contributes directly to blood pressure control and to vascular dysfunction and remodeling in response to hypertension, obesity and vascular injury. The literature is summarized with respect to the role of vascular MR in conditions including: pulmonary hypertension; cerebral vascular remodeling and stroke; vascular inflammation, atherosclerosis and myocardial infarction; acute kidney injury; and vascular pathology in the eye. Considerations regarding the impact of age and sex on the function of vascular MR are also described. Further investigation of the precise molecular mechanisms by which MR contributes to these processes will aid in the identification of novel therapeutic targets to reduce cardiovascular disease (CVD)-related morbidity and mortality.
Collapse
Affiliation(s)
- Jennifer J DuPont
- Molecular Cardiology Research InstituteTufts Medical Center, Boston, MA, USA
| | - Iris Z Jaffe
- Molecular Cardiology Research InstituteTufts Medical Center, Boston, MA, USA
| |
Collapse
|
54
|
Zhang YY, Li C, Yao GF, Du LJ, Liu Y, Zheng XJ, Yan S, Sun JY, Liu Y, Liu MZ, Zhang X, Wei G, Tong W, Chen X, Wu Y, Sun S, Liu S, Ding Q, Yu Y, Yin H, Duan SZ. Deletion of Macrophage Mineralocorticoid Receptor Protects Hepatic Steatosis and Insulin Resistance Through ERα/HGF/Met Pathway. Diabetes 2017; 66:1535-1547. [PMID: 28325853 PMCID: PMC5860190 DOI: 10.2337/db16-1354] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 03/13/2017] [Indexed: 12/20/2022]
Abstract
Although the importance of macrophages in nonalcoholic fatty liver disease (NAFLD) and type 2 diabetes mellitus (T2DM) has been recognized, how macrophages affect hepatocytes remains elusive. Mineralocorticoid receptor (MR) has been implicated to play important roles in NAFLD and T2DM. However, cellular and molecular mechanisms are largely unknown. We report that myeloid MR knockout (MRKO) improves glucose intolerance, insulin resistance, and hepatic steatosis in obese mice. Estrogen signaling is sufficient and necessary for such improvements. Hepatic gene and protein expression suggests that MRKO reduces hepatic lipogenesis and lipid storage. In the presence of estrogen, MRKO in macrophages decreases lipid accumulation and increases insulin sensitivity of hepatocytes through hepatocyte growth factor (HGF)/Met signaling. MR directly regulates estrogen receptor 1 (Esr1 [encoding ERα]) in macrophages. Knockdown of hepatic Met eliminates the beneficial effects of MRKO in female obese mice. These findings identify a novel MR/ERα/HGF/Met pathway that conveys metabolic signaling from macrophages to hepatocytes in hepatic steatosis and insulin resistance and provide potential new therapeutic strategies for NAFLD and T2DM.
Collapse
Affiliation(s)
- Yu-Yao Zhang
- Laboratory of Oral Microbiology, Shanghai Research Institute of Stomatology, Ninth People's Hospital, School of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of the Chinese Academy of Sciences, Shanghai, China
| | - Chao Li
- Laboratory of Oral Microbiology, Shanghai Research Institute of Stomatology, Ninth People's Hospital, School of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of the Chinese Academy of Sciences, Shanghai, China
| | - Gao-Feng Yao
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of the Chinese Academy of Sciences, Shanghai, China
| | - Lin-Juan Du
- Laboratory of Oral Microbiology, Shanghai Research Institute of Stomatology, Ninth People's Hospital, School of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of the Chinese Academy of Sciences, Shanghai, China
| | - Yuan Liu
- Laboratory of Oral Microbiology, Shanghai Research Institute of Stomatology, Ninth People's Hospital, School of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of the Chinese Academy of Sciences, Shanghai, China
| | - Xiao-Jun Zheng
- Laboratory of Oral Microbiology, Shanghai Research Institute of Stomatology, Ninth People's Hospital, School of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of the Chinese Academy of Sciences, Shanghai, China
| | - Shuai Yan
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of the Chinese Academy of Sciences, Shanghai, China
| | - Jian-Yong Sun
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of the Chinese Academy of Sciences, Shanghai, China
| | - Yan Liu
- Laboratory of Oral Microbiology, Shanghai Research Institute of Stomatology, Ninth People's Hospital, School of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ming-Zhu Liu
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of the Chinese Academy of Sciences, Shanghai, China
| | - Xiaoran Zhang
- Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Gang Wei
- Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Wenxin Tong
- Department of Infectious Diseases, Ren-Min Hospital of Wuhan University, Wuhan, China
| | - Xiaobei Chen
- Department of Infectious Diseases, Ren-Min Hospital of Wuhan University, Wuhan, China
| | - Yong Wu
- Division of Cancer Research and Training, Department of Internal Medicine, Charles R. Drew University of Medicine and Science, Los Angeles, CA
- David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA
| | - Shuyang Sun
- Shanghai Key Laboratory of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Oral and Maxillofacial-Head Neck Oncology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Suling Liu
- Shanghai Cancer Center and Institutes of Biomedical Sciences, Key Laboratory of Breast Cancer in Shanghai, Cancer Institute, Fudan University, Shanghai, China
| | - Qiurong Ding
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of the Chinese Academy of Sciences, Shanghai, China
| | - Ying Yu
- Department of Pharmacology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Huiyong Yin
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of the Chinese Academy of Sciences, Shanghai, China
| | - Sheng-Zhong Duan
- Laboratory of Oral Microbiology, Shanghai Research Institute of Stomatology, Ninth People's Hospital, School of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
55
|
Sex-Specificity of Mineralocorticoid Target Gene Expression during Renal Development, and Long-Term Consequences. Int J Mol Sci 2017; 18:ijms18020457. [PMID: 28230786 PMCID: PMC5343990 DOI: 10.3390/ijms18020457] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Revised: 01/30/2017] [Accepted: 02/09/2017] [Indexed: 12/15/2022] Open
Abstract
Sex differences have been identified in various biological processes, including hypertension. The mineralocorticoid signaling pathway is an important contributor to early arterial hypertension, however its sex-specific expression has been scarcely studied, particularly with respect to the kidney. Basal systolic blood pressure (SBP) and heart rate (HR) were measured in adult male and female mice. Renal gene expression studies of major players of mineralocorticoid signaling were performed at different developmental stages in male and female mice using reverse transcription quantitative PCR (RT-qPCR), and were compared to those of the same genes in the lung, another mineralocorticoid epithelial target tissue that regulates ion exchange and electrolyte balance. The role of sex hormones in the regulation of these genes was also investigated in differentiated KC3AC1 renal cells. Additionally, renal expression of the 11 β-hydroxysteroid dehydrogenase type 2 (11βHSD2) protein, a regulator of mineralocorticoid specificity, was measured by immunoblotting and its activity was indirectly assessed in the plasma using liquid-chromatography coupled to mass spectrometry in tandem (LC-MSMS) method. SBP and HR were found to be significantly lower in females compared to males. This was accompanied by a sex- and tissue-specific expression profile throughout renal development of the mineralocorticoid target genes serum and glucocorticoid-regulated kinase 1 (Sgk1) and glucocorticoid-induced leucine zipper protein (Gilz), together with Hsd11b2, Finally, the implication of sex hormones in this sex-specific expression profile was demonstrated in vitro, most notably for Gilz mRNA expression. We demonstrate a tissue-specific, sex-dependent and developmentally-regulated pattern of expression of the mineralocorticoid pathway that could have important implications in physiology and pathology.
Collapse
|
56
|
Marzolla V, Armani A, Mammi C, Moss ME, Pagliarini V, Pontecorvo L, Antelmi A, Fabbri A, Rosano G, Jaffe IZ, Caprio M. Essential role of ICAM-1 in aldosterone-induced atherosclerosis. Int J Cardiol 2017; 232:233-242. [PMID: 28089144 DOI: 10.1016/j.ijcard.2017.01.013] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 12/25/2016] [Accepted: 01/03/2017] [Indexed: 12/19/2022]
Abstract
OBJECTIVE Elevated aldosterone is associated with increased risk of atherosclerosis complications, whereas treatment with mineralocorticoid receptor (MR) antagonists decreases the rate of cardiovascular events. Here we test the hypothesis that aldosterone promotes early atherosclerosis by modulating intercellular adhesion molecule-1 (ICAM-1) expression and investigate the molecular mechanisms by which aldosterone regulates ICAM-1 expression. METHODS AND RESULTS Apolipoprotein-E (ApoE)-/- mice fed an atherogenic diet and treated with aldosterone for 4weeks showed increased vascular expression of ICAM-1, paralleled by enhanced atherosclerotic plaque size in the aortic root. Moreover, aldosterone treatment resulted in increased plaque lipid and inflammatory cell content, consistent with an unstable plaque phenotype. ApoE/ICAM-1 double knockout (ApoE-/-/ICAM-1-/-) littermates were protected from the aldosterone-induced increase in plaque size, lipid content and macrophage infiltration. Since aldosterone is known to regulate ICAM-1 transcription via MR in human endothelial cells, we explored MR regulation of the ICAM-1 promoter. Luciferase reporter assays performed in HUVECs using deletion constructs of the human ICAM-1 gene promoter showed that a region containing a predicted MR-responsive element (MRE) is required for MR-dependent transcriptional regulation of ICAM-1. CONCLUSIONS Pro-atherogenic effects of aldosterone are mediated by increased ICAM-1 expression, through transcriptional regulation by endothelial MR. These data enhance our understanding of the molecular mechanism by which MR activation promotes atherosclerosis complications.
Collapse
Affiliation(s)
- Vincenzo Marzolla
- Laboratory of Cardiovascular Endocrinology, IRCCS San Raffaele Pisana, 00166 Rome, Italy
| | - Andrea Armani
- Laboratory of Cardiovascular Endocrinology, IRCCS San Raffaele Pisana, 00166 Rome, Italy
| | - Caterina Mammi
- Laboratory of Cardiovascular Endocrinology, IRCCS San Raffaele Pisana, 00166 Rome, Italy
| | - Mary E Moss
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA, USA
| | - Vittoria Pagliarini
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133 Rome, Italy; Laboratory of Neuroembryology, Fondazione Santa Lucia, 00143 Rome, Italy
| | - Laura Pontecorvo
- Laboratory of Pathophysiology of Cachexia and Metabolism of Skeletal Muscle, IRCCS San Raffaele Pisana, 00166 Rome, Italy
| | - Antonella Antelmi
- Interinstitutional Multidisciplinary Biobank (BioBIM), IRCCS San Raffaele Pisana, 00166 Rome, Italy
| | - Andrea Fabbri
- Department of Systems Medicine, Endocrinology Unit, S. Eugenio & CTO A. Alesini Hospitals-ASL RM2, University Tor Vergata, Rome, Italy
| | - Giuseppe Rosano
- Cardiovascular & Cell Science Institute, St George's Hospital NHS Trust, University of London, London, United Kingdom; Department of Medical Sciences, IRCCS San Raffaele, Rome, Italy
| | - Iris Z Jaffe
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA, USA
| | - Massimiliano Caprio
- Laboratory of Cardiovascular Endocrinology, IRCCS San Raffaele Pisana, 00166 Rome, Italy; Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Roma Open University, 00166 Rome, Italy.
| |
Collapse
|
57
|
Sikora MJ. Family Matters: Collaboration and Conflict Among the Steroid Receptors Raises a Need for Group Therapy. Endocrinology 2016; 157:4553-4560. [PMID: 27835038 PMCID: PMC5133350 DOI: 10.1210/en.2016-1778] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Antiestrogen therapies targeting the function of estrogen receptor (ER) have been the cornerstone of therapy for ER+ breast cancer for decades. However, as long as these therapies have been in use, it has also been evident that response to antiestrogen therapy is not based solely on ER expression but that other factors modify breast cancer antiestrogen response. Such factors may include ER's relatives in the steroid hormone receptor (HR) family, androgen receptor (AR), progesterone receptor (PR), glucocorticoid receptor (GR), and mineralocorticoid receptor (MR). A series of recent studies has demonstrated that these HRs are not bystanders in ER signaling but rather can alter ER genomic binding and subsequent control of target gene expression. For example, PR and GR may "reprogram" ER binding to DNA toward PR/GR sites; androgen receptor may reverse ER gene regulation functions or regulate ER DNA binding. Accordingly, modulation of HR function concurrently with antiestrogen therapy can either improve antiestrogen response or mediate antiestrogen resistance. This highlights the critical need to better understand how other HRs influence ER function, in particular in the context of antiestrogen therapy. This review discusses recent insights into the mechanisms by which HRs can modify ER function and antiestrogen response, as well as pharmacological implications for antiestrogen therapies and potential combined endocrine therapies.
Collapse
Affiliation(s)
- Matthew J Sikora
- Department of Pathology, University of Colorado Denver | Anschutz Medical Campus, Aurora, Colorado 80045
| |
Collapse
|
58
|
Pietranera L, Correa J, Brocca ME, Roig P, Lima A, Di Giorgio N, Garcia-Segura LM, De Nicola AF. Selective Oestrogen Receptor Agonists Rescued Hippocampus Parameters in Male Spontaneously Hypertensive Rats. J Neuroendocrinol 2016; 28. [PMID: 27517478 DOI: 10.1111/jne.12415] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Revised: 08/09/2016] [Accepted: 08/10/2016] [Indexed: 12/21/2022]
Abstract
Spontaneously hypertensive rats (SHR) show pronounced hippocampus alterations, including low brain-derived neurotrophic factor (BDNF) expression, reduced neurogenesis, astrogliosis and increased aromatase expression. These changes are reverted by treatment with 17β-oestradiol. To determine which oestradiol receptor (ER) type is involved in these neuroprotective effects, we used agonists of the ERα [propylpyrazole triol (PPT)] and the ERβ [diarylpropionitrite (DPN)] given over 2 weeks to 4-month-old male SHR. Wistar Kyoto normotensive rats served as controls. Using immunocytochemistry, we determined glial fibrillary protein (GFAP)+ astrocytes in the CA1, CA3 and hilus of the dentate gyrus of the hippocampus, aromatase immunostaining in the hilus, and doublecortin (DCX)+ neuronal progenitors in the inner granular zone of the dentate gyrus. Brain-derived neurotrophic factor mRNA was also measured in the hippocampus by the quantitative polymerase chain reaction. In SHR, PPT had no effect on blood pressure, decreased astrogliosis, slightly increased BDNF mRNA, had no effect on the number of DCX+ progenitors, and increased aromatase staining. Treatment with DPN decreased blood pressure, decreased astrogliosis, increased BDNF mRNA and DCX+ progenitors, and did not modify aromatase staining. We hypothesise that, although both receptor types may participate in the previously reported beneficial effects of 17β-oestradiol in SHR, receptor activation with DPN may preferentially facilitate BDNF mRNA expression and neurogenesis. The results of the present study may help in the design of ER-based neuroprotection for the encephalopathy of hypertension.
Collapse
Affiliation(s)
- L Pietranera
- Laboratory of Neuroendocrine Biochemistry, Instituto de Biología y Medicina Experimental, Buenos Aires, Argentina
- Department of Human Biochemistry, Faculty of Medicine, University of Buenos Aires, Buenos Aires, Argentina
| | - J Correa
- Laboratory of Neuroendocrine Biochemistry, Instituto de Biología y Medicina Experimental, Buenos Aires, Argentina
| | - M E Brocca
- Laboratory of Neuroendocrine Biochemistry, Instituto de Biología y Medicina Experimental, Buenos Aires, Argentina
| | - P Roig
- Laboratory of Neuroendocrine Biochemistry, Instituto de Biología y Medicina Experimental, Buenos Aires, Argentina
| | - A Lima
- Laboratory of Neuroendocrine Biochemistry, Instituto de Biología y Medicina Experimental, Buenos Aires, Argentina
| | - N Di Giorgio
- Laboratory of Neuroendocrinology, Instituto de Biología y Medicina Experimental, Buenos Aires, Argentina
| | - L M Garcia-Segura
- Instituto Cajal, Consejo Superior de Investigaciones Cientificas, Madrid, Spain
| | - A F De Nicola
- Laboratory of Neuroendocrine Biochemistry, Instituto de Biología y Medicina Experimental, Buenos Aires, Argentina.
- Department of Human Biochemistry, Faculty of Medicine, University of Buenos Aires, Buenos Aires, Argentina.
| |
Collapse
|
59
|
DuPont JJ, McCurley A, Davel AP, McCarthy J, Bender SB, Hong K, Yang Y, Yoo JK, Aronovitz M, Baur WE, Christou DD, Hill MA, Jaffe IZ. Vascular mineralocorticoid receptor regulates microRNA-155 to promote vasoconstriction and rising blood pressure with aging. JCI Insight 2016; 1:e88942. [PMID: 27683672 DOI: 10.1172/jci.insight.88942] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Hypertension is nearly universal yet poorly controlled in the elderly despite proven benefits of intensive treatment. Mice lacking mineralocorticoid receptors in smooth muscle cells (SMC-MR-KO) are protected from rising blood pressure (BP) with aging, despite normal renal function. Vasoconstriction is attenuated in aged SMC-MR-KO mice, thus they were used to explore vascular mechanisms that may contribute to hypertension with aging. MicroRNA (miR) profiling identified miR-155 as the most down-regulated miR with vascular aging in MR-intact but not SMC-MR-KO mice. The aging-associated decrease in miR-155 in mesenteric resistance vessels was associated with increased mRNA abundance of MR and of predicted miR-155 targets Cav1.2 (L-type calcium channel (LTCC) subunit) and angiotensin type-1 receptor (AgtR1). SMC-MR-KO mice lacked these aging-associated vascular gene expression changes. In HEK293 cells, MR repressed miR-155 promoter activity. In cultured SMCs, miR-155 decreased Cav1.2 and AgtR1 mRNA. Compared to MR-intact littermates, aged SMC-MR-KO mice had decreased systolic BP, myogenic tone, SMC LTCC current, mesenteric vessel calcium influx, LTCC-induced vasoconstriction and angiotensin II-induced vasoconstriction and oxidative stress. Restoration of miR-155 specifically in SMCs of aged MR-intact mice decreased Cav1.2 and AgtR1 mRNA and attenuated LTCC-mediated and angiotensin II-induced vasoconstriction and oxidative stress. Finally, in a trial of MR blockade in elderly humans, changes in serum miR-155 predicted the BP treatment response. Thus, SMC-MR regulation of miR-155, Cav1.2 and AgtR1 impacts vasoconstriction with aging. This novel mechanism identifies potential new treatment strategies and biomarkers to improve and individualize antihypertensive therapy in the elderly.
Collapse
Affiliation(s)
- Jennifer J DuPont
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, Massachusetts, USA
| | - Amy McCurley
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, Massachusetts, USA
| | - Ana P Davel
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, Massachusetts, USA.,Department of Structural and Functional Biology, Institute of Biology, University of Campinas-UNICAMP, São Paulo, Brazil
| | - Joseph McCarthy
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, Massachusetts, USA
| | - Shawn B Bender
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri, USA.,Research Service, Harry S. Truman Memorial Veterans' Hospital, Columbia, Missouri, USA.,Department of Biomedical Sciences, University of Missouri, Columbia, Missouri, USA
| | - Kwangseok Hong
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri, USA.,Department of Medical Pharmacology and Physiology, University of Missouri School of Medicine, Columbia, Missouri, USA
| | - Yan Yang
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri, USA
| | - Jeung-Ki Yoo
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida, USA
| | - Mark Aronovitz
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, Massachusetts, USA
| | - Wendy E Baur
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, Massachusetts, USA
| | - Demetra D Christou
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida, USA
| | - Michael A Hill
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri, USA.,Department of Medical Pharmacology and Physiology, University of Missouri School of Medicine, Columbia, Missouri, USA
| | - Iris Z Jaffe
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, Massachusetts, USA
| |
Collapse
|
60
|
Meyer MR, Barton M. Estrogens and Coronary Artery Disease: New Clinical Perspectives. ADVANCES IN PHARMACOLOGY 2016; 77:307-60. [PMID: 27451102 DOI: 10.1016/bs.apha.2016.05.003] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
In premenopausal women, endogenous estrogens are associated with reduced prevalence of arterial hypertension, coronary artery disease, myocardial infarction, and stroke. Clinical trials conducted in the 1990s such as HERS, WHI, and WISDOM have shown that postmenopausal treatment with horse hormone mixtures (so-called conjugated equine estrogens) and synthetic progestins adversely affects female cardiovascular health. Our understanding of rapid (nongenomic) and chronic (genomic) estrogen signaling has since advanced considerably, including identification of a new G protein-coupled estrogen receptor (GPER), which like the "classical" receptors ERα and ERβ is highly abundant in the cardiovascular system. Here, we discuss the role of estrogen receptors in the pathogenesis of coronary artery disease and review natural and synthetic ligands of estrogen receptors as well as their effects in physiology, on cardiovascular risk factors, and atherosclerotic vascular disease. Data from preclinical and clinical studies using nonselective compounds activating GPER, which include selective estrogen receptor modulators such as tamoxifen or raloxifene, selective estrogen receptor downregulators such as Faslodex™ (fulvestrant/ICI 182,780), vitamin B3 (niacin), green tea catechins, and soy flavonoids such as genistein or resveratrol, strongly suggest that activation of GPER may afford therapeutic benefit for primary and secondary prevention in patients with or at risk for coronary artery disease. Evidence from preclinical studies suggest similar efficacy profiles for selective small molecule GPER agonists such as G-1 which are devoid of uterotrophic activity. Further clinical research in this area is warranted to provide opportunities for future cardiovascular drug development.
Collapse
Affiliation(s)
- M R Meyer
- Triemli City Hospital, Zürich, Switzerland.
| | - M Barton
- Molecular Internal Medicine, University of Zürich, Zürich, Switzerland.
| |
Collapse
|
61
|
Abstract
Insulin resistance, type 2 diabetes mellitus and associated hyperinsulinaemia can promote the development of a specific form of cardiomyopathy that is independent of coronary artery disease and hypertension. Termed diabetic cardiomyopathy, this form of cardiomyopathy is a major cause of morbidity and mortality in developed nations, and the prevalence of this condition is rising in parallel with increases in the incidence of obesity and type 2 diabetes mellitus. Of note, female patients seem to be particularly susceptible to the development of this complication of metabolic disease. The diabetic cardiomyopathy observed in insulin- resistant or hyperinsulinaemic states is characterized by impaired myocardial insulin signalling, mitochondrial dysfunction, endoplasmic reticulum stress, impaired calcium homeostasis, abnormal coronary microcirculation, activation of the sympathetic nervous system, activation of the renin-angiotensin-aldosterone system and maladaptive immune responses. These pathophysiological changes result in oxidative stress, fibrosis, hypertrophy, cardiac diastolic dysfunction and eventually systolic heart failure. This Review highlights a surge in diabetic cardiomyopathy research, summarizes current understanding of the molecular mechanisms underpinning this condition and explores potential preventive and therapeutic strategies.
Collapse
Affiliation(s)
- Guanghong Jia
- Diabetes and Cardiovascular Center, University of Missouri School of Medicine, D109 Diabetes Center HSC, One Hospital Drive, Columbia, Missouri, 65212, USA
| | - Vincent G DeMarco
- Diabetes and Cardiovascular Center, University of Missouri School of Medicine, D109 Diabetes Center HSC, One Hospital Drive, Columbia, Missouri, 65212, USA
| | - James R Sowers
- Diabetes and Cardiovascular Center, University of Missouri School of Medicine, D109 Diabetes Center HSC, One Hospital Drive, Columbia, Missouri, 65212, USA
| |
Collapse
|
62
|
Garg R, Adler GK. Aldosterone and the Mineralocorticoid Receptor: Risk Factors for Cardiometabolic Disorders. Curr Hypertens Rep 2016; 17:52. [PMID: 26068659 DOI: 10.1007/s11906-015-0567-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Preclinical studies have convincingly demonstrated a role for the mineralocorticoid receptor (MR) in adipose tissue physiology. These studies show that increased MR activation causes adipocyte dysfunction leading to decreased production of insulin-sensitizing products and increased production of inflammatory factors, creating an environment conducive to metabolic and cardiovascular disease. Accumulating data also suggest that MR activation may be an important link between obesity and metabolic syndrome. Moreover, MR activation may mediate the pathogenic consequences of metabolic syndrome. Recent attempts at reversing cardiometabolic damage in patients with type 2 diabetes using MR antagonists have shown promising results. MR antagonists are already used to treat heart failure where their use decreases mortality and morbidity over and above the use of traditional therapies alone. However, more data are needed to establish the benefits of MR antagonists in diabetes, obesity, and metabolic syndrome.
Collapse
Affiliation(s)
- Rajesh Garg
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women's Hospital, Harvard Medical School, 221 Longwood Avenue, Boston, MA, 02115, USA
| | | |
Collapse
|
63
|
Mueller KB, Bender SB, Hong K, Yang Y, Aronovitz M, Jaisser F, Hill MA, Jaffe IZ. Endothelial Mineralocorticoid Receptors Differentially Contribute to Coronary and Mesenteric Vascular Function Without Modulating Blood Pressure. Hypertension 2015; 66:988-97. [PMID: 26351033 PMCID: PMC4600033 DOI: 10.1161/hypertensionaha.115.06172] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2015] [Accepted: 08/17/2015] [Indexed: 12/20/2022]
Abstract
Arteriolar vasoreactivity tightly regulates tissue-specific blood flow and contributes to systemic blood pressure (BP) but becomes dysfunctional in the setting of cardiovascular disease. The mineralocorticoid receptor (MR) is known to regulate BP via the kidney and by vasoconstriction in smooth muscle cells. Although endothelial cells (EC) express MR, the contribution of EC-MR to BP and resistance vessel function remains unclear. To address this, we created a mouse with MR specifically deleted from EC (EC-MR knockout [EC-MR-KO]) but with intact leukocyte MR expression and normal renal MR function. Telemetric BP studies reveal no difference between male EC-MR-KO mice and MR-intact littermates in systolic, diastolic, circadian, or salt-sensitive BP or in the hypertensive responses to aldosterone±salt or angiotensin II±l-nitroarginine methyl ester. Vessel myography demonstrated normal vasorelaxation in mesenteric and coronary arterioles from EC-MR-KO mice. After exposure to angiotensin II-induced hypertension, impaired endothelial-dependent relaxation was prevented in EC-MR-KO mice in mesenteric vessels but not in coronary vessels. Mesenteric vessels from angiotensin II-exposed EC-MR-KO mice showed increased maximum responsiveness to acetylcholine when compared with MR-intact vessels, a difference that is lost with indomethacin+l-nitroarginine methyl ester pretreatment. These data support that EC-MR plays a role in regulating endothelial function in hypertension. Although there was no effect of EC-MR deletion on mesenteric vasoconstriction, coronary arterioles from EC-MR-KO mice showed decreased constriction to endothelin-1 and thromboxane agonist at baseline and also after exposure to hypertension. These data support that EC-MR participates in regulation of vasomotor function in a vascular bed-specific manner that is also modulated by risk factors, such as hypertension.
Collapse
Affiliation(s)
- Katelee Barrett Mueller
- From the Molecular Cardiology Research Institute, Tufts Medical Center, and Sackler School of Biomedical Graduate Studies, Tufts University School of Medicine, Boston, MA (K.B.M., M.A., I.Z.J.); Research Service, Harry S. Truman Memorial Veterans' Hospital, Columbia, MO (S.B.B.); Department of Biomedical Sciences (S.B.B.), Dalton Cardiovascular Research Center (S.B.B., K.H., Y.Y., M.A.H.), and Department of Medical Pharmacology and Physiology, School of Medicine (K.H., M.A.H.), University of Missouri, Columbia; and INSERM, UMR 1138, Team 1, Centre de Recherche des Cordeliers, Université Pierre et Marie Curie, Paris, France (F.J.)
| | - Shawn B Bender
- From the Molecular Cardiology Research Institute, Tufts Medical Center, and Sackler School of Biomedical Graduate Studies, Tufts University School of Medicine, Boston, MA (K.B.M., M.A., I.Z.J.); Research Service, Harry S. Truman Memorial Veterans' Hospital, Columbia, MO (S.B.B.); Department of Biomedical Sciences (S.B.B.), Dalton Cardiovascular Research Center (S.B.B., K.H., Y.Y., M.A.H.), and Department of Medical Pharmacology and Physiology, School of Medicine (K.H., M.A.H.), University of Missouri, Columbia; and INSERM, UMR 1138, Team 1, Centre de Recherche des Cordeliers, Université Pierre et Marie Curie, Paris, France (F.J.)
| | - Kwangseok Hong
- From the Molecular Cardiology Research Institute, Tufts Medical Center, and Sackler School of Biomedical Graduate Studies, Tufts University School of Medicine, Boston, MA (K.B.M., M.A., I.Z.J.); Research Service, Harry S. Truman Memorial Veterans' Hospital, Columbia, MO (S.B.B.); Department of Biomedical Sciences (S.B.B.), Dalton Cardiovascular Research Center (S.B.B., K.H., Y.Y., M.A.H.), and Department of Medical Pharmacology and Physiology, School of Medicine (K.H., M.A.H.), University of Missouri, Columbia; and INSERM, UMR 1138, Team 1, Centre de Recherche des Cordeliers, Université Pierre et Marie Curie, Paris, France (F.J.)
| | - Yan Yang
- From the Molecular Cardiology Research Institute, Tufts Medical Center, and Sackler School of Biomedical Graduate Studies, Tufts University School of Medicine, Boston, MA (K.B.M., M.A., I.Z.J.); Research Service, Harry S. Truman Memorial Veterans' Hospital, Columbia, MO (S.B.B.); Department of Biomedical Sciences (S.B.B.), Dalton Cardiovascular Research Center (S.B.B., K.H., Y.Y., M.A.H.), and Department of Medical Pharmacology and Physiology, School of Medicine (K.H., M.A.H.), University of Missouri, Columbia; and INSERM, UMR 1138, Team 1, Centre de Recherche des Cordeliers, Université Pierre et Marie Curie, Paris, France (F.J.)
| | - Mark Aronovitz
- From the Molecular Cardiology Research Institute, Tufts Medical Center, and Sackler School of Biomedical Graduate Studies, Tufts University School of Medicine, Boston, MA (K.B.M., M.A., I.Z.J.); Research Service, Harry S. Truman Memorial Veterans' Hospital, Columbia, MO (S.B.B.); Department of Biomedical Sciences (S.B.B.), Dalton Cardiovascular Research Center (S.B.B., K.H., Y.Y., M.A.H.), and Department of Medical Pharmacology and Physiology, School of Medicine (K.H., M.A.H.), University of Missouri, Columbia; and INSERM, UMR 1138, Team 1, Centre de Recherche des Cordeliers, Université Pierre et Marie Curie, Paris, France (F.J.)
| | - Frederic Jaisser
- From the Molecular Cardiology Research Institute, Tufts Medical Center, and Sackler School of Biomedical Graduate Studies, Tufts University School of Medicine, Boston, MA (K.B.M., M.A., I.Z.J.); Research Service, Harry S. Truman Memorial Veterans' Hospital, Columbia, MO (S.B.B.); Department of Biomedical Sciences (S.B.B.), Dalton Cardiovascular Research Center (S.B.B., K.H., Y.Y., M.A.H.), and Department of Medical Pharmacology and Physiology, School of Medicine (K.H., M.A.H.), University of Missouri, Columbia; and INSERM, UMR 1138, Team 1, Centre de Recherche des Cordeliers, Université Pierre et Marie Curie, Paris, France (F.J.)
| | - Michael A Hill
- From the Molecular Cardiology Research Institute, Tufts Medical Center, and Sackler School of Biomedical Graduate Studies, Tufts University School of Medicine, Boston, MA (K.B.M., M.A., I.Z.J.); Research Service, Harry S. Truman Memorial Veterans' Hospital, Columbia, MO (S.B.B.); Department of Biomedical Sciences (S.B.B.), Dalton Cardiovascular Research Center (S.B.B., K.H., Y.Y., M.A.H.), and Department of Medical Pharmacology and Physiology, School of Medicine (K.H., M.A.H.), University of Missouri, Columbia; and INSERM, UMR 1138, Team 1, Centre de Recherche des Cordeliers, Université Pierre et Marie Curie, Paris, France (F.J.)
| | - Iris Z Jaffe
- From the Molecular Cardiology Research Institute, Tufts Medical Center, and Sackler School of Biomedical Graduate Studies, Tufts University School of Medicine, Boston, MA (K.B.M., M.A., I.Z.J.); Research Service, Harry S. Truman Memorial Veterans' Hospital, Columbia, MO (S.B.B.); Department of Biomedical Sciences (S.B.B.), Dalton Cardiovascular Research Center (S.B.B., K.H., Y.Y., M.A.H.), and Department of Medical Pharmacology and Physiology, School of Medicine (K.H., M.A.H.), University of Missouri, Columbia; and INSERM, UMR 1138, Team 1, Centre de Recherche des Cordeliers, Université Pierre et Marie Curie, Paris, France (F.J.).
| |
Collapse
|
64
|
Bienvenu LA, Reichelt ME, Morgan J, Fletcher EK, Bell JR, Rickard AJ, Delbridge LM, Young MJ. Cardiomyocyte Mineralocorticoid Receptor Activation Impairs Acute Cardiac Functional Recovery After Ischemic Insult. Hypertension 2015; 66:970-7. [PMID: 26351032 DOI: 10.1161/hypertensionaha.115.05981] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2015] [Accepted: 08/11/2015] [Indexed: 01/03/2023]
Abstract
Loss of mineralocorticoid receptor signaling selectively in cardiomyocytes can ameliorate cardiac fibrotic and inflammatory responses caused by excess mineralocorticoids. The aim of this study was to characterize the role of cardiomyocyte mineralocorticoid receptor signaling in ischemia-reperfusion injury and recovery and to identify a role of mineralocorticoid receptor modulation of cardiac function. Wild-type and cardiomyocyte mineralocorticoid receptor knockout mice (8 weeks) were uninephrectomized and maintained on (1) high salt (0.9% NaCl, 0.4% KCl) or (2) high salt plus deoxycorticosterone pellet (0.3 mg/d, 0.9% NaCl, 0.4% KCl). After 8 weeks of treatment, hearts were isolated and subjected to 20 minutes of global ischemia plus 45 minutes of reperfusion. Mineralocorticoid excess increased peak contracture during ischemia regardless of genotype. Recovery of left ventricular developed pressure and rates of contraction and relaxation post ischemia-reperfusion were greater in knockout versus wild-type hearts. The incidence of arrhythmic activity during early reperfusion was significantly higher in wild-type than in knockout hearts. Levels of autophosphorylated Ca(2+)/calmodulin protein kinase II (Thr287) were elevated in hearts from wild-type versus knockout mice and associated with increased sodium hydrogen exchanger-1 expression. These findings demonstrate that cardiomyocyte-specific mineralocorticoid receptor-dependent signaling contributes to electromechanical vulnerability in acute ischemia-reperfusion via a mechanism involving Ca(2+)/calmodulin protein kinase II activation in association with upstream alteration in expression regulation of the sodium hydrogen exchanger-1.
Collapse
Affiliation(s)
- Laura A Bienvenu
- From the Department of Cardiovascular Endocrinology, Hudson Institute of Medical Research, Clayton, Australia (L.A.B., J.M., E.K.F., A.J.R., M.J.Y.); and Department of Physiology, Melbourne University, Parkville, Australia (L.A.B., M.E.R., J.R.B., L.M.D.)
| | - Melissa E Reichelt
- From the Department of Cardiovascular Endocrinology, Hudson Institute of Medical Research, Clayton, Australia (L.A.B., J.M., E.K.F., A.J.R., M.J.Y.); and Department of Physiology, Melbourne University, Parkville, Australia (L.A.B., M.E.R., J.R.B., L.M.D.)
| | - James Morgan
- From the Department of Cardiovascular Endocrinology, Hudson Institute of Medical Research, Clayton, Australia (L.A.B., J.M., E.K.F., A.J.R., M.J.Y.); and Department of Physiology, Melbourne University, Parkville, Australia (L.A.B., M.E.R., J.R.B., L.M.D.)
| | - Elizabeth K Fletcher
- From the Department of Cardiovascular Endocrinology, Hudson Institute of Medical Research, Clayton, Australia (L.A.B., J.M., E.K.F., A.J.R., M.J.Y.); and Department of Physiology, Melbourne University, Parkville, Australia (L.A.B., M.E.R., J.R.B., L.M.D.)
| | - James R Bell
- From the Department of Cardiovascular Endocrinology, Hudson Institute of Medical Research, Clayton, Australia (L.A.B., J.M., E.K.F., A.J.R., M.J.Y.); and Department of Physiology, Melbourne University, Parkville, Australia (L.A.B., M.E.R., J.R.B., L.M.D.)
| | - Amanda J Rickard
- From the Department of Cardiovascular Endocrinology, Hudson Institute of Medical Research, Clayton, Australia (L.A.B., J.M., E.K.F., A.J.R., M.J.Y.); and Department of Physiology, Melbourne University, Parkville, Australia (L.A.B., M.E.R., J.R.B., L.M.D.)
| | - Lea M Delbridge
- From the Department of Cardiovascular Endocrinology, Hudson Institute of Medical Research, Clayton, Australia (L.A.B., J.M., E.K.F., A.J.R., M.J.Y.); and Department of Physiology, Melbourne University, Parkville, Australia (L.A.B., M.E.R., J.R.B., L.M.D.)
| | - Morag J Young
- From the Department of Cardiovascular Endocrinology, Hudson Institute of Medical Research, Clayton, Australia (L.A.B., J.M., E.K.F., A.J.R., M.J.Y.); and Department of Physiology, Melbourne University, Parkville, Australia (L.A.B., M.E.R., J.R.B., L.M.D.).
| |
Collapse
|
65
|
Daruich A, Matet A, Dirani A, Bousquet E, Zhao M, Farman N, Jaisser F, Behar-Cohen F. Central serous chorioretinopathy: Recent findings and new physiopathology hypothesis. Prog Retin Eye Res 2015; 48:82-118. [DOI: 10.1016/j.preteyeres.2015.05.003] [Citation(s) in RCA: 425] [Impact Index Per Article: 47.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Revised: 05/10/2015] [Accepted: 05/14/2015] [Indexed: 02/08/2023]
|
66
|
DeMarco VG, Habibi J, Jia G, Aroor AR, Ramirez-Perez FI, Martinez-Lemus LA, Bender SB, Garro M, Hayden MR, Sun Z, Meininger GA, Manrique C, Whaley-Connell A, Sowers JR. Low-Dose Mineralocorticoid Receptor Blockade Prevents Western Diet-Induced Arterial Stiffening in Female Mice. Hypertension 2015; 66:99-107. [PMID: 26015449 DOI: 10.1161/hypertensionaha.115.05674] [Citation(s) in RCA: 117] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Accepted: 05/04/2015] [Indexed: 12/15/2022]
Abstract
Women are especially predisposed to development of arterial stiffening secondary to obesity because of consumption of excessive calories. Enhanced activation of vascular mineralocorticoid receptors impairs insulin signaling, induces oxidative stress, inflammation, and maladaptive immune responses. We tested whether a subpressor dose of mineralocorticoid receptor antagonist, spironolactone (1 mg/kg per day) prevents aortic and femoral artery stiffening in female C57BL/6J mice fed a high-fat/high-sugar western diet (WD) for 4 months (ie, from 4-20 weeks of age). Aortic and femoral artery stiffness were assessed using ultrasound, pressurized vessel preparations, and atomic force microscopy. WD induced weight gain and insulin resistance compared with control diet-fed mice and these abnormalities were unaffected by spironolactone. Blood pressures and heart rates were normal and unaffected by diet or spironolactone. Spironolactone prevented WD-induced stiffening of aorta and femoral artery, as well as endothelial and vascular smooth muscle cells, within aortic explants. Spironolactone prevented WD-induced impaired aortic protein kinase B/endothelial nitric oxide synthase signaling, as well as impaired endothelium-dependent and endothelium-independent vasodilation. Spironolactone ameliorated WD-induced aortic medial thickening and fibrosis and the associated activation of the progrowth extracellular receptor kinase 1/2 pathway. Finally, preservation of normal arterial stiffness with spironolactone in WD-fed mice was associated with attenuated systemic and vascular inflammation and an anti-inflammatory shift in vascular immune cell marker genes. Low-dose spironolactone may represent a novel prevention strategy to attenuate vascular inflammation, oxidative stress, and growth pathway signaling and remodeling to prevent development of arterial stiffening secondary to consumption of a WD.
Collapse
Affiliation(s)
- Vincent G DeMarco
- From the Division of Endocrinology, Diabetes and Metabolism, Department of Medicine (V.G.D., J.H., G.J., A.R.A., M.G., M.R.H., C.M., J.R.S.), Division of Nephrology, Department of Medicine (A.W.-C.), Department of Medical Pharmacology and Physiology (V.G.D., F.I.R.-P., L.A.M.-L., Z.S., G.A.M., J.R.S.), and Department of Biomedical Sciences (S.B.B.), University of Missouri Columbia School of Medicine; Research Service, Harry S. Truman Memorial Veterans Hospital, Columbia, MO (V.G.D., J.H., G.J., A.R.A., S.B.B., M.G., M.R.H., C.M., A.W.-C., J.R.S.); and Dalton Cardiovascular Research Center, Columbia, MO (F.I.R.-P., L.A.M.-L., S.B.B., Z.S., G.A.M.).
| | - Javad Habibi
- From the Division of Endocrinology, Diabetes and Metabolism, Department of Medicine (V.G.D., J.H., G.J., A.R.A., M.G., M.R.H., C.M., J.R.S.), Division of Nephrology, Department of Medicine (A.W.-C.), Department of Medical Pharmacology and Physiology (V.G.D., F.I.R.-P., L.A.M.-L., Z.S., G.A.M., J.R.S.), and Department of Biomedical Sciences (S.B.B.), University of Missouri Columbia School of Medicine; Research Service, Harry S. Truman Memorial Veterans Hospital, Columbia, MO (V.G.D., J.H., G.J., A.R.A., S.B.B., M.G., M.R.H., C.M., A.W.-C., J.R.S.); and Dalton Cardiovascular Research Center, Columbia, MO (F.I.R.-P., L.A.M.-L., S.B.B., Z.S., G.A.M.)
| | - Guanghong Jia
- From the Division of Endocrinology, Diabetes and Metabolism, Department of Medicine (V.G.D., J.H., G.J., A.R.A., M.G., M.R.H., C.M., J.R.S.), Division of Nephrology, Department of Medicine (A.W.-C.), Department of Medical Pharmacology and Physiology (V.G.D., F.I.R.-P., L.A.M.-L., Z.S., G.A.M., J.R.S.), and Department of Biomedical Sciences (S.B.B.), University of Missouri Columbia School of Medicine; Research Service, Harry S. Truman Memorial Veterans Hospital, Columbia, MO (V.G.D., J.H., G.J., A.R.A., S.B.B., M.G., M.R.H., C.M., A.W.-C., J.R.S.); and Dalton Cardiovascular Research Center, Columbia, MO (F.I.R.-P., L.A.M.-L., S.B.B., Z.S., G.A.M.)
| | - Annayya R Aroor
- From the Division of Endocrinology, Diabetes and Metabolism, Department of Medicine (V.G.D., J.H., G.J., A.R.A., M.G., M.R.H., C.M., J.R.S.), Division of Nephrology, Department of Medicine (A.W.-C.), Department of Medical Pharmacology and Physiology (V.G.D., F.I.R.-P., L.A.M.-L., Z.S., G.A.M., J.R.S.), and Department of Biomedical Sciences (S.B.B.), University of Missouri Columbia School of Medicine; Research Service, Harry S. Truman Memorial Veterans Hospital, Columbia, MO (V.G.D., J.H., G.J., A.R.A., S.B.B., M.G., M.R.H., C.M., A.W.-C., J.R.S.); and Dalton Cardiovascular Research Center, Columbia, MO (F.I.R.-P., L.A.M.-L., S.B.B., Z.S., G.A.M.)
| | - Francisco I Ramirez-Perez
- From the Division of Endocrinology, Diabetes and Metabolism, Department of Medicine (V.G.D., J.H., G.J., A.R.A., M.G., M.R.H., C.M., J.R.S.), Division of Nephrology, Department of Medicine (A.W.-C.), Department of Medical Pharmacology and Physiology (V.G.D., F.I.R.-P., L.A.M.-L., Z.S., G.A.M., J.R.S.), and Department of Biomedical Sciences (S.B.B.), University of Missouri Columbia School of Medicine; Research Service, Harry S. Truman Memorial Veterans Hospital, Columbia, MO (V.G.D., J.H., G.J., A.R.A., S.B.B., M.G., M.R.H., C.M., A.W.-C., J.R.S.); and Dalton Cardiovascular Research Center, Columbia, MO (F.I.R.-P., L.A.M.-L., S.B.B., Z.S., G.A.M.)
| | - Luis A Martinez-Lemus
- From the Division of Endocrinology, Diabetes and Metabolism, Department of Medicine (V.G.D., J.H., G.J., A.R.A., M.G., M.R.H., C.M., J.R.S.), Division of Nephrology, Department of Medicine (A.W.-C.), Department of Medical Pharmacology and Physiology (V.G.D., F.I.R.-P., L.A.M.-L., Z.S., G.A.M., J.R.S.), and Department of Biomedical Sciences (S.B.B.), University of Missouri Columbia School of Medicine; Research Service, Harry S. Truman Memorial Veterans Hospital, Columbia, MO (V.G.D., J.H., G.J., A.R.A., S.B.B., M.G., M.R.H., C.M., A.W.-C., J.R.S.); and Dalton Cardiovascular Research Center, Columbia, MO (F.I.R.-P., L.A.M.-L., S.B.B., Z.S., G.A.M.)
| | - Shawn B Bender
- From the Division of Endocrinology, Diabetes and Metabolism, Department of Medicine (V.G.D., J.H., G.J., A.R.A., M.G., M.R.H., C.M., J.R.S.), Division of Nephrology, Department of Medicine (A.W.-C.), Department of Medical Pharmacology and Physiology (V.G.D., F.I.R.-P., L.A.M.-L., Z.S., G.A.M., J.R.S.), and Department of Biomedical Sciences (S.B.B.), University of Missouri Columbia School of Medicine; Research Service, Harry S. Truman Memorial Veterans Hospital, Columbia, MO (V.G.D., J.H., G.J., A.R.A., S.B.B., M.G., M.R.H., C.M., A.W.-C., J.R.S.); and Dalton Cardiovascular Research Center, Columbia, MO (F.I.R.-P., L.A.M.-L., S.B.B., Z.S., G.A.M.)
| | - Mona Garro
- From the Division of Endocrinology, Diabetes and Metabolism, Department of Medicine (V.G.D., J.H., G.J., A.R.A., M.G., M.R.H., C.M., J.R.S.), Division of Nephrology, Department of Medicine (A.W.-C.), Department of Medical Pharmacology and Physiology (V.G.D., F.I.R.-P., L.A.M.-L., Z.S., G.A.M., J.R.S.), and Department of Biomedical Sciences (S.B.B.), University of Missouri Columbia School of Medicine; Research Service, Harry S. Truman Memorial Veterans Hospital, Columbia, MO (V.G.D., J.H., G.J., A.R.A., S.B.B., M.G., M.R.H., C.M., A.W.-C., J.R.S.); and Dalton Cardiovascular Research Center, Columbia, MO (F.I.R.-P., L.A.M.-L., S.B.B., Z.S., G.A.M.)
| | - Melvin R Hayden
- From the Division of Endocrinology, Diabetes and Metabolism, Department of Medicine (V.G.D., J.H., G.J., A.R.A., M.G., M.R.H., C.M., J.R.S.), Division of Nephrology, Department of Medicine (A.W.-C.), Department of Medical Pharmacology and Physiology (V.G.D., F.I.R.-P., L.A.M.-L., Z.S., G.A.M., J.R.S.), and Department of Biomedical Sciences (S.B.B.), University of Missouri Columbia School of Medicine; Research Service, Harry S. Truman Memorial Veterans Hospital, Columbia, MO (V.G.D., J.H., G.J., A.R.A., S.B.B., M.G., M.R.H., C.M., A.W.-C., J.R.S.); and Dalton Cardiovascular Research Center, Columbia, MO (F.I.R.-P., L.A.M.-L., S.B.B., Z.S., G.A.M.)
| | - Zhe Sun
- From the Division of Endocrinology, Diabetes and Metabolism, Department of Medicine (V.G.D., J.H., G.J., A.R.A., M.G., M.R.H., C.M., J.R.S.), Division of Nephrology, Department of Medicine (A.W.-C.), Department of Medical Pharmacology and Physiology (V.G.D., F.I.R.-P., L.A.M.-L., Z.S., G.A.M., J.R.S.), and Department of Biomedical Sciences (S.B.B.), University of Missouri Columbia School of Medicine; Research Service, Harry S. Truman Memorial Veterans Hospital, Columbia, MO (V.G.D., J.H., G.J., A.R.A., S.B.B., M.G., M.R.H., C.M., A.W.-C., J.R.S.); and Dalton Cardiovascular Research Center, Columbia, MO (F.I.R.-P., L.A.M.-L., S.B.B., Z.S., G.A.M.)
| | - Gerald A Meininger
- From the Division of Endocrinology, Diabetes and Metabolism, Department of Medicine (V.G.D., J.H., G.J., A.R.A., M.G., M.R.H., C.M., J.R.S.), Division of Nephrology, Department of Medicine (A.W.-C.), Department of Medical Pharmacology and Physiology (V.G.D., F.I.R.-P., L.A.M.-L., Z.S., G.A.M., J.R.S.), and Department of Biomedical Sciences (S.B.B.), University of Missouri Columbia School of Medicine; Research Service, Harry S. Truman Memorial Veterans Hospital, Columbia, MO (V.G.D., J.H., G.J., A.R.A., S.B.B., M.G., M.R.H., C.M., A.W.-C., J.R.S.); and Dalton Cardiovascular Research Center, Columbia, MO (F.I.R.-P., L.A.M.-L., S.B.B., Z.S., G.A.M.)
| | - Camila Manrique
- From the Division of Endocrinology, Diabetes and Metabolism, Department of Medicine (V.G.D., J.H., G.J., A.R.A., M.G., M.R.H., C.M., J.R.S.), Division of Nephrology, Department of Medicine (A.W.-C.), Department of Medical Pharmacology and Physiology (V.G.D., F.I.R.-P., L.A.M.-L., Z.S., G.A.M., J.R.S.), and Department of Biomedical Sciences (S.B.B.), University of Missouri Columbia School of Medicine; Research Service, Harry S. Truman Memorial Veterans Hospital, Columbia, MO (V.G.D., J.H., G.J., A.R.A., S.B.B., M.G., M.R.H., C.M., A.W.-C., J.R.S.); and Dalton Cardiovascular Research Center, Columbia, MO (F.I.R.-P., L.A.M.-L., S.B.B., Z.S., G.A.M.)
| | - Adam Whaley-Connell
- From the Division of Endocrinology, Diabetes and Metabolism, Department of Medicine (V.G.D., J.H., G.J., A.R.A., M.G., M.R.H., C.M., J.R.S.), Division of Nephrology, Department of Medicine (A.W.-C.), Department of Medical Pharmacology and Physiology (V.G.D., F.I.R.-P., L.A.M.-L., Z.S., G.A.M., J.R.S.), and Department of Biomedical Sciences (S.B.B.), University of Missouri Columbia School of Medicine; Research Service, Harry S. Truman Memorial Veterans Hospital, Columbia, MO (V.G.D., J.H., G.J., A.R.A., S.B.B., M.G., M.R.H., C.M., A.W.-C., J.R.S.); and Dalton Cardiovascular Research Center, Columbia, MO (F.I.R.-P., L.A.M.-L., S.B.B., Z.S., G.A.M.)
| | - James R Sowers
- From the Division of Endocrinology, Diabetes and Metabolism, Department of Medicine (V.G.D., J.H., G.J., A.R.A., M.G., M.R.H., C.M., J.R.S.), Division of Nephrology, Department of Medicine (A.W.-C.), Department of Medical Pharmacology and Physiology (V.G.D., F.I.R.-P., L.A.M.-L., Z.S., G.A.M., J.R.S.), and Department of Biomedical Sciences (S.B.B.), University of Missouri Columbia School of Medicine; Research Service, Harry S. Truman Memorial Veterans Hospital, Columbia, MO (V.G.D., J.H., G.J., A.R.A., S.B.B., M.G., M.R.H., C.M., A.W.-C., J.R.S.); and Dalton Cardiovascular Research Center, Columbia, MO (F.I.R.-P., L.A.M.-L., S.B.B., Z.S., G.A.M.).
| |
Collapse
|
67
|
Del Principe D, Ruggieri A, Pietraforte D, Villani A, Vitale C, Straface E, Malorni W. The relevance of estrogen/estrogen receptor system on the gender difference in cardiovascular risk. Int J Cardiol 2015; 187:291-8. [DOI: 10.1016/j.ijcard.2015.03.145] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2015] [Revised: 03/07/2015] [Accepted: 03/15/2015] [Indexed: 01/08/2023]
|
68
|
Barton M, Prossnitz ER. Emerging roles of GPER in diabetes and atherosclerosis. Trends Endocrinol Metab 2015; 26:185-92. [PMID: 25767029 PMCID: PMC4731095 DOI: 10.1016/j.tem.2015.02.003] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Revised: 01/31/2015] [Accepted: 02/04/2015] [Indexed: 01/13/2023]
Abstract
The G protein-coupled estrogen receptor (GPER) is a 7-transmembrane receptor implicated in rapid estrogen signaling. Originally cloned from vascular endothelial cells, GPER plays a central role in the regulation of vascular tone and cell growth as well as lipid and glucose homeostasis. This review highlights our knowledge of the physiological and pathophysiological functions of GPER in the pancreas, peripheral and immune tissues, and the arterial vasculature. Recent findings on its roles in obesity, diabetes, and atherosclerosis, including GPER-dependent regulation of lipid metabolism and inflammation, are presented. The therapeutic potential of targeting GPER-dependent pathways in chronic diseases such as coronary artery disease and diabetes and in the context of menopause is also discussed.
Collapse
Affiliation(s)
- Matthias Barton
- Molecular Internal Medicine, University of Zurich, Switzerland.
| | - Eric R Prossnitz
- Department of Internal Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM 87120, USA; UNM Cancer Center, University of New Mexico Health Sciences Center, Albuquerque, NM 87120, USA.
| |
Collapse
|
69
|
Vinkers CH, Joëls M, Milaneschi Y, Gerritsen L, Kahn RS, Penninx BWJH, Boks MPM. Mineralocorticoid receptor haplotypes sex-dependently moderate depression susceptibility following childhood maltreatment. Psychoneuroendocrinology 2015; 54:90-102. [PMID: 25686805 DOI: 10.1016/j.psyneuen.2015.01.018] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Revised: 12/17/2014] [Accepted: 01/21/2015] [Indexed: 12/12/2022]
Abstract
The MR is an important regulator of the hypothalamic-pituitary-adrenal (HPA) axis and a prime target for corticosteroids. There is increasing evidence from both clinical and preclinical studies that the MR has different effects on behavior and mood in males and females. To investigate the hypothesis that the MR sex-dependently influences the relation between childhood maltreatment and depression, we investigated three common and functional MR haplotypes (GA, CA, and CG haplotype, based on rs5522 and rs2070951) in a population-based cohort (N = 665) and an independent clinical cohort from the Netherlands Study of Depression and Anxiety (NESDA) (N = 1639). The CA haplotype sex-dependently moderated the relation between childhood maltreatment and depressive symptoms both in the population-based sample (sex × maltreatment × haplotype: β = -4.07, P = 0.029) and in the clinical sample (sex × maltreatment × haplotype, β = -2.40, P = 0.011). Specifically, female individuals in the population-based sample were protected (β = -4.58, P = 2.0 e(-5)), whereas males in the clinical sample were at increased risk (β = 2.54, P = 0.0022). In line with these results, female GA haplotype carriers displayed increased vulnerability in the population-based sample (β = 4.58, P = 7.5 e(-5)) whereas male CG-carriers showed increased resilience in the clinical sample (β = -2.71, P = 0.016). Consistently, we found a decreased lifetime MDD risk for male GA haplotype carriers following childhood maltreatment but an increased risk for male CA haplotype carriers in the clinical sample. In both samples, sex-dependent effects were observed for GA-GA diplotype carriers. In summary, sex plays an important role in determining whether functional genetic variation in MR is beneficial or detrimental, with an apparent female advantage for the CA haplotype but male advantage for the GA and CG haplotype. These sex-dependent effects of MR on depression susceptibility following childhood maltreatment are relevant in light of the increased prevalence of mood disorders in women and point to a sex-specific role of MR in the etiology of depression following childhood maltreatment.
Collapse
Affiliation(s)
- Christiaan H Vinkers
- Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands.
| | - Marian Joëls
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Yuri Milaneschi
- Department of Psychiatry, EMGO Institute for Health and Care Research and Neuroscience Campus Amsterdam, VU University Medical Center, Amsterdam, The Netherlands
| | - Lotte Gerritsen
- Department of Psychiatry, EMGO Institute for Health and Care Research and Neuroscience Campus Amsterdam, VU University Medical Center, Amsterdam, The Netherlands
| | - René S Kahn
- Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Brenda W J H Penninx
- Department of Psychiatry, EMGO Institute for Health and Care Research and Neuroscience Campus Amsterdam, VU University Medical Center, Amsterdam, The Netherlands
| | - Marco P M Boks
- Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
70
|
Vascular mineralocorticoid receptor and blood pressure regulation. Curr Opin Pharmacol 2015; 21:138-44. [DOI: 10.1016/j.coph.2015.02.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Revised: 02/11/2015] [Accepted: 02/12/2015] [Indexed: 01/16/2023]
|
71
|
Bender SB, Jia G, Sowers JR. Mineralocorticoid receptors: an appealing target to treat coronary microvascular dysfunction in diabetes. Diabetes 2015; 64:3-5. [PMID: 25538279 PMCID: PMC4274807 DOI: 10.2337/db14-1425] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Shawn B Bender
- Research, Harry S. Truman Memorial Veterans Hospital, Columbia, MO Department of Biomedical Sciences, University of Missouri, Columbia, MO Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO
| | - Guanghong Jia
- Research, Harry S. Truman Memorial Veterans Hospital, Columbia, MO Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, University of Missouri School of Medicine, Columbia, MO
| | - James R Sowers
- Research, Harry S. Truman Memorial Veterans Hospital, Columbia, MO Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, University of Missouri School of Medicine, Columbia, MO Department of Medical Pharmacology and Physiology, University of Missouri School of Medicine, Columbia, MO
| |
Collapse
|
72
|
Moss ME, Jaffe IZ. Mineralocorticoid Receptors in the Pathophysiology of Vascular Inflammation and Atherosclerosis. Front Endocrinol (Lausanne) 2015; 6:153. [PMID: 26441842 PMCID: PMC4585008 DOI: 10.3389/fendo.2015.00153] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Accepted: 09/14/2015] [Indexed: 01/25/2023] Open
Abstract
Atherosclerosis is a chronic inflammatory disease of the vasculature that causes significant morbidity and mortality from myocardial infarction, stroke, and peripheral vascular disease. Landmark clinical trials revealed that mineralocorticoid receptor (MR) antagonists improve outcomes in cardiovascular patients. Conversely, enhanced MR activation by the hormone aldosterone is associated with increased risk of MI, stroke, and cardiovascular death. This review summarizes recent advances in our understanding of the role of aldosterone and the MR in the pathogenesis of vascular inflammation and atherosclerosis as it proceeds from risk factor-induced endothelial dysfunction and inflammation to plaque formation, progression, and ultimately rupture with thrombosis, the cause of acute ischemia. The role of the MR in converting cardiac risk factors into endothelial dysfunction, in enhancing leukocyte adhesion and infiltration into the vasculature, in promoting systemic inflammation and vascular oxidative stress, and in plaque destabilization and thrombosis are discussed. A greater understanding of the mechanisms by which the MR promotes atherosclerosis has substantial potential to identify novel treatment targets to improve cardiovascular health and decrease mortality.
Collapse
Affiliation(s)
- Mary E. Moss
- Tufts Medical Center, Molecular Cardiology Research Institute, Boston, MA, USA
- Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, MA, USA
| | - Iris Z. Jaffe
- Tufts Medical Center, Molecular Cardiology Research Institute, Boston, MA, USA
- Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, MA, USA
- *Correspondence: Iris Z. Jaffe, Tufts Medical Center, Molecular Cardiology Research Institute, 800 Washington Street, Box 80, Boston, MA 02111, USA,
| |
Collapse
|
73
|
Fuller PJ, Young MJ. Duelling receptors: estrogen receptor versus mineralocorticoid receptor in the cardiovascular system. Endocrinology 2014; 155:4117-9. [PMID: 25325425 DOI: 10.1210/en.2014-1778] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Peter J Fuller
- MIMR-PHI Institute (formerly Prince Henry's Institute of Medical Research), Clayton, Victoria 3168, Australia
| | | |
Collapse
|