51
|
Double Knockout of Peroxiredoxin 4 (Prdx4) and Superoxide Dismutase 1 (Sod1) in Mice Results in Severe Liver Failure. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:2812904. [PMID: 30050648 PMCID: PMC6040270 DOI: 10.1155/2018/2812904] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 04/04/2018] [Accepted: 04/30/2018] [Indexed: 12/16/2022]
Abstract
Mice that are deficient in superoxide dismutase 1 (Sod1), an antioxidative enzyme, are susceptible to developing liver steatosis. Peroxiredoxin 4 (Prdx4) catalyzes disulfide bond formation in proteins via the action of hydrogen peroxide and hence decreases oxidative stress and supports oxidative protein folding for the secretion of lipoproteins. Because elevated reactive oxygen species induce endoplasmic reticulum stress, this negative chain reaction is likely involved in the development of nonalcoholic fatty liver diseases and more advanced steatohepatitis (NASH). In the current study, we generated Prdx4 and Sod1 double knockout (DKO; Prdx4-/ySod1-/-) mice and examined whether the combined deletion of Prdx4 and Sod1 aggravated liver pathology compared to single knockout and wild-type mice. The secretion of triglyceride-rich lipoprotein was strikingly impaired in the DKO mice, leading to aggravated liver steatosis. Simultaneously, the activation of caspase-3 in the liver was observed. The hyperoxidation of Prdxs, a hallmark of oxidative stress, occurred in different isoforms that are uniquely associated with Sod1-/- and Prdx4-/y mice, and the effect was additive in DKO mouse livers. Because DKO mice spontaneously develop severe liver failure at a relatively young stage, they have the potential for use as a model for hepatic disorders and for testing other potential treatments.
Collapse
|
52
|
Du L, Gu T, Zhang Y, Huang Z, Wu N, Zhao W, Chang G, Xu Q, Chen G. Transcriptome profiling to identify key mediators of granulosa cell proliferation upon FSH stimulation in the goose (Anser cygnoides). Br Poult Sci 2018; 59:416-421. [PMID: 29723039 DOI: 10.1080/00071668.2018.1459474] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
1. The low reproductive performance of geese has seriously hampered the development of the industry. Reproductive performance, particularly the egg laying rate mainly depends on the development of the follicle. Previous studies have shown that follicle-stimulating hormone (FSH) plays an important role in the process of follicular development, but the exact underlying mechanism remains unclear. 2. This study showed that FSH stimulated granulosa cell proliferation in a dose-dependent manner. The effect of FSH treatment on granulosa cell proliferation was greatest at a dose of 100 mIU/ml FSH for 24 h. 3. Secondly, the effect of different concentrations of FSH on goose granulosa cell proliferation was investigated, and de novo transcriptome assembly and gene expression analysis performed using short-read sequencing technology (Illumina). High-throughput sequencing results yielded 62.61 M reads and 7.8 G base pairs from granulosa cells treated with 100 mIU/ml FSH. These reads were assembled into 65,757 unigenes (mean length: 705 bp) with an N50 of 903 bp. A total of 110 upregulated and 510 downregulated differentially expressed genes (DEGs) were identified by RNA-seq. 4. Functional analysis by gene ontology (GO) and KEGG pathway annotation indicated that hormone biosynthesis (GO:0042446), positive regulation of hormone secretion (GO:0046887), steroid biosynthesis, oxidative phosphorylation and carbon metabolism pathways were involved in FSH-mediated proliferation of goose granulosa cells. 5. After screening, a group of key responsive genes including superoxide dismutase 1, fatty acyl-CoA reductase 1, transforming growth factor-beta receptor-associated protein 1 and follistatin were tested by real-time reverse transcription PCR to confirm differential expression in granulosa cells stimulated by FSH. 6. FSH-stimulated goose granulosa cells and DEG profiling data provided comprehensive gene expression information at the transcriptional level that could promote better understanding of the molecular mechanisms underlying follicle development in response to FSH stimulation.
Collapse
Affiliation(s)
- L Du
- a Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education , Yangzhou University , Yangzhou , PR China
| | - T Gu
- a Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education , Yangzhou University , Yangzhou , PR China
| | - Y Zhang
- a Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education , Yangzhou University , Yangzhou , PR China
| | - Zhengyang Huang
- a Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education , Yangzhou University , Yangzhou , PR China
| | - N Wu
- a Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education , Yangzhou University , Yangzhou , PR China
| | - W Zhao
- a Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education , Yangzhou University , Yangzhou , PR China
| | - G Chang
- a Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education , Yangzhou University , Yangzhou , PR China
| | - Q Xu
- a Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education , Yangzhou University , Yangzhou , PR China
| | - G Chen
- a Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education , Yangzhou University , Yangzhou , PR China
| |
Collapse
|
53
|
Wang Y, Branicky R, Noë A, Hekimi S. Superoxide dismutases: Dual roles in controlling ROS damage and regulating ROS signaling. J Cell Biol 2018; 217:1915-1928. [PMID: 29669742 PMCID: PMC5987716 DOI: 10.1083/jcb.201708007] [Citation(s) in RCA: 1194] [Impact Index Per Article: 170.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 03/13/2018] [Accepted: 04/04/2018] [Indexed: 02/07/2023] Open
Abstract
Wang et al. review the dual role of superoxide dismutases in controlling reactive oxygen species (ROS) damage and regulating ROS signaling across model systems as well as their involvement in human diseases. Superoxide dismutases (SODs) are universal enzymes of organisms that live in the presence of oxygen. They catalyze the conversion of superoxide into oxygen and hydrogen peroxide. Superoxide anions are the intended product of dedicated signaling enzymes as well as the byproduct of several metabolic processes including mitochondrial respiration. Through their activity, SOD enzymes control the levels of a variety of reactive oxygen species (ROS) and reactive nitrogen species, thus both limiting the potential toxicity of these molecules and controlling broad aspects of cellular life that are regulated by their signaling functions. All aerobic organisms have multiple SOD proteins targeted to different cellular and subcellular locations, reflecting the slow diffusion and multiple sources of their substrate superoxide. This compartmentalization also points to the need for fine local control of ROS signaling and to the possibility for ROS to signal between compartments. In this review, we discuss studies in model organisms and humans, which reveal the dual roles of SOD enzymes in controlling damage and regulating signaling.
Collapse
Affiliation(s)
- Ying Wang
- Department of Biology, McGill University, Montreal, Canada
| | - Robyn Branicky
- Department of Biology, McGill University, Montreal, Canada
| | - Alycia Noë
- Department of Biology, McGill University, Montreal, Canada
| | | |
Collapse
|
54
|
Kapnick SM, Pacheco SE, McGuire PJ. The emerging role of immune dysfunction in mitochondrial diseases as a paradigm for understanding immunometabolism. Metabolism 2018; 81:97-112. [PMID: 29162500 PMCID: PMC5866745 DOI: 10.1016/j.metabol.2017.11.010] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 11/07/2017] [Accepted: 11/11/2017] [Indexed: 01/08/2023]
Abstract
Immunometabolism aims to define the role of intermediary metabolism in immune cell function, with bioenergetics and the mitochondria recently taking center stage. To date, the medical literature on mitochondria and immune function extols the virtues of mouse models in exploring this biologic intersection. While the laboratory mouse has become a standard for studying mammalian biology, this model comprises part of a comprehensive approach. Humans, with their broad array of inherited phenotypes, serve as a starting point for studying immunometabolism; specifically, patients with mitochondrial disease. Using this top-down approach, the mouse as a model organism facilitates further exploration of the consequences of mutations involved in mitochondrial maintenance and function. In this review, we will discuss the emerging phenotype of immune dysfunction in mitochondrial disease as a model for understanding the role of the mitochondria in immune function in available mouse models.
Collapse
Affiliation(s)
- Senta M Kapnick
- Metabolism, Infection and Immunity Section, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Susan E Pacheco
- Department of Pediatrics, The University of Texas Health Science Center, Houston, TX, USA
| | - Peter J McGuire
- Metabolism, Infection and Immunity Section, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
55
|
On the Origin of Superoxide Dismutase: An Evolutionary Perspective of Superoxide-Mediated Redox Signaling. Antioxidants (Basel) 2017; 6:antiox6040082. [PMID: 29084153 PMCID: PMC5745492 DOI: 10.3390/antiox6040082] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 10/23/2017] [Accepted: 10/27/2017] [Indexed: 12/15/2022] Open
Abstract
The field of free radical biology originated with the discovery of superoxide dismutase (SOD) in 1969. Over the last 5 decades, a plethora of research has been performed in species ranging from bacteria to mammals that has elucidated the molecular reaction, subcellular location, and specific isoforms of SOD. However, while humans have only begun to study this class of enzymes over the past 50 years, it has been estimated that these enzymes have existed for billions of years, and may be some of the original enzymes found in primitive life. As life evolved over this expanse of time, these enzymes have taken on new and different functional roles potentially in contrast to how they were originally derived. Herein, examination of the evolutionary history of these enzymes provides both an explanation and further inquiries into the modern-day role of SOD in physiology and disease.
Collapse
|
56
|
Zhang M, Zhang Q, Hu Y, Xu L, Jiang Y, Zhang C, Ding L, Jiang R, Sun J, Sun H, Yan G. miR-181a increases FoxO1 acetylation and promotes granulosa cell apoptosis via SIRT1 downregulation. Cell Death Dis 2017; 8:e3088. [PMID: 28981116 PMCID: PMC5680589 DOI: 10.1038/cddis.2017.467] [Citation(s) in RCA: 119] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2017] [Revised: 08/06/2017] [Accepted: 08/17/2017] [Indexed: 12/23/2022]
Abstract
Oxidative stress impairs follicular development by inducing granulosa cell (GC) apoptosis, which involves enhancement of the transcriptional activity of the pro-apoptotic factor Forkhead box O1 (FoxO1). However, the mechanism by which oxidative stress promotes FoxO1 activity is still unclear. Here, we found that miR-181a was upregulated in hydrogen peroxide (H2O2)-treated GCs and a 3-nitropropionic acid (NP)-induced in vivo model of ovarian oxidative stress. miR-181a overexpression promoted GC apoptosis, whereas knockdown of endogenous miR-181a blocked H2O2-induced cell apoptosis. Moreover, we identified that Sirtuin 1 (SIRT1), a deacetylase that suppresses FoxO1 acetylation in GCs, was downregulated by miR-181a and reversed the promoting effects of H2O2 and miR-181a on FoxO1 acetylation and GC apoptosis. Importantly, decreased miR-181a expression in the in vivo ovarian oxidative stress model inhibited apoptosis by upregulating SIRT1 expression and FoxO1 deacetylation. Together, our results suggest that miR-181a mediates oxidative stress-induced FoxO1 acetylation and GC apoptosis by targeting SIRT1 both in vitro and in vivo.
Collapse
Affiliation(s)
- Mei Zhang
- Reproductive Medicine Center, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, People’s Republic of China
| | - Qun Zhang
- Reproductive Medicine Center, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, People’s Republic of China
| | - Yali Hu
- Reproductive Medicine Center, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, People’s Republic of China
| | - Lu Xu
- Reproductive Medicine Center, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, People’s Republic of China
| | - Yue Jiang
- Reproductive Medicine Center, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, People’s Republic of China
| | - Chunxue Zhang
- Reproductive Medicine Center, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, People’s Republic of China
| | - Lijun Ding
- Reproductive Medicine Center, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, People’s Republic of China
| | - Ruiwei Jiang
- Reproductive Medicine Center, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, People’s Republic of China
| | - Jianxin Sun
- Center for Translational Medicine, Department of Medicine, Thomas Jefferson University, Philadelphia, PA, USA
| | - Haixiang Sun
- Reproductive Medicine Center, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, People’s Republic of China
| | - Guijun Yan
- Reproductive Medicine Center, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, People’s Republic of China
| |
Collapse
|
57
|
Wang S, He G, Chen M, Zuo T, Xu W, Liu X. The Role of Antioxidant Enzymes in the Ovaries. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:4371714. [PMID: 29147461 PMCID: PMC5632900 DOI: 10.1155/2017/4371714] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 07/19/2017] [Indexed: 01/21/2023]
Abstract
Proper physiological function of the ovaries is very important for the entire female reproductive system and overall health. Reactive oxygen species (ROS) are generated as by-products during ovarian physiological metabolism, and antioxidants are indicated as factors that can maintain the balance between ROS production and clearance. A disturbance in this balance can induce pathological consequences in oocyte maturation, ovulation, fertilization, implantation, and embryo development, which can ultimately influence pregnancy outcomes. However, our understanding of the molecular and cellular mechanisms underlying these physiological and pathological processes is lacking. This article presents up-to-date findings regarding the effects of antioxidants on the ovaries. An abundance of evidence has confirmed the various significant roles of these antioxidants in the ovaries. Some animal models are discussed in this review to demonstrate the harmful consequences that result from mutation or depletion of antioxidant genes or genes related to antioxidant synthesis. Disruption of antioxidant systems may lead to pathological consequences in women. Antioxidant supplementation is indicated as a possible strategy for treating reproductive disease and infertility by controlling oxidative stress (OS). To confirm this, further investigations are required and more antioxidant therapy in humans has to been performed.
Collapse
Affiliation(s)
- Shan Wang
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu 610041, China
- Joint Laboratory of Reproductive Medicine, Sichuan University-The Chinese University of Hong Kong (SCU-CUHK), West China Second University Hospital, Sichuan University, Chengdu 610041, China
| | - Guolin He
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu 610041, China
| | - Meng Chen
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu 610041, China
| | - Tao Zuo
- Joint Laboratory of Reproductive Medicine, Sichuan University-The Chinese University of Hong Kong (SCU-CUHK), West China Second University Hospital, Sichuan University, Chengdu 610041, China
| | - Wenming Xu
- Joint Laboratory of Reproductive Medicine, Sichuan University-The Chinese University of Hong Kong (SCU-CUHK), West China Second University Hospital, Sichuan University, Chengdu 610041, China
| | - Xinghui Liu
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
58
|
Xu L, Sun H, Zhang M, Jiang Y, Zhang C, Zhou J, Ding L, Hu Y, Yan G. MicroRNA-145 protects follicular granulosa cells against oxidative stress-induced apoptosis by targeting Krüppel-like factor 4. Mol Cell Endocrinol 2017; 452:138-147. [PMID: 28564582 DOI: 10.1016/j.mce.2017.05.030] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2017] [Revised: 04/16/2017] [Accepted: 05/25/2017] [Indexed: 11/24/2022]
Abstract
Oxidative stress-induced follicular granulosa cell (GC) apoptosis plays an essential role in abnormal follicular atresia, which may trigger ovarian dysfunction. To investigate the role of microRNA (miR)-145 in the regulation of GC apoptosis and modulation of the apoptotic pathway in the setting of oxidative stress, we employed an H2O2-induced in vitro model and a 3-nitropropionic acid (NP)-induced in vivo model of ovarian oxidative stress. We demonstrated in vitro that miR-145 expression was significantly down-regulated in KGN cells and mouse granulosa cells (mGCs) treated with H2O2, whereas miR-145 over-expression attenuated H2O2-induced apoptosis in GCs. Moreover, miR-145 protected GCs against H2O2-induced apoptosis by targeting KLF4, which promoted H2O2-induced GC apoptosis via the BAX/BCL-2 pathway. Importantly, decreased miR-145 expression in the in vivo ovarian oxidative stress model promoted apoptosis by up-regulating KLF4 expression, whereas GC-specific miR-145 over-expression attenuated apoptosis by targeting KLF4. In conclusion, miR-145 protects GCs against oxidative stress-induced apoptosis by targeting KLF4.
Collapse
Affiliation(s)
- Lu Xu
- Reproductive Medicine Center, Drum Tower Clinic Medical College of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Haixiang Sun
- Reproductive Medicine Center, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Mei Zhang
- Reproductive Medicine Center, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Yue Jiang
- Reproductive Medicine Center, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Chunxue Zhang
- Reproductive Medicine Center, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Jianjun Zhou
- Reproductive Medicine Center, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Lijun Ding
- Reproductive Medicine Center, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Yali Hu
- Reproductive Medicine Center, Drum Tower Clinic Medical College of Nanjing Medical University, Nanjing, Jiangsu, China.
| | - Guijun Yan
- Reproductive Medicine Center, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China.
| |
Collapse
|
59
|
Milczarek A, Starzyński RR, Styś A, Jończy A, Staroń R, Grzelak A, Lipiński P. A drastic superoxide-dependent oxidative stress is prerequisite for the down-regulation of IRP1: Insights from studies on SOD1-deficient mice and macrophages treated with paraquat. PLoS One 2017; 12:e0176800. [PMID: 28542246 PMCID: PMC5438123 DOI: 10.1371/journal.pone.0176800] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 04/17/2017] [Indexed: 12/21/2022] Open
Abstract
Iron regulatory protein 1 (IRP1) is a cytosolic bifunctional [4Fe-4S] protein which exhibits aconitase activity or binds iron responsive elements (IREs) in untranslated regions of specific mRNA encoding proteins involved in cellular iron metabolism. Superoxide radical (O2.-) converts IRP1 from a [4Fe-4S] aconitase to a [3Fe-4S] „null” form possessing neither aconitase nor trans-regulatory activity. Genetic ablation of superoxide dismutase 1 (SOD1), an antioxidant enzyme that acts to reduce O2.- concentration, revealed a new O2.--dependent regulation of IRP1 leading to the reduction of IRP1 protein level and in consequence to the diminution of IRP1 enzymatic and IRE-binding activities. Here, we attempted to establish whether developmental changes in SOD1 activity occurring in the mouse liver, impact IRP1 expression. We show no correlation between hepatic SOD1 activity and IRP1 protein level neither in pre- nor postnatal period probably because the magnitude of developmental fluctuations in SOD1 activity is relatively small. The comparison of SOD1 activity in regards to IRP1 protein level in the liver of threeSOD1 genotypes (Sod1+/+, Sod1+/- and Sod1-/-) demonstrates that only drastic SOD1 deficiency leads to the reduction of IRP1 protein level. Importantly, we found that in the liver of fetuses lacking SOD1, IRP1 is not down-regulated. To investigate O2.--dependent regulation of IRP1 in a cellular model, we exposed murine RAW 264.7 and bone marrow-derived macrophages to paraquat, widely used as a redox cycler to stimulate O2.-production in cells. We showed that IRP1 protein level as well as aconitase and IRE-binding activities are strongly reduced in macrophages treated with paraquat. The analysis of the expression of IRP1-target genes revealed the increase in L-ferritin protein level resulting from the enhanced transcriptional regulation of the LFt gene and diminished translational repression of L-ferritin mRNA by IRP1. We propose that O2.--dependent up-regulation of this cellular protectant in paraquat-treated macrophages may counterbalance iron-related toxic effects of O2.-.
Collapse
Affiliation(s)
- Anna Milczarek
- Department of Molecular Biology, Institute of Genetics and Animal Breeding, Polish Academy of Sciences, Jastrzębiec, Poland
| | - Rafał R. Starzyński
- Department of Molecular Biology, Institute of Genetics and Animal Breeding, Polish Academy of Sciences, Jastrzębiec, Poland
| | - Agnieszka Styś
- Department of Molecular Biology, Institute of Genetics and Animal Breeding, Polish Academy of Sciences, Jastrzębiec, Poland
| | - Aneta Jończy
- Department of Molecular Biology, Institute of Genetics and Animal Breeding, Polish Academy of Sciences, Jastrzębiec, Poland
| | - Robert Staroń
- Department of Molecular Biology, Institute of Genetics and Animal Breeding, Polish Academy of Sciences, Jastrzębiec, Poland
| | - Agnieszka Grzelak
- Department of Molecular Biophysics, University of Łódź, Łódź, Poland
| | - Paweł Lipiński
- Department of Molecular Biology, Institute of Genetics and Animal Breeding, Polish Academy of Sciences, Jastrzębiec, Poland
- * E-mail:
| |
Collapse
|
60
|
Deepa SS, Bhaskaran S, Espinoza S, Brooks SV, McArdle A, Jackson MJ, Van Remmen H, Richardson A. A new mouse model of frailty: the Cu/Zn superoxide dismutase knockout mouse. GeroScience 2017; 39:187-198. [PMID: 28409332 PMCID: PMC5411367 DOI: 10.1007/s11357-017-9975-9] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 04/06/2017] [Indexed: 11/29/2022] Open
Abstract
Frailty is a geriatric syndrome that is an important public health problem for the older adults living in the USA. Although several methods have been developed to measure frailty in humans, we have very little understanding of its etiology. Because the molecular basis of frailty is poorly understood, mouse models would be of great value in determining which pathways contribute to the development of frailty. More importantly, mouse models would be critical in testing potential therapies to treat and possibly prevent frailty. In this article, we present data showing that Sod1KO mice, which lack the antioxidant enzyme, Cu/Zn superoxide dismutase, are an excellent model of frailty, and we compare the Sod1KO mice to the only other mouse model of frailty, mice with the deletion of the IL-10 gene. Sod1KO mice exhibit four characteristics that have been used to define human frailty: weight loss, weakness, low physical activity, and exhaustion. In addition, Sod1KO mice show increased inflammation and sarcopenia, which are strongly associated with human frailty. The Sod1KO mice also show alterations in pathways that have been proposed to play a role in the etiology of frailty: oxidative stress, mitochondrial dysfunction, and cell senescence. Using Sod1KO mice, we show that dietary restriction can delay/prevent characteristics of frailty in mice.
Collapse
Affiliation(s)
- Sathyaseelan S Deepa
- Department of Geriatric Medicine and the Reynolds Oklahoma Center on Aging, Oklahoma University Health Science Center, Oklahoma City, OK, USA.
| | - Shylesh Bhaskaran
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Sara Espinoza
- Barshop Institute for Longevity & Aging Studies, Medicine, Division of Geriatrics, Gerontology & Palliative Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
- Geriatrics Research, Education & Clinical Center, South Texas Veterans Health Care System, San Antonio, TX, USA
| | - Susan V Brooks
- Department of Molecular and Integrative Physiology, Institute of Gerontology, University of Michigan, Ann Arbor, MI, USA
| | - Anne McArdle
- Department of Musculoskeletal Biology, MRC Arthritis Research UK Centre for Integrated Research into Musculoskeletal Ageing (CIMA), Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, UK
| | - Malcolm J Jackson
- Department of Musculoskeletal Biology, MRC Arthritis Research UK Centre for Integrated Research into Musculoskeletal Ageing (CIMA), Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, UK
| | - Holly Van Remmen
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
- Oklahoma City VA Medical Center, Oklahoma City, OK, USA
| | - Arlan Richardson
- Department of Geriatric Medicine and the Reynolds Oklahoma Center on Aging, Oklahoma University Health Science Center, Oklahoma City, OK, USA
- Oklahoma City VA Medical Center, Oklahoma City, OK, USA
| |
Collapse
|
61
|
Multidrug resistance transporter-1 and breast cancer resistance protein protect against ovarian toxicity, and are essential in ovarian physiology. Reprod Toxicol 2017; 69:121-131. [PMID: 28216407 DOI: 10.1016/j.reprotox.2017.02.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 02/03/2017] [Accepted: 02/03/2017] [Indexed: 12/14/2022]
Abstract
Ovarian protection from chemotoxicity is essential for reproductive health. Our objective is to determine the role of ATP-dependent, Multidrug Resistance Transporters (MDRs) in this protection. Previously we identified MDR-dependent cytoprotection from cyclophosphamide in mouse and human oocytes by use of MDR inhibitors. Here we use genetic deletions in MDR1a/b/BCRP of mice to test MDR function in ovarian somatic cells and find that mdr1a/b/bcrp-/- mice had significantly increased sensitivity to cyclophosphamide. Further, estrus cyclicity and follicle distribution in mdr1a/b/bcrp-/- mice also differed from age-matched wildtype ovaries. We found that MDR gene activity cycles through estrus and that MDR-1b cyclicity correlated with 17β-estradiol surges. We also examined the metabolite composition of the ovary and learned that the mdr1a/b/bcrp-/- mice have increased accumulation of metabolites indicative of oxidative stress and inflammation. We conclude that MDRs are essential to ovarian protection from chemotoxicity and may have an important physiological role in the ovary.
Collapse
|
62
|
Pangrazzi L, Meryk A, Naismith E, Koziel R, Lair J, Krismer M, Trieb K, Grubeck-Loebenstein B. "Inflamm-aging" influences immune cell survival factors in human bone marrow. Eur J Immunol 2017; 47:481-492. [PMID: 27995612 PMCID: PMC5434810 DOI: 10.1002/eji.201646570] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 10/21/2016] [Accepted: 12/14/2016] [Indexed: 01/19/2023]
Abstract
The bone marrow (BM) plays a key role in the long-term maintenance of immunological memory. However, the impact of aging on the production of survival factors for effector/memory T cells and plasma cells in the human BM has not been studied. We now show that the expression of molecules involved in the maintenance of immunological memory in the human BM changes with age. While IL-15, which protects potentially harmful CD8+ CD28- senescent T cells, increases, IL-7 decreases. IL-6, which may synergize with IL-15, is also overexpressed. In contrast, a proliferation-inducing ligand, a plasma cell survival factor, is reduced. IFN-y, TNF, and ROS accumulate in the BM in old age. IL-15 and IL-6 expression are stimulated by IFN-y and correlate with ROS levels in BM mononuclear cells. Both cytokines are reduced by incubation with the ROS scavengers N-acetylcysteine and vitamin C. IL-15 and IL-6 are also overexpressed in the BM of superoxide dismutase 1 knockout mice compared to their WT counterparts. In summary, our results demonstrate the role of inflammation and oxidative stress in age-related changes of immune cell survival factors in the BM, suggesting that antioxidants may be beneficial in counteracting immunosenescence by improving immunological memory in old age.
Collapse
Affiliation(s)
- Luca Pangrazzi
- Department of Immunology, Institute for Biomedical Aging Research, University of Innsbruck, Innsbruck, Austria
| | - Andreas Meryk
- Department of Immunology, Institute for Biomedical Aging Research, University of Innsbruck, Innsbruck, Austria
| | - Erin Naismith
- Department of Immunology, Institute for Biomedical Aging Research, University of Innsbruck, Innsbruck, Austria
| | - Rafal Koziel
- Department of Molecular and Cell Biology, Institute for Biomedical Aging Research, Universität Innsbruck, Innsbruck, Austria
| | - Julian Lair
- Department of Orthopedic Surgery, Innsbruck Medical University, Innsbruck, Austria
| | - Martin Krismer
- Department of Orthopedic Surgery, Innsbruck Medical University, Innsbruck, Austria
| | - Klemens Trieb
- Department of Orthopedic Surgery, Hospital Wels-Grieskirchen, Wels, Austria
| | - Beatrix Grubeck-Loebenstein
- Department of Immunology, Institute for Biomedical Aging Research, University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
63
|
Amyotrophic Lateral Sclerosis Pathogenesis Converges on Defects in Protein Homeostasis Associated with TDP-43 Mislocalization and Proteasome-Mediated Degradation Overload. Curr Top Dev Biol 2017; 121:111-171. [DOI: 10.1016/bs.ctdb.2016.07.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
64
|
Human SOD1 ALS Mutations in a Drosophila Knock-In Model Cause Severe Phenotypes and Reveal Dosage-Sensitive Gain- and Loss-of-Function Components. Genetics 2016; 205:707-723. [PMID: 27974499 DOI: 10.1534/genetics.116.190850] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 11/13/2016] [Indexed: 12/13/2022] Open
Abstract
Amyotrophic Lateral Sclerosis (ALS) is the most common adult-onset motor neuron disease and familial forms can be caused by numerous dominant mutations of the copper-zinc superoxide dismutase 1 (SOD1) gene. Substantial efforts have been invested in studying SOD1-ALS transgenic animal models; yet, the molecular mechanisms by which ALS-mutant SOD1 protein acquires toxicity are not well understood. ALS-like phenotypes in animal models are highly dependent on transgene dosage. Thus, issues of whether the ALS-like phenotypes of these models stem from overexpression of mutant alleles or from aspects of the SOD1 mutation itself are not easily deconvolved. To address concerns about levels of mutant SOD1 in disease pathogenesis, we have genetically engineered four human ALS-causing SOD1 point mutations (G37R, H48R, H71Y, and G85R) into the endogenous locus of Drosophila SOD1 (dsod) via ends-out homologous recombination and analyzed the resulting molecular, biochemical, and behavioral phenotypes. Contrary to previous transgenic models, we have recapitulated ALS-like phenotypes without overexpression of the mutant protein. Drosophila carrying homozygous mutations rendering SOD1 protein enzymatically inactive (G85R, H48R, and H71Y) exhibited neurodegeneration, locomotor deficits, and shortened life span. The mutation retaining enzymatic activity (G37R) was phenotypically indistinguishable from controls. While the observed mutant dsod phenotypes were recessive, a gain-of-function component was uncovered through dosage studies and comparisons with age-matched dsod null animals, which failed to show severe locomotor defects or nerve degeneration. We conclude that the Drosophila knock-in model captures important aspects of human SOD1-based ALS and provides a powerful and useful tool for further genetic studies.
Collapse
|
65
|
Hosseinzadeh E, Zavareh S, Lashkarbolouki T. Antioxidant properties of coenzyme Q10-pretreated mouse pre-antral follicles derived from vitrified ovaries. J Obstet Gynaecol Res 2016; 43:140-148. [PMID: 27935208 DOI: 10.1111/jog.13173] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Accepted: 08/21/2016] [Indexed: 11/28/2022]
Abstract
AIM This study evaluated the antioxidant status of pre-antral follicles derived from vitrified ovaries pretreated with coenzyme Q10 (CoQ10). METHODS Mouse pre-antral follicles derived from fresh and vitrified warmed ovarian tissue were cultured with or without CoQ10 (50 μmol/L). Follicular growth, total antioxidant capacity (TAC), malondialdehyde (MDA) level, and superoxide dismutase (SOD), glutathione peroxidase (GPX), and catalase (CAT) activity during cultivation were assessed. RESULTS The growth rate of the fresh pre-antral follicles was higher compared with the vitrified groups, especially in the CoQ10-treated than non-treated groups. MDA increased while TAC decreased at 96 h of the cultivation period. TAC was higher while MDA was lower in the fresh pre-antral follicles than in the vitrified groups. These rates were higher in the CoQ10-treated than non-treated groups. The vitrified and fresh CoQ10-pretreated groups had significantly higher SOD, GPX, and CAT activity compared with the CoQ10 non-treated groups. CONCLUSION CoQ10-supplemented maturation medium can increase antioxidant enzyme activity and decrease lipid peroxidation in cultured pre-antral follicles derived from fresh and vitrified mouse ovaries.
Collapse
Affiliation(s)
| | - Saeed Zavareh
- School of Biology, Damghan University, Damghan, Iran.,Institute of Biological Sciences, Damghan University, Damghan, Iran
| | - Taghi Lashkarbolouki
- School of Biology, Damghan University, Damghan, Iran.,Institute of Biological Sciences, Damghan University, Damghan, Iran
| |
Collapse
|
66
|
Kashka RH, Zavareh S, Lashkarbolouki T. Augmenting effect of vitrification on lipid peroxidation in mouse preantral follicle during cultivation: Modulation by coenzyme Q10. Syst Biol Reprod Med 2016; 62:404-414. [DOI: 10.1080/19396368.2016.1235236] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
| | - Saeed Zavareh
- School of Biology, Damghan University, Damghan, Iran
- Institute of Biological Sciences, Damghan University, Damghan, Iran
| | - Taghi Lashkarbolouki
- School of Biology, Damghan University, Damghan, Iran
- Institute of Biological Sciences, Damghan University, Damghan, Iran
| |
Collapse
|
67
|
Selvaratnam JS, Robaire B. Effects of Aging and Oxidative Stress on Spermatozoa of Superoxide-Dismutase 1- and Catalase-Null Mice. Biol Reprod 2016; 95:60. [PMID: 27465136 PMCID: PMC5333935 DOI: 10.1095/biolreprod.116.141671] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Accepted: 07/22/2016] [Indexed: 12/28/2022] Open
Abstract
Advanced paternal age is linked to complications in pregnancy and genetic diseases in offspring. Aging results in excess reactive oxygen species (ROS) and DNA damage in spermatozoa; this damage can be transmitted to progeny with detrimental consequences. Although there is a loss of antioxidants with aging, the impact on aging male germ cells of the complete absence of either catalase (CAT) or superoxide dismutase 1 (SOD1) has not been investigated. We used CAT-null (Cat(-/-)) and SOD1-null (Sod(-/-)) mice to determine whether loss of these antioxidants increases germ cell susceptibility to redox dysfunction with aging. Aging reduced fertility and the numbers of Sertoli and germ cells in all mice. Aged Sod(-/-) mice displayed an increased loss of fertility compared to aged wild-type mice. Treatment with the pro-oxidant SIN-10 increased ROS in spermatocytes of aged wild-type and Sod(-/-) mice, while aged Cat(-/-) mice were able to neutralize this ROS. The antioxidant peroxiredoxin 1 (PRDX1) increased with age in wild-type and Cat(-/-) mice but was consistently low in young and aged Sod(-/-) mice. DNA damage and repair markers (γ-H2AX and 53BP1) were reduced with aging and lower in young Sod(-/-) and Cat(-/-) mice. Colocalization of γ-H2AX and 53BP1 suggested active repair in young wild-type mice but reduced in young Cat(-/-) and in Sod(-/-) mice and with age. Oxidative DNA damage (8-oxodG) increased in young Sod(-/-) mice and with age in all mice. These studies show that aged Sod(-/-) mice display severe redox dysfunction, while wild-type and Cat(-/-) mice have compensatory mechanisms to partially alleviate oxidative stress and reduce age-related DNA damage in spermatozoa. Thus, SOD1 but not CAT is critical to the maintenance of germ cell quality with aging.
Collapse
Affiliation(s)
- Johanna S Selvaratnam
- Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada
| | - Bernard Robaire
- Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada Department of Obstetrics and Gynecology, McGill University, Montréal, Québec, Canada
| |
Collapse
|
68
|
Sakiyama H, Fujiwara N, Yoneoka Y, Yoshihara D, Eguchi H, Suzuki K. Cu,Zn-SOD deficiency induces the accumulation of hepatic collagen. Free Radic Res 2016; 50:666-77. [PMID: 26981929 DOI: 10.3109/10715762.2016.1164856] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is one of the most prevalent chronic diseases, and results in the development of fibrosis. Oxidative stress is thought to be one of the underlying causes of NAFLD. Copper/zinc superoxide dismutase (SOD1) is a primary antioxidative enzyme that scavenges superoxide anion radicals. Although SOD1 knockout (KO) mice have been reported to develop fatty livers, it is not known whether this lack of SOD1 leads to the development of fibrosis. Since the accumulation of collagen typically precedes liver fibrosis, we assessed the balance between the synthesis and degradation of collagen in liver tissue from SOD1 KO mice. We found a higher accumulation of collagen in the livers of SOD1 KO mice compared to wild type mice. The level of expression of HSP47, a chaperone of collagen, and a tissue inhibitor (TIMP1) of matrix metalloproteinases (a collagen degradating enzyme) was also increased in SOD1 KO mice livers. These results indicate that collagen synthesis is increased but that its degradation is inhibited in SOD1 KO mice livers. Moreover, SOD1 KO mice liver sections were extensively modified by advanced glycation end products (AGEs), which suggest that collagen in SOD1 KO mice liver might be also modified with AGEs and then would be more resistant to the action of collagen degrading enzymes. These findings clearly show that oxidative stress plays an important role in the progression of liver fibrosis.
Collapse
Affiliation(s)
- Haruhiko Sakiyama
- a Department of Biochemistry, Hyogo College of Medicine , Nishinomiya , Hyogo , Japan
| | - Noriko Fujiwara
- a Department of Biochemistry, Hyogo College of Medicine , Nishinomiya , Hyogo , Japan
| | - Yuka Yoneoka
- a Department of Biochemistry, Hyogo College of Medicine , Nishinomiya , Hyogo , Japan
| | - Daisaku Yoshihara
- a Department of Biochemistry, Hyogo College of Medicine , Nishinomiya , Hyogo , Japan
| | - Hironobu Eguchi
- a Department of Biochemistry, Hyogo College of Medicine , Nishinomiya , Hyogo , Japan
| | - Keiichiro Suzuki
- a Department of Biochemistry, Hyogo College of Medicine , Nishinomiya , Hyogo , Japan
| |
Collapse
|
69
|
Bhattacharya A, Hegazy AN, Deigendesch N, Kosack L, Cupovic J, Kandasamy RK, Hildebrandt A, Merkler D, Kühl AA, Vilagos B, Schliehe C, Panse I, Khamina K, Baazim H, Arnold I, Flatz L, Xu HC, Lang PA, Aderem A, Takaoka A, Superti-Furga G, Colinge J, Ludewig B, Löhning M, Bergthaler A. Superoxide Dismutase 1 Protects Hepatocytes from Type I Interferon-Driven Oxidative Damage. Immunity 2016; 43:974-86. [PMID: 26588782 PMCID: PMC4658338 DOI: 10.1016/j.immuni.2015.10.013] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Revised: 05/29/2015] [Accepted: 08/03/2015] [Indexed: 12/23/2022]
Abstract
Tissue damage caused by viral hepatitis is a major cause of morbidity and mortality worldwide. Using a mouse model of viral hepatitis, we identified virus-induced early transcriptional changes in the redox pathways in the liver, including downregulation of superoxide dismutase 1 (Sod1). Sod1(-/-) mice exhibited increased inflammation and aggravated liver damage upon viral infection, which was independent of T and NK cells and could be ameliorated by antioxidant treatment. Type I interferon (IFN-I) led to a downregulation of Sod1 and caused oxidative liver damage in Sod1(-/-) and wild-type mice. Genetic and pharmacological ablation of the IFN-I signaling pathway protected against virus-induced liver damage. These results delineate IFN-I mediated oxidative stress as a key mediator of virus-induced liver damage and describe a mechanism of innate-immunity-driven pathology, linking IFN-I signaling with antioxidant host defense and infection-associated tissue damage. VIDEO ABSTRACT.
Collapse
Affiliation(s)
- Anannya Bhattacharya
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14 AKH BT25.3, 1090 Vienna, Austria
| | - Ahmed N Hegazy
- Experimental Immunology, Department of Rheumatology and Clinical Immunology, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany; German Rheumatism Research Center (DRFZ), a Leibniz Institute, 10117 Berlin, Germany; Translational Gastroenterology Unit, Experimental Medicine Division Nuffield Department of Clinical Medicine, University of Oxford, John Radcliffe Hospital, OX3 9DU Oxford, UK
| | - Nikolaus Deigendesch
- Max Planck Institute for Infection Biology, Charitéplatz 1, 10117 Berlin, Germany
| | - Lindsay Kosack
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14 AKH BT25.3, 1090 Vienna, Austria
| | - Jovana Cupovic
- Institute of Immunobiology, Cantonal Hospital St. Gallen, Rorschacherstrasse 95, 9007 St. Gallen, Switzerland
| | - Richard K Kandasamy
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14 AKH BT25.3, 1090 Vienna, Austria
| | - Andrea Hildebrandt
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14 AKH BT25.3, 1090 Vienna, Austria
| | - Doron Merkler
- Department of Pathology and Immunology, University of Geneva, Centre Médical Universitaire, 1 rue Michel Servet, 1211 Geneva, Switzerland; Department of Neuropathology, University Medicine Göttingen, Robert-Koch Strasse 40, 37099 Goettingen, Germany
| | - Anja A Kühl
- Department of Medicine I for Gastroenterology, Infectious Disease and Rheumatology, Campus Benjamin Franklin, Charité-Universitätsmedizin Berlin, Hindenburgdamm 30, 12200 Berlin, Germany
| | - Bojan Vilagos
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14 AKH BT25.3, 1090 Vienna, Austria
| | - Christopher Schliehe
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14 AKH BT25.3, 1090 Vienna, Austria
| | - Isabel Panse
- Experimental Immunology, Department of Rheumatology and Clinical Immunology, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany; German Rheumatism Research Center (DRFZ), a Leibniz Institute, 10117 Berlin, Germany
| | - Kseniya Khamina
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14 AKH BT25.3, 1090 Vienna, Austria
| | - Hatoon Baazim
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14 AKH BT25.3, 1090 Vienna, Austria
| | - Isabelle Arnold
- Translational Gastroenterology Unit, Experimental Medicine Division Nuffield Department of Clinical Medicine, University of Oxford, John Radcliffe Hospital, OX3 9DU Oxford, UK
| | - Lukas Flatz
- Institute of Immunobiology, Cantonal Hospital St. Gallen, Rorschacherstrasse 95, 9007 St. Gallen, Switzerland
| | - Haifeng C Xu
- Department of Gastroenterology, Heinrich-Heine-University, Moorenstrasse 5, 40225 Düsseldorf, Germany
| | - Philipp A Lang
- Department of Gastroenterology, Heinrich-Heine-University, Moorenstrasse 5, 40225 Düsseldorf, Germany; Department of Molecular Medicine II, Heinrich Heine University, Universitätsstrasse 1, 40225 Düsseldorf, Germany
| | - Alan Aderem
- Seattle Biomedical Research Institute, 307 Westlake Avenue North, Suite 500, Seattle, WA 98109-5219, USA
| | - Akinori Takaoka
- Division of Signaling in Cancer and Immunology, Institute for Genetic Medicine, Hokkaido University, Sapporo, Hokkaido 060-0815, Japan
| | - Giulio Superti-Furga
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14 AKH BT25.3, 1090 Vienna, Austria; Center for Physiology and Pharmacology, Medical University of Vienna, Lazarettgasse 14, 1090 Vienna, Austria
| | - Jacques Colinge
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14 AKH BT25.3, 1090 Vienna, Austria
| | - Burkhard Ludewig
- Institute of Immunobiology, Cantonal Hospital St. Gallen, Rorschacherstrasse 95, 9007 St. Gallen, Switzerland
| | - Max Löhning
- Experimental Immunology, Department of Rheumatology and Clinical Immunology, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany; German Rheumatism Research Center (DRFZ), a Leibniz Institute, 10117 Berlin, Germany
| | - Andreas Bergthaler
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14 AKH BT25.3, 1090 Vienna, Austria.
| |
Collapse
|
70
|
Lei XG, Zhu JH, Cheng WH, Bao Y, Ho YS, Reddi AR, Holmgren A, Arnér ESJ. Paradoxical Roles of Antioxidant Enzymes: Basic Mechanisms and Health Implications. Physiol Rev 2016; 96:307-64. [PMID: 26681794 DOI: 10.1152/physrev.00010.2014] [Citation(s) in RCA: 284] [Impact Index Per Article: 31.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Reactive oxygen species (ROS) and reactive nitrogen species (RNS) are generated from aerobic metabolism, as a result of accidental electron leakage as well as regulated enzymatic processes. Because ROS/RNS can induce oxidative injury and act in redox signaling, enzymes metabolizing them will inherently promote either health or disease, depending on the physiological context. It is thus misleading to consider conventionally called antioxidant enzymes to be largely, if not exclusively, health protective. Because such a notion is nonetheless common, we herein attempt to rationalize why this simplistic view should be avoided. First we give an updated summary of physiological phenotypes triggered in mouse models of overexpression or knockout of major antioxidant enzymes. Subsequently, we focus on a series of striking cases that demonstrate "paradoxical" outcomes, i.e., increased fitness upon deletion of antioxidant enzymes or disease triggered by their overexpression. We elaborate mechanisms by which these phenotypes are mediated via chemical, biological, and metabolic interactions of the antioxidant enzymes with their substrates, downstream events, and cellular context. Furthermore, we propose that novel treatments of antioxidant enzyme-related human diseases may be enabled by deliberate targeting of dual roles of the pertaining enzymes. We also discuss the potential of "antioxidant" nutrients and phytochemicals, via regulating the expression or function of antioxidant enzymes, in preventing, treating, or aggravating chronic diseases. We conclude that "paradoxical" roles of antioxidant enzymes in physiology, health, and disease derive from sophisticated molecular mechanisms of redox biology and metabolic homeostasis. Simply viewing antioxidant enzymes as always being beneficial is not only conceptually misleading but also clinically hazardous if such notions underpin medical treatment protocols based on modulation of redox pathways.
Collapse
Affiliation(s)
- Xin Gen Lei
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing,China; Department of Animal Science, Cornell University, Ithaca, New York; Department of Preventive Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China; Department of Food Science, Nutrition and Health Promotion, Mississippi State University, Mississippi State, Mississippi; Department of Nutrition, Norwich Medical School, University of East Anglia, Norwich, Norfolk, United Kingdom; Institute of Environmental Health Sciences, Wayne State University, Detroit, Michigan; Georgia Institute of Technology, School of Chemistry and Biochemistry, Parker Petit Institute for Bioengineering and Biosciences, Atlanta, Georgia; and Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Jian-Hong Zhu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing,China; Department of Animal Science, Cornell University, Ithaca, New York; Department of Preventive Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China; Department of Food Science, Nutrition and Health Promotion, Mississippi State University, Mississippi State, Mississippi; Department of Nutrition, Norwich Medical School, University of East Anglia, Norwich, Norfolk, United Kingdom; Institute of Environmental Health Sciences, Wayne State University, Detroit, Michigan; Georgia Institute of Technology, School of Chemistry and Biochemistry, Parker Petit Institute for Bioengineering and Biosciences, Atlanta, Georgia; and Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Wen-Hsing Cheng
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing,China; Department of Animal Science, Cornell University, Ithaca, New York; Department of Preventive Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China; Department of Food Science, Nutrition and Health Promotion, Mississippi State University, Mississippi State, Mississippi; Department of Nutrition, Norwich Medical School, University of East Anglia, Norwich, Norfolk, United Kingdom; Institute of Environmental Health Sciences, Wayne State University, Detroit, Michigan; Georgia Institute of Technology, School of Chemistry and Biochemistry, Parker Petit Institute for Bioengineering and Biosciences, Atlanta, Georgia; and Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Yongping Bao
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing,China; Department of Animal Science, Cornell University, Ithaca, New York; Department of Preventive Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China; Department of Food Science, Nutrition and Health Promotion, Mississippi State University, Mississippi State, Mississippi; Department of Nutrition, Norwich Medical School, University of East Anglia, Norwich, Norfolk, United Kingdom; Institute of Environmental Health Sciences, Wayne State University, Detroit, Michigan; Georgia Institute of Technology, School of Chemistry and Biochemistry, Parker Petit Institute for Bioengineering and Biosciences, Atlanta, Georgia; and Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Ye-Shih Ho
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing,China; Department of Animal Science, Cornell University, Ithaca, New York; Department of Preventive Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China; Department of Food Science, Nutrition and Health Promotion, Mississippi State University, Mississippi State, Mississippi; Department of Nutrition, Norwich Medical School, University of East Anglia, Norwich, Norfolk, United Kingdom; Institute of Environmental Health Sciences, Wayne State University, Detroit, Michigan; Georgia Institute of Technology, School of Chemistry and Biochemistry, Parker Petit Institute for Bioengineering and Biosciences, Atlanta, Georgia; and Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Amit R Reddi
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing,China; Department of Animal Science, Cornell University, Ithaca, New York; Department of Preventive Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China; Department of Food Science, Nutrition and Health Promotion, Mississippi State University, Mississippi State, Mississippi; Department of Nutrition, Norwich Medical School, University of East Anglia, Norwich, Norfolk, United Kingdom; Institute of Environmental Health Sciences, Wayne State University, Detroit, Michigan; Georgia Institute of Technology, School of Chemistry and Biochemistry, Parker Petit Institute for Bioengineering and Biosciences, Atlanta, Georgia; and Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Arne Holmgren
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing,China; Department of Animal Science, Cornell University, Ithaca, New York; Department of Preventive Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China; Department of Food Science, Nutrition and Health Promotion, Mississippi State University, Mississippi State, Mississippi; Department of Nutrition, Norwich Medical School, University of East Anglia, Norwich, Norfolk, United Kingdom; Institute of Environmental Health Sciences, Wayne State University, Detroit, Michigan; Georgia Institute of Technology, School of Chemistry and Biochemistry, Parker Petit Institute for Bioengineering and Biosciences, Atlanta, Georgia; and Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Elias S J Arnér
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing,China; Department of Animal Science, Cornell University, Ithaca, New York; Department of Preventive Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China; Department of Food Science, Nutrition and Health Promotion, Mississippi State University, Mississippi State, Mississippi; Department of Nutrition, Norwich Medical School, University of East Anglia, Norwich, Norfolk, United Kingdom; Institute of Environmental Health Sciences, Wayne State University, Detroit, Michigan; Georgia Institute of Technology, School of Chemistry and Biochemistry, Parker Petit Institute for Bioengineering and Biosciences, Atlanta, Georgia; and Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
71
|
Kala M, Nivsarkar M. Role of cortisol and superoxide dismutase in psychological stress induced anovulation. Gen Comp Endocrinol 2016; 225:117-124. [PMID: 26393311 DOI: 10.1016/j.ygcen.2015.09.010] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Revised: 09/04/2015] [Accepted: 09/17/2015] [Indexed: 11/26/2022]
Abstract
Stress has been identified as a potential trigger for reproductive dysfunctions, but the psycho-physiological pathway behind the effect of stress on ovulation remains unexplored. The present research work highlights the plausible mechanism of psychological stress on ovulation in mice by targeting superoxide dismutase (SOD), an enzyme involved in ovulation. For this, three consecutive studies were carried out. The first study aimed to determine the effect of psychological stress induced change in cortisol level, behavioral parameters and normal estrous cyclicity. The effect on mRNA expression of SOD subtypes, follicular growth in histological sections of ovaries and the difference in oocyte quality and number, upon superovulation were assessed in the subsequent studies. The results indicate that psychological stress model causes an increase in cortisol level (p⩽0.05) with development of anhedonia, depression and anxiety. An irregular estrous cycle was observed in stressed mice with an upregulation in mRNA expression of SOD subtypes. Histological sections revealed an increase in atretic antral follicle with an impaired follicular development. Moreover, immature oocytes were obtained from superovulated stressed mice. The study concludes that psychological stress results in anovulation which may be due to increase in cortisol level and SOD activity in stressed mice.
Collapse
Affiliation(s)
- Manika Kala
- Departments of Pharmacology and Toxicology, B.V. Patel Pharmaceutical Education and Research Development Centre, Thaltej, Ahmedabad, Gujarat 380054, India; Faculty of Pharmacy, NIRMA University, Sarkhej-Gandhinagar Highway, Gota, Ahmedabad, Gujarat 382481, India
| | - Manish Nivsarkar
- Departments of Pharmacology and Toxicology, B.V. Patel Pharmaceutical Education and Research Development Centre, Thaltej, Ahmedabad, Gujarat 380054, India.
| |
Collapse
|
72
|
Characteristics of Skeletal Muscle Fibers of SOD1 Knockout Mice. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015; 2016:9345970. [PMID: 26798428 PMCID: PMC4699091 DOI: 10.1155/2016/9345970] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Accepted: 09/21/2015] [Indexed: 11/17/2022]
Abstract
Cu/Zn superoxide dismutase (SOD1) knockout (KO) mice are known as an aging model in some aspects, but the damage and regeneration process of each fiber type have not been sufficiently studied. In this study, we investigated the damage and satellite cell state of the gastrocnemius muscle in SOD1 KO mice (6 months old) using immunohistochemical staining and real-time RT-PCR. The proportion of central nuclei-containing Type IIx/b fibers in the deep and superficial portions of the gastrocnemius muscle was significantly higher in SOD1 KO than control mice. The number of satellite cells per muscle fiber decreased in all muscle fiber types in the deep portion of the gastrocnemius muscle in SOD1 KO mice. In addition, the mRNA expression levels of Pax7 and myogenin, which are expressed in satellite cells in the activation, proliferation, and differentiation states, significantly increased in the gastrocnemius muscle of SOD1 KO mice. Furthermore, mRNA of myosin heavy chain-embryonic, which is expressed in the early phase of muscle regeneration, significantly increased in SOD1 KO mice. It was suggested that muscle is damaged by reactive oxygen species produced in the mitochondrial intermembrane space in Type IIxb fibers, accelerating the proliferation and differentiation of satellite cells through growth factors in SOD1 KO mice.
Collapse
|
73
|
Rossi EM, Marques VB, Nunes DDO, Carneiro MTWD, Podratz PL, Merlo E, dos Santos L, Graceli JB. Acute iron overload leads to hypothalamic-pituitary-gonadal axis abnormalities in female rats. Toxicol Lett 2015; 240:196-213. [PMID: 26536400 DOI: 10.1016/j.toxlet.2015.10.027] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Revised: 10/28/2015] [Accepted: 10/28/2015] [Indexed: 01/01/2023]
Abstract
Iron plays a critical role in a mammal's physiological processes. However, iron tissue deposits have been shown to act as endocrine disrupters. Studies that evaluate the effect of acute iron overload on hypothalamic-pituitary-gonadal (HPG) axis health are particularly sparse. This study demonstrates that acute iron overload leads to HPG axis abnormalities, including iron accumulation and impairment in reproductive tract morphology. Female rats were treated with iron-dextran (Fe rats) to assess their HPG morphophysiology. The increasing serum iron levels due to iron-dextran treatment were positively correlated with higher iron accumulation in the HPG axis and uterus of Fe rats than in control rats. An increase in the production of superoxide anions was observed in the pituitary, uterus and ovary of Fe rats. Morphophysiological reproductive tract abnormalities, such as abnormal ovarian follicular development and the reduction of serum estrogen levels, were observed in Fe rats. In addition, a significant negative correlation was obtained between ovary superoxide anion and serum estrogen levels. Together, these data provide in vivo evidence that acute iron overload is toxic for the HPG axis, a finding that may be associated with the subsequent development of the risk of reproductive dysfunction.
Collapse
Affiliation(s)
- Emilly M Rossi
- Department of Physiological Sciences, Federal University of Espirito Santo, Brazil
| | - Vinicius B Marques
- Department of Physiological Sciences, Federal University of Espirito Santo, Brazil
| | - Dieli de O Nunes
- Department of Physiological Sciences, Federal University of Espirito Santo, Brazil
| | | | | | - Eduardo Merlo
- Department of Morphology, Federal University of Espirito Santo, Brazil
| | - Leonardo dos Santos
- Department of Physiological Sciences, Federal University of Espirito Santo, Brazil
| | - Jones B Graceli
- Department of Morphology, Federal University of Espirito Santo, Brazil.
| |
Collapse
|
74
|
Meng X, Chen H, Wang G, Yu Y, Xie K. Hydrogen-rich saline attenuates chemotherapy-induced ovarian injury via regulation of oxidative stress. Exp Ther Med 2015; 10:2277-2282. [PMID: 26668628 DOI: 10.3892/etm.2015.2787] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2014] [Accepted: 07/31/2015] [Indexed: 01/21/2023] Open
Abstract
Hydrogen has been reported to exert a therapeutic effect in several diseases due to its antioxidative, anti-inflammatory and anti-apoptotic properties. The aim of the present study was to investigate whether hydrogen-rich saline treatment could attenuate ovarian damage induced by cisplatin. A total of 240 adult, virgin, female Sprague Dawley rats, weighing 180-220 g, were randomly divided into four groups (n=60 per group): Control (Con), control + hydrogen-rich saline (Con + H2), cisplatin-induced ovarian injury (OI) and cisplatin-induced ovarian injury + hydrogen-rich saline (OI + H2). Cisplatin was diluted in saline immediately before use. In the OI and OI + H2 groups, the rats were administered a dose of cisplatin on the 1st and 7th days. The rats in the Con + H2 and OI + H2 groups were intraperitoneally injected with hydrogen-rich saline (10ml/kg body weight) once a day over a 2-week period. On the 14th, 28th and 42nd days (T1, T2 and T3) after the cisplatin injection, femoral vein blood was collected. At the end of the experiment, ovarian homogenates were prepared, and the samples were used for estrogen (E2), follicle-stimulating hormone (FSH), superoxide dismutase (SOD), catalase (CAT) and malondialdehyde (MDA) examination. In addition, rats (n=10 per group) were sacrificed for bilateral ovary removal; one was fixed in formalin for follicle-counting analysis, while the other was used for nuclear factor erythroid 2-related factor 2 (Nrf2) detection by western blotting. Hydrogen-rich saline attenuated the FSH release, elevated the level of E2, improved the development of follicles, and reduced the damage to the ovarian cortex at T1, T2 and T3 in the OI + H2 rats. Cisplatin induced oxidative stress by increasing the levels of oxidation products and attenuating the activity of antioxidant enzyme, which could be reversed by hydrogen-rich saline treatment. Furthermore, hydrogen-rich saline regulated the Nrf2 protein expression in rats with ovarian damage. In conclusion, hydrogen-rich saline exerts a protective effect against cisplatin-induced ovarian injury by reducing MDA and increasing SOD and CAT activity. Ovarian injury induced by chemotherapy involves the activation of Nrf2.
Collapse
Affiliation(s)
- Xiaoyin Meng
- Department of Gynecology and Obstetrics, Tianjin Hospital, Tianjin 300052, P.R. China
| | - Hongguang Chen
- Department of Anesthesiology, Tianjin Institute of Anesthesiology, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China ; Tianjin Institute of Anesthesiology, Tianjin 300052, P.R. China
| | - Guolin Wang
- Department of Anesthesiology, Tianjin Institute of Anesthesiology, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China ; Tianjin Institute of Anesthesiology, Tianjin 300052, P.R. China
| | - Yonghao Yu
- Department of Anesthesiology, Tianjin Institute of Anesthesiology, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China ; Tianjin Institute of Anesthesiology, Tianjin 300052, P.R. China
| | - Keliang Xie
- Department of Anesthesiology, Tianjin Institute of Anesthesiology, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China ; Tianjin Institute of Anesthesiology, Tianjin 300052, P.R. China
| |
Collapse
|
75
|
Lim J, Nakamura BN, Mohar I, Kavanagh TJ, Luderer U. Glutamate Cysteine Ligase Modifier Subunit (Gclm) Null Mice Have Increased Ovarian Oxidative Stress and Accelerated Age-Related Ovarian Failure. Endocrinology 2015; 156:3329-43. [PMID: 26083875 PMCID: PMC4541624 DOI: 10.1210/en.2015-1206] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Accepted: 06/12/2015] [Indexed: 01/13/2023]
Abstract
Glutathione (GSH) is the one of the most abundant intracellular antioxidants. Mice lacking the modifier subunit of glutamate cysteine ligase (Gclm), the rate-limiting enzyme in GSH synthesis, have decreased GSH. Our prior work showed that GSH plays antiapoptotic roles in ovarian follicles. We hypothesized that Gclm(-/-) mice have accelerated ovarian aging due to ovarian oxidative stress. We found significantly decreased ovarian GSH concentrations and oxidized GSH/oxidized glutathione redox potential in Gclm(-/-) vs Gclm(+/+) ovaries. Prepubertal Gclm(-/-) and Gclm(+/+) mice had similar numbers of ovarian follicles, and as expected, the total number of ovarian follicles declined with age in both genotypes. However, the rate of decline in follicles was significantly more rapid in Gclm(-/-) mice, and this was driven by accelerated declines in primordial follicles, which constitute the ovarian reserve. We found significantly increased 4-hydroxynonenal immunostaining (oxidative lipid damage marker) and significantly increased nitrotyrosine immunostaining (oxidative protein damage marker) in prepubertal and adult Gclm(-/-) ovaries compared with controls. The percentage of small ovarian follicles with increased granulosa cell proliferation was significantly higher in prepubertal and 2-month-old Gclm(-/-) vs Gclm(+/+) ovaries, indicating accelerated recruitment of primordial follicles into the growing pool. The percentages of growing follicles with apoptotic granulosa cells were increased in young adult ovaries. Our results demonstrate increased ovarian oxidative stress and oxidative damage in young Gclm(-/-) mice, associated with an accelerated decline in ovarian follicles that appears to be mediated by increased recruitment of follicles into the growing pool, followed by apoptosis at later stages of follicular development.
Collapse
Affiliation(s)
- Jinhwan Lim
- Departments of Medicine (J.L., B.N.N., U.L.) and Developmental and Cell Biology (U.L.), University of California Irvine, Irvine, California 92617; and Department of Environmental and Occupational Health Sciences (I.M., T.J.K.), University of Washington, Seattle, Washington 98195
| | - Brooke N Nakamura
- Departments of Medicine (J.L., B.N.N., U.L.) and Developmental and Cell Biology (U.L.), University of California Irvine, Irvine, California 92617; and Department of Environmental and Occupational Health Sciences (I.M., T.J.K.), University of Washington, Seattle, Washington 98195
| | - Isaac Mohar
- Departments of Medicine (J.L., B.N.N., U.L.) and Developmental and Cell Biology (U.L.), University of California Irvine, Irvine, California 92617; and Department of Environmental and Occupational Health Sciences (I.M., T.J.K.), University of Washington, Seattle, Washington 98195
| | - Terrance J Kavanagh
- Departments of Medicine (J.L., B.N.N., U.L.) and Developmental and Cell Biology (U.L.), University of California Irvine, Irvine, California 92617; and Department of Environmental and Occupational Health Sciences (I.M., T.J.K.), University of Washington, Seattle, Washington 98195
| | - Ulrike Luderer
- Departments of Medicine (J.L., B.N.N., U.L.) and Developmental and Cell Biology (U.L.), University of California Irvine, Irvine, California 92617; and Department of Environmental and Occupational Health Sciences (I.M., T.J.K.), University of Washington, Seattle, Washington 98195
| |
Collapse
|
76
|
Homma T, Kurahashi T, Lee J, Kang ES, Fujii J. SOD1 deficiency decreases proteasomal function, leading to the accumulation of ubiquitinated proteins in erythrocytes. Arch Biochem Biophys 2015; 583:65-72. [PMID: 26264915 DOI: 10.1016/j.abb.2015.07.023] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Revised: 07/16/2015] [Accepted: 07/27/2015] [Indexed: 01/19/2023]
Abstract
We previously demonstrated that elevated levels of ROS in red blood cells (RBCs) are responsible for anemia in SOD1-deficient mice, suggesting that the oxidative stress-induced massive destruction of RBCs is an underlying mechanism for autoimmune hemolytic anemia. In the current study, we examined the issue of how elevated ROS are involved in the destruction of RBCs and the onset of anemia from the view point of the proteolytic removal of oxidatively-damaged proteins. We found that poly-ubiquitinated proteins had accumulated and had undergone aggregation in RBCs from SOD1-deficient mice and from phenylhydrazine-induced anemic mice. Although the protein levels of the three catalytic components of the proteasome, β1, β2, and β5, were not significantly altered, their proteolytic activities were decreased in the SOD1-deficient RBCs. These data suggest that oxidative-stress triggers the dysfunction of the proteasomal system, which results in the accumulation of the aggregation of poly-ubiquitinated proteins. We conclude that an oxidative stress-induced malfunction in the scavenging activity of proteasomes accelerates the accumulation of damaged proteins, leading to a shortened lifespan of RBCs and, hence, anemia.
Collapse
Affiliation(s)
- Takujiro Homma
- Department of Biochemistry and Molecular Biology, Graduate School of Medical Science, Yamagata University, 2-2-2 Iidanishi, Yamagata 990-9585, Japan
| | - Toshihiro Kurahashi
- Department of Biochemistry and Molecular Biology, Graduate School of Medical Science, Yamagata University, 2-2-2 Iidanishi, Yamagata 990-9585, Japan
| | - Jaeyong Lee
- Department of Biochemistry and Molecular Biology, Graduate School of Medical Science, Yamagata University, 2-2-2 Iidanishi, Yamagata 990-9585, Japan
| | - Eun Sil Kang
- Department of Biochemistry and Molecular Biology, Graduate School of Medical Science, Yamagata University, 2-2-2 Iidanishi, Yamagata 990-9585, Japan
| | - Junichi Fujii
- Department of Biochemistry and Molecular Biology, Graduate School of Medical Science, Yamagata University, 2-2-2 Iidanishi, Yamagata 990-9585, Japan.
| |
Collapse
|
77
|
Oxidative stress triggers lipid droplet accumulation in primary cultured hepatocytes by activating fatty acid synthesis. Biochem Biophys Res Commun 2015; 464:229-35. [PMID: 26116535 DOI: 10.1016/j.bbrc.2015.06.121] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Accepted: 06/17/2015] [Indexed: 12/12/2022]
Abstract
Despite the impaired intestinal lipid absorption and low level of visceral fat, the Sod1-deficient mouse is susceptible to developing liver steatosis. To gain insights into the mechanism responsible for this abnormal lipid metabolism, we analyzed primary cultured hepatocytes obtained from Sod1-deficient and wild-type mice. Lipid droplets began to accumulate in the cultured hepatocytes and was further increased by a Sod1 deficiency. Levels of enzymes involved in lipogenesis were elevated. It thus appears that lipogenesis is activated by oxidative stress, which is more prominent in the case of Sod1 deficiency, and appears to participate in liver steatosis.
Collapse
|
78
|
Homma T, Okano S, Lee J, Ito J, Otsuki N, Kurahashi T, Kang ES, Nakajima O, Fujii J. SOD1 deficiency induces the systemic hyperoxidation of peroxiredoxin in the mouse. Biochem Biophys Res Commun 2015; 463:1040-6. [PMID: 26079888 DOI: 10.1016/j.bbrc.2015.06.055] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Accepted: 06/08/2015] [Indexed: 02/06/2023]
Abstract
A deficiency of superoxide dismutase 1 (SOD1) or peroxiredoxin (Prx) 2 causes anemia in mice due to elevated oxidative stress. In the current study, we investigated whether intrinsic oxidative stress caused by a SOD1 deficiency affected the redox status of Prx2 and other isoforms in red blood cells (RBCs) and several organs of mice. We observed a marked elevation in hyperoxidized Prx2 levels in RBCs from SOD1-deficient mice. Hyperoxidized Prx2 reportedly undergoes a rhythmic change in isolated RBCs under culture conditions. We confirmed such changes in RBCs from wild-type mice but observed no evident changes in SOD1-deficient RBCs. In addition, an elevation in hyperoxidized Prxs, notably Prx2 and Prx3, was observed in several organs from SOD1-deficient mice. However, a SOD1 deficiency had no impact on the wheel-running activity of the mice. Thus, although the redox status of some Prxs is systemically shifted to a more oxidized state as the result of a SOD1 deficiency, which is associated with anemia and some diseases, a redox imbalance appears to have no detectable effect on the circadian activity of mice.
Collapse
Affiliation(s)
- Takujiro Homma
- Department of Biochemistry and Molecular Biology, Graduate School of Medical Science, Yamagata University, 2-2-2 Iidanishi, Yamagata 990-9585, Japan
| | - Satoshi Okano
- Research Laboratory for Molecular Genetics, Yamagata University School of Medicine, Yamagata University, 2-2-2 Iidanishi, Yamagata 990-9585, Japan
| | - Jaeyong Lee
- Department of Biochemistry and Molecular Biology, Graduate School of Medical Science, Yamagata University, 2-2-2 Iidanishi, Yamagata 990-9585, Japan
| | - Junitsu Ito
- Department of Biochemistry and Molecular Biology, Graduate School of Medical Science, Yamagata University, 2-2-2 Iidanishi, Yamagata 990-9585, Japan
| | - Noriyuki Otsuki
- Department of Biochemistry and Molecular Biology, Graduate School of Medical Science, Yamagata University, 2-2-2 Iidanishi, Yamagata 990-9585, Japan
| | - Toshihiro Kurahashi
- Department of Biochemistry and Molecular Biology, Graduate School of Medical Science, Yamagata University, 2-2-2 Iidanishi, Yamagata 990-9585, Japan
| | - Eun Sil Kang
- Department of Biochemistry and Molecular Biology, Graduate School of Medical Science, Yamagata University, 2-2-2 Iidanishi, Yamagata 990-9585, Japan
| | - Osamu Nakajima
- Research Laboratory for Molecular Genetics, Yamagata University School of Medicine, Yamagata University, 2-2-2 Iidanishi, Yamagata 990-9585, Japan
| | - Junichi Fujii
- Department of Biochemistry and Molecular Biology, Graduate School of Medical Science, Yamagata University, 2-2-2 Iidanishi, Yamagata 990-9585, Japan.
| |
Collapse
|
79
|
Donabela FC, Meola J, Padovan CC, de Paz CCP, Navarro PA. HigherSOD1Gene Expression in Cumulus Cells From Infertile Women With Moderate and Severe Endometriosis. Reprod Sci 2015; 22:1452-60. [DOI: 10.1177/1933719115585146] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- Flávia Cappello Donabela
- Laboratory of the Biology of Reproduction, Department of Gynecology and Obstetrics, Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Juliana Meola
- Laboratory of the Biology of Reproduction, Department of Gynecology and Obstetrics, Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Cristiana Carolina Padovan
- Laboratory of the Biology of Reproduction, Department of Gynecology and Obstetrics, Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Cláudia Cristina Paro de Paz
- Laboratory of the Genetics, Department of Genetics, Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Paula Andrea Navarro
- Laboratory of the Biology of Reproduction, Department of Gynecology and Obstetrics, Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| |
Collapse
|
80
|
Hannon PR, Brannick KE, Wang W, Gupta RK, Flaws JA. Di(2-ethylhexyl) phthalate inhibits antral follicle growth, induces atresia, and inhibits steroid hormone production in cultured mouse antral follicles. Toxicol Appl Pharmacol 2015; 284:42-53. [PMID: 25701202 PMCID: PMC4374011 DOI: 10.1016/j.taap.2015.02.010] [Citation(s) in RCA: 129] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Revised: 01/23/2015] [Accepted: 02/09/2015] [Indexed: 01/06/2023]
Abstract
Di(2-ethylhexyl) phthalate (DEHP) is a ubiquitous environmental toxicant found in consumer products that causes ovarian toxicity. Antral follicles are the functional ovarian units and must undergo growth, survival from atresia, and proper regulation of steroidogenesis to ovulate and produce hormones. Previous studies have determined that DEHP inhibits antral follicle growth and decreases estradiol levels in vitro; however, the mechanism by which DEHP elicits these effects is unknown. The present study tested the hypothesis that DEHP directly alters regulators of the cell cycle, apoptosis, and steroidogenesis to inhibit antral follicle functionality. Antral follicles from adult CD-1 mice were cultured with vehicle control or DEHP (1-100 μg/ml) for 24-96 h to establish the temporal effects of DEHP on the follicle. Following 24-96 h of culture, antral follicles were subjected to gene expression analysis, and media were subjected to measurements of hormone levels. DEHP increased the mRNA levels of cyclin D2, cyclin dependent kinase 4, cyclin E1, cyclin A2, and cyclin B1 and decreased the levels of cyclin-dependent kinase inhibitor 1A prior to growth inhibition. Additionally, DEHP increased the mRNA levels of BCL2-associated agonist of cell death, BCL2-associated X protein, BCL2-related ovarian killer protein, B-cell leukemia/lymphoma 2, and Bcl2-like 10, leading to an increase in atresia. Further, DEHP decreased the levels of progesterone, androstenedione, and testosterone prior to the decrease in estradiol levels, with decreased mRNA levels of side-chain cleavage, 17α-hydroxylase-17,20-desmolase, 17β-hydroxysteroid dehydrogenase, and aromatase. Collectively, DEHP directly alters antral follicle functionality by inhibiting growth, inducing atresia, and inhibiting steroidogenesis.
Collapse
Affiliation(s)
- Patrick R Hannon
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, 2001 S. Lincoln Ave., Urbana, IL 61802, USA.
| | - Katherine E Brannick
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, 2001 S. Lincoln Ave., Urbana, IL 61802, USA.
| | - Wei Wang
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, 2001 S. Lincoln Ave., Urbana, IL 61802, USA.
| | - Rupesh K Gupta
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, 2001 S. Lincoln Ave., Urbana, IL 61802, USA.
| | - Jodi A Flaws
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, 2001 S. Lincoln Ave., Urbana, IL 61802, USA.
| |
Collapse
|
81
|
Manohar M, Khan H, Sirohi VK, Das V, Agarwal A, Pandey A, Siddiqui WA, Dwivedi A. Alteration in endometrial proteins during early- and mid-secretory phases of the cycle in women with unexplained infertility. PLoS One 2014; 9:e111687. [PMID: 25405865 PMCID: PMC4236019 DOI: 10.1371/journal.pone.0111687] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Accepted: 10/05/2014] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Compromised receptivity of the endometrium is a major cause of unexplained infertility, implantation failure and subclinical pregnancy loss. In order to investigate the changes in endometrial protein profile as a cause of unexplained infertility, the current study was undertaken to analyze the differentially expressed proteins of endometrium from early-secretory (LH+2) to mid-secretory phase (LH+7), in women with unexplained infertility. METHODS 2-D gel electrophoresis was performed to analyze the proteomic changes between early- (n = 8) and mid-secretory (n = 8) phase endometrium of women with unexplained infertility. The differentially expressed protein spots were identified by LC-MS analysis and validated by immunoblotting and immuno-histochemical analysis in early- (n = 4) and mid-secretory (n = 4) phase endometrium of infertile women. Validated proteins were also analyzed in early- (n = 4) and mid-secretory (n = 4) phase endometrium of fertile women. RESULTS Nine proteins were found to be differentially expressed between early- and mid- secretory phases of endometrium of infertile women. The expression of Ras-related protein Rap-1b, Protein disulfide isomerase A3, Apolipoprotein-A1 (Apo-A1), Cofilin-1 and RAN GTP-binding nuclear protein (Ran) were found to be significantly increased, whereas, Tubulin polymerization promoting protein family member 3, Superoxide dismutase [Cu-Zn], Sorcin, and Proteasome subunit alpha type-5 were significantly decreased in mid- secretory phase endometrium of infertile women as compared to early-secretory phase endometrium of infertile women. Validation of 4 proteins viz. Sorcin, Cofilin-1, Apo-A1 and Ran were performed in separate endometrial biopsy samples from infertile women. The up-regulated expression of Sorcin and down-regulated expression of Cofilin-1 and Apolipoprotein-A1, were observed in mid-secretory phase as compared to early-secretory phase in case of fertile women. CONCLUSIONS De-regulation of the expression of Sorcin, Cofilin-1, Apo-A1 and Ran, during early- to mid-secretory phase may have physiological significance and it may be one of the causes for altered differentiation and/or maturation of endometrium, in women with unexplained infertility.
Collapse
Affiliation(s)
- Murli Manohar
- Division of Endocrinology, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, India
- Department of Biochemistry, Jamia Hamdard (Hamdard University), New Delhi, India
| | - Huma Khan
- Department of Obstetrics & Gynaecology, King George’s Medical University, Lucknow, Uttar Pradesh, India
| | - Vijay Kumar Sirohi
- Division of Endocrinology, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, India
| | - Vinita Das
- Department of Obstetrics & Gynaecology, King George’s Medical University, Lucknow, Uttar Pradesh, India
| | - Anjoo Agarwal
- Department of Obstetrics & Gynaecology, King George’s Medical University, Lucknow, Uttar Pradesh, India
| | - Amita Pandey
- Department of Obstetrics & Gynaecology, King George’s Medical University, Lucknow, Uttar Pradesh, India
| | | | - Anila Dwivedi
- Division of Endocrinology, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, India
| |
Collapse
|
82
|
Cocchia N, Corteggio A, Altamura G, Tafuri S, Rea S, Rosapane I, Sica A, Landolfi F, Ciani F. The effects of superoxide dismutase addition to the transport medium on cumulus-oocyte complex apoptosis and IVF outcome in cats (Felis catus). Reprod Biol 2014; 15:56-64. [PMID: 25726378 DOI: 10.1016/j.repbio.2014.10.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Revised: 08/10/2014] [Accepted: 10/04/2014] [Indexed: 10/24/2022]
Abstract
The aim of the present study was to examine the effects of superoxide dismutase (SOD) addition to the ovary transport medium (4°C, 3-72 h) on ovarian cell viability and apoptosis and in vitro embryo production (IVEP) in domestic cats. The ovaries collected from 76 mixed-breed domestic queens were randomly assigned to the control or SOD-treated groups and incubated for 3, 24, 48 or 72 h. The ovaries were then subjected to the following: (1) fixed in formalin to assess the incidence of apoptosis (fragmented DNA in situ detection kit), (2) stored at -196°C in liquid nitrogen to evaluate the expression of the pro-apoptotic Bax gene and the anti-apoptotic Bcl-2 gene (RT-PCR), and (3) used to obtain the cumulus-oocyte complexes (COCs) in order to test the cell viability (carboxyfluorescein or trypan blue staining) and IVEP. The incidence of apoptosis appeared to be higher in the control compared with the SOD-treated ovaries. The ovarian expression of Bax was lower and the Bcl-2 expression was higher in the SOD-treated group compared with the control group. The presence of SOD in the transport medium increased the viability of COCs and IVEP compared with the control medium. In summary, the supplementation of the ovary transport medium with SOD reduced cellular apoptosis and enhanced COC survival and IVEP in domestic cats.
Collapse
Affiliation(s)
- Natascia Cocchia
- Department of Veterinary Medicine and Animal Productions - University of Naples Federico II, Via F. Delpino n. 1, 80137 Naples, Italy
| | - Annunziata Corteggio
- Department of Veterinary Medicine and Animal Productions - University of Naples Federico II, Via F. Delpino n. 1, 80137 Naples, Italy
| | - Gennaro Altamura
- Department of Veterinary Medicine and Animal Productions - University of Naples Federico II, Via F. Delpino n. 1, 80137 Naples, Italy
| | - Simona Tafuri
- Department of Veterinary Medicine and Animal Productions - University of Naples Federico II, Via F. Delpino n. 1, 80137 Naples, Italy
| | - Silviana Rea
- Department of Veterinary Medicine and Animal Productions - University of Naples Federico II, Via F. Delpino n. 1, 80137 Naples, Italy
| | - Isabella Rosapane
- Department of Veterinary Medicine and Animal Productions - University of Naples Federico II, Via F. Delpino n. 1, 80137 Naples, Italy
| | - Alessandro Sica
- Department of Veterinary Medicine and Animal Productions - University of Naples Federico II, Via F. Delpino n. 1, 80137 Naples, Italy
| | | | - Francesca Ciani
- Department of Veterinary Medicine and Animal Productions - University of Naples Federico II, Via F. Delpino n. 1, 80137 Naples, Italy.
| |
Collapse
|
83
|
Watanabe K, Shibuya S, Ozawa Y, Nojiri H, Izuo N, Yokote K, Shimizu T. Superoxide dismutase 1 loss disturbs intracellular redox signaling, resulting in global age-related pathological changes. BIOMED RESEARCH INTERNATIONAL 2014; 2014:140165. [PMID: 25276767 PMCID: PMC4170698 DOI: 10.1155/2014/140165] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Revised: 07/29/2014] [Accepted: 08/06/2014] [Indexed: 01/14/2023]
Abstract
Aging is characterized by increased oxidative stress, chronic inflammation, and organ dysfunction, which occur in a progressive and irreversible manner. Superoxide dismutase (SOD) serves as a major antioxidant and neutralizes superoxide radicals throughout the body. In vivo studies have demonstrated that copper/zinc superoxide dismutase-deficient (Sod1(-/-)) mice show various aging-like pathologies, accompanied by augmentation of oxidative damage in organs. We found that antioxidant treatment significantly attenuated the age-related tissue changes and oxidative damage-associated p53 upregulation in Sod1(-/-) mice. This review will focus on various age-related pathologies caused by the loss of Sod1 and will discuss the molecular mechanisms underlying the pathogenesis in Sod1(-/-) mice.
Collapse
Affiliation(s)
- Kenji Watanabe
- Department of Advanced Aging Medicine, Chiba University Graduate School of Medicine, Chiba 260-8670, Japan
- Department of Clinical Cell Biology and Medicine, Chiba University Graduate School of Medicine, Chiba 260-8670, Japan
| | - Shuichi Shibuya
- Department of Advanced Aging Medicine, Chiba University Graduate School of Medicine, Chiba 260-8670, Japan
| | - Yusuke Ozawa
- Department of Advanced Aging Medicine, Chiba University Graduate School of Medicine, Chiba 260-8670, Japan
| | - Hidetoshi Nojiri
- Department of Orthopaedics, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Naotaka Izuo
- Department of Advanced Aging Medicine, Chiba University Graduate School of Medicine, Chiba 260-8670, Japan
| | - Koutaro Yokote
- Department of Clinical Cell Biology and Medicine, Chiba University Graduate School of Medicine, Chiba 260-8670, Japan
| | - Takahiko Shimizu
- Department of Advanced Aging Medicine, Chiba University Graduate School of Medicine, Chiba 260-8670, Japan
| |
Collapse
|
84
|
Anchordoquy JM, Anchordoquy JP, Sirini MA, Picco SJ, Peral-García P, Furnus CC. The importance of having zinc during in vitro maturation of cattle cumulus-oocyte complex: role of cumulus cells. Reprod Domest Anim 2014; 49:865-74. [PMID: 25131826 DOI: 10.1111/rda.12385] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Accepted: 06/22/2014] [Indexed: 12/17/2022]
Abstract
The aim of this study was to investigate the influence of zinc (Zn) on the health of cumulus-oocyte complex (COC) during in vitro maturation (IVM). Experiments were designed to evaluate the effect of Zn added to IVM medium on: DNA integrity, apoptosis, cumulus expansion and superoxide dismutase (SOD) activity of cumulus cells (CC). Also, role of CC on Zn transport during IVM was evaluated on oocyte developmental capacity. DNA damage and early apoptosis were higher in CC matured with 0 μg/ml Zn compared with 0.7, 1.1 and 1.5 μg/ml Zn (p < 0.05). Cumulus expansion did not show differences in COC matured with or without Zn supplementation (p > 0.05). Superoxide dismutase activity was higher in COC matured with 1.5 μg/ml Zn than with 0 μg/ml Zn (p < 0.05). Cleavage and blastocyst rates were recorded after IVM in three maturation systems: intact COCs, denuded oocytes with cumulus cells monolayer (DO + CC) and denuded oocytes (DO). Cleavage rates were similar when COC, DO + CC or DO were matured with 1.5 μg/ml Zn compared with control group (p > 0.05). Blastocyst rates were significantly higher in COC than in DO + CC and DO with the addition of 1.5 μg/ml Zn during IVM (p < 0.01). Blastocyst quality was enhanced in COC and DO + CC compared with DO when Zn was added to IVM medium (p < 0.001). The results of this study indicate that Zn supplementation to IVM medium (i) decreased DNA damage and apoptosis in CC; (ii) increased SOD activity in CC; (iii) did not modify cumulus expansion and cleavage rates after in vitro fertilization; (iv) improved subsequent embryo development up to blastocyst stage; and (v) enhanced blastocyst quality when CC were present either in intact COC or in coculture during IVM.
Collapse
Affiliation(s)
- J M Anchordoquy
- Instituto de Genética Veterinaria Prof. Fernando N. Dulout (IGEVET), Facultad de Ciencias Veterinarias, Universidad Nacional de La Plata, CONICET, La Plata, Buenos Aires, Argentina; Cátedra de Fisiología, Laboratorio de Nutrición Mineral, Facultad de Ciencias Veterinarias, Universidad Nacional de La Plata, La Plata, Buenos Aires, Argentina
| | | | | | | | | | | |
Collapse
|
85
|
Fu H, Wada-Hiraike O, Hirano M, Kawamura Y, Sakurabashi A, Shirane A, Morita Y, Isono W, Oishi H, Koga K, Oda K, Kawana K, Yano T, Kurihara H, Osuga Y, Fujii T. SIRT3 positively regulates the expression of folliculogenesis- and luteinization-related genes and progesterone secretion by manipulating oxidative stress in human luteinized granulosa cells. Endocrinology 2014; 155:3079-87. [PMID: 24877629 DOI: 10.1210/en.2014-1025] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
SIRT3 is a member of the sirtuin family and has recently emerged as a vital molecule in controlling the generation of reactive oxygen species (ROS) in oocytes. Appropriate levels of ROS play pivotal roles in human reproductive medicine. The aim of the present study was to investigate SIRT3 expression and analyze the SIRT3-mediated oxidative response in human luteinized granulosa cells (GCs). Human ovarian tissues were subjected to immunohistochemical analysis to localize SIRT3 expression. Hydrogen peroxide and human chorionic gonadotropin were used to analyze the relationship between ROS and SIRT3 by quantitative RT-PCR and Western blotting. Intracellular levels of ROS were investigated by fluorescence after small interfering RNA-mediated knockdown of SIRT3 in human GCs. To uncover the role of SIRT3 in folliculogenesis and luteinization, mRNA levels of related genes and the progesterone concentration were analyzed by quantitative RT-PCR and immunoassays, respectively. We detected the expression of SIRT3 in the GCs of the human ovary. The mRNA levels of SIRT3, catalase, and superoxide dismutase 1 were up-regulated by hydrogen peroxide in both COV434 cells and human GCs and down-regulated by human chorionic gonadotropin. Knockdown of SIRT3 markedly elevated ROS generation in human GCs. In addition, SIRT3 depletion resulted in decreased mRNA expression of aromatase, 17β-hydroxysteroid dehydrogenase 1, steroidogenic acute regulatory protein, cholesterol side-chain cleavage enzyme, and 3β-hydroxysteroid dehydrogenase in GCs and thus resulted in decreased progesterone secretion. These results have the important clinical implication that SIRT3 might play a positive role in the folliculogenesis and luteinization processes in GCs, possibly by sensing and regulating the generation of ROS. Activation of SIRT3 function might help to sustain human reproduction by maintaining GCs as well as oocytes.
Collapse
Affiliation(s)
- Houju Fu
- Department of Obstetrics and Gynecology (H.F., O.W.-H., M.H., A.Sa., A.Sh., Y.M., W.I., K.Ko., K.O., K.Ka. Y.O., T.F.) and the University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan; Department of Physiological Chemistry and Metabolism (Y.K., W.I., H.K.), Graduate School of Medicine, the University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan; Department of Obstetrics and Gynecology (H.O., T.Y.), National Center for Global Health and Medicine, 1-21-1 Toyama, Shinjyuku-ku, Tokyo 162-8655, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
86
|
El-Sharkawy EE, Kames AOG, Sayed SM, Nisr NAEL, Wahba NM, Elsherif WM, Nafady AM, Abdel-Hafeez MM, Aamer AA. The ameliorative effect of propolis against methoxychlor induced ovarian toxicity in rat. ACTA ACUST UNITED AC 2014; 66:415-21. [PMID: 25034310 DOI: 10.1016/j.etp.2014.06.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2013] [Revised: 05/09/2014] [Accepted: 06/17/2014] [Indexed: 01/10/2023]
Abstract
A study was designed to evaluate ameliorative effect of propolis against methoxychlor (MXC) induced ovarian toxicity in rat. The organochlorine pesticide (MXC) is a known endocrine disruptor with estrogenic, anti-estrogenic, and anti-androgenic properties. To investigate whether chronic exposure to MXC could cause ovarian dysfunction, two groups of Sprague-Dawley adult female rats were exposed to MXC alone in a dose of 200mg/kg, twice/weekly, orally or MXC dose as previous plus propolis in a dose of 200mg/l/day, in drinking water for 10 months. Another two groups of rat were given corn oil (control) or propolis. Multiple reproductive parameters, ovarian weight, serum hormone levels, ovarian oxidative status and ovarian morphology were examined. In MXC-exposed group, there is a significant decrease in body and ovarian weight vs. control. MXC decreases serum estradiol and progesterone levels. A significant increase in the levels of lipid peroxidation was obtained while a significant decrease of the total antioxidant was recorded. Ovarian histopathology showed primary, secondary and vesicular follicles displaying an atretic morphology. Increase in the ovarian surface epithelium height accompanied with vacuolated, pyknotic oocytes were obtained. The previous toxic effects were neutralized by the administration of propolis in MXC+propolis group. The present results suggest that propolis may be effective in decreasing of MXC-induced ovarian toxicity in rat.
Collapse
Affiliation(s)
- Eman E El-Sharkawy
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Assuit University, Egypt.
| | - Amany O G Kames
- Department of Biochemistry, Faculty of Medicine, Assuit University, Egypt
| | - S M Sayed
- Animal Health Research Institute, Assuit, Egypt
| | | | | | | | - Allam M Nafady
- Department of Pathology and Clinical Pathology, Faculty of Veterinary Medicine, Assuit University, Egypt
| | | | - A A Aamer
- Department of Animal Medicine and Clinical Laboratory Diagnosis, Faculty of Veterinary Medicine, Assuit University, Egypt
| |
Collapse
|
87
|
Olakolu FC, Chukwuka AV. Trace metal concentrations and antioxidant activity in ovarian tissue of blue crabCallinectes amnicolafrom Lagos lagoon and implications for reproductive success. ACTA ACUST UNITED AC 2014. [DOI: 10.1080/21658005.2014.912074] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
88
|
Fujii J, Imai H. Redox reactions in mammalian spermatogenesis and the potential targets of reactive oxygen species under oxidative stress. SPERMATOGENESIS 2014; 4:e979108. [PMID: 26413390 PMCID: PMC4581049 DOI: 10.4161/21565562.2014.979108] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Accepted: 10/16/2014] [Indexed: 01/13/2023]
Abstract
Reduction-oxidation (Redox) reactions are ubiquitous mechanisms for vital activities in all organisms, and they play pivotal roles in the regulation of spermatogenesis as well. Here we focus on 3 redox-involved processes that have drawn much recent attention: the regulation of signal transduction by reactive oxygen species (ROS) such as hydrogen peroxide, oxidative protein folding in the endoplasmic reticulum (ER), and sulfoxidation of protamines during sperm chromatin condensation. The first 2 of these processes are emerging topics in cell biology and are applicable to most living cells, which includes spermatogenic cells. The roles of ROS in signal transduction have been elucidated in the last 2 decades and have received broad attention, most notably from the viewpoint of the proper control of mitotic signals. Redox processes in the ER are important because this is the organelle where secretory and membrane proteins are synthesized and proceed toward their functional structure, so that malfunction of the ER affects not only the involved cells but also the accepting cells of the secreted proteins in multicellular organisms. Sulfoxidation is the third of these processes, and the sulfoxidation of chromatin is a unique process in sperm maturation. During recent sulfoxidase research, GPX4 has emerged as a promising enzyme that plays essential roles in the production of fertile sperm, but the involvement of other redox proteins is also becoming evident. Because the molecules involved in the redox reactions are prone to oxidation, they can be sensitive to oxidative damage, which makes them potential targets for antioxidant therapy.
Collapse
Affiliation(s)
- Junichi Fujii
- Department of Biochemistry and Molecular Biology; Graduate School of Medical Science; Yamagata University; Yamagata, Japan
| | - Hirotaka Imai
- School of Pharmaceutical Sciences; Kitasato University; Minato-ku, Tokyo, Japan
| |
Collapse
|
89
|
Sheng Y, Abreu IA, Cabelli DE, Maroney MJ, Miller AF, Teixeira M, Valentine JS. Superoxide dismutases and superoxide reductases. Chem Rev 2014; 114:3854-918. [PMID: 24684599 PMCID: PMC4317059 DOI: 10.1021/cr4005296] [Citation(s) in RCA: 675] [Impact Index Per Article: 61.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Indexed: 11/30/2022]
Affiliation(s)
- Yuewei Sheng
- Department
of Chemistry and Biochemistry, University
of California Los Angeles, Los
Angeles, California 90095, United States
| | - Isabel A. Abreu
- Instituto
de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157, Oeiras, Portugal
- Instituto
de Biologia Experimental e Tecnológica, Av. da República,
Qta. do Marquês, Estação Agronómica Nacional,
Edificio IBET/ITQB, 2780-157, Oeiras, Portugal
| | - Diane E. Cabelli
- Chemistry
Department, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Michael J. Maroney
- Department
of Chemistry, University of Massachusetts
Amherst, Amherst, Massachusetts 01003, United States
| | - Anne-Frances Miller
- Department
of Chemistry, University of Kentucky, Lexington, Kentucky 40506-0055, United States
| | - Miguel Teixeira
- Instituto
de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157, Oeiras, Portugal
| | - Joan Selverstone Valentine
- Department
of Chemistry and Biochemistry, University
of California Los Angeles, Los
Angeles, California 90095, United States
- Department
of Bioinspired Sciences, Ewha Womans University, Seoul 120-750, Republic of Korea
| |
Collapse
|
90
|
Acute 7,12-dimethylbenz[a]anthracene exposure causes differential concentration-dependent follicle depletion and gene expression in neonatal rat ovaries. Toxicol Appl Pharmacol 2014; 276:179-87. [PMID: 24576726 DOI: 10.1016/j.taap.2014.02.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Revised: 02/06/2014] [Accepted: 02/14/2014] [Indexed: 11/22/2022]
Abstract
Chronic exposure to the polycyclic aromatic hydrocarbon 7,12-dimethylbenz[a]anthracene (DMBA), generated during combustion of organic matter including cigarette smoke, depletes all ovarian follicle types in the mouse and rat, and in vitro models mimic this effect. To investigate the mechanisms involved in follicular depletion during acute DMBA exposure, two concentrations of DMBA at which follicle depletion has (75 nM) and has not (12.5 nM) been observed were investigated. Postnatal day four F344 rat ovaries were maintained in culture for four days before a single exposure to vehicle control (1% DMSO; CT) or DMBA (12 nM; low-concentration or 75 nM; high-concentration). After four or eight additional days of culture, DMBA-induced follicle depletion was evaluated via follicle enumeration. Relative to control, DMBA did not affect follicle numbers after 4 days of exposure, but induced large primary follicle loss at both concentrations after 8 days; while, the low-concentration DMBA also caused secondary follicle depletion. Neither concentration affected primordial or small primary follicle number. RNA was isolated and quantitative RT-PCR performed prior to follicle loss to measure mRNA levels of genes involved in xenobiotic metabolism (Cyp2e1, Gstmu, Gstpi, Ephx1), autophagy (Atg7, Becn1), oxidative stress response (Sod1, Sod2) and the phosphatidylinositol 3-kinase (PI3K) pathway (Kitlg, cKit, Akt1) 1, 2 and 4 days after exposure. With the exception of Atg7 and cKit, DMBA increased (P < 0.05) expression of all genes investigated. Also, BECN1 and pAKT(Thr308) protein levels were increased while cKIT was decreased by DMBA exposure. Taken together, these results suggest an increase in DMBA bioactivation, add to the mechanistic understanding of DMBA-induced ovotoxicity and raise concern regarding female low concentration DMBA exposures.
Collapse
|
91
|
Prenatal exposure to chromium induces early reproductive senescence by increasing germ cell apoptosis and advancing germ cell cyst breakdown in the F1 offspring. Dev Biol 2014; 388:22-34. [PMID: 24530425 DOI: 10.1016/j.ydbio.2014.02.003] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Revised: 01/21/2014] [Accepted: 02/04/2014] [Indexed: 01/19/2023]
Abstract
Hexavalent chromium (CrVI), one of the more toxic heavy metals, is widely used in more than 50 industries such as chrome plating, welding, wood processing and tanneries. As one of the world's leading producers of chromium compounds, the U.S. is facing growing challenges in protecting human health against multiple adverse effects of CrVI. CrVI is rapidly converted to CrIII intracellularly, and can induce apoptosis through different mechanisms. Our previous studies demonstrated postnatal exposure to CrVI results in a delay or arrest in follicle development and puberty. Pregnant rats were treated with 25 ppm potassium dichromate (CrVI) from gestational day (GD) 9.5 to 14.5 through drinking water, placentae were removed on GD 20, and total Cr was estimated in the placentae; ovaries were removed from the F1 offspring on postnatal day (PND)-1 and various analyses were performed. Our results show that gestational exposure to CrVI resulted in (i) increased Cr concentration in the placenta, (ii) increased germ cell apoptosis by up-regulating p53/p27-Bax-caspase-3 proteins and by increasing p53-SOD-2 co-localization; (iii) accelerated germ cell cyst (GCC) breakdown; (iv) advanced primordial follicle assembly and primary follicle transition and (v) down regulation of p-AKT, p-ERK and XIAP. As a result of the above events, CrVI induced early reproductive senescence and decrease in litter size in F1 female progeny.
Collapse
|
92
|
Garratt M, Brooks R. A genetic reduction in antioxidant function causes elevated aggression in mice. J Exp Biol 2014; 218:223-7. [DOI: 10.1242/jeb.112011] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Abstract
Male-male aggression can have a large influence on access to mates, particularly in highly territorial animals such as mice. It has been suggested that males with impaired antioxidant defence and a consequential increased susceptibility to oxidative stress may have a reduced ability to invest in aggressive behaviours, which could limit their mating opportunities and reproductive success. Oxidative stress occurs as a result of an uncontrolled over-production of reactive oxygen species (ROS) in relation to defence mechanisms (such as antioxidants), and can cause damage to a variety of different cellular components. Impairments in specific aspects of antioxidant defence, leading to oxidative stress, can limit investment in some reproductive traits in males, such as sperm quality and the production of sexual signals to attract males. However, a direct effect of impaired antioxidant defence on aggressive behaviour has not, to our knowledge, been reported. In this study we demonstrate that mice with experimentally elevated sensitivity to oxidative stress (through inhibition of copper-zinc superoxide dismutase (Sod1)) actually show the opposite response to previous predictions. Males completely deficient in Sod1 are more aggressive than both wild-type males and males that express 50% of this antioxidant enzyme. They are also faster to attack another male. The cause of this increased aggression is unknown, but this result highlights that aggressive behaviour in mice is not highly constrained by inhibited Sod1 expression, in contrast to other reproductive traits known to be impaired in this mouse model.
Collapse
Affiliation(s)
- Michael Garratt
- University of New South Wales, Australia; University of Michigan Medical School, United States
| | | |
Collapse
|
93
|
Vitamin E-analog Trolox prevents endoplasmic reticulum stress in frozen-thawed ovarian tissue of capuchin monkey (Sapajus apella). Cell Tissue Res 2013; 355:471-80. [PMID: 24362491 DOI: 10.1007/s00441-013-1764-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Accepted: 10/31/2013] [Indexed: 10/25/2022]
Abstract
Ovarian fragments were exposed to 0.5 M sucrose and 1 M ethylene glycol (freezing solution; FS) with or without selenium or Trolox. Histological and ultrastructural analyses showed that the percentages of normal follicles in control tissue and in tissue after exposure to FS + 50 μM Trolox were similar. Trolox prevented endoplasmic reticulum (ER)-related vacuolization, which is commonly observed in oocytes and stromal tissue after exposure to FS. From the evaluated stress markers, superoxide dismutase 1 (SOD1) was up-regulated in ovarian tissue exposed to FS + 10 ng/ml selenium. Ovarian fragments were subsequently frozen-thawed in the presence of FS with or without 50 μM Trolox, followed by in vitro culture (IVC). Antioxidant capacity in ovarian fragments decreased after freeze-thawing in Trolox-free FS compared with FS + 50 μM Trolox. Although freezing itself minimized the percentage of viable follicles in each solution, Trolox supplementation resulted in higher rates of viable follicles (67 %), even after IVC (61 %). Furthermore, stress markers SOD1 and ERp29 were up-regulated in ovarian tissue frozen-thawed in Trolox-free medium. Relative mRNA expression of growth factors markers was evaluated after freeze-thawing followed by IVC. BMP4, BMP5, CTGF, GDF9 and KL were down-regulated independently of the presence of Trolox in FS but down-regulation was less pronounced in the presence of Trolox. Thus, medium supplementation with 50 μM Trolox prevents ER stress and, consequently, protects ovarian tissue from ER-derived cytoplasmic vacuolization. ERp29 but not ERp60, appears to be a key marker linking stress caused by freezing-thawing and cell vacuolization.
Collapse
|
94
|
Oyawoye OA, Abdel-Gadir A, Garner A, Leonard AJ, Perrett C, Hardiman P. The interaction between follicular fluid total antioxidant capacity, infertility and early reproductive outcomes duringin vitrofertilization. Redox Rep 2013; 14:205-13. [DOI: 10.1179/135100009x12525712409418] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
|
95
|
Oxidative stress and redox regulation of gametogenesis, fertilization, and embryonic development. Reprod Med Biol 2013; 13:71-79. [PMID: 29699151 DOI: 10.1007/s12522-013-0170-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2013] [Accepted: 09/18/2013] [Indexed: 01/18/2023] Open
Abstract
Oxidative stress caused by elevated reactive oxygen species (ROS) is one of the predominant causes of both male and female infertility. Oxidative stress conditions cause either cell death or senescence by oxidation of cellular molecules including nucleic acid, proteins, and lipids. It is particularly important to minimize oxidative stress when in vitro fertilization is performed for the purpose of assisted reproduction. The problems associated with assisted reproductive technology are becoming evident, and it is now the time to clarify its mechanisms and cope with them. On the other hand, the beneficial roles of ROS, such as intracellular signaling, have become evident. The antithetical functions of ROS make it more difficult to overcome the problems caused by oxidative stress. Despite the difficulty in understanding mammalian reproduction, the mechanisms and problems can be gradually unveiled by advanced technology such as genetic modification of animals.
Collapse
|
96
|
NLRP3 inflammasome blockade inhibits VEGF-A-induced age-related macular degeneration. Cell Rep 2013; 4:945-58. [PMID: 24012762 DOI: 10.1016/j.celrep.2013.08.002] [Citation(s) in RCA: 90] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Revised: 07/16/2013] [Accepted: 08/08/2013] [Indexed: 01/26/2023] Open
Abstract
The NLRP3 inflammasome is activated in age-related macular degeneration (AMD), but it remains unknown whether its activation contributes to AMD pathologies. VEGF-A is increased in neovascular ("wet") AMD, but it is not known whether it plays a role in inflammasome activation, whether an increase of VEGF-A by itself is sufficient to cause neovascular AMD and whether it can contribute to nonexudative ("dry") AMD that often co-occurs with the neovascular form. Here, it is shown that an increase in VEGF-A results in NLRP3 inflammasome activation and is sufficient to cause both forms of AMD pathologies. Targeting NLRP3 or the inflammasome effector cytokine IL-1β inhibits but does not prevent VEGF-A-induced AMD pathologies, whereas targeting IL-18 promotes AMD. Thus, increased VEGF-A provides a unifying pathomechanism for both forms of AMD; combining therapeutic inhibition of both VEGF-A and IL-1β or the NLRP3 inflammasome is therefore likely to suppress both forms of AMD.
Collapse
|
97
|
Differential responses of SOD1-deficient mouse embryonic fibroblasts to oxygen concentrations. Arch Biochem Biophys 2013; 537:5-11. [DOI: 10.1016/j.abb.2013.06.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2013] [Revised: 05/30/2013] [Accepted: 06/09/2013] [Indexed: 11/17/2022]
|
98
|
Zhang YL, Liu FJ, Chen XL, Zhang ZQ, Shu RZ, Yu XL, Zhai XW, Jin LJ, Ma XG, Qi Q, Liu ZJ. Dual effects of molybdenum on mouse oocyte quality and ovarian oxidative stress. Syst Biol Reprod Med 2013; 59:312-8. [PMID: 23947923 DOI: 10.3109/19396368.2013.826296] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
A sub-acute toxicity test was performed to investigate the effects of molybdenum (Mo) on ovarian function. ICR adult female mice were exposed to Mo by free access to distilled water containing the Mo at 5, 10, 20, and 40 mg/L for 14 days. Compared to the control group, M II oocyte morphology, ovary index, and ovulation improved within the 5 mg/L Mo group, but were negatively affected by Mo at 40 mg/L. Morphologically abnormal ovarian mitochondria were observed at ≥ 20 mg/L. These alterations accompanied the changes in superoxide dismutase (SOD), glutathione peroxidise (GPx), and malondialdehyde (MDA) levels in ovaries. In conclusion, Mo affects oocyte quality possibly through regulating ovarian oxidative stress in a dose-dependent manner. It appears that Mo may improve ovarian function at a suitable concentration, which might be a candidate for the treatment of female infertility.
Collapse
Affiliation(s)
- Yu-Ling Zhang
- College of Animal Science and Technology , Henan University of Science and Technology , Luoyang , PR China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
99
|
Stanley JA, Sivakumar KK, Nithy TK, Arosh JA, Hoyer PB, Burghardt RC, Banu SK. Postnatal exposure to chromium through mother's milk accelerates follicular atresia in F1 offspring through increased oxidative stress and depletion of antioxidant enzymes. Free Radic Biol Med 2013; 61:179-96. [PMID: 23470461 PMCID: PMC3883978 DOI: 10.1016/j.freeradbiomed.2013.02.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2012] [Revised: 02/07/2013] [Accepted: 02/12/2013] [Indexed: 12/29/2022]
Abstract
Hexavalent chromium, CrVI, is a heavy metal endocrine disruptor, known as a mutagen, teratogen, and a group A carcinogen. Environmental contamination with CrVI, including drinking water, has been increasing in more than 30 cities in the United States. CrVI is rapidly converted to CrIII intracellularly, and CrIII can cause DNA strand breaks and cancer or apoptosis through different mechanisms. Our previous study demonstrated that lactational exposure to chromium results in a delay or arrest in follicle development and a decrease in steroid hormone levels in F1 female rats, both of which are mitigated (partial inhibition) by vitamin C. The current study tested the hypothesis that lactational exposure to CrIII accelerates follicle atresia in F1 offspring by increasing reactive oxygen species (ROS) and decreasing cellular antioxidants. Results showed that lactational exposure to CrIII dose-dependently increased follicular atresia and decreased steroidogenesis in postnatal day 25, 45, and 65 rats. Vitamin C mitigated or inhibited the effects of CrIII at all doses. CrIII increased hydrogen peroxide and lipid hydroperoxide in plasma and ovary; decreased the antioxidant enzymes (AOXs) GPx1, GR, SOD, and catalase; and increased glutathione S-transferase in plasma and ovary. To understand the effects of CrVI on ROS and AOXs in granulosa (GC) and theca (TC) cell compartments in the ovary, ROS levels and mRNA expression of cytosolic and mitochondrial AOXs, such as SOD1, SOD2, catalase, GLRX1, GSTM1, GSTM2, GSTA4, GR, TXN1, TXN2, TXNRD2, and PRDX3, were studied in GCs and TCs and in a spontaneously immortalized granulosa cell line (SIGC). Overall, CrVI downregulated each of the AOXs; and vitamin C mitigated the effects of CrVI on these enzymes in GCs and SIGCs, but failed to mitigate CrVI effects on GSTM1, GSTM2, TXN1, and TXN2 in TCs. Thus, these data for the first time reveal that lactational exposure to CrIII accelerated follicular atresia and decreased steroidogenesis in F1 female offspring by altering the ratio of ROS and AOXs in the ovary. Vitamin C is able to protect the ovary from CrIII-induced oxidative stress and follicle atresia through protective effects on GCs rather than TCs.
Collapse
Affiliation(s)
- Jone A Stanley
- Department of Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
| | - Kirthiram K Sivakumar
- Department of Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
| | - Thamizh K Nithy
- Department of Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
| | - Joe A Arosh
- Department of Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
| | - Patricia B Hoyer
- Department of Physiology, University of Arizona, Tucson, AZ 85724-5051, USA
| | - Robert C Burghardt
- Department of Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
| | - Sakhila K Banu
- Department of Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA.
| |
Collapse
|
100
|
Saccon RA, Bunton-Stasyshyn RKA, Fisher EMC, Fratta P. Is SOD1 loss of function involved in amyotrophic lateral sclerosis? ACTA ACUST UNITED AC 2013; 136:2342-58. [PMID: 23687121 PMCID: PMC3722346 DOI: 10.1093/brain/awt097] [Citation(s) in RCA: 231] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Mutations in the gene superoxide dismutase 1 (SOD1) are causative for familial forms of the neurodegenerative disease amyotrophic lateral sclerosis. When the first SOD1 mutations were identified they were postulated to give rise to amyotrophic lateral sclerosis through a loss of function mechanism, but experimental data soon showed that the disease arises from a—still unknown—toxic gain of function, and the possibility that loss of function plays a role in amyotrophic lateral sclerosis pathogenesis was abandoned. Although loss of function is not causative for amyotrophic lateral sclerosis, here we re-examine two decades of evidence regarding whether loss of function may play a modifying role in SOD1–amyotrophic lateral sclerosis. From analysing published data from patients with SOD1–amyotrophic lateral sclerosis, we find a marked loss of SOD1 enzyme activity arising from almost all mutations. We continue to examine functional data from all Sod1 knockout mice and we find obvious detrimental effects within the nervous system with, interestingly, some specificity for the motor system. Here, we bring together historical and recent experimental findings to conclude that there is a possibility that SOD1 loss of function may play a modifying role in amyotrophic lateral sclerosis. This likelihood has implications for some current therapies aimed at knocking down the level of mutant protein in patients with SOD1–amyotrophic lateral sclerosis. Finally, the wide-ranging phenotypes that result from loss of function indicate that SOD1 gene sequences should be screened in diseases other than amyotrophic lateral sclerosis.
Collapse
Affiliation(s)
- Rachele A Saccon
- Department of Neurodegenerative Disease, Institute of Neurology, University College, London WC1N 3BG, UK
| | | | | | | |
Collapse
|