51
|
Wallace AE, Sales KJ, Catalano RD, Anderson RA, Williams ARW, Wilson MR, Schwarze J, Wang H, Rossi AG, Jabbour HN. Prostaglandin F2alpha-F-prostanoid receptor signaling promotes neutrophil chemotaxis via chemokine (C-X-C motif) ligand 1 in endometrial adenocarcinoma. Cancer Res 2009; 69:5726-33. [PMID: 19549892 DOI: 10.1158/0008-5472.can-09-0390] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The prostaglandin F(2alpha) (PGF(2alpha)) receptor (FP) is elevated in endometrial adenocarcinoma. This study found that PGF(2alpha) signaling via FP regulates expression of chemokine (C-X-C motif) ligand 1 (CXCL1) in endometrial adenocarcinoma cells. Expression of CXCL1 and its receptor, CXCR2, are elevated in cancer tissue compared with normal endometrium and localized to glandular epithelium, endothelium, and stroma. Treatment of Ishikawa cells stably transfected with the FP receptor (FPS cells) with 100 nmol/L PGF(2alpha) increased CXCL1 promoter activity, mRNA, and protein expression, and these effects were abolished by cotreatment of cells with FP antagonist or chemical inhibitors of Gq, epidermal growth factor receptor, and extracellular signal-regulated kinase. Similarly, CXCL1 was elevated in response to 100 nmol/L PGF(2alpha) in endometrial adenocarcinoma explant tissue. CXCL1 is a potent neutrophil chemoattractant. The expression of CXCR2 colocalized to neutrophils in endometrial adenocarcinoma and increased neutrophils were present in endometrial adenocarcinoma compared with normal endometrium. Conditioned media from PGF(2alpha)-treated FPS cells stimulated neutrophil chemotaxis, which could be abolished by CXCL1 protein immunoneutralization of the conditioned media or antagonism of CXCR2. Finally, xenograft tumors in nude mice arising from inoculation with FPS cells showed increased neutrophil infiltration compared with tumors arising from wild-type cells or following treatment of mice bearing FPS tumors with CXCL1-neutralizing antibody. In conclusion, our results show a novel PGF(2alpha)-FP pathway that may regulate the inflammatory microenvironment in endometrial adenocarcinoma via neutrophil chemotaxis.
Collapse
Affiliation(s)
- Alison E Wallace
- Medical Research Council Human Reproductive Sciences Unit, Department of Reproductive and Developmental Sciences, The Queen's Medical Research Institute, Edinburgh, United Kingdom
| | | | | | | | | | | | | | | | | | | |
Collapse
|
52
|
Grafer CM, Thomas R, Lambrakos L, Montoya I, White S, Halvorson LM. GnRH stimulates expression of PACAP in the pituitary gonadotropes via both the PKA and PKC signaling systems. Mol Endocrinol 2009; 23:1022-32. [PMID: 19342443 DOI: 10.1210/me.2008-0477] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Recent studies have demonstrated a clear role for pituitary adenylate cyclase-activating polypeptide (PACAP) in the regulation of gonadotropin biosynthesis and secretion, both alone and in conjunction with GnRH. First defined as a hypothalamic releasing factor, PACAP subsequently has been identified in the gonadotrope subpopulation of the anterior pituitary gland, suggesting that PACAP may act as an autocrine-paracrine factor in this tissue. In initial studies, we determined that GnRH markedly stimulated endogenous PACAP mRNA levels and promoter-reporter activity in the mature gonadotrope cell line, LbetaT2. GnRH-stimulated rat PACAP promoter activity was blunted with deletion from position -915 to -402 and eliminated with further truncation to position -77 relative to the transcriptional start site. Site-directed mutagenesis demonstrated a functional requirement for a cAMP response element (CRE)-like site at position -205 and an activating protein-1 (AP-1)-like site at position -275, both of which bound CRE binding protein and AP-1 family members on EMSA. Treatment with pharmacological activators or inhibitors of second messenger signaling pathways implicated the protein kinase A, protein kinase C, and MAPK pathways in the GnRH response. In support of these in vitro data, we demonstrate that JunB binds to the rat PACAP gene promoter by chromatin immunoprecipitation assay and that small interfering RNA knockdown of JunB, cFos, and CRE binding protein factors blunts PACAP expression. In summary, these results further elucidate the complex functional interactions between PACAP and GnRH in the anterior pituitary. Specifically, these studies demonstrate that GnRH-stimulated PACAP gene expression is mediated via multiple signaling pathways acting on CRE/AP-1 sites in the proximal gene promoter. Because both PACAP and GnRH regulate gonadotropin biosynthesis and secretion, these results provide important insight into the critical fine tuning of gonadotrope function and, thereby, the maintenance of normal reproductive function.
Collapse
Affiliation(s)
- Constance M Grafer
- Division of Reproductive Endocrinology, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9032, USA
| | | | | | | | | | | |
Collapse
|
53
|
Fortin J, Lamba P, Wang Y, Bernard DJ. Conservation of mechanisms mediating gonadotrophin-releasing hormone 1 stimulation of human luteinizing hormone beta subunit transcription. Mol Hum Reprod 2009; 15:77-87. [PMID: 19106114 PMCID: PMC2734162 DOI: 10.1093/molehr/gan079] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2008] [Revised: 12/09/2008] [Accepted: 12/17/2008] [Indexed: 11/12/2022] Open
Abstract
Gonadotrophin-releasing hormone (GNRH1) regulates pituitary luteinizing hormone (LH). Previous studies have delineated a mechanism for GNRH1-induced LHbeta subunit gene (Lhb) transcription, the rate-limiting step in LH production. GNRH1 induces expression of early growth response 1 (EGR1), which interacts with steroidogenic factor 1 (SF1) and paired-like homeodomain transcription factor 1 (PITX1) to regulate Lhb promoter activity. Though the cis-elements for these factors are conserved across species, regulation of human LHB transcription has not been thoroughly investigated. We therefore characterized LHB transcriptional regulation by GNRH1 using promoter-reporter analyses in LbetaT2 cells. GNRH1 stimulated LHB transcription via an extracellular signal-regulated kinase 1/2 pathway. EGR1 bound to two binding sites on the LHB promoter and this binding was increased by GNRH1. Mutation of either site or knockdown of endogenous EGR1 decreased basal and/or GNRH1-regulated promoter activity. The human LHB promoter also contains low and high affinity SF1 binding sites. Mutation of these elements or depletion of endogenous SF1 impaired basal and ligand-induced transcription. Knockdown of PITX1 or PITX2 isoforms impaired GNRH1 induction, and endogenous PITX1 bound to the candidate PITX binding site on the LHB promoter. Thus, the mechanism described for GNRH1 regulation of Lhb in other species is largely conserved for human LHB. We also uncover a previously unappreciated role for PITX2 isoforms in this process.
Collapse
Affiliation(s)
| | | | | | - Daniel J. Bernard
- Department of Pharmacology and Therapeutics, McGill University, McIntyre Medical Sciences Building, 3655 Promenade Sir-William-Osler Montréal, QC, CanadaH3G 1Y6
| |
Collapse
|
54
|
White CD, Coetsee M, Morgan K, Flanagan CA, Millar RP, Lu ZL. A crucial role for Galphaq/11, but not Galphai/o or Galphas, in gonadotropin-releasing hormone receptor-mediated cell growth inhibition. Mol Endocrinol 2008; 22:2520-30. [PMID: 18801931 DOI: 10.1210/me.2008-0122] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
GnRH acts on its cognate receptor in pituitary gonadotropes to regulate the biosynthesis and secretion of gonadotropins. It may also have direct extrapituitary actions, including inhibition of cell growth in reproductive malignancies, in which GnRH activation of the MAPK cascades is thought to play a pivotal role. In extrapituitary tissues, GnRH receptor signaling has been postulated to involve coupling of the receptor to different G proteins. We examined the ability of the GnRH receptor to couple directly to Galpha(q/11), Galpha(i/o), and Galpha(s), their roles in the activation of the MAPK cascades, and the subsequent cellular effects. We show that in Galpha(q/11)-negative cells stably expressing the GnRH receptor, GnRH did not induce activation of ERK, jun-N-terminal kinase, or P38 MAPK. In contrast to Galpha(i) or chimeric Galpha(qi5), transfection of Galpha(q) cDNA enabled GnRH to induce phosphorylation of ERK, jun-N-terminal kinase, and P38. Furthermore, no GnRH-mediated cAMP response or inhibition of isoproterenol-induced cAMP accumulation was observed. In another cellular background, [35S]GTPgammaS binding assays confirmed that the GnRH receptor was unable to directly couple to Galpha(i) but could directly interact with Galpha(q/11). Interestingly, GnRH stimulated a marked reduction in cell growth only in cells expressing Galpha(q), and this inhibition could be significantly rescued by blocking ERK activation. We therefore provide direct evidence, in multiple cellular backgrounds, that coupling of the GnRH receptor to Galpha(q/11), but not to Galpha(i/o) or Galpha(s), and consequent activation of ERK plays a crucial role in GnRH-mediated cell death.
Collapse
Affiliation(s)
- Colin D White
- The Medical Research Council Human Reproductive Sciences Unit, The Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh EH16 4TJ, United Kingdom
| | | | | | | | | | | |
Collapse
|
55
|
Burger LL, Haisenleder DJ, Aylor KW, Marshall JC. Regulation of intracellular signaling cascades by GNRH pulse frequency in the rat pituitary: roles for CaMK II, ERK, and JNK activation. Biol Reprod 2008; 79:947-53. [PMID: 18716286 DOI: 10.1095/biolreprod.108.070987] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Pulsatile GnRH (GNRH) differentially regulates LH and FSH subunit genes, with faster frequencies favoring Lhb transcription and slower favoring Fshb. Various intracellular pathways mediate the effects of GNRH, including CaMK II (CAMK2), ERK, and JNK. We examined whether activation of these pathways is regulated by GNRH pulse frequency in vivo. GNRH-deficient rats received GNRH pulses (25 ng i.v. every 30 or 240 min for 8 h, vehicle to controls). Pituitaries were collected 5 min after the last pulse, bisected, and one half processed for RNA (to measure beta subunit primary transcripts [PTs]) and the other for protein. Phosphorylated CAMK2 (phospho-CAMK2), ERK (mitogen-activated protein kinase 1/3 [MAPK1/3], also known as p42 ERK2 and p44 ERK1, respectively), and JNK (MAPK8/9, also known as p46 JNK1 and p54 JNK2, respectively) were determined by Western blotting. The 30-min pulses maximally stimulated Lhb PT (8-fold), whereas 240 min was optimal for Fshb PT (3-fold increase). Both GNRH pulse frequencies increased phospho-CAMK2 4-fold. Activation of MAPK1/3 was stimulated by both 30- and 240-min pulses, but phosphorylation of MAPK3 was significantly greater following slower GNRH pulses (240 min: 4-fold, 30 min: 2-fold). MAPK8/9 activation was unchanged by pulsatile GNRH in this paradigm, but as previous results showed that GNRH-induced activation of MAPK8/9 is delayed, 5 min after GNRH may not be optimal to observe MAPK8/9 activation. These data show that CAMK2 is activated by GNRH, but not in a frequency-dependant manner, whereas MAPK3 is maximally stimulated by slow-frequency GNRH pulses. Thus, the ERK response to slow pulse frequency is part of the mechanisms mediating Fhb transcriptional responses to GNRH.
Collapse
Affiliation(s)
- Laura L Burger
- Division of Endocrinology and Metabolism, Department of Medicine, and the Center for Research in Reproduction, University of Virginia Health Sciences Center, Charlottesville, Virginia 22908, USA.
| | | | | | | |
Collapse
|
56
|
Klausen C, Booth M, Habibi HR, Chang JP. Extracellular signal-regulated kinase mediates gonadotropin subunit gene expression and LH release responses to endogenous gonadotropin-releasing hormones in goldfish. Gen Comp Endocrinol 2008; 158:36-46. [PMID: 18558406 DOI: 10.1016/j.ygcen.2008.05.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2007] [Revised: 04/11/2008] [Accepted: 05/02/2008] [Indexed: 11/20/2022]
Abstract
The possible involvement of extracellular signal-regulated kinase (ERK) in mediating the stimulatory actions of two endogenous goldfish gonadotropin-releasing hormones (salmon (s)GnRH and chicken (c)GnRH-II) on gonadotropin synthesis and secretion was examined. Western blot analysis revealed the presence of ERK and phosphorylated (p)ERK in goldfish brain, pituitary, liver, ovary, testis and muscle tissue extracts, as well as extracts of dispersed goldfish pituitary cells and HeLa cells. Interestingly, a third ERK-like immunoreactive band of higher molecular mass was detected in goldfish tissue and pituitary cell extracts in addition to the ERK1-p44- and ERK2-p42-like immunoreactive bands. Incubation of primary cultures of goldfish pituitary cells with either a PKC-activating 4beta-phorbol ester (TPA) or a synthetic diacylglycerol, but not a 4alpha-phorbol ester, elevated the ratio of pERK/total (t)ERK for all three ERK isoforms. The stimulatory effects of TPA were attenuated by the PKC inhibitor GF109203X and the MEK inhibitor PD98059. sGnRH and cGnRH-II also elevated the ratio of pERK/tERK for all three ERK isoforms, in a time-, dose- and PD98059-dependent manner. In addition, treatment with PD98059 reduced the sGnRH-, cGnRH-II- and TPA-induced increases in gonadotropin subunit mRNA levels in Northern blot studies and sGnRH- and cGnRH-II-elicited LH release in cell column perifusion studies with goldfish pituitary cells. These results indicate that GnRH and PKC can activate ERK through MEK in goldfish pituitary cells. More importantly, the present study suggests that GnRH-induced gonadotropin subunit gene expression and LH release involve MEK/ERK signaling in goldfish.
Collapse
Affiliation(s)
- Christian Klausen
- Department of Biological Sciences, University of Calgary, 2500 University Drive, N.W., Calgary, Alta., Canada T2N 1N4
| | | | | | | |
Collapse
|
57
|
Salisbury TB, Binder AK, Nilson JH. Welcoming beta-catenin to the gonadotropin-releasing hormone transcriptional network in gonadotropes. Mol Endocrinol 2008; 22:1295-303. [PMID: 18218726 DOI: 10.1210/me.2007-0515] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
GnRH binds its G-coupled protein receptor, GnRHR, on pituitary gonadotropes and stimulates transcription of Cga, Lhb, and Fshb. These three genes encode two heterodimeric glycoprotein hormones, LH and FSH, that act as gonadotropins by regulating gametogenesis and steroidogenesis in both the testes and ovary. GnRH also regulates transcription of Gnrhr. Thus, regulated expression of Cga, Lhb, Fshb, and Gnrhr provides a genomic signature unique to functional gonadotropes. Steadily increasing evidence now indicates that GnRH regulates transcription of its four signature genes indirectly through a hierarchical transcriptional network that includes distinct subclasses of DNA-binding proteins that comprise the immediate early gene (IEG) family. These IEGs, in turn, confer hormonal responsiveness to the four signature genes. Although the IEGs confer responsiveness to GnRH, they cannot act alone. Instead, additional DNA-binding proteins, including the orphan nuclear receptor steroidogenic factor 1, act permissively to allow the four signature genes to respond to GnRH-induced changes in IEG levels. Emerging new findings now indicate that beta-catenin, a transcriptional coactivator and member of the canonical WNT signaling pathway, also plays an essential role in transducing the GnRH signal by interacting with multiple DNA-binding proteins in gonadotropes. Herein we propose that these interactions with beta-catenin define a multicomponent transcriptional network required for regulated expression of the four signature genes of the gonadotrope, Cga, Lhb, Fshb, and Gnrhr.
Collapse
Affiliation(s)
- Travis B Salisbury
- School of Molecular Biosciences, Washington State University, Pullman, Washington 99164-4660, USA
| | | | | |
Collapse
|
58
|
Haisenleder DJ, Burger LL, Walsh HE, Stevens J, Aylor KW, Shupnik MA, Marshall JC. Pulsatile gonadotropin-releasing hormone stimulation of gonadotropin subunit transcription in rat pituitaries: evidence for the involvement of Jun N-terminal kinase but not p38. Endocrinology 2008; 149:139-45. [PMID: 17932215 PMCID: PMC2194612 DOI: 10.1210/en.2007-1113] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
We investigated whether Jun N-terminal kinase (JNK) and p38 mediate gonadotropin subunit transcriptional responses to pulsatile GnRH in normal rat pituitaries. A single pulse of GnRH or vehicle was given to female rats in vivo, pituitaries collected, and phosphorylated JNK and p38 measured. GnRH stimulated an increase in JNK phosphorylation within 5 min, which peaked 15 min after GnRH (3-fold). GnRH also increased p38 phosphorylation 2.3-fold 15 min after stimulus. Rat pituitary cells were given 60-min pulses of GnRH or media plus the JNK inhibitor SP600125 (SP, 20 microM), p38 inhibitor SB203580 (20 microM), or vehicle. In vehicle-treated groups, GnRH pulses increased LHbeta and FSHbeta primary transcript (PT) levels 3-fold. SP suppressed both basal and GnRH-induced increases in FSHbeta PT by half, but the magnitude of responses to GnRH was unchanged. In contrast, SP had no effect on basal LHbeta PT but suppressed the stimulatory response to GnRH. SB203580 had no effect on the actions of GnRH on either LH or FSHbeta PTs. Lbeta-T2 cells were transfected with dominant/negative expression vectors for MAPK kinase (MKK)-4 and/or MKK-7 plus a rat LHbeta promoter-luciferase construct. GnRH stimulated a 50-fold increase in LHbeta promoter activity, and the combination of MKK-4 and -7 dominant/negatives suppressed the response by 80%. Thus, JNK (but not p38) regulates both LHbeta and FSHbeta transcription in a differential manner. For LHbeta, JNK is essential in mediating responses to pulsatile GnRH. JNK also regulates FSHbeta transcription (i.e. maintaining basal expression) but does not play a role in responses to GnRH.
Collapse
Affiliation(s)
- D J Haisenleder
- Department of Medicine, University of Virginia Health Sciences Center, Charlottesville, Virginia 22908, USA.
| | | | | | | | | | | | | |
Collapse
|
59
|
F-prostanoid receptor alters adhesion, morphology and migration of endometrial adenocarcinoma cells. Oncogene 2007; 27:2466-77. [PMID: 17968320 DOI: 10.1038/sj.onc.1210883] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Cellular adhesion to extracellular matrix is a central phenomenon for the maintenance of tissue integrity and cellular movement. Collectively, these processes are regulated by a fine-tuned balance between the formation and loosening of adhesive contacts, a process involving integrins, and the elevation and diminution of cytoplasmic signalling molecules. We demonstrate that prostaglandin (PG) F(2alpha) stimulation rapidly increases the capacity of Ishikawa cells stably expressing the F-prostanoid receptor (FPS) to adhere to vitronectin. Coincident with this elevation in matrix adhesion, we demonstrate a profound PGF(2alpha)-induced alteration in cytoskeletal remodelling, characterized by polymerization of the actin cytoskeleton and recruitment of focal adhesion kinase at focal adhesions and enhanced cell migration. Moreover, we show that these PGF(2alpha)-induced alterations in adhesion and morphology on vitronectin and migration could be abolished by cultivating FPS cells in the presence of integrin alphavbeta3 antibody or alphavbeta3-directed tetrapeptide arg-gly-asp-ser or inhibition of FP receptor signalling with the FP receptor antagonist, chemical disruptors of the phospholipase C-beta, protein kinase A, c-Src and epidermal growth factor receptor kinase pathways or inhibition of the monomeric G proteins Rho, Rac and CDC42. These results reveal a mechanism by which prostanoids regulate cell movement, which may be relevant to pathologies of the endometrium.
Collapse
|
60
|
Yamanaka A, Hiragami Y, Maeda N, Toku S, Kawahara M, Naito Y, Yamamoto H. Involvement of CaM kinase II in gonadotropin-releasing hormone-induced activation of MAP kinase in cultured hypothalamic neurons. Arch Biochem Biophys 2007; 466:234-41. [PMID: 17706588 DOI: 10.1016/j.abb.2007.06.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2007] [Accepted: 06/13/2007] [Indexed: 10/23/2022]
Abstract
Gonadotropin-releasing hormone (GnRH) is secreted from hypothalamic GnRH neurons. There is accumulating evidence that GnRH neurons have GnRH receptors and that the autocrine action of GnRH activates MAP kinase. In this study, we found that KN93, an inhibitor of Ca(2+)/calmodulin-dependent protein kinases (CaM kinases), inhibited the GnRH-induced activation of MAP kinase in immortalized GnRH neurons (GT1-7 cells). Immunoblot analysis indicated that the CaM kinase IIdelta2 isoform (CaM kinase IIdelta2) and synapsin I were expressed in GT1-7 cells. GnRH treatment rapidly increased phosphorylation of synapsin I at serine 603, a specific phosphorylation site for CaM kinase II, suggesting that GnRH treatment rapidly activated CaM kinase IIdelta2. In addition, when we stably overexpressed CaM kinase IIdelta2 in GT1-7 cells, the activation of MAP kinase was strongly enhanced. These results suggest that CaM kinase IIdelta2 was involved in the GnRH-induced activation of MAP kinase in GT1-7 cells.
Collapse
Affiliation(s)
- Ayana Yamanaka
- Department of Biochemistry, School of Medicine, University of the Ryukyus, 207 Uehara, Nishihara, Okinawa, Japan
| | | | | | | | | | | | | |
Collapse
|
61
|
Maudsley S, Naor Z, Bonfil D, Davidson L, Karali D, Pawson AJ, Larder R, Pope C, Nelson N, Millar RP, Brown P. Proline-rich tyrosine kinase 2 mediates gonadotropin-releasing hormone signaling to a specific extracellularly regulated kinase-sensitive transcriptional locus in the luteinizing hormone beta-subunit gene. Mol Endocrinol 2007; 21:1216-33. [PMID: 17327421 PMCID: PMC1951533 DOI: 10.1210/me.2006-0053] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
G protein-coupled receptor regulation of gene transcription primarily occurs through the phosphorylation of transcription factors by MAPKs. This requires transduction of an activating signal via scaffold proteins that can ultimately determine the outcome by binding signaling kinases and adapter proteins with effects on the target transcription factor and locus of activation. By investigating these mechanisms, we have elucidated how pituitary gonadotrope cells decode an input GnRH signal into coherent transcriptional output from the LH beta-subunit gene promoter. We show that GnRH activates c-Src and multiple members of the MAPK family, c-Jun NH2-terminal kinase 1/2, p38MAPK, and ERK1/2. Using dominant-negative point mutations and chemical inhibitors, we identified that calcium-dependent proline-rich tyrosine kinase 2 specifically acts as a scaffold for a focal adhesion/cytoskeleton-dependent complex comprised of c-Src, Grb2, and mSos that translocates an ERK-activating signal to the nucleus. The locus of action of ERK was specifically mapped to early growth response-1 (Egr-1) DNA binding sites within the LH beta-subunit gene proximal promoter, which was also activated by p38MAPK, but not c-Jun NH2-terminal kinase 1/2. Egr-1 was confirmed as the transcription factor target of ERK and p38MAPK by blockade of protein expression, transcriptional activity, and DNA binding. We have identified a novel GnRH-activated proline-rich tyrosine kinase 2-dependent ERK-mediated signal transduction pathway that specifically regulates Egr-1 activation of the LH beta-subunit proximal gene promoter, and thus provide insight into the molecular mechanisms required for differential regulation of gonadotropin gene expression.
Collapse
Affiliation(s)
- Stuart Maudsley
- Medical Research Council Human Reproductive Sciences Unit, The Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh EH16 4TJ, Scotland, United Kingdom
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
62
|
Larder R, Karali D, Nelson N, Brown P. Fanconi anemia A is a nucleocytoplasmic shuttling molecule required for gonadotropin-releasing hormone (GnRH) transduction of the GnRH receptor. Endocrinology 2006; 147:5676-89. [PMID: 16946016 PMCID: PMC1975762 DOI: 10.1210/en.2006-0383] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
GnRH binds its cognate G protein-coupled GnRH receptor (GnRHR) located on pituitary gonadotropes and drives expression of gonadotropin hormones. There are two gonadotropin hormones, comprised of a common alpha- and hormone-specific beta-subunit, which are required for gonadal function. Recently we identified that Fanconi anemia a (Fanca), a DNA damage repair gene, is differentially expressed within the LbetaT2 gonadotrope cell line in response to stimulation with GnRH. FANCA is mutated in more than 60% of cases of Fanconi anemia (FA), a rare genetically heterogeneous autosomal recessive disorder characterized by bone marrow failure, endocrine tissue cancer susceptibility, and infertility. Here we show that induction of FANCA protein is mediated by the GnRHR and that the protein constitutively adopts a nucleocytoplasmic intracellular distribution pattern. Using inhibitors to block nuclear import and export and a GnRHR antagonist, we demonstrated that GnRH induces nuclear accumulation of FANCA and green fluorescent protein (GFP)-FANCA before exporting back to the cytoplasm using the nuclear export receptor CRM1. Using FANCA point mutations that locate GFP-FANCA to the cytoplasm (H1110P) or functionally uncouple GFP-FANCA (Q1128E) from the wild-type nucleocytoplasmic distribution pattern, we demonstrated that wild-type FANCA was required for GnRH-induced activation of gonadotrope cell markers. Cotransfection of H1110P and Q1128E blocked GnRH activation of the alphaGsu and GnRHR but not the beta-subunit gene promoters. We conclude that nucleocytoplasmic shuttling of FANCA is required for GnRH transduction of the alphaGSU and GnRHR gene promoters and propose that FANCA functions as a GnRH-induced signal transducer.
Collapse
Affiliation(s)
- Rachel Larder
- Medical Research Council, Human Reproductive Sciences Unit, Centre for Reproductive Biology, The Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh EH16 4JT, Scotland, United Kingdom
| | | | | | | |
Collapse
|
63
|
Casadesus G, Garrett MR, Webber KM, Hartzler AW, Atwood CS, Perry G, Bowen RL, Smith MA. The estrogen myth: potential use of gonadotropin-releasing hormone agonists for the treatment of Alzheimer's disease. Drugs R D 2006; 7:187-93. [PMID: 16752944 DOI: 10.2165/00126839-200607030-00004] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
Estrogen and other sex hormones have received a great deal of attention for their speculative role in Alzheimer's disease (AD), but at present a direct connection between estrogen and the pathogenesis of AD remains elusive and somewhat contradictory. For example, on one hand there is a large body of evidence suggesting that estrogen is neuroprotective and improves cognition, and that hormone replacement therapy (HRT) at the onset of menopause reduces the risk of developing AD decades later. However, on the other hand, studies such as the Women's Health Initiative demonstrate that HRT initiated in elderly women increases the risk of dementia. While estrogen continues to be investigated, the disparity of findings involving HRT has led many researchers to examine other hormones of the hypothalamic-pituitary-gonadal axis such as luteinising hormone (LH) and follicle-stimulating hormone. In this review, we propose that LH, rather than estrogen, is the paramount player in the pathogenesis of AD. Notably, both men and women experience a 3- to 4-fold increase in LH with aging, and LH receptors are found throughout the brain following a regional pattern remarkably similar to those neuron populations affected in AD. With respect to disease, serum LH level is increased in women with AD relative to non-diseased controls, and levels of LH in the brain are also elevated in AD. Mechanistically, we propose that elevated levels of LH may be a fundamental instigator responsible for the aberrant reactivation of the cell cycle that is seen in AD. Based on these aforementioned aspects, clinical trials underway with leuprolide acetate, a gonadotropin-releasing hormone agonist that ablates serum LH levels, hold great promise as a ready means of treatment in individuals afflicted with AD.
Collapse
Affiliation(s)
- Gemma Casadesus
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio 44106, USA
| | | | | | | | | | | | | | | |
Collapse
|
64
|
Buggs C, Weinberg F, Kim E, Wolfe A, Radovick S, Wondisford F. Insulin augments GnRH-stimulated LHbeta gene expression by Egr-1. Mol Cell Endocrinol 2006; 249:99-106. [PMID: 16530935 PMCID: PMC3464308 DOI: 10.1016/j.mce.2006.02.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2005] [Revised: 02/01/2006] [Accepted: 02/01/2006] [Indexed: 11/29/2022]
Abstract
Previous studies have shown that insulin augments GnRH-stimulated LH synthesis and release from primary gonadotrophs. In this study, regulation of LHbeta gene expression by GnRH and insulin was examined in LbetaT2 cells. Endogenous LHbeta mRNA is stimulated 2.4-fold by insulin alone, 2.6-fold by GnRH alone, and 4.7-fold by insulin together with GnRH. This effect of insulin, like GnRH, mapped to sequences -140 to +1 in the mouse LHbeta gene. Insulin together with GnRH stimulates activity of an LHbeta-reporter gene 7.1-fold; whereas, GnRH alone or insulin alone stimulates the reporter activity 2.8- and 3.1-fold, respectively. Blocking the binding of Egr-1 to sequences -51 to -42 in the LHbeta gene inhibits effects of insulin and GnRH. Insulin together with GnRH increases Egr-1 mRNA levels and total Egr-1 binding to LHbeta DNA. These findings indicate that insulin may impact regulation of the reproductive axis at the level of the pituitary.
Collapse
Affiliation(s)
- Colleen Buggs
- Department of Pediatrics, Section of Pediatric Endocrinology, University of Chicago Children's Hospital, Chicago, IL 60637, USA.
| | | | | | | | | | | |
Collapse
|
65
|
Kihara S, Yamamoto H, Ohba T, Shimasaki S, Okamura H. Activation of follistatin promoter by GnRH in LbetaT2 gonadotroph cells. Endocr J 2006; 53:225-35. [PMID: 16618982 DOI: 10.1507/endocrj.53.225] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Follistatin (FS) is produced and secreted from gonadotroph cells in pituitary gland as well as granulosa cells in the ovary. In the present study, we found that the FS promoter is activated by GnRH in the gonadotroph cell line, LbetaT2. Therefore, we examined the signal transduction pathways involved in the mechanism. The activation of the FS promoter by GnRH was inhibited by calphostin C, a protein kinase C inhibitor, and U0126, a MAP kinase kinase (MEK) inhibitor. Phosphorylation by protein kinase C of myristoylated alanine-rich C kinase substrate (MARCKS) in LbetaT2 cells was observed after 3-min treatment with GnRH and declined after 30 min. The subsequent activation of MAP kinase was also transient, and down-regulation of protein kinase C completely inhibited the MAP kinase activation by GnRH, suggesting that the transient activation of protein kinase C led to the transient activation of MAP kinase. Although phorbol 12-myristate 13-acetate treatment increased phosphorylation of MARCKS and activated MAP kinase, it did not activate the FS promoter. Genistein, a tyrosine kinase inhibitor, completely inhibited the GnRH-induced activation of the FS promoter, while no inhibition of the MAP kinase pathway was observed. These results suggest that the activations of both the protein kinase C and tyrosine kinase pathways are necessary for the activation of the FS promoter in gonadotroph cells.
Collapse
Affiliation(s)
- Sachiko Kihara
- Department of Reproductive Medicine and Surgery, Graduate School of Medical Sciences, Kumamoto University, Japan
| | | | | | | | | |
Collapse
|
66
|
Webber KM, Casadesus G, Perry G, Atwood CS, Bowen R, Smith MA. Gender differences in Alzheimer disease: the role of luteinizing hormone in disease pathogenesis. Alzheimer Dis Assoc Disord 2006; 19:95-9. [PMID: 15942328 DOI: 10.1097/01.wad.0000165512.90864.3f] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Epidemiological data reporting the predisposition of women to Alzheimer disease has provided researchers with an important clue as to the identity of the driving pathogenic force and lead many to question the potential role of sex steroids, namely estrogen, in disease pathogenesis. However, while estrogen has become the primary focus of research in the field, inconclusive data regarding estrogen replacement therapy has lead some researchers to begin investigating the effects of the other hormones of the hypothalamic-pituitary-gonadal (HPG) axis on the aging brain. Certain hormones of the HPG axis, namely the gonadotropins (luteinizing hormone and follicle-stimulating hormone), are not only involved in regulating reproductive function via a complex feedback loop but are also known to cross the blood-brain barrier. Recently, we proposed that an increase in gonadotropin concentrations, not the decrease in steroid hormone (eg, estrogen) production following menopause/andropause, is a potentially primary causative factor for the development of Alzheimer disease. In this review, we examine how the gonadotropins may play a central and determining role in modulating the susceptibility to, and progression of, Alzheimer disease. Based on this, we suggest that therapeutic interventions targeted at gonadotropins may both prevent disease in those patients currently asymptomatic or may halt, and even reverse, disease in those currently afflicted.
Collapse
Affiliation(s)
- Kate M Webber
- Institute of Pathology, Case Western Reserve University, Cleveland, Ohio 44106, USA
| | | | | | | | | | | |
Collapse
|
67
|
Kanasaki H, Bedecarrats GY, Kam KY, Xu S, Kaiser UB. Gonadotropin-releasing hormone pulse frequency-dependent activation of extracellular signal-regulated kinase pathways in perifused LbetaT2 cells. Endocrinology 2005; 146:5503-13. [PMID: 16141398 DOI: 10.1210/en.2004-1317] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The pattern of GnRH release is associated with differential synthesis and release of LH and FSH. Using a perifusion system, we previously reported that stimulation of the LbetaT2 cell line with varying GnRH pulse frequencies resulted in differential stimulation of LHbeta and FSHbeta gene transcription, analogous to previous observations in primary gonadotropes. In the present study, we investigated the patterns of MAPK activation by GnRH and the role of MAPK in mediating the frequency-dependent effects. In static culture, ERK activation in LbetaT2 cells stimulated with continuous GnRH (10 nM) was maximal by 10 min and persisted for up to 6 h, with a return to basal levels by 20 h. In contrast, stimulation with continuous GnRH (10 nM) in perifused cells resulted in a more sustained activation of ERK. To investigate the effects of GnRH pulse frequency on ERK activation, perifused LbetaT2 cells were stimulated with pulsatile GnRH at a frequency of one pulse every 30 min or one pulse every 2 h for 20 h (10 nM, 5 min/pulse). After the final GnRH pulse, cells were lysed at frequent intervals and levels of ERK phosphorylation were measured. Under high-frequency conditions, ERK activation was maximal 10 min after the GnRH pulse and returned to baseline levels by 20 min. In contrast, under lower GnRH pulse frequency conditions, ERK activation occurred more rapidly and activation was more sustained, with a slower rate of ERK dephosphorylation. These changes resulted in different levels of nuclear phosphorylated ERK. Blockade of ERK activation abolished GnRH-dependent activation of LHbeta and FSHbeta transcription at both high and low pulse frequencies. These results demonstrate that in perifused LbetaT2 cells, distinct patterns of ERK activation/inactivation are regulated by GnRH pulse frequency, and the difference in ERK activation may be important for GnRH pulse frequency-dependent differential stimulation of LHbeta and FSHbeta gene expression.
Collapse
Affiliation(s)
- Haruhiko Kanasaki
- Division of Endocrinology, Diabetes, and Hypertension, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | |
Collapse
|
68
|
Jabbour HN, Sales KJ, Boddy SC, Anderson RA, Williams ARW. A positive feedback loop that regulates cyclooxygenase-2 expression and prostaglandin F2alpha synthesis via the F-series-prostanoid receptor and extracellular signal-regulated kinase 1/2 signaling pathway. Endocrinology 2005; 146:4657-64. [PMID: 16081631 DOI: 10.1210/en.2005-0804] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Cyclooxygenase (COX) enzymes catalyze the biosynthesis of eicosanoids, including prostaglandin (PG) F2alpha. PGF2alpha exerts its autocrine/paracrine function by coupling to its G protein-coupled receptor [F-series-prostanoid (FP) receptor] to initiate cell signaling and target gene transcription. In the present study, we found elevated expression of COX-2 and FP receptor colocalized together within the neoplastic epithelial cells of endometrial adenocarcinomas. We investigated a role for PGF2alpha-FP receptor interaction in modulating COX-2 expression and PGF2alpha biosynthesis using an endometrial adenocarcinoma cell line stably transfected with the FP receptor cDNA (FPS cells). PGF2alpha-FP receptor activation rapidly induced COX-2 promoter, mRNA, and protein expression in FPS cells. These effects of PGF2alpha on the expression of COX-2 could be abolished by treatment of FPS cells with an FP receptor antagonist (AL8810) and chemical inhibitor of ERK1/2 kinase (PD98059), or by inactivation of ERK1/2 signaling with dominant-negative mutant isoforms of Ras or ERK1/2 kinase. We further confirmed that elevated COX-2 protein in FPS cells could biosynthesize PGF2alpha de novo to promote a positive feedback loop to facilitate endometrial tumorigenesis. Finally, we have shown that PGF2alpha could potentiate tumorigenesis in endometrial adenocarcinoma explants by inducing the expression of COX-2 mRNA.
Collapse
Affiliation(s)
- Henry N Jabbour
- Medical Research Council Human Reproductive Sciences Unit, The Queen's Medical Research Institute, The University of Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ, Scotland, United Kingdom.
| | | | | | | | | |
Collapse
|
69
|
Sales KJ, List T, Boddy SC, Williams AR, Anderson RA, Naor Z, Jabbour HN. A novel angiogenic role for prostaglandin F2alpha-FP receptor interaction in human endometrial adenocarcinomas. Cancer Res 2005; 65:7707-16. [PMID: 16140938 PMCID: PMC2694301 DOI: 10.1158/0008-5472.can-05-0101] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Prostaglandins have been implicated in several neovascular diseases. In the present study, we found elevated FP receptor and vascular endothelial growth factor (VEGF) expression colocalized in glandular epithelial and vascular cells lining the blood vessels in endometrial adenocarcinomas. We investigated the signaling pathways activated by the FP receptor and their role in modulating VEGF expression in endometrial adenocarcinoma (Ishikawa) cells. Ishikawa cells were stably transfected with FP receptor cDNA in the sense or antisense orientations. Treatment of Ishikawa cells with prostaglandin F2alpha (PGF2alpha) rapidly induced transphosphorylation of the epidermal growth factor receptor (EGFR) and phosphorylation of extracellular signal-regulated kinase (ERK) 1/2 via the FP receptor. Activation of EGFR-Ras-mitogen-activated protein kinase/ERK kinase (MEK) signaling via the FP receptor resulted in an increase in VEGF promoter activity, expression of VEGF mRNA, and secretion of VEGF protein. These effects of PGF2alpha on the FP receptor could be abolished by treatment of cells with a specific FP receptor antagonist, chemical inhibitors of c-Src, matrix metalloproteinase, and EGFR kinase or by inactivation of signaling with dominant-negative mutant isoforms of EGFR, Ras, or MEK or with small inhibitory RNA oligonucleotides targeted against the EGFR. Finally, we confirmed that PGF2alpha could potentiate angiogenesis in endometrial adenocarcinoma explants by transactivation of the EGFR and induction of VEGF mRNA expression.
Collapse
Affiliation(s)
- Kurt J. Sales
- Medical Research Council Human Reproductive Sciences Unit, Centre for Reproductive Biology
| | - Tammy List
- Medical Research Council Human Reproductive Sciences Unit, Centre for Reproductive Biology
| | - Sheila C. Boddy
- Medical Research Council Human Reproductive Sciences Unit, Centre for Reproductive Biology
| | | | - Richard A. Anderson
- Medical Research Council Human Reproductive Sciences Unit, Centre for Reproductive Biology
| | - Zvi Naor
- Medical Research Council Human Reproductive Sciences Unit, Centre for Reproductive Biology
- Department of Biochemistry, Tel Aviv University, Ramat Aviv, Israel
| | - Henry N. Jabbour
- Medical Research Council Human Reproductive Sciences Unit, Centre for Reproductive Biology
| |
Collapse
|
70
|
Haisenleder DJ, Burger LL, Aylor KW, Dalkin AC, Walsh HE, Shupnik MA, Marshall JC. Testosterone stimulates follicle-stimulating hormone beta transcription via activation of extracellular signal-regulated kinase: evidence in rat pituitary cells. Biol Reprod 2004; 72:523-9. [PMID: 15509729 DOI: 10.1095/biolreprod.104.035196] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
This study investigated whether estradiol (E2) or testosterone (T) activate extracellular signal-regulated kinase (ERK) and calcium/calmodulin-dependent kinase II (Ca/CaMK II), as indicated by enzyme phosphorylation in rat pituitaries. In vivo studies used adult female rats given E2, T, or empty silastic capsules (vehicle controls). Twenty-four hours later, the rats were given a single pulse of GnRH (300 ng) or BSA-saline (to controls) and killed 5 min later. GnRH stimulated a two- to three-fold rise in activated Ca/CaMK II, and E2 and T had no effect on Ca/CaMK II activation. In contrast, both GnRH and T stimulated threefold increases in ERK activity, with additive effects seen following the combination of GnRH+T. E2 had no effect on ERK activity. In alpha T3 clonal gonadotrope cells, dihydrotestosterone did not activate ERK alone but enhanced and prolonged the ERK responses to GnRH, demonstrating direct effects on the gonadotrope. Thus, the ERK response to GnRH plus androgen was enhanced in both rat pituitary and alpha T3 cells. In vitro studies with cultured rat pituitary cells examined the effect of GnRH+/-T in the presence of the mitogen-activated protein (MAP) kinase kinase inhibitor, PD-098059 (PD). Results showed that PD suppressed ERK activational and FSH beta transcriptional responses to T. These findings suggest that one site of T regulation of FSH beta transcription is through the selective stimulation of the ERK pathway.
Collapse
Affiliation(s)
- D J Haisenleder
- Division of Endocrinology and Metabolism, Department of Medicine, and the Center for Research in Reproduction, University of Virginia Health Sciences Center, Charlottesville, Virginia 22908, USA.
| | | | | | | | | | | | | |
Collapse
|
71
|
Kraus S, Levy G, Hanoch T, Naor Z, Seger R. Gonadotropin-releasing hormone induces apoptosis of prostate cancer cells: role of c-Jun NH2-terminal kinase, protein kinase B, and extracellular signal-regulated kinase pathways. Cancer Res 2004; 64:5736-44. [PMID: 15313914 DOI: 10.1158/0008-5472.can-04-1156] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
A standard therapy used today for prostate cancer is androgen ablation by gonadotropin-releasing hormone analogs (GnRH-a). Although most patients respond to androgen ablation as an initial systemic therapy, nearly all cases will develop androgen resistance, the management of which is still a major challenge. Here, we report that GnRH-a can directly induce apoptosis of the androgen-independent prostate cancer-derived DU145 and PC3 cell lines. Using specific inhibitors, we found that the apoptotic effect of GnRH-a is mediated by c-Jun NH2-terminal kinase (JNK) and inhibited by the phosphatidylinositol 3'-kinase (PI3K)-protein kinase B (PKB) pathway. Indeed, in DU145 cells, GnRH-a activates the JNK cascade in a c-Src- and MLK3-dependent manner but does not involve protein kinase C and epidermal growth factor receptor. Concomitantly, GnRH-a reduces the activity of the PI3K-PKB pathway, which results in the dephosphorylation of PKB mainly in the nucleus. The reduction of PKB activity releases PKB-induced inhibition of MLK3 and thus further stimulates JNK activity and accelerates the apoptotic effect of GnRH-a. Interestingly, extracellular signal-regulated kinase is also activated by GnRH-a, and this occurs via a pathway that involves matrix metalloproteinases and epidermal growth factor receptor, but its activation does not affect JNK activation and the GnRH-a-induced apoptosis. Our results support a potential use of GnRH-a for the treatment of advanced prostate cancer and suggest that the outcome of this treatment can be amplified by using PI3K-PKB inhibitors.
Collapse
Affiliation(s)
- Sarah Kraus
- Department of Biological Regulation, The Weizmann Institute of Science, Rehovot, Israel
| | | | | | | | | |
Collapse
|
72
|
Jorgensen JS, Quirk CC, Nilson JH. Multiple and overlapping combinatorial codes orchestrate hormonal responsiveness and dictate cell-specific expression of the genes encoding luteinizing hormone. Endocr Rev 2004; 25:521-42. [PMID: 15294880 DOI: 10.1210/er.2003-0029] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Normal reproductive function in mammals requires precise control of LH synthesis and secretion by gonadotropes of the anterior pituitary. Synthesis of LH requires expression of two genes [alpha-glycoprotein subunit (alphaGSU) and LHbeta] located on different chromosomes. Hormones from the hypothalamus and gonads modulate transcription of both genes as well as secretion of the biologically active LH heterodimer. In males and females, the transcriptional tone of the genes encoding alphaGSU and LHbeta reflects dynamic integration of a positive signal provided by GnRH from hypothalamic neurons and negative signals emanating from gonadal steroids. Although alphaGSU and LHbeta genes respond transcriptionally in the same manner to changes in hormonal input, different combinations of regulatory elements orchestrate their response. These hormone-responsive regulatory elements are also integral members of much larger combinatorial codes responsible for targeting expression of alphaGSU and LHbeta genes to gonadotropes. In this review, we will profile the genomic landscape of the promoter-regulatory region of both genes, depicting elements and factors that contribute to gonadotrope-specific expression and hormonal regulation. Within this context, we will highlight the different combinatorial codes that control transcriptional responses, particularly those that mediate the opposing effects of GnRH and one of the sex steroids, androgens. We will use this framework to suggest that GnRH and androgens attain the same transcriptional endpoint through combinatorial codes unique to alphaGSU and LHbeta. This parallelism permits the dynamic and coordinate regulation of two genes that encode a single hormone.
Collapse
Affiliation(s)
- Joan S Jorgensen
- Department of Veterinary Biosciences, University of Illinois, Urbana 61802, USA
| | | | | |
Collapse
|
73
|
Larder R, Chang L, Clinton M, Brown P. Gonadotropin-releasing hormone regulates expression of the DNA damage repair gene, Fanconi anemia A, in pituitary gonadotroph cells. Biol Reprod 2004; 71:828-36. [PMID: 15128600 PMCID: PMC1950776 DOI: 10.1095/biolreprod.104.030569] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Gonadal function is critically dependant on regulated secretion of the gonadotropin hormones from anterior pituitary gonadotroph cells. Gonadotropin biosynthesis and release is triggered by the binding of hypothalamic GnRH to GnRH receptor expressed on the gonadotroph cell surface. The repertoire of regulatory molecules involved in this process are still being defined. We used the mouse L beta T2 gonadotroph cell line, which expresses both gonadotropin hormones, as a model to investigate GnRH regulation of gene expression and differential display reverse transcription-polymerase chain reaction (RT-PCR) to identify and isolate hormonally induced changes. This approach identified Fanconi anemia a (Fanca), a gene implicated in DNA damage repair, as a differentially expressed transcript. Mutations in Fanca account for the majority of cases of Fanconi anemia (FA), a recessively inherited disease identified by congenital defects, bone marrow failure, infertility, and cancer susceptibility. We confirmed expression and hormonal regulation of Fanca mRNA by quantitative RT-PCR, which showed that GnRH induced a rapid, transient increase in Fanca mRNA. Fanca protein was also acutely upregulated after GnRH treatment of L beta T2 cells. In addition, Fanca gene expression was confined to mature pituitary gonadotrophs and adult mouse pituitary and was not expressed in the immature alpha T3-1 gonadotroph cell line. Thus, this study extends the expression profile of Fanca into a highly specialized endocrine cell and demonstrates hormonal regulation of expression of the Fanca locus. We suggest that this regulatory mechanism may have a crucial role in the GnRH-response mechanism of mature gonadotrophs and perhaps the etiology of FA.
Collapse
Affiliation(s)
- Rachel Larder
- Human Reproductive Sciences Unit, Centre for Reproductive Biology, The University of Edinburgh Chancellors Building, Edinburgh EH16 4SB, UK
| | | | | | | |
Collapse
|
74
|
Yamada Y, Yamamoto H, Yonehara T, Kanasaki H, Nakanishi H, Miyamoto E, Miyazaki K. Differential Activation of the Luteinizing Hormone β-Subunit Promoter by Activin and Gonadotropin-Releasing Hormone: A Role for the Mitogen-Activated Protein Kinase Signaling Pathway in LβT2 Gonadotrophs1. Biol Reprod 2004; 70:236-43. [PMID: 13679314 DOI: 10.1095/biolreprod.103.019588] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
LH consists of alpha- and beta-subunits, and synthesis of the beta-subunit has been reported to be the rate-limiting step in LH production. In this study, we found that activin A increased both the LHbeta mRNA level and LH content in cells of the gonadotroph cell line, LbetaT2. We next examined the effects of activin A and GnRH on LHbeta promoter activity by reporter gene assay and compared the signal transduction pathways. Activin A and GnRH activated the LHbeta promoter, and the response to a combination of activin A and GnRH was higher than that to activin A or GnRH alone. The effects of activin A and GnRH were specifically inhibited by inhibin-like peptide and antide, a GnRH antagonist, respectively. The activation of the LHbeta promoter by GnRH was inhibited by PD098059 and U0126, MAP kinase kinase (MEK) inhibitors. In contrast, these protein kinase inhibitors did not inhibit the activin A-induced activation. GnRH, but not activin A, activated MAP kinase in LbetaT2 cells. Overexpression of constitutively active MEK1 or MEK kinase activated both MAP kinase and the LHbeta promoter. Furthermore, GnRH, but not activin A, strongly induced SRE-mediated transcription, a known target of the MAP kinase pathway. These results suggest that GnRH activates the LHbeta promoter via the MAP kinase pathway and that activin A-induced activation of the LHbeta promoter is independent of the MAP kinase pathway.
Collapse
Affiliation(s)
- Yoko Yamada
- Department of Molecular Pharmacology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | | | | | | | | | | | | |
Collapse
|
75
|
Jackson TA, Koterwas DM, Morgan MA, Bradford AP. Fibroblast growth factors regulate prolactin transcription via an atypical Rac-dependent signaling pathway. Mol Endocrinol 2003; 17:1921-30. [PMID: 12843210 DOI: 10.1210/me.2003-0167] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Fibroblast growth factors (FGFs) play a critical role in pituitary development and in pituitary tumor formation and progression. We have previously characterized FGF signal transduction and regulation of the tissue-specific rat prolactin (rPRL) promoter in GH4 pituitary cells. FGF induction of rPRL transcription is independent of Ras, but mediated by a protein kinase C-delta (PKCdelta)-dependent activation of MAPK (ERK). Here we demonstrate a functional role for the Rho family monomeric G protein, Rac1, in FGF regulation of PRL gene expression via an atypical signaling pathway. Expression of dominant negative Rac, but not RhoA or Cdc42, selectively inhibited FGF-induced rPRL promoter activity. Moreover, expression of dominant negative Rac also attenuated FGF-2 and FGF-4 stimulation of MAPK (ERK). However, in contrast to other Rac-dependent signaling pathways, FGF activation of rPRL promoter activity was independent of the c-Jun N-terminal kinase (JNK) and phosphoinositide 3-kinase/Akt cascades. FGFs failed to activate JNK1 or JNK2, and expression of dominant negative JNK or Akt constructs did not block FGF-induced PRL transcription. Consistent with the role of PKCdelta in FGF regulation of PRL gene expression, activation of the rPRL promoter was blocked by an inhibitor of phospholipase Cgamma (PLCgamma) activity. FGF treatment also induced rapid tyrosine phosphorylation of PLCgamma in a Rac-dependent manner. These results suggest that FGF-2 and FGF-4 activate PRL gene expression via a novel Rac1, PLCgamma, PKCdelta, and ERK cascade, independent of phosphoinositol-3-kinase and JNK.
Collapse
Affiliation(s)
- Twila A Jackson
- Section of Basic Reproductive Science, Department of Obstetrics & Gynecology, University of Colorado Health Sciences Center, Denver, Colorado 80262, USA
| | | | | | | |
Collapse
|
76
|
Kraus S, Benard O, Naor Z, Seger R. c-Src is activated by the epidermal growth factor receptor in a pathway that mediates JNK and ERK activation by gonadotropin-releasing hormone in COS7 cells. J Biol Chem 2003; 278:32618-30. [PMID: 12750372 DOI: 10.1074/jbc.m303886200] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Key participants in G protein-coupled receptor (GPCR) signaling are the mitogen-activated protein kinase (MAPK) signaling cascades. The mechanisms involved in the activation of the above cascades by GPCRs are not fully elucidated. A prototypic GPCR that has been widely used to study these signaling mechanisms is the receptor for gonadotropin-releasing hormone (GnRHR), which serves as a key regulator of the reproductive system. Here we expressed GnRHR in COS7 cells and found that GnRHR transmits its signals to MAPKs mainly via G alpha i, EGF receptor without the involvement of Hb-EGF, and c-Src, but independently of PKCs. The main pathway that leads to JNK activation downstream of the EGF receptor involves a sequential activation of c-Src and phosphatidylinositol 3-kinase (PI3K). ERK activation by GnRHR is mediated by the EGF receptor, which activates Ras either directly or via c-Src. Besides the main pathway, the dissociated G beta gamma and beta-arrestin may initiate additional, albeit minor, pathways that lead to MAPK activation in the transfected COS7 cells. The pathways detected are significantly different from those in other cell lines bearing GnRHR, indicating that GnRH can utilize various signaling mechanisms for the activation of MAPK cascades. The unique pathway elucidated here in which c-Src and PI3K are sequentially activated downstream of the EGF receptor may serve as a prototype of signaling mechanisms by GnRHR and by additional GPCRs in various cell types.
Collapse
Affiliation(s)
- Sarah Kraus
- Department of Biological Regulation, The Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | | | |
Collapse
|
77
|
Ellsworth BS, White BR, Burns AT, Cherrington BD, Otis AM, Clay CM. c-Jun N-terminal kinase activation of activator protein-1 underlies homologous regulation of the gonadotropin-releasing hormone receptor gene in alpha T3-1 cells. Endocrinology 2003; 144:839-49. [PMID: 12586760 DOI: 10.1210/en.2002-220784] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Reproductive function is dependent on the interaction between GnRH and its cognate receptor found on gonadotrope cells of the anterior pituitary gland. GnRH activation of the GnRH receptor (GnRHR) is a potent stimulus for increased expression of multiple genes including the gene encoding the GnRHR itself. Thus, homologous regulation of the GnRHR is an important mechanism underlying gonadotrope sensitivity to GnRH. Previously, we have found that GnRH induction of GnRHR gene expression in alpha T3-1 cells is partially mediated by protein kinase C activation of a canonical activator protein-1 (AP-1) element. In contrast, protein kinase A and a cAMP response element-like element have been implicated in mediating the GnRH response of the GnRHR gene using a heterologous cell model (GGH(3)). Herein we find that selective removal of the canonical AP-1 site leads to a loss of GnRH regulation of the GnRHR promoter in transgenic mice. Thus, an intact AP-1 element is necessary for GnRH responsiveness of the GnRHR gene both in vitro and in vivo. Based on in vitro analyses, GnRH appeared to enhance the interaction of JunD, FosB, and c-Fos at the GnRHR AP-1 element. Although enhanced binding of cFos reflected an increase in gene expression, GnRH appeared to regulate both FosB and JunD at a posttranslational level. Neither overexpression of a constitutively active Raf-kinase nor pharmacological blockade of GnRH-induced ERK activation eliminated the GnRH response of the GnRHR promoter. GnRH responsiveness was, however, lost in alpha T3-1 cells that stably express a dominant-negative c-Jun N-terminal kinase (JNK) kinase, suggesting a critical role for JNK in mediating GnRH regulation of the GnRHR gene. Consistent with this possibility, we find that the ability of forskolin and membrane-permeable forms of cAMP to inhibit the GnRH response of the GnRHR promoter is associated with a loss of both JNK activation and GnRH-mediated recruitment of the primary AP-1-binding components.
Collapse
Affiliation(s)
- Buffy S Ellsworth
- Animal Reproduction and Biotechnology Laboratory, Department of Biomedical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado 80523, USA
| | | | | | | | | | | |
Collapse
|
78
|
Harris D, Chuderland D, Bonfil D, Kraus S, Seger R, Naor Z. Extracellular signal-regulated kinase and c-Src, but not Jun N-terminal kinase, are involved in basal and gonadotropin-releasing hormone-stimulated activity of the glycoprotein hormone alpha-subunit promoter. Endocrinology 2003; 144:612-22. [PMID: 12538624 DOI: 10.1210/en.2002-220690] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Addition of a GnRH agonist (GnRH-A) to alphaT3-1 cells stimulates different MAPK cascades: ERK, Jun N-terminal kinase (JNK), and p38. Activation of JNK, ERK, and p38 shows a unique fold activation ratio of 25:12:2, which might encode signal specificity. ERK is translocated to the nucleus within 20 min with a peak at 120 min of GnRH-A stimulation. We used the human alpha-subunit promoter linked to chloramphenicol acetyl transferase (alphaCAT) to examine the role of ERK, JNK, and c-Src, which is implicated in MAPK activation, in basal and GnRH-stimulated alphaCAT. Addition of GnRH-A resulted in a 3-fold increase in alphaCAT, whereas the Ca(2+) ionophore ionomycin and the protein kinase C (PKC) activator 12-O-tetradecanoylphorbol-13-acetate (TPA) had no effect. Addition of GnRH-A and TPA, but not GnRH-A and ionomycin, produced a synergistic response, whereas removal of Ca(2+), but not down-regulation of TPA-sensitive PKCs, abolished GnRH-A-stimulated alphaCAT. Thus, regulation of alpha-promoter activity by GnRH is Ca(2+) dependent and is further augmented by PKC. Cotransfection of alphaCAT and constitutively active or dominant negative plasmids of ERK and JNK cascade members, or the use of the ERK inhibitor PD98059, revealed that ERK, but not JNK, is involved in basal and GnRH-A-stimulated alphaCAT. Because c-Src participates in MAPK activation by GnRH, we also studied its role. Cotransfection of alphaCAT and the dominant negative form of c-Src or incubation with the c-Src inhibitor PP1 reduced GnRH-A-stimulated alphaCAT. The 5'-deletion analysis revealed that the -846/-420 region participated in basal alpha-transcription. In addition, the -346/-156 region containing the pituitary glycoprotein hormone basal element, alpha-basal elements, glycoprotein-specific element, and upstream response element is involved in basal and GnRH-A-stimulated alphaCAT. ERK contribution to GnRH maps to -346/-280 containing the pituitary glycoprotein hormone basal element and alpha-basal elements 1/2. Surprisingly, although c-Src is involved in GnRH-A-stimulated ERK, its involvement is mapped to another region (-280/-180) containing the glycoprotein-specific element. Thus, ERK and c-Src but not JNK are involved in basal and GnRH-A-stimulated-alphaCAT, whereas c-Src contribution is independent of ERK activation.
Collapse
Affiliation(s)
- Dagan Harris
- Department of Biochemistry, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Ramat Aviv 69978, Israel
| | | | | | | | | | | |
Collapse
|