51
|
Petousis S, Prapas Y, Margioula-Siarkou C, Milias S, Ravanos K, Kalogiannidis I, Haitoglou C, Prapas N, Rousso D. Expression of progesterone receptors is significantly impaired in the endometrium of infertile women during the implantation window: a prospective observational study. J Matern Fetal Neonatal Med 2016; 29:3912-9. [PMID: 26940759 DOI: 10.3109/14767058.2016.1152244] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVE To compare the expression of progesterone receptors (A + B) and type-B progesterone receptors in the epithelial and stromal cells of fertile and infertile women. METHODS Women were divided into two groups, the group of fertile controls (group 1) and the group of infertile women (group 2) and were set on regular ultrasound imaging in order to detect ovulation. An endometrial biopsy was obtained on the seventh or eighth post-ovulatory day. Immunohistochemistry was performed to measure percentage of positive nuclei, intensity of staining and h-score for progesterone receptors (PgR) (A + B) as well as type-B progesterone receptors in epithelial and stromal cells. Secondary outcomes included endometrial tissue dating, the rate of tissues being out-of-phase and endometrial thickness. RESULTS Endometrial issue was obtained from 15 fertile and 30 infertile women. Expression of PgR (A + B) and PgR type-B was significantly lower in the epithelial cells of infertile women. PgR (A + B) h-score was 220.0 ± 18.5 for fertile versus 147.3 ± 18.0 for infertile women (p = 0.02). PgR type-B h-score in epithelial cells was 166.8 ± 30.7 for fertile versus 90.8 ± 20.6 for infertile (p = 0.04). No significant difference was observed in stromal cells. CONCLUSIONS Expression levels of PgR (A + B) as well as type-B receptors are significantly lower in the epithelial cells of infertile women during implantation window.
Collapse
Affiliation(s)
- Stamatios Petousis
- a 3rd Department of Obstetrics and Gynaecology, Aristotle University of Thessaloniki, Thessaloniki , Greece .,b IAKENTRO, Infertility Treatment Center , Thessaloniki , Greece
| | - Yannis Prapas
- a 3rd Department of Obstetrics and Gynaecology, Aristotle University of Thessaloniki, Thessaloniki , Greece .,b IAKENTRO, Infertility Treatment Center , Thessaloniki , Greece
| | - Chrysoula Margioula-Siarkou
- a 3rd Department of Obstetrics and Gynaecology, Aristotle University of Thessaloniki, Thessaloniki , Greece .,b IAKENTRO, Infertility Treatment Center , Thessaloniki , Greece
| | - Stefanos Milias
- c Department of Pathology , 424 General Army Hospital , Thessaloniki , Greece , and
| | | | - Ioannis Kalogiannidis
- a 3rd Department of Obstetrics and Gynaecology, Aristotle University of Thessaloniki, Thessaloniki , Greece .,b IAKENTRO, Infertility Treatment Center , Thessaloniki , Greece
| | | | - Nikolaos Prapas
- a 3rd Department of Obstetrics and Gynaecology, Aristotle University of Thessaloniki, Thessaloniki , Greece .,b IAKENTRO, Infertility Treatment Center , Thessaloniki , Greece
| | - David Rousso
- a 3rd Department of Obstetrics and Gynaecology, Aristotle University of Thessaloniki, Thessaloniki , Greece .,b IAKENTRO, Infertility Treatment Center , Thessaloniki , Greece
| |
Collapse
|
52
|
He ZX, Chen XW, Zhou ZW, Zhou SF. Impact of physiological, pathological and environmental factors on the expression and activity of human cytochrome P450 2D6 and implications in precision medicine. Drug Metab Rev 2015; 47:470-519. [PMID: 26574146 DOI: 10.3109/03602532.2015.1101131] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
With only 1.3-4.3% in total hepatic CYP content, human CYP2D6 can metabolize more than 160 drugs. It is a highly polymorphic enzyme and subject to marked inhibition by a number of drugs, causing a large interindividual variability in drug clearance and drug response and drug-drug interactions. The expression and activity of CYP2D6 are regulated by a number of physiological, pathological and environmental factors at transcriptional, post-transcriptional, translational and epigenetic levels. DNA hypermethylation and histone modifications can repress the expression of CYP2D6. Hepatocyte nuclear factor-4α binds to a directly repeated element in the promoter of CYP2D6 and thus regulates the expression of CYP2D6. Small heterodimer partner represses hepatocyte nuclear factor-4α-mediated transactivation of CYP2D6. GW4064, a farnesoid X receptor agonist, decreases hepatic CYP2D6 expression and activity while increasing small heterodimer partner expression and its recruitment to the CYP2D6 promoter. The genotypes are key determinants of interindividual variability in CYP2D6 expression and activity. Recent genome-wide association studies have identified a large number of genes that can regulate CYP2D6. Pregnancy induces CYP2D6 via unknown mechanisms. Renal or liver diseases, smoking and alcohol use have minor to moderate effects only on CYP2D6 activity. Unlike CYP1 and 3 and other CYP2 members, CYP2D6 is resistant to typical inducers such as rifampin, phenobarbital and dexamethasone. Post-translational modifications such as phosphorylation of CYP2D6 Ser135 have been observed, but the functional impact is unknown. Further functional and validation studies are needed to clarify the role of nuclear receptors, epigenetic factors and other factors in the regulation of CYP2D6.
Collapse
Affiliation(s)
- Zhi-Xu He
- a Guizhou Provincial Key Laboratory for Regenerative Medicine, Stem Cell and Tissue Engineering Research Center & Sino-US Joint Laboratory for Medical Sciences, Guizhou Medical University , Guiyang , Guizhou , China
| | - Xiao-Wu Chen
- b Department of General Surgery , The First People's Hospital of Shunde, Southern Medical University , Shunde , Foshan , Guangdong , China , and
| | - Zhi-Wei Zhou
- c Department of Pharmaceutical Science , College of Pharmacy, University of South Florida , Tampa , FL , USA
| | - Shu-Feng Zhou
- a Guizhou Provincial Key Laboratory for Regenerative Medicine, Stem Cell and Tissue Engineering Research Center & Sino-US Joint Laboratory for Medical Sciences, Guizhou Medical University , Guiyang , Guizhou , China .,c Department of Pharmaceutical Science , College of Pharmacy, University of South Florida , Tampa , FL , USA
| |
Collapse
|
53
|
Naqvi H, Mamillapalli R, Krikun G, Taylor HS. Endometriosis Located Proximal to or Remote From the Uterus Differentially Affects Uterine Gene Expression. Reprod Sci 2015; 23:186-91. [PMID: 26516123 DOI: 10.1177/1933719115613449] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The mechanisms that lead to the altered uterine gene expression in women with endometriosis are poorly understood. Are these changes in gene expression mediated by proximity to endometriotic lesions or is endometriosis a systemic disease where the effect is independent of proximity to the uterus? To answer this question, we created endometriosis in a murine model either in the peritoneal cavity (proximal) or at a subcutaneous remote site (distal). The expression of several genes that are involved in endometrial receptivity (homeobox A10 [Hoxa10], homeobox A11 [Hoxa11], insulin-like growth factor binding protein 1 [Igfbp1], Kruppel-like factor 9 [Klf9], and progesterone receptor [Pgr]) was measured in the eutopic endometrium of mice transplanted with either proximal or distal endometriosis lesions. Decreased expression of Hoxa10, Igfbp1, Klf9, and total Pgr genes was observed in the eutopic endometrium of mice with peritoneal endometriosis. In the mice with distal lesions, overall expression of these genes was not as severely affected, however, Igfbp1 expression was similarly decreased and the effect on Pgr was more pronounced. Endometriosis does have a systemic effect that varies with distance to the end organ. However, even remote disease selectively and profoundly alters the expression of genes such as Pgr. This is the first controlled experiment demonstrating that endometriosis is not simply a local peritoneal disease. Selective alteration of genes critical for endometrial receptivity and endometriosis propagation may be systemic. Similarly, systemic effects of endometriosis on other organs may also be responsible for the widespread manifestations of the disease.
Collapse
Affiliation(s)
- Hanyia Naqvi
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, CT, USA
| | - Ramanaiah Mamillapalli
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, CT, USA
| | - Graciela Krikun
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, CT, USA
| | - Hugh S Taylor
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, CT, USA
| |
Collapse
|
54
|
Dhakal P, Rumi MAK, Kubota K, Chakraborty D, Chien J, Roby KF, Soares MJ. Neonatal Progesterone Programs Adult Uterine Responses to Progesterone and Susceptibility to Uterine Dysfunction. Endocrinology 2015. [PMID: 26204463 PMCID: PMC4588825 DOI: 10.1210/en.2015-1397] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
In this report, we investigated the consequences of neonatal progesterone exposure on adult rat uterine function. Female pups were subcutaneously injected with vehicle or progesterone from postnatal days 3 to 9. Early progesterone exposure affected endometrial gland biogenesis, puberty, decidualization, and fertility. Because decidualization and pregnancy success are directly linked to progesterone action on the uterus, we investigated the responsiveness of the adult uterus to progesterone. We first identified progesterone-dependent uterine gene expression using RNA sequencing and quantitative RT-PCR in Holtzman Sprague-Dawley rats and progesterone-resistant Brown Norway rats. The impact of neonatal progesterone treatment on adult uterine progesterone responsiveness was next investigated using quantitative RT-PCR. Progesterone resistance affected the spectrum and total number of progesterone-responsive genes and the magnitude of uterine responses for a subset of progesterone targets. Several progesterone-responsive genes in adult uterus exhibited significantly dampened responses in neonatally progesterone-treated females compared with those of vehicle-treated controls, whereas other progesterone-responsive transcripts did not differ between female rats exposed to vehicle or progesterone as neonates. The organizational actions of progesterone on the uterus were dependent on signaling through the progesterone receptor but not estrogen receptor 1. To summarize, neonatal progesterone exposure leads to disturbances in endometrial gland biogenesis, progesterone resistance, and uterine dysfunction. Neonatal progesterone effectively programs adult uterine responsiveness to progesterone.
Collapse
Affiliation(s)
- Pramod Dhakal
- Institute for Reproductive Health and Regenerative Medicine, Departments of Pathology and Laboratory Medicine (P.D., M.A.K.R., K.K., D.C., M.J.S.), Cancer Biology (J.C.), and Anatomy and Cell Biology (K.F.R.), University of Kansas Medical Center, Kansas City, Kansas 66160
| | - M A Karim Rumi
- Institute for Reproductive Health and Regenerative Medicine, Departments of Pathology and Laboratory Medicine (P.D., M.A.K.R., K.K., D.C., M.J.S.), Cancer Biology (J.C.), and Anatomy and Cell Biology (K.F.R.), University of Kansas Medical Center, Kansas City, Kansas 66160
| | - Kaiyu Kubota
- Institute for Reproductive Health and Regenerative Medicine, Departments of Pathology and Laboratory Medicine (P.D., M.A.K.R., K.K., D.C., M.J.S.), Cancer Biology (J.C.), and Anatomy and Cell Biology (K.F.R.), University of Kansas Medical Center, Kansas City, Kansas 66160
| | - Damayanti Chakraborty
- Institute for Reproductive Health and Regenerative Medicine, Departments of Pathology and Laboratory Medicine (P.D., M.A.K.R., K.K., D.C., M.J.S.), Cancer Biology (J.C.), and Anatomy and Cell Biology (K.F.R.), University of Kansas Medical Center, Kansas City, Kansas 66160
| | - Jeremy Chien
- Institute for Reproductive Health and Regenerative Medicine, Departments of Pathology and Laboratory Medicine (P.D., M.A.K.R., K.K., D.C., M.J.S.), Cancer Biology (J.C.), and Anatomy and Cell Biology (K.F.R.), University of Kansas Medical Center, Kansas City, Kansas 66160
| | - Katherine F Roby
- Institute for Reproductive Health and Regenerative Medicine, Departments of Pathology and Laboratory Medicine (P.D., M.A.K.R., K.K., D.C., M.J.S.), Cancer Biology (J.C.), and Anatomy and Cell Biology (K.F.R.), University of Kansas Medical Center, Kansas City, Kansas 66160
| | - Michael J Soares
- Institute for Reproductive Health and Regenerative Medicine, Departments of Pathology and Laboratory Medicine (P.D., M.A.K.R., K.K., D.C., M.J.S.), Cancer Biology (J.C.), and Anatomy and Cell Biology (K.F.R.), University of Kansas Medical Center, Kansas City, Kansas 66160
| |
Collapse
|
55
|
Kim TH, Yoo JY, Wang Z, Lydon JP, Khatri S, Hawkins SM, Leach RE, Fazleabas AT, Young SL, Lessey BA, Ku BJ, Jeong JW. ARID1A Is Essential for Endometrial Function during Early Pregnancy. PLoS Genet 2015; 11:e1005537. [PMID: 26378916 PMCID: PMC4574948 DOI: 10.1371/journal.pgen.1005537] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Accepted: 08/27/2015] [Indexed: 02/03/2023] Open
Abstract
AT-rich interactive domain 1A gene (ARID1A) loss is a frequent event in endometriosis-associated ovarian carcinomas. Endometriosis is a disease in which tissue that normally grows inside the uterus grows outside the uterus, and 50% of women with endometriosis are infertile. ARID1A protein levels were significantly lower in the eutopic endometrium of women with endometriosis compared to women without endometriosis. However, an understanding of the physiological effects of ARID1A loss remains quite poor, and the function of Arid1a in the female reproductive tract has remained elusive. In order to understand the role of Arid1a in the uterus, we have generated mice with conditional ablation of Arid1a in the PGR positive cells (Pgrcre/+Arid1af/f; Arid1ad/d). Ovarian function and uterine development of Arid1ad/d mice were normal. However, Arid1ad/d mice were sterile due to defective embryo implantation and decidualization. The epithelial proliferation was significantly increased in Arid1ad/d mice compared to control mice. Enhanced epithelial estrogen activity and reduced epithelial PGR expression, which impedes maturation of the receptive uterus, was observed in Arid1ad/d mice at the peri-implantation period. The microarray analysis revealed that ARID1A represses the genes related to cell cycle and DNA replication. We showed that ARID1A positively regulates Klf15 expression with PGR to inhibit epithelial proliferation at peri-implantation. Our results suggest that Arid1a has a critical role in modulating epithelial proliferation which is a critical requisite for fertility. This finding provides a new signaling pathway for steroid hormone regulation in female reproductive biology and furthers our understanding of the molecular mechanisms that underlie dysregulation of hormonal signaling in human reproductive disorders such as endometriosis.
Collapse
Affiliation(s)
- Tae Hoon Kim
- Department of Obstetrics, Gynecology and Reproductive Biology, Michigan State University College of Human Medicine, Grand Rapids, Michigan, United States of America
| | - Jung-Yoon Yoo
- Department of Obstetrics, Gynecology and Reproductive Biology, Michigan State University College of Human Medicine, Grand Rapids, Michigan, United States of America
| | - Zhong Wang
- Department of Cardiac Surgery, University of Michigan, Ann Arbor, Michigan, United States of America
| | - John P. Lydon
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Shikha Khatri
- Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Shannon M. Hawkins
- Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Richard E. Leach
- Department of Obstetrics, Gynecology and Reproductive Biology, Michigan State University College of Human Medicine, Grand Rapids, Michigan, United States of America
- Department of Women’s Health, Spectrum Health System, Grand Rapids, Michigan, United States of America
| | - Asgerally T. Fazleabas
- Department of Obstetrics, Gynecology and Reproductive Biology, Michigan State University College of Human Medicine, Grand Rapids, Michigan, United States of America
- Department of Women’s Health, Spectrum Health System, Grand Rapids, Michigan, United States of America
| | - Steven L. Young
- Department of Obstetrics and Gynecology, University of North Carolina, Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Bruce A. Lessey
- Department of Obstetrics and Gynecology, University Medical Group, Greenville Health System, Greenville, South Carolina, United States of America
| | - Bon Jeong Ku
- Department of Internal Medicine, Chungnam National University School of Medicine, Daejeon, South Korea
- * E-mail: (BJK); (JWJ)
| | - Jae-Wook Jeong
- Department of Obstetrics, Gynecology and Reproductive Biology, Michigan State University College of Human Medicine, Grand Rapids, Michigan, United States of America
- Department of Women’s Health, Spectrum Health System, Grand Rapids, Michigan, United States of America
- * E-mail: (BJK); (JWJ)
| |
Collapse
|
56
|
Liang Y, Li Y, Liu K, Chen P, Wang D. Expression and Significance of WNT4 in Ectopic and Eutopic Endometrium of Human Endometriosis. Reprod Sci 2015; 23:379-85. [DOI: 10.1177/1933719115602763] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Yanming Liang
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, People’s Republic of China
| | - Yan Li
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, People’s Republic of China
| | - Kuiran Liu
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, People’s Republic of China
| | - Peng Chen
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, People’s Republic of China
| | - Danbo Wang
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, People’s Republic of China
| |
Collapse
|
57
|
Zhang H, Zhu X, Chen J, Jiang Y, Zhang Q, Kong C, Xing J, Ding L, Diao Z, Zhen X, Sun H, Yan G. Krüppel-like factor 12 is a novel negative regulator of forkhead box O1 expression: a potential role in impaired decidualization. Reprod Biol Endocrinol 2015; 13:80. [PMID: 26223982 PMCID: PMC4520059 DOI: 10.1186/s12958-015-0079-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Decidualization is a prerequisite for successful implantation and the establishment of pregnancy. Krüppel-like factor 12 (KLF12) is a negative regulator of endometrial decidualization in vitro. We investigated whether KLF12 was associated with impaired decidualization under conditions of repeated implantation failure (RIF). METHODS Uterine tissues were collected from a mouse model of early pregnancy and artificial decidualization for immunohistochemistry, Western blot and real-time PCR analysis. Reporter gene assays, chromatin immunoprecipitation-PCR and avidin-biotin conjugate DNA precipitation assays were performed to analyze the transcriptional regulation of forkhead box O1 (FOXO1) by KLF12. Furthermore, the protein levels of KLF12 and FOXO1 in patients with RIF were analyzed by Western blot and immunohistochemistry. RESULTS KLF12 led to defective implantation and decidualization in the mouse uterine model of early pregnancy and artificial decidualization by directly binding to the FOXO1 promoter region and inhibiting its expression in human endometrial stromal cells. Elevated KLF12 expression was accompanied by decreased FOXO1 expression in the endometria of patients with RIF. CONCLUSIONS As a novel regulator, KLF12 predominantly controls uterine endometrial differentiation during early pregnancy and leads to implantation failure.
Collapse
Affiliation(s)
- Hui Zhang
- Reproductive Medicine Center, Drum Tower Clinic Medical College of Nanjing Medical University, Nanjing, 210029, Jiangsu, China.
| | - Xudong Zhu
- College of Science Isotope Laboratory, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China.
| | - Jing Chen
- Department of Obstetrics and Gynecology, Reproductive Medicine Center, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, 210008, Jiangsu, China.
| | - Yue Jiang
- Department of Obstetrics and Gynecology, Reproductive Medicine Center, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, 210008, Jiangsu, China.
| | - Qun Zhang
- Department of Obstetrics and Gynecology, Reproductive Medicine Center, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, 210008, Jiangsu, China.
| | - Chengcai Kong
- Department of Obstetrics and Gynecology, Reproductive Medicine Center, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, 210008, Jiangsu, China.
| | - Jun Xing
- Department of Obstetrics and Gynecology, Reproductive Medicine Center, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, 210008, Jiangsu, China.
| | - Lijun Ding
- Department of Obstetrics and Gynecology, Reproductive Medicine Center, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, 210008, Jiangsu, China.
| | - Zhenyu Diao
- Department of Obstetrics and Gynecology, Reproductive Medicine Center, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, 210008, Jiangsu, China.
| | - Xin Zhen
- Department of Obstetrics and Gynecology, Reproductive Medicine Center, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, 210008, Jiangsu, China.
| | - Haixiang Sun
- Reproductive Medicine Center, Drum Tower Clinic Medical College of Nanjing Medical University, Nanjing, 210029, Jiangsu, China.
| | - Guijun Yan
- Department of Obstetrics and Gynecology, Reproductive Medicine Center, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, 210008, Jiangsu, China.
| |
Collapse
|
58
|
Brown AR, Simmen RCM, Raj VR, Van TT, MacLeod SL, Simmen FA. Krüppel-like factor 9 (KLF9) prevents colorectal cancer through inhibition of interferon-related signaling. Carcinogenesis 2015. [PMID: 26210742 DOI: 10.1093/carcin/bgv104] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
UNLABELLED Expression of the transcription factor Krüppel-like factor 9 (KLF9) is frequently reduced in colorectal cancers, although a tumor suppressive role has not been established. To determine if KLF9 suppresses intestinal adenoma formation, we generated mice of distinct Klf9 genotypes in the background of the Apc (Min/+) mouse and compared their adenoma burdens at 16 weeks of age. While small intestine adenoma burden remained unchanged among Klf9 genotypes, male and female Apc(Min/+)/Klf9(-/-) and Apc(Min/+)/Klf9(+/-) mice exhibited significantly more colon adenomas than their Apc(Min/+)/Klf9(+/+) counterparts. Microarray analysis showed significant increases in the expression of interferon-induced genes in the colon mucosa of female Apc (Min/+)/Klf9(+/-) and Apc(Min/+)/Klf9(-/-) compared to Apc(Min/+)/Klf9(+/+) mice, prior to overt adenoma occurrence. Gene upregulation was confirmed by qPCR of colon mucosa and by siRNA knockdown of KLF9 in human HT29 colorectal cancer cells. Increases in expression of these genes were further augmented by supplementation with Interferon β1. Circulating levels of the cytokine, interferon-stimulated gene 15 (ISG15) were increased in Apc(Min/+)/Klf9(+/-) and Apc(Min/+)/Klf9(-/-) mice relative to Apc(Min/+)/Klf9(+/+). Additionally, colon mucosal levels of ISG15 were increased in Apc(Min/+)/Klf9(+/-) mice. Chromatin immunoprecipitation demonstrated KLF9 recruitment to the ISG15 promoter. Lastly, treatment with ISG15 suppressed apoptosis in HT29 cells, in the presence and absence of 5-fluorouracil (5FU). Results show KLF9 to be a haploinsufficient suppressor of colon tumorigenesis in Apc(Min/+) mice in part, by repression of ISG15 and the latter's antiapoptotic function. SUMMARY Krüppel-like factor 9 (KLF9) is a haploinsufficient tumor suppressor in the ApcMin/+ mouse colon by suppressing expression of ISG15, an apoptosis-inhibiting cytokine.
Collapse
Affiliation(s)
- Adam R Brown
- Interdisciplinary Biomedical Sciences Program, Department of Physiology and Biophysics
| | - Rosalia C M Simmen
- Interdisciplinary Biomedical Sciences Program, Department of Physiology and Biophysics
| | | | - Trang T Van
- Interdisciplinary Biomedical Sciences Program
| | - Stewart L MacLeod
- Department of Pediatrics, University of Arkansas for Medical Sciences, Slot #505, 4301 West Markham Street, Little Rock, AR 72205, USA
| | - Frank A Simmen
- Interdisciplinary Biomedical Sciences Program, Department of Physiology and Biophysics,
| |
Collapse
|
59
|
Mafra F, Catto M, Bianco B, Barbosa CP, Christofolini D. Association of WNT4 polymorphisms with endometriosis in infertile patients. J Assist Reprod Genet 2015; 32:1359-64. [PMID: 26139156 DOI: 10.1007/s10815-015-0523-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Accepted: 06/22/2015] [Indexed: 01/28/2023] Open
Abstract
PURPOSE Recently, several genome-wide association studies have demonstrated an association between endometriosis and markers located in or near to WNT4 gene. In order to assess the validity of the findings, we conducted a replication case-control study in a Brazilian population. METHODS Genetic association study comprising 400 infertile women with endometriosis and 400 fertile women as controls. TaqMan allelic discrimination technique was used to investigate the relationship between endometriosis and four single-nucleotide polymorphisms (rs16826658, rs3820282, rs2235529, and rs7521902) in WNT4 gene. Genotype distribution, allele frequency, and haplotype analysis of the WNT4 polymorphisms were performed. A p value <0.05 was considered significant. RESULTS The results revealed a significant association of rs16826658 (p = 7e-04) and rs3820282 (p = 0.048) single-nucleotide polymorphisms (SNPs) on WNT4 gene with endometriosis-related infertility, while rs2235529 and rs7521902 SNPs showed no difference between cases and controls. CONCLUSIONS Our results suggested that rs16826658 and rs3820282 polymorphisms on WNT4 gene might be involved in the pathogenesis of endometriosis in the infertile women studied. Analysis of WNT4 genetic variants might help to identify patients at high risk for disease development.
Collapse
Affiliation(s)
- Fernanda Mafra
- Collective Health Department, Division of Reproductive Health and Population Genetics, Faculdade de Medicina do ABC, Santo André, Brazil.
| | - Michele Catto
- Collective Health Department, Division of Reproductive Health and Population Genetics, Faculdade de Medicina do ABC, Santo André, Brazil.
| | - Bianca Bianco
- Collective Health Department, Division of Reproductive Health and Population Genetics, Faculdade de Medicina do ABC, Santo André, Brazil.
| | - Caio Parente Barbosa
- Collective Health Department, Division of Reproductive Health and Population Genetics, Faculdade de Medicina do ABC, Santo André, Brazil.
| | - Denise Christofolini
- Collective Health Department, Division of Reproductive Health and Population Genetics, Faculdade de Medicina do ABC, Santo André, Brazil. .,Av. Príncipe de Gales, 821, CEPES, 2° Floor, Lab 101, Santo André, São Paulo, Brazil, 09060-650.
| |
Collapse
|
60
|
Mazur EC, Vasquez YM, Li X, Kommagani R, Jiang L, Chen R, Lanz RB, Kovanci E, Gibbons WE, DeMayo FJ. Progesterone receptor transcriptome and cistrome in decidualized human endometrial stromal cells. Endocrinology 2015; 156:2239-53. [PMID: 25781565 PMCID: PMC4430623 DOI: 10.1210/en.2014-1566] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Decidualization is a complex process involving cellular proliferation and differentiation of the endometrial stroma that is required to establish and support pregnancy. Progesterone acting via its nuclear receptor, the progesterone receptor (PGR), is a critical regulator of decidualization and is known to interact with certain members of the activator protein-1 (AP-1) family in the regulation of transcription. In this study, we identified the cistrome and transcriptome of PGR and identified the AP-1 factors FOSL2 and JUN to be regulated by PGR and important in the decidualization process. Direct targets of PGR were identified by integrating gene expression data from RNA sequencing with the whole-genome binding profile of PGR determined by chromatin immunoprecipitation followed by deep sequencing (ChIP-seq) in primary human endometrial stromal cells exposed to 17β-estradiol, medroxyprogesterone acetate, and cAMP to promote in vitro decidualization. Ablation of FOSL2 and JUN attenuates the induction of 2 decidual marker genes, IGFBP1 and PRL. ChIP-seq analysis of genomic binding revealed that FOSL2 is bound in proximity to 8586 distinct genes, including nearly 80% of genes bound by PGR. A comprehensive assessment of the PGR-dependent decidual transcriptome integrated with the genomic binding of PGR identified FOSL2 as a potentially important transcriptional coregulator of PGR via direct interaction with regulatory regions of genes actively regulated during decidualization.
Collapse
Affiliation(s)
- Erik C Mazur
- Division of Reproductive Endocrinology and Infertility (E.C.M., E.K., W.E.G.), Department of Obstetrics and Gynecology, Texas Children's Hospital Pavilion for Women, Department of Molecular and Cellular Biology (Y.M.V., X.L., R.K., R.B.L., F.J.D.), and Department of Molecular and Human Genetics (L.J., R.C.), Baylor College of Medicine, Houston, Texas 77030
| | | | | | | | | | | | | | | | | | | |
Collapse
|
61
|
Heard ME, Velarde MC, Giudice LC, Simmen FA, Simmen RCM. Krüppel-Like Factor 13 Deficiency in Uterine Endometrial Cells Contributes to Defective Steroid Hormone Receptor Signaling but Not Lesion Establishment in a Mouse Model of Endometriosis. Biol Reprod 2015; 92:140. [PMID: 25904015 DOI: 10.1095/biolreprod.115.130260] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Accepted: 04/17/2015] [Indexed: 01/20/2023] Open
Abstract
Krüppel-like Factor (KLF) 13 and the closely related KLF9 are members of the Sp/KLF family of transcription factors that have collectively emerged as essential regulators of tissue development, differentiation, proliferation, and programmed cell death. Steroid hormone-responsive tissues express multiple KLFs that are linked to progesterone receptor (PGR) and estrogen receptor (ESR) actions either as integrators or as coregulators. Endometriosis is a chronic disease characterized by progesterone resistance and dysregulated estradiol signaling; nevertheless, distinct KLF members' contributions to endometriosis remain largely undefined. We previously demonstrated promotion of ectopic lesion establishment by Klf9 null endometrium in a mouse model of endometriosis. Here we evaluated whether KLF13 loss of expression in endometrial cells may equally contribute to lesion formation. KLF13 transcript levels were lower in the eutopic endometria of women with versus women without endometriosis at menstrual midsecretory phase. In wild-type (WT) mouse recipients intraperitoneally administered WT or Klf13 null endometrial fragments, lesion incidence did not differ with donor genotype. No differences were noted for lesion volume, number, proliferation status, and apoptotic index as well. Klf13 null lesions displayed reduced total PGR and ESR1 (RNA and immunoreactive protein) and altered expression of several PGR and ESR1 target genes, relative to WT lesions. Unlike for Klf9 null lesions, changes in transcript levels for PGR-A, ESR1, and Notch/Hedgehog-associated pathway components were not observed for Klf13 null lesions. Results demonstrate lack of a causative relationship between endometrial KLF13 deficiency and lesion establishment in mice, and they support the broader participation of multiple signaling pathways, besides those mediated by steroid receptors, in the pathology of endometriosis.
Collapse
Affiliation(s)
- Melissa E Heard
- Department of Physiology & Biophysics, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Michael C Velarde
- Department of Obstetrics, Gynecology & Reproductive Sciences, University of California San Francisco, San Francisco, California
| | - Linda C Giudice
- Department of Obstetrics, Gynecology & Reproductive Sciences, University of California San Francisco, San Francisco, California
| | - Frank A Simmen
- Department of Physiology & Biophysics, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Rosalia C M Simmen
- Department of Physiology & Biophysics, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| |
Collapse
|
62
|
Simmen RCM, Heard ME, Simmen AM, Montales MTM, Marji M, Scanlon S, Pabona JMP. The Krüppel-like factors in female reproductive system pathologies. J Mol Endocrinol 2015; 54:R89-R101. [PMID: 25654975 PMCID: PMC4369192 DOI: 10.1530/jme-14-0310] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Female reproductive tract pathologies arise largely from dysregulation of estrogen and progesterone receptor signaling, leading to aberrant cell proliferation, survival, and differentiation. The signaling pathways orchestrated by these nuclear receptors are complex, require the participation of many nuclear proteins serving as key binding partners or targets, and involve a range of paracrine and autocrine regulatory circuits. The members of the Krüppel-like factor (KLF) family of transcription factors are ubiquitously expressed in reproductive tissues and have been increasingly implicated as critical co-regulators and integrators of steroid hormone actions. Herein, we explore the involvement of KLF family members in uterine pathology, describe their currently known molecular mechanisms, and discuss their potential as targets for therapeutic intervention.
Collapse
Affiliation(s)
- Rosalia C M Simmen
- Department of Physiology and BiophysicsUniversity of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, USADepartment of Obstetrics and GynecologyUniversity of Michigan Health System, Ann Arbor, Michigan 48109, USADepartment of Internal MedicineHarlem Hospital Center, Columbia University Medical Center, New York, New York 10037, USA
| | - Melissa E Heard
- Department of Physiology and BiophysicsUniversity of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, USADepartment of Obstetrics and GynecologyUniversity of Michigan Health System, Ann Arbor, Michigan 48109, USADepartment of Internal MedicineHarlem Hospital Center, Columbia University Medical Center, New York, New York 10037, USA
| | - Angela M Simmen
- Department of Physiology and BiophysicsUniversity of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, USADepartment of Obstetrics and GynecologyUniversity of Michigan Health System, Ann Arbor, Michigan 48109, USADepartment of Internal MedicineHarlem Hospital Center, Columbia University Medical Center, New York, New York 10037, USA
| | - Maria Theresa M Montales
- Department of Physiology and BiophysicsUniversity of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, USADepartment of Obstetrics and GynecologyUniversity of Michigan Health System, Ann Arbor, Michigan 48109, USADepartment of Internal MedicineHarlem Hospital Center, Columbia University Medical Center, New York, New York 10037, USA
| | - Meera Marji
- Department of Physiology and BiophysicsUniversity of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, USADepartment of Obstetrics and GynecologyUniversity of Michigan Health System, Ann Arbor, Michigan 48109, USADepartment of Internal MedicineHarlem Hospital Center, Columbia University Medical Center, New York, New York 10037, USA
| | - Samantha Scanlon
- Department of Physiology and BiophysicsUniversity of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, USADepartment of Obstetrics and GynecologyUniversity of Michigan Health System, Ann Arbor, Michigan 48109, USADepartment of Internal MedicineHarlem Hospital Center, Columbia University Medical Center, New York, New York 10037, USA
| | - John Mark P Pabona
- Department of Physiology and BiophysicsUniversity of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, USADepartment of Obstetrics and GynecologyUniversity of Michigan Health System, Ann Arbor, Michigan 48109, USADepartment of Internal MedicineHarlem Hospital Center, Columbia University Medical Center, New York, New York 10037, USA
| |
Collapse
|
63
|
Ye H, Zhang J, Wang J, Gao Y, Du Y, Li C, Deng M, Guo J, Li Z. CD4 T-cell transcriptome analysis reveals aberrant regulation of STAT3 and Wnt signaling pathways in rheumatoid arthritis: evidence from a case-control study. Arthritis Res Ther 2015; 17:76. [PMID: 25880754 PMCID: PMC4392874 DOI: 10.1186/s13075-015-0590-9] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Accepted: 02/25/2015] [Indexed: 12/14/2022] Open
Abstract
INTRODUCTION Rheumatoid arthritis (RA) is a systemic autoimmune disease in which T cells play a pivotal role in the pathogenesis. Knowledge in terms of the CD4 T-cell transcriptome in RA is limited. The aim of this study was to examine the whole-genome transcription profile of CD4 T cells in RA by comparing patients with RA to healthy controls. METHODS Peripheral blood CD4 T cells were isolated from 53 RA patients with active disease and 45 healthy individuals; 13 cases and 10 controls were enrolled in microarray analysis. The remaining 40 cases and 35 controls were recruited as an independent cohort for the validation study. Bioinformatics was performed on Gene Ontology (GO), gene-gene interaction networks, and pathway analysis. The gene modules, by combining the results from GO, gene networks, and pathway analysis, were selected for further validation. RESULTS The CD4 T cells showed 1,496 differentially expressed (DE) genes in RA patients relative to healthy individuals. GO analysis revealed that the DE genes were enriched in immune response, T-cell response, apoptosis process, and Wnt receptor signaling. Pathway analysis also identified that 'Wnt signaling pathway' was differentially regulated between two groups (P=2.78×10(-10)). By gene-gene network analysis, we found that the DE genes were enriched in T-cell receptor (TCR), JAK-STAT signaling, and Wnt signaling pathway. By gene module analysis, we found that a number of DE genes overlapped in the three different analyses. In total, 23 genes were selected for further validation, and nine genes were confirmed. Of these, four genes (SOCS3, CBL, IFNAR1, and PIK3CA) were involved in STAT3 (signal transducer and activator of transcription 3) signaling, and three genes (CBL, KLF9, and CSNK2A1) were involved in the Wnt signaling pathway. Additionally, several zinc finger transcription factors (ZEB1, ZNF292, and ZNF644) were confirmed. CONCLUSIONS We report here the first case-control study of the CD4 T-cell transcriptome profile in RA. Our data provide evidence that CD4 T cells from patients with RA have abnormal functional networks in STAT3 signaling and Wnt signaling. Our results also suggest that the aberrant expression of several zinc finger transcription factors (ZEB1, ZNF292, and ZNF644) may be potential pathogenic factors for RA.
Collapse
Affiliation(s)
- Hua Ye
- Department of Rheumatology and Immunology, Peking University People's Hospital, 11 South Xizhimen Street, Beijing, 100044, China.
| | - Jing Zhang
- Department of Rheumatology and Immunology, Peking University People's Hospital, 11 South Xizhimen Street, Beijing, 100044, China.
| | - Jun Wang
- School of Mathematical Sciences, Center for Quantitative Biology, Peking University, 136 North Zhong-guan-cun Street, Beijing, 100871, China.
| | - Yanyan Gao
- Department of Rheumatology and Immunology, Peking University People's Hospital, 11 South Xizhimen Street, Beijing, 100044, China.
| | - Yan Du
- Department of Rheumatology and Immunology, Peking University People's Hospital, 11 South Xizhimen Street, Beijing, 100044, China.
| | - Chun Li
- Department of Rheumatology and Immunology, Peking University People's Hospital, 11 South Xizhimen Street, Beijing, 100044, China.
| | - Minghua Deng
- School of Mathematical Sciences, Center for Quantitative Biology, Peking University, 136 North Zhong-guan-cun Street, Beijing, 100871, China.
| | - Jianping Guo
- Department of Rheumatology and Immunology, Peking University People's Hospital, 11 South Xizhimen Street, Beijing, 100044, China.
| | - Zhanguo Li
- Department of Rheumatology and Immunology, Peking University People's Hospital, 11 South Xizhimen Street, Beijing, 100044, China.
| |
Collapse
|
64
|
KLF15 and PPARα Cooperate to Regulate Cardiomyocyte Lipid Gene Expression and Oxidation. PPAR Res 2015; 2015:201625. [PMID: 25815008 PMCID: PMC4357137 DOI: 10.1155/2015/201625] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Accepted: 02/19/2015] [Indexed: 12/13/2022] Open
Abstract
The metabolic myocardium is an omnivore and utilizes various carbon substrates to meet its energetic demand. While the adult heart preferentially consumes fatty acids (FAs) over carbohydrates, myocardial fuel plasticity is essential for organismal survival. This metabolic plasticity governing fuel utilization is under robust transcriptional control and studies over the past decade have illuminated members of the nuclear receptor family of factors (e.g., PPARα) as important regulators of myocardial lipid metabolism. However, given the complexity of myocardial metabolism in health and disease, it is likely that other molecular pathways are likely operative and elucidation of such pathways may provide the foundation for novel therapeutic approaches. We previously demonstrated that Kruppel-like factor 15 (KLF15) is an independent regulator of cardiac lipid metabolism thus raising the possibility that KLF15 and PPARα operate in a coordinated fashion to regulate myocardial gene expression requisite for lipid oxidation. In the current study, we show that KLF15 binds to, cooperates with, and is required for the induction of canonical PPARα-mediated gene expression and lipid oxidation in cardiomyocytes. As such, this study establishes a molecular module involving KLF15 and PPARα and provides fundamental insights into the molecular regulation of cardiac lipid metabolism.
Collapse
|
65
|
Lynch VJ, Nnamani MC, Kapusta A, Brayer K, Plaza SL, Mazur EC, Emera D, Sheikh SZ, Grützner F, Bauersachs S, Graf A, Young SL, Lieb JD, DeMayo FJ, Feschotte C, Wagner GP. Ancient transposable elements transformed the uterine regulatory landscape and transcriptome during the evolution of mammalian pregnancy. Cell Rep 2015; 10:551-61. [PMID: 25640180 PMCID: PMC4447085 DOI: 10.1016/j.celrep.2014.12.052] [Citation(s) in RCA: 181] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Revised: 11/14/2014] [Accepted: 12/22/2014] [Indexed: 11/24/2022] Open
Abstract
A major challenge in biology is determining how evolutionarily novel characters originate; however, mechanistic explanations for the origin of new characters are almost completely unknown. The evolution of pregnancy is an excellent system in which to study the origin of novelties because mammals preserve stages in the transition from egg laying to live birth. To determine the molecular bases of this transition, we characterized the pregnant/gravid uterine transcriptome from tetrapods to trace the evolutionary history of uterine gene expression. We show that thousands of genes evolved endometrial expression during the origins of mammalian pregnancy, including genes that mediate maternal-fetal communication and immunotolerance. Furthermore, thousands of cis-regulatory elements that mediate decidualization and cell-type identity in decidualized stromal cells are derived from ancient mammalian transposable elements (TEs). Our results indicate that one of the defining mammalian novelties evolved from DNA sequences derived from ancient mammalian TEs coopted into hormone-responsive regulatory elements distributed throughout the genome.
Collapse
Affiliation(s)
- Vincent J Lynch
- Department of Human Genetics, The University of Chicago, 920 East 58(th) Street, CLSC 319C, Chicago, IL 60637, USA.
| | - Mauris C Nnamani
- Yale Systems Biology Institute and Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT 06511, USA
| | - Aurélie Kapusta
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Kathryn Brayer
- Yale Systems Biology Institute and Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT 06511, USA
| | - Silvia L Plaza
- Yale Systems Biology Institute and Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT 06511, USA
| | - Erik C Mazur
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Deena Emera
- Yale Systems Biology Institute and Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT 06511, USA
| | - Shehzad Z Sheikh
- Division of Gastroenterology and Hepatology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Frank Grützner
- The Robinson Institute, School of Molecular and Biomedical Sciences, University of Adelaide, Adelaide, SA 5005, Australia
| | - Stefan Bauersachs
- Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, LMU Munich, Feodor Lynen Strasse 25, 81377 Munich, Germany
| | - Alexander Graf
- Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, LMU Munich, Feodor Lynen Strasse 25, 81377 Munich, Germany
| | - Steven L Young
- Department of Obstetrics and Gynecology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27705, USA
| | - Jason D Lieb
- Department of Human Genetics, The University of Chicago, 920 East 58(th) Street, CLSC 319C, Chicago, IL 60637, USA
| | - Francesco J DeMayo
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA; Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Cédric Feschotte
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Günter P Wagner
- Yale Systems Biology Institute and Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT 06511, USA
| |
Collapse
|
66
|
Wu Z, Yuan M, Li Y, Fu F, Ma W, Li H, Wang W, Wang S. Analysis of WNT4 polymorphism in Chinese Han women with endometriosis. Reprod Biomed Online 2015; 30:415-20. [PMID: 25682310 DOI: 10.1016/j.rbmo.2014.12.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Revised: 12/12/2014] [Accepted: 12/15/2014] [Indexed: 11/18/2022]
Abstract
Endometriosis is a complex disease that is influenced by genetic and environmental factors. In endometriosis, WNT4 plays a likely role owing to its biological functions. In this study, the TaqMan allelic discrimination technique was used to investigate the relationship between endometriosis and four single nucleotide polymorphisms in WNT4 (rs7521902 [A/C], rs16826658 [G/T], rs7515106 [C/T] and rs2235529 [A/G]) in Chinese Han women. A total of 646 patients with endometriosis and 766 normal controls were recurited. Regression analyses revealed that rs2235529 was a risk locus for endometriosis (P = 1.80E-03, OR, 95% CI = 1.311, 1.129 to 1.522), particularly in patients with stage III and IV disease. No significant association was found between endometriosis and rs7521902 (A/C), rs16826658 (G/T), or rs7515106 (C/T). For each of the four single nucleotide polymorphisms, no association was found between patients with endometriosis-related infertility or primary infertility and the controls. The results demonstrated that WNT4 rs2235529 is associated with endometriosis in Chinese Han women, which may result in aberrant expression of WNT4, leading to the pathogenesis of endometriosis.
Collapse
Affiliation(s)
- Zhangying Wu
- Cancer Biology Research Center, Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Street 1095#, Wuhan, Hubei 430030, PR China
| | - Ming Yuan
- Cancer Biology Research Center, Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Street 1095#, Wuhan, Hubei 430030, PR China
| | - Yan Li
- Cancer Biology Research Center, Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Street 1095#, Wuhan, Hubei 430030, PR China
| | - Fangfang Fu
- Cancer Biology Research Center, Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Street 1095#, Wuhan, Hubei 430030, PR China
| | - Wenqinq Ma
- Cancer Biology Research Center, Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Street 1095#, Wuhan, Hubei 430030, PR China
| | - Haixia Li
- Cancer Biology Research Center, Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Street 1095#, Wuhan, Hubei 430030, PR China
| | - Wenwen Wang
- Cancer Biology Research Center, Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Street 1095#, Wuhan, Hubei 430030, PR China.
| | - Shixuan Wang
- Cancer Biology Research Center, Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Street 1095#, Wuhan, Hubei 430030, PR China.
| |
Collapse
|
67
|
Pabona JMP, Zhang D, Ginsburg DS, Simmen FA, Simmen RCM. Prolonged pregnancy in women is associated with attenuated myometrial expression of progesterone receptor co-regulator Krüppel-like Factor 9. J Clin Endocrinol Metab 2015; 100:166-74. [PMID: 25313913 PMCID: PMC4283014 DOI: 10.1210/jc.2014-2846] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
CONTEXT Late-term pregnancy may lead to maternal and neonatal morbidity and mortality. Mice null for the progesterone receptor co-regulator Krüppel-like Factor 9 (KLF9) exhibit delayed parturition and increased incidence of neonatal deaths. OBJECTIVE Our aim is to evaluate the contribution of myometrial KLF9 to human parturition. DESIGN Myometrial biopsies were obtained from women with term (>37 to ≤41 wk) and late-term (>41 wk) pregnancies during cesarean delivery and assessed for gene and protein expression. Human myometrial cells transfected with nontargeting or KLF9 small interfering RNAs (siRNA) were treated with the progesterone antagonist RU486 and analyzed for pro-inflammatory chemokine/cytokine gene expression. SETTING The study took place in a University-affiliated tertiary care hospital and University research laboratory. PATIENTS Term patients (n = 8) were in spontaneous active labor whereas late-term patients (n = 5) were either in or were induced to active labor, prior to elective cesarean delivery. OUTCOME MEASURES Steroid hormone receptor, contractility, and inflammation-associated gene expression in myometrial biopsies and in siKLF9-transfected, RU486-treated human myometrial cells was associated with KLF9 expression levels. RESULTS Myometrium from women with late-term pregnancy showed lower KLF9, total PGR, and PGR-A/PGR-B isoform expression. Transcript levels of select chemokines/cytokines were up- (CSF3, IL1, IL12A, TGFB2) and down- (CCL3, CCL5, CXCL1, CXCL5, IL15) regulated in late-term relative to term myometrium. Knock-down of KLF9 expression in RU486-treated human myometrial cells modified the expression of PGR and labor-associated cytokines, relative to control siRNA-treated cells. CONCLUSIONS Myometrial KLF9 may contribute to the onset of human parturition through its regulation of PGR expression and inflammatory signaling networks.
Collapse
Affiliation(s)
- John Mark P Pabona
- Department of Physiology and Biophysics (J.M.P.P., F.A.S., R.C.M.S.), University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205; and Department of Obstetrics and Gynecology (D.Z., D.S.G.), Crozer-Chester Medical Center, Upland, Pennsylvania 19013
| | | | | | | | | |
Collapse
|
68
|
Comparison of the hemostatic effects of a levonorgestrel-releasing intrauterine system and leuprolide acetate in women with endometriosis: A randomized clinical trial. Thromb Res 2014; 134:1193-7. [DOI: 10.1016/j.thromres.2014.09.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Revised: 09/03/2014] [Accepted: 09/09/2014] [Indexed: 11/27/2022]
|
69
|
Matsuzaki S, Botchorishvili R, Pouly JL, Canis M. Targeting the Wnt/β-catenin pathway in endometriosis: a potentially effective approach for treatment and prevention. MOLECULAR AND CELLULAR THERAPIES 2014; 2:36. [PMID: 26056600 PMCID: PMC4451963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2014] [Accepted: 11/03/2014] [Indexed: 11/21/2023]
Abstract
Endometriosis is a chronic, estrogen-dependent disease associated with infertility and pelvic pain. Endometriosis is defined by the presence of extra-uterine endometrial tissue. It affects approximately 10% of reproductive-aged women. However, the underlying etiology, pathogenesis and pathophysiology remain to be fully elucidated. Knowledge of these factors is indispensable for the development of targeted therapies for prevention and treatment of endometriosis. Several studies, including those from our laboratory, have suggested that aberrant activation of the Wnt/β-catenin pathway may be involved in the pathophysiology of endometriosis. This is a review of the literature focused on the aberrant activation of the Wnt/β-catenin pathway in patients with endometriosis, and on how targeting the Wnt/targeting pathway may be a potentially effective approach for treating and/or preventing endometriosis.
Collapse
Affiliation(s)
- Sachiko Matsuzaki
- />CHU Clermont-Ferrand, CHU Estaing, Chirurgie Gynécologique, 1, Place Lucie et Raymond Aubrac, 63003 Clermont-Ferrand, France
- />Clermont Université, Université d’Auvergne, ISIT UMR6284, Clermont-Ferrand, France
- />CNRS, ISIT UMR6284, Clermont-Ferrand, France
| | - Revaz Botchorishvili
- />CHU Clermont-Ferrand, CHU Estaing, Chirurgie Gynécologique, 1, Place Lucie et Raymond Aubrac, 63003 Clermont-Ferrand, France
- />Clermont Université, Université d’Auvergne, ISIT UMR6284, Clermont-Ferrand, France
- />CNRS, ISIT UMR6284, Clermont-Ferrand, France
| | - Jean Luc Pouly
- />CHU Clermont-Ferrand, CHU Estaing, Chirurgie Gynécologique, 1, Place Lucie et Raymond Aubrac, 63003 Clermont-Ferrand, France
| | - Michel Canis
- />CHU Clermont-Ferrand, CHU Estaing, Chirurgie Gynécologique, 1, Place Lucie et Raymond Aubrac, 63003 Clermont-Ferrand, France
- />Clermont Université, Université d’Auvergne, ISIT UMR6284, Clermont-Ferrand, France
- />CNRS, ISIT UMR6284, Clermont-Ferrand, France
| |
Collapse
|
70
|
Matsuzaki S, Botchorishvili R, Pouly JL, Canis M. Targeting the Wnt/β-catenin pathway in endometriosis: a potentially effective approach for treatment and prevention. MOLECULAR AND CELLULAR THERAPIES 2014; 2:36. [PMID: 26056600 PMCID: PMC4451963 DOI: 10.1186/s40591-014-0036-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2014] [Accepted: 11/03/2014] [Indexed: 11/28/2022]
Abstract
Endometriosis is a chronic, estrogen-dependent disease associated with infertility and pelvic pain. Endometriosis is defined by the presence of extra-uterine endometrial tissue. It affects approximately 10% of reproductive-aged women. However, the underlying etiology, pathogenesis and pathophysiology remain to be fully elucidated. Knowledge of these factors is indispensable for the development of targeted therapies for prevention and treatment of endometriosis. Several studies, including those from our laboratory, have suggested that aberrant activation of the Wnt/β-catenin pathway may be involved in the pathophysiology of endometriosis. This is a review of the literature focused on the aberrant activation of the Wnt/β-catenin pathway in patients with endometriosis, and on how targeting the Wnt/targeting pathway may be a potentially effective approach for treating and/or preventing endometriosis.
Collapse
Affiliation(s)
- Sachiko Matsuzaki
- CHU Clermont-Ferrand, CHU Estaing, Chirurgie Gynécologique, 1, Place Lucie et Raymond Aubrac, 63003 Clermont-Ferrand, France ; Clermont Université, Université d'Auvergne, ISIT UMR6284, Clermont-Ferrand, France ; CNRS, ISIT UMR6284, Clermont-Ferrand, France
| | - Revaz Botchorishvili
- CHU Clermont-Ferrand, CHU Estaing, Chirurgie Gynécologique, 1, Place Lucie et Raymond Aubrac, 63003 Clermont-Ferrand, France ; Clermont Université, Université d'Auvergne, ISIT UMR6284, Clermont-Ferrand, France ; CNRS, ISIT UMR6284, Clermont-Ferrand, France
| | - Jean Luc Pouly
- CHU Clermont-Ferrand, CHU Estaing, Chirurgie Gynécologique, 1, Place Lucie et Raymond Aubrac, 63003 Clermont-Ferrand, France
| | - Michel Canis
- CHU Clermont-Ferrand, CHU Estaing, Chirurgie Gynécologique, 1, Place Lucie et Raymond Aubrac, 63003 Clermont-Ferrand, France ; Clermont Université, Université d'Auvergne, ISIT UMR6284, Clermont-Ferrand, France ; CNRS, ISIT UMR6284, Clermont-Ferrand, France
| |
Collapse
|
71
|
Sun J, Wang B, Liu Y, Zhang L, Ma A, Yang Z, Ji Y, Liu Y. Transcription factor KLF9 suppresses the growth of hepatocellular carcinoma cells in vivo and positively regulates p53 expression. Cancer Lett 2014; 355:25-33. [PMID: 25242357 DOI: 10.1016/j.canlet.2014.09.022] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Revised: 09/05/2014] [Accepted: 09/05/2014] [Indexed: 02/06/2023]
Abstract
Krüppel-like factor 9 (KLF9) is known to be a tumor suppressor gene in colorectal tumors and glioblastoma; however, the functional status and significance of KLF9 in hepatocellular carcinoma (HCC) is unclear. We report here that KLF9 is downregulated in HCC tissues. Restoration of KLF9 significantly inhibited growth and caused apoptosis in SK-Hep1 and HepG2 cells. We found that KLF9 positively regulated p53 levels by directly binding to GC boxes within the proximal region of the p53 promoter. Moreover, in the presence of cycloheximide, KLF9 significantly increased p53 stability in HCC cells. Remarkably, ectopic expression of KLF9 was sufficient to delay the onset of tumors and to promote regression of the established tumors in vivo, suggesting that KLF9 plays a critical role in HCC development and that pharmacological or genetic activation of KLF9 may have potential in the treatment of HCC.
Collapse
Affiliation(s)
- Jiabin Sun
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Boshi Wang
- State Key laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yun Liu
- State Key laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Li Zhang
- State Key laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Aihui Ma
- State Key laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Zhaojuan Yang
- State Key laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yuhua Ji
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yongzhong Liu
- State Key laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.
| |
Collapse
|
72
|
Feed-forward transcriptional programming by nuclear receptors: regulatory principles and therapeutic implications. Pharmacol Ther 2014; 145:85-91. [PMID: 25168919 DOI: 10.1016/j.pharmthera.2014.08.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Accepted: 08/19/2014] [Indexed: 01/22/2023]
Abstract
Nuclear receptors (NRs) are widely targeted to treat a range of human diseases. Feed-forward loops are an ancient mechanism through which single cell organisms organize transcriptional programming and modulate gene expression dynamics, but they have not been systematically studied as a regulatory paradigm for NR-mediated transcriptional responses. Here, we provide an overview of the basic properties of feed-forward loops as predicted by mathematical models and validated experimentally in single cell organisms. We review existing evidence implicating feed-forward loops as important in controlling clinically relevant transcriptional responses to estrogens, progestins, and glucocorticoids, among other NR ligands. We propose that feed-forward transcriptional circuits are a major mechanism through which NRs integrate signals, exert temporal control over gene regulation, and compartmentalize client transcriptomes into discrete subunits. Implications for the design and function of novel selective NR ligands are discussed.
Collapse
|
73
|
Pawar S, Hantak AM, Bagchi IC, Bagchi MK. Minireview: Steroid-regulated paracrine mechanisms controlling implantation. Mol Endocrinol 2014; 28:1408-22. [PMID: 25051170 DOI: 10.1210/me.2014-1074] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Implantation is an essential process during establishment of pregnancy in mammals. It is initiated with the attachment of the blastocyst to a receptive uterine epithelium followed by its invasion into the stromal tissue. These events are profoundly regulated by the steroid hormones 17β-estradiol and progesterone. During the past several years, mouse models harboring conditional gene knockout mutations have become powerful tools for determining the functional roles of cellular factors involved in various aspects of implantation biology. Studies using these genetic models as well as primary cultures of human endometrial cells have established that the estrogen receptor α, the progesterone receptor, and their downstream target genes critically regulate uterine growth and differentiation, which in turn control embryo-endometrial interactions during early pregnancy. These studies have uncovered a diverse array of molecular cues, which are produced under the influence of estrogen receptor α and progesterone receptor and exchanged between the epithelial and stromal compartments of the uterus during the progressive phases of implantation. These paracrine signals are critical for acquisition of uterine receptivity and functional interactions with the embryo. This review highlights recent work describing paracrine mechanisms that govern steroid-regulated uterine epithelial-stromal dialogue during implantation and their roles in fertility and disease.
Collapse
Affiliation(s)
- Sandeep Pawar
- Departments of Molecular and Integrative Physiology (S.P., A.M.H., M.K.B.) and Comparative Biosciences (I.C.B.), University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
| | | | | | | |
Collapse
|
74
|
Knoedler JR, Denver RJ. Krüppel-like factors are effectors of nuclear receptor signaling. Gen Comp Endocrinol 2014; 203:49-59. [PMID: 24642391 PMCID: PMC4339045 DOI: 10.1016/j.ygcen.2014.03.003] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2013] [Revised: 02/28/2014] [Accepted: 03/02/2014] [Indexed: 01/09/2023]
Abstract
Binding of steroid and thyroid hormones to their cognate nuclear receptors (NRs) impacts virtually every aspect of postembryonic development, physiology and behavior, and inappropriate signaling by NRs may contribute to disease. While NRs regulate genes by direct binding to hormone response elements in the genome, their actions may depend on the activity of other transcription factors (TFs) that may or may not bind DNA. The Krüppel-like family of transcription factors (KLF) is an evolutionarily conserved class of DNA-binding proteins that influence many aspects of development and physiology. Several members of this family have been shown to play diverse roles in NR signaling. For example, KLFs (1) act as accessory transcription factors for NR actions, (2) regulate expression of NR genes, and (3) as gene products of primary NR response genes function as key players in NR-dependent transcriptional networks. In mouse models, deletion of different KLFs leads to aberrant transcriptional and physiological responses to hormones, underscoring the importance of these proteins in the regulation of hormonal signaling. Understanding the functional relationships between NRs and KLFs will yield important insights into mechanisms of NR signaling. In this review we present a conceptual framework for understanding how KLFs participate in NR signaling, and we provide examples of how these proteins function to effect hormone action.
Collapse
Affiliation(s)
- Joseph R Knoedler
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI 48109-1048, USA
| | - Robert J Denver
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI 48109-1048, USA; Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109-1048, USA.
| |
Collapse
|
75
|
Kommagani R, Szwarc MM, Kovanci E, Creighton CJ, O'Malley BW, Demayo FJ, Lydon JP. A murine uterine transcriptome, responsive to steroid receptor coactivator-2, reveals transcription factor 23 as essential for decidualization of human endometrial stromal cells. Biol Reprod 2014; 90:75. [PMID: 24571987 DOI: 10.1095/biolreprod.114.117531] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Recent data from human and mouse studies strongly support an indispensable role for steroid receptor coactivator-2 (SRC-2)-a member of the p160/SRC family of coregulators-in progesterone-dependent endometrial stromal cell decidualization, an essential cellular transformation process that regulates invasion of the developing embryo into the maternal compartment. To identify the key progesterone-induced transcriptional changes that are dependent on SRC-2 and required for endometrial decidualization, we performed comparative genome-wide transcriptional profiling of endometrial tissue RNA from ovariectomized SRC-2(flox/flox) (SRC-2(f/f) [control]) and PR(cre/+)/SRC-2(flox/flox) (SRC-2(d/d) [SRC-2-depleted]) mice, acutely treated with vehicle or progesterone. Although data mining revealed that only a small subset of the total progesterone-dependent transcriptional changes is dependent on SRC-2 (∼13%), key genes previously reported to mediate progesterone-driven endometrial stromal cell decidualization are present within this subset. Along with providing a more detailed molecular portrait of the decidual transcriptional program governed by SRC-2, the degree of functional diversity of these progesterone mediators underscores the pleiotropic regulatory role of SRC-2 in this tissue. To showcase the utility of this powerful informational resource to uncover novel signaling paradigms, we stratified the total SRC-2-dependent subset of progesterone-induced transcriptional changes in terms of novel gene expression and identified transcription factor 23 (Tcf23), a basic-helix-loop-helix transcription factor, as a new progesterone-induced target gene that requires SRC-2 for full induction. Importantly, using primary human endometrial stromal cells in culture, we demonstrate that TCF23 function is essential for progesterone-dependent decidualization, providing crucial translational support for this transcription factor as a new decidual mediator of progesterone action.
Collapse
Affiliation(s)
- Ramakrishna Kommagani
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas
| | | | | | | | | | | | | |
Collapse
|
76
|
Affiliation(s)
- Jae-Wook Jeong
- Department of Obstetrics, Gynecology, and Reproductive Biology, Michigan State University, College of Human Medicine, Grand Rapids, Michigan 49503
| |
Collapse
|
77
|
Heard ME, Simmons CD, Simmen FA, Simmen RCM. Krüppel-like factor 9 deficiency in uterine endometrial cells promotes ectopic lesion establishment associated with activated notch and hedgehog signaling in a mouse model of endometriosis. Endocrinology 2014; 155:1532-46. [PMID: 24476135 PMCID: PMC3959595 DOI: 10.1210/en.2013-1947] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Endometriosis, a steroid hormone-dependent disease characterized by aberrant activation of estrogen receptor signaling and progesterone resistance, remains intractable because of the complexity of the pathways underlying its manifestation. We previously showed that eutopic endometria of women with endometriosis exhibit lower expression of Krüppel-like factor 9 (KLF9), a progesterone receptor coregulator in the uterus, relative to that of women without disease. Here we examined whether loss of endometrial KLF9 expression causes ectopic lesion establishment using syngeneic wild-type (WT) mice as recipients of endometrial fragments from WT and Klf9 null donors. We found significantly higher incidence of ectopic lesions with Klf9 null than WT endometria 8 weeks after tissue injection into the intraperitoneal cavity. The increased incidence of lesion establishment with Klf9 null endometria was associated with a higher expression ratio of estrogen receptor 2 isoform relative to that of estrogen receptor 1 and attenuated progesterone receptor levels in endometriotic stromal cells. PCR array analyses of Notch and Hedgehog signaling components in ectopic lesions demonstrated up-regulated expression of select genes (Jag 2, Shh, Gli1, and Stil 1) in Klf9 null lesions relative to that in WT lesions. Immunohistochemical analyses showed increased levels of Notch intracellular domain and Sonic Hedgehog proteins in Klf9 null lesions relative to that in WT lesions, confirming pathway activation. WT recipients with Klf9 null lesions displayed lower systemic levels of TNFα and IL-6 and higher soluble TNF receptor 1 than corresponding recipients with WT lesions. Our results suggest that endometrial KLF9 deficiency promotes endometriotic lesion establishment by the coincident deregulation of Notch-, Hedgehog-, and steroid receptor-regulated pathways.
Collapse
Affiliation(s)
- Melissa E Heard
- Department of Physiology and Biophysics, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205
| | | | | | | |
Collapse
|
78
|
Kobayashi H, Iwai K, Niiro E, Morioka S, Yamada Y. Fetal programming theory: Implication for the understanding of endometriosis. Hum Immunol 2014; 75:208-17. [DOI: 10.1016/j.humimm.2013.12.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Revised: 11/05/2013] [Accepted: 12/17/2013] [Indexed: 10/25/2022]
|
79
|
Li X, Large MJ, Creighton CJ, Lanz RB, Jeong JW, Young SL, Lessey BA, Palomino WA, Tsai SY, Demayo FJ. COUP-TFII regulates human endometrial stromal genes involved in inflammation. Mol Endocrinol 2013; 27:2041-54. [PMID: 24176914 DOI: 10.1210/me.2013-1191] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Chicken ovalbumin upstream promoter-transcription factor II (COUP-TFII; NR2F2) is an orphan nuclear receptor involved in cell-fate specification, organogenesis, angiogenesis, and metabolism. Ablation of COUP-TFII in the mouse uterus causes infertility due to defects in embryo attachment and impaired uterine stromal cell decidualization. Although the function of COUP-TFII in uterine decidualization has been described in mice, its role in the human uterus remains unknown. We observed that, as in mice, COUP-TFII is robustly expressed in the endometrial stroma of healthy women, and its expression is reduced in the ectopic lesions of women with endometriosis. To interrogate the role of COUP-TFII in human endometrial function, we used a small interfering RNA-mediated loss of function approach in primary human endometrial stromal cells. Attenuation of COUP-TFII expression did not completely block decidualization; rather it had a selective effect on gene expression. To better elucidate the role of COUP-TFII in endometrial stroma cell biology, the COUP-TFII transcriptome was defined by pairing microarray comparison with chromatin immunoprecipitation followed by deep sequencing. Gene ontology analysis demonstrates that COUP-TFII regulates a subset of genes in endometrial stroma cell decidualization such as those involved in cell adhesion, angiogenesis, and inflammation. Importantly this analysis shows that COUP-TFII plays a role in controlling the expression of inflammatory cytokines. The determination that COUP-TFII plays a role in inflammation may add insight into the role of COUP-TFII in embryo implantation and in endometrial diseases such as endometriosis.
Collapse
Affiliation(s)
- Xilong Li
- Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
80
|
Rahal OM, Machado HL, Montales MTE, Pabona JMP, Heard ME, Nagarajan S, Simmen RCM. Dietary suppression of the mammary CD29(hi)CD24(+) epithelial subpopulation and its cytokine/chemokine transcriptional signatures modifies mammary tumor risk in MMTV-Wnt1 transgenic mice. Stem Cell Res 2013; 11:1149-62. [PMID: 24012543 DOI: 10.1016/j.scr.2013.08.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Revised: 07/24/2013] [Accepted: 08/05/2013] [Indexed: 12/14/2022] Open
Abstract
Diet is highly linked to breast cancer risk, yet little is known about its influence on mammary epithelial populations with distinct regenerative and hence, tumorigenic potential. To investigate this, we evaluated the relative frequency of lineage-negative CD29(hi)CD24(+), CD29(lo)CD24(+) and CD29(hi)Thy1(+)CD24(+) epithelial subpopulations in pre-neoplastic mammary tissue of adult virgin MMTV-Wnt1-transgenic mice fed either control (Casein) or soy-based diets. We found that mammary epithelial cells exposed to soy diet exhibited a lower percentage of CD29(hi)CD24(+)Lin(-) population, decreased ability to form mammospheres in culture, lower mammary outgrowth potential when transplanted into cleared fat pads, and reduced appearance of tumor-initiating CD29(hi)Thy1(+)CD24(+) cells, than in those of control diet-fed mice. Diet had no comparable influence on the percentage of the CD29(lo)CD24(+)Lin(-) population. Global gene expression profiling of the CD29(hi)CD24(+)subpopulation revealed markedly altered expression of genes important to inflammation, cytokine and chemokine signaling, and proliferation. Soy-fed relative to casein-fed mice showed lower mammary tumor incidence, shorter tumor latency, and reduced systemic levels of estradiol 17-β, progesterone and interleukin-6. Our results provide evidence for the functional impact of diet on specific epithelial subpopulations that may relate to breast cancer risk and suggest that diet-regulated cues can be further explored for breast cancer risk assessment and prevention.
Collapse
Affiliation(s)
- Omar M Rahal
- Arkansas Children's Nutrition Center, University of Arkansas for Medical Sciences, Little Rock, AR, USA; Interdisciplinary Biomedical Sciences Program, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | | | | | | | | | | | | |
Collapse
|
81
|
|
82
|
Oestrogen and progesterone action on endometrium: a translational approach to understanding endometrial receptivity. Reprod Biomed Online 2013; 27:497-505. [PMID: 23933037 DOI: 10.1016/j.rbmo.2013.06.010] [Citation(s) in RCA: 105] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2013] [Revised: 05/08/2013] [Accepted: 06/19/2013] [Indexed: 01/27/2023]
Abstract
Embryo attachment and implantation is critical to successful reproduction of all eutherian mammals, including humans; a better understanding of these processes could lead to improved infertility treatments and novel contraceptive methods. Experience with assisted reproduction, especially oocyte donation cycles, has established that despite the diverse set of hormones produced by the ovary in a cycle-dependent fashion, the sequential actions of only two of them, oestrogen and progesterone, are sufficient to prepare a highly receptive endometrium in humans. Further investigation on the endometrial actions of these two hormones is currently providing significant insight into the implantation process in women, strongly suggesting that an abnormal response to progesterone underlies infertility in some patients.
Collapse
|
83
|
Interplay between Misplaced Müllerian-Derived Stem Cells and Peritoneal Immune Dysregulation in the Pathogenesis of Endometriosis. Obstet Gynecol Int 2013; 2013:527041. [PMID: 23843796 PMCID: PMC3697788 DOI: 10.1155/2013/527041] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2013] [Revised: 05/19/2013] [Accepted: 05/28/2013] [Indexed: 12/26/2022] Open
Abstract
In the genetic regulation of Müllerian structures development, a key role is played by Hoxa and Wnt clusters, because they lead the transcription of different genes according to the different phases of the organogenesis, addressing correctly cell-to-cell interactions, allowing, finally, the physiologic morphogenesis. Accumulating evidence is suggesting that dysregulation of Wnt and/or Hox genes may affect cell migration during organogenesis and differentiation of Müllerian structures of the female reproductive tract, with possible dislocation and dissemination of primordial endometrial stem cells in ectopic regions, which have high plasticity to differentiation. We hypothesize that during postpubertal age, under the influence of different stimuli, these misplaced and quiescent ectopic endometrial cells could acquire new phenotype, biological functions, and immunogenicity. So, these kinds of cells may differentiate, specializing in epithelium, glands, and stroma to form a functional ectopic endometrial tissue. This may provoke a breakdown in the peritoneal cavity homeostasis, with the consequent processes of immune alteration, documented by peripheral mononuclear cells recruitment and secretion of inflammatory cytokines in early phases and of angiogenic and fibrogenic cytokines in the late stages of the disease.
Collapse
|
84
|
Zhang S, Lin H, Kong S, Wang S, Wang H, Wang H, Armant DR. Physiological and molecular determinants of embryo implantation. Mol Aspects Med 2013; 34:939-80. [PMID: 23290997 DOI: 10.1016/j.mam.2012.12.011] [Citation(s) in RCA: 356] [Impact Index Per Article: 32.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2012] [Revised: 12/25/2012] [Accepted: 12/26/2012] [Indexed: 01/19/2023]
Abstract
Embryo implantation involves the intimate interaction between an implantation-competent blastocyst and a receptive uterus, which occurs in a limited time period known as the window of implantation. Emerging evidence shows that defects originating during embryo implantation induce ripple effects with adverse consequences on later gestation events, highlighting the significance of this event for pregnancy success. Although a multitude of cellular events and molecular pathways involved in embryo-uterine crosstalk during implantation have been identified through gene expression studies and genetically engineered mouse models, a comprehensive understanding of the nature of embryo implantation is still missing. This review focuses on recent progress with particular attention to physiological and molecular determinants of blastocyst activation, uterine receptivity, blastocyst attachment and uterine decidualization. A better understanding of underlying mechanisms governing embryo implantation should generate new strategies to rectify implantation failure and improve pregnancy rates in women.
Collapse
Affiliation(s)
- Shuang Zhang
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, PR China; Graduate School of the Chinese Academy of Sciences, Beijing 100039, PR China
| | | | | | | | | | | | | |
Collapse
|
85
|
Heard ME, Pabona JMP, Clayberger C, Krensky AM, Simmen FA, Simmen RCM. The reproductive phenotype of mice null for transcription factor Krüppel-like factor 13 suggests compensatory function of family member Krüppel-like factor 9 in the peri-implantation uterus. Biol Reprod 2012; 87:115. [PMID: 22993382 DOI: 10.1095/biolreprod.112.102251] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The ovarian hormones estrogen and progesterone promote uterine receptivity and successful pregnancy through their cognate receptors functioning in concert with context-dependent nuclear coregulators. Previously, we showed that the transcription factor Krüppel-like factor (KLF) 9 is a progesterone receptor (PGR) coactivator in the uterus and that mice null for Klf9 exhibit subfertility and reduced progesterone sensitivity. The highly related family member KLF13 displays increased expression in uteri of pregnant and nonpregnant Klf9 null mice and similarly regulates PGR-mediated transactivation in endometrial stromal cells. However, a uterine phenotype with loss of Klf13 has not been reported. In the present study, we demonstrate that Klf13 deficiency in mice did not compromise female fertility and pregnancy outcome. Klf13 null females had litter sizes, numbers of implanting embryos, uterine morphology, and ovarian steroid hormone production comparable to those of wild-type (WT) counterparts. Further, pregnant WT and Klf13 null females at Day Postcoitum (DPC) 3.5 had similar uterine Pgr, estrogen receptor, and Wnt-signaling component transcript levels. Nuclear levels of KLF9 were higher in Klf13 null than in WT uteri at DPC 3.5, albeit whole-tissue KLF9 protein and transcript levels did not differ between genotypes. The lack of a similar induction of nuclear KLF9 levels in uteri of virgin Klf13((-/-)) mice relative to WT uteri was associated with lower stromal PGR expression. In differentiating human endometrial stromal cells, coincident KLF9/KLF13 knockdown by small interfering RNA targeting reduced decidualization-associated PRL expression, whereas KLF9 and KLF13 knockdowns alone reduced transcript levels of WNT4 and BMP2, respectively. Results suggest that KLF9 and KLF13 functionally compensate in peri-implantation uterus for pregnancy success.
Collapse
Affiliation(s)
- Melissa E Heard
- Department of Physiology & Biophysics, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | | | | | | | | | | |
Collapse
|
86
|
Zhang S, Kong S, Lu J, Wang Q, Chen Y, Wang W, Wang B, Wang H. Deciphering the molecular basis of uterine receptivity. Mol Reprod Dev 2012; 80:8-21. [PMID: 23070972 DOI: 10.1002/mrd.22118] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2012] [Accepted: 09/26/2012] [Indexed: 11/11/2022]
Abstract
Uterine receptivity is defined as a limited time period during which the uterus enters into an appropriately differentiated state that is ready for the initiation of implantation by competent blastocysts. Although various cellular aspects and molecular pathways involved in uterine receptivity have been identified by gene expression studies and genetically engineered mouse models, a comprehensive understanding of the window of uterine receptivity is still missing. This review focuses on the recent progress in this area, with particular focus on the molecular basis of stromal-epithelial dialogue and crosstalk between the blastocyst and the uterus during implantation. A better understanding of the underlying mechanisms governing the window of uterine receptivity is hoped to generate new strategies to correct implantation failure and to improve pregnancy rates in women.
Collapse
Affiliation(s)
- Shuang Zhang
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, PR China
| | | | | | | | | | | | | | | |
Collapse
|
87
|
Brockman R. Medication and transference in psychoanalytically oriented psychotherapy of the borderline patient. Psychiatr Clin North Am 1990; 28:1552-68. [PMID: 2352891 DOI: 10.1093/humrep/det050] [Citation(s) in RCA: 336] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The regressive potential of the borderline patient has been recognized ever since the term was first introduced by Adolph Stern in 1938. He believed these patients were "too ill for classical psychoanalysis," and indeed almost all who have written on this subject have supported Stern's view, recognizing the severe regressive potential of a borderline patient in unmodified psychoanalysis. Taking medication is not generally considered to be a particularly regressive experience. It should be remembered, however, that for many patients and especially for patients with borderline personality disorder, medication can be both an overvalued hope and a terrifying assault. Thus, although the pharmacologic action of the medication may help to integrate the patient's ego functioning, the very taking of the medication may at the same time initiate subtle and unanticipated regressive drives. Two forces are then set in motion with potentially different effects. In a treatment where the same physician is prescribing medication and doing psychotherapy, the common pathway of these forces is transference. Thus, pharmacologic action may modify transference. And more importantly, because it is less easily recognized, transference issues may affect the patient's subjective experience of the action of the medication. For this reason, it is particularly important that not only diagnostic issues but also transference issues be understood before medication is prescribed.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- R Brockman
- Columbia University College of Physicians and Surgeons, New York, New York
| |
Collapse
|