51
|
Xiao CW, Mei J, Huang W, Wood C, L'abbé MR, Gilani GS, Cooke GM, Curran IH. Dietary soy protein isolate modifies hepatic retinoic acid receptor-beta proteins and inhibits their DNA binding activity in rats. J Nutr 2007; 137:1-6. [PMID: 17182792 DOI: 10.1093/jn/137.1.1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Retinoic acid receptors (RAR) belong to the same nuclear receptor superfamily as thyroid hormone receptors (TR) that were previously shown to be modulated by dietary soy protein isolate (SPI). This study has examined the effect of dietary SPI and isoflavones (ISF) on hepatic RAR gene expression and DNA binding activity. In Expt. 1, Sprague-Dawley rats were fed diets containing 20% casein or 20% alcohol-washed SPI in the absence or presence of increasing amounts of ISF (5-1250 mg/kg diet) for 70, 190, or 310 d. In Expt. 2, weanling Sprague-Dawley rats were fed diets containing 20% casein with or without supplemental ISF (50 mg/kg diet) or increasing amounts of alcohol-washed SPI (5, 10, and 20%) for 90 d. Intake of soy proteins significantly elevated hepatic RARbeta2 protein content dose-dependently compared with a casein diet, whereas supplemental ISF had no consistent effect. Neither RARbeta protein in the other tissues measured nor the other RAR (RARalpha and RARgamma) in the liver were affected by dietary SPI, indicating a tissue and isoform-specific effect of SPI. RARbeta2 mRNA abundances were not different between dietary groups except that its expression was markedly suppressed in male rats fed SPI for 310 d. DNA binding activity of nuclear RARbeta was significantly attenuated and the isoelectric points of RARbeta2 were shifted by dietary SPI. Overall, these results show for the first time, to our knowledge, that dietary soy proteins affect hepatic RARbeta2 protein content and RARbeta DNA binding activity, which may contribute to the suppression of retinoid-induced hypertriglyceridemia by SPI as reported.
Collapse
Affiliation(s)
- Chao Wu Xiao
- Nutrition Research Division, Food Directorate, Health Products and Food Branch, Health Canada, 2203C Banting Research Centre, Ottawa, ON, Canada K1A 0L2.
| | | | | | | | | | | | | | | |
Collapse
|
52
|
Vernet N, Dennefeld C, Guillou F, Chambon P, Ghyselinck NB, Mark M. Prepubertal testis development relies on retinoic acid but not rexinoid receptors in Sertoli cells. EMBO J 2006; 25:5816-25. [PMID: 17124491 PMCID: PMC1698894 DOI: 10.1038/sj.emboj.7601447] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2006] [Accepted: 10/24/2006] [Indexed: 01/15/2023] Open
Abstract
Sertoli cells (SC) are instrumental to stem spermatogonia differentiation, a process that critically depends on retinoic acid (RA). We show here that selective ablation of RA receptor alpha (RARalpha) gene in mouse SC, singly (Rara(Ser-/-) mutation) or in combination with RARbeta and RARgamma genes (Rara/b/g(Ser-/-) mutation), abolishes cyclical gene expression in these cells. It additionally induces testis degeneration and delays spermatogonial expression of Stra8, two hallmarks of RA deficiency. As identical defects are generated upon inactivation of RARalpha in the whole organism, our data demonstrate that all the functions exerted by RARalpha in male reproduction are Sertoli cell-autonomous. They further indicate that RARalpha is a master regulator of the cyclical activity of SC and controls paracrine pathways required for spermatogonia differentiation and germ cell survival. Most importantly, we show that the ablation of all RXR (alpha, beta and gamma isotypes) in SC does not recapitulate the phenotype generated upon ablation of all three RARs, thereby providing the first evidence that RARs exert functions in vivo independently of RXRs.
Collapse
Affiliation(s)
- Nadège Vernet
- IGBMC (Institut de Génétique et de Biologie Moléculaire et Cellulaire, INSERM, U596, Illkirch, France; CNRS, UMR7104, Illkirch, France; Faculté de Médecine, Strasbourg, France
| | - Christine Dennefeld
- IGBMC (Institut de Génétique et de Biologie Moléculaire et Cellulaire, INSERM, U596, Illkirch, France; CNRS, UMR7104, Illkirch, France; Faculté de Médecine, Strasbourg, France
| | | | - Pierre Chambon
- IGBMC (Institut de Génétique et de Biologie Moléculaire et Cellulaire, INSERM, U596, Illkirch, France; CNRS, UMR7104, Illkirch, France; Faculté de Médecine, Strasbourg, France
| | - Norbert B Ghyselinck
- IGBMC (Institut de Génétique et de Biologie Moléculaire et Cellulaire, INSERM, U596, Illkirch, France; CNRS, UMR7104, Illkirch, France; Faculté de Médecine, Strasbourg, France
| | - Manuel Mark
- IGBMC (Institut de Génétique et de Biologie Moléculaire et Cellulaire, INSERM, U596, Illkirch, France; CNRS, UMR7104, Illkirch, France; Faculté de Médecine, Strasbourg, France
| |
Collapse
|
53
|
Winter H, Braig C, Zimmermann U, Geisler HS, Fränzer JT, Weber T, Ley M, Engel J, Knirsch M, Bauer K, Christ S, Walsh EJ, McGee J, Köpschall I, Rohbock K, Knipper M. Thyroid hormone receptors TRalpha1 and TRbeta differentially regulate gene expression of Kcnq4 and prestin during final differentiation of outer hair cells. J Cell Sci 2006; 119:2975-84. [PMID: 16803873 DOI: 10.1242/jcs.03013] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Thyroid hormone (TH or T3) and TH-receptor beta (TRbeta) have been reported to be relevant for cochlear development and hearing function. Mutations in the TRbeta gene result in deafness associated with resistance to TH syndrome. The effect of TRalpha1 on neither hearing function nor cochlear T3 target genes has been described to date. It is also uncertain whether TRalpha1 and TRbeta can act simultaneously on different target genes within a single cell. We focused on two concomitantly expressed outer hair cell genes, the potassium channel Kcnq4 and the motor protein prestin Slc26a5. In outer hair cells, TH enhanced the expression of the prestin gene through TRbeta. Simultaneously Kcnq4 expression was activated in the same cells by derepression of TRalpha1 aporeceptors mediated by an identified THresponse element, which modulates KCNQ4 promoter activity. We show that T3 target genes can differ in their sensitivity to TH receptors having the ligand either bound (holoreceptors) or not bound (aporeceptors) within single cells, and suggest a role for TRalpha1 in final cell differentiation.
Collapse
Affiliation(s)
- Harald Winter
- Department of Otolaryngology, Tübingen Hearing Research Centre (THRC), Laboratory of Molecular Neurobiology, University of Tübingen, Elfriede-Aulhorn-Strasse 5, 72076 Tübingen, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
54
|
Chan IH, Privalsky ML. Thyroid hormone receptors mutated in liver cancer function as distorted antimorphs. Oncogene 2006; 25:3576-88. [PMID: 16434963 PMCID: PMC2701908 DOI: 10.1038/sj.onc.1209389] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Aberrant thyroid hormone receptors (TRs) are found in over 70% of the human hepatocellular carcinomas (HCCs) analysed. To better understand the role(s) of these TR mutants in this neoplasia, we analysed a panel of HCC mutant receptors for their molecular properties. Virtually all HCC-associated TR mutants tested retained the ability to repress target genes in the absence of T3, yet were impaired in T3-driven gene activation and functioned as dominant-negative inhibitors of wild-type TR activity. Intriguingly, the HCC TRalpha1 mutants exerted dominant-negative interference at all T3 concentrations tested, whereas the HCC TRbeta1 mutants were dominant-negatives only at low and intermediate T3 concentrations, reverting to transcriptional activators at higher hormone levels. The relative affinity for the SMRT versus N-CoR corepressors was detectably altered for several of the HCC mutant TRs, suggesting changes in corepressor preference and recruitment compared to wild type. Several of the TRalpha HCC mutations also altered the DNA recognition properties of the encoded receptors, indicating that these HCC TR mutants may regulate a distinct set of target genes from those regulated by wild-type TRs. Finally, whereas wild-type TRs interfere with c-Jun/AP-1 function in a T3-dependent fashion and suppress anchorage-independent growth when ectopically expressed in HepG2 cells, at least certain of the HCC mutants did not exert these inhibitory properties. These alterations in transcriptional regulation and DNA recognition appear likely to contribute to oncogenesis by reprogramming the differentiation and proliferative properties of the hepatocytes in which the mutant TRs are expressed.
Collapse
Affiliation(s)
- I H Chan
- Section of Microbiology, University of California at Davis, 95616, USA
| | | |
Collapse
|
55
|
Montedonico S, Nakazawa N, Puri P. Retinoic acid rescues lung hypoplasia in nitrofen-induced hypoplastic foetal rat lung explants. Pediatr Surg Int 2006; 22:2-8. [PMID: 16284794 DOI: 10.1007/s00383-005-1571-x] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
There is increasing evidence to suggest that the retinoid pathway is involved in the pathogenesis of congenital diaphragmatic hernia (CDH). We hypothesised that retinoids are involved in the pathogenesis of associated pulmonary hypoplasia in CDH and therefore designed this study to investigate the effects of retinoid acid on nitrofen-induced hypoplastic lungs. Pregnant rats were exposed to either olive oil or 100 mg nitrofen on day 9.5 of gestation. Foetal lungs were harvested on embryonic day 13.5 and were cultured for 96 h with or without exogenous retinoic acid (RA) (1 muM) added daily to the culture medium. Lungs were divided into four study groups: control (n=31); control + RA (n=19); nitrofen (n=19); and nitrofen + RA (n=12). Lung growth was assessed in each group by measuring branching morphogenesis, total DNA content and the proportion of proliferating cells stained by immunohistochemistry. One-way ANOVA test was used for statistical analysis. Retinoic acid significantly increased the growth of nitrofen-induced hypoplastic lungs, whilst growth of control lungs did not change. The number of lung buds and lung area of nitrofen-exposed hypoplastic lungs after 96 h of culture significantly increased after the addition of RA compared to the non-treated hypoplastic lungs (25.75+/-6.47 vs 15.11+/-3.29 and 0.98+/-0.18 mm(2) vs 0.65+/-0.13 mm(2), respectively; P<0.0001). Lung perimeter was also higher when RA was added to hypoplastic lungs compared to the non-treated ones, although it did not reach significance (12.51+/-2.53 mm vs 11.19+/-2.56 mm; P=0.17). Conversely, the addition of RA to control lungs did not affect the number of lung buds, lung area or lung perimeter after 96 h in culture compared to the non-treated ones (31.28+/-4.66 vs 31.81+/-6.67; 1.29+/-0.18(2) vs 1.29+/-0.23 mm(2) and 18.47+/-3.47 mm vs 17.89+/-2.94 mm, respectively; P=NS). Retinoic acid also increased the total DNA content and the proportion of proliferating cells in hypoplastic lungs compared to the non-treated ones (2.59+/-0.58 mug vs 1.96+/-0.31 mug and 57.89+/-9.46% vs 36.76+/-8.15%, respectively; P<0.001). The addition of RA did not affect either total DNA content or the proportion of proliferating cells in control lungs compared to the non-treated ones (4.04+/-0.64 mug vs 3.79+/-0.85 mug and 58.67+/-11.23% vs 56.03+/-10.36%, respectively; P=NS). This study demonstrates for the first time that RA rescues lung hypoplasia in nitrofen-induced hypoplastic lungs. These results suggest that retinoid pathway may be involved in the pathogenesis of associated pulmonary hypoplasia in CDH.
Collapse
Affiliation(s)
- Sandra Montedonico
- Children's Research Centre, Our Lady's Hospital for Sick Children, Dublin, Ireland
| | | | | |
Collapse
|
56
|
Gallot D, Marceau G, Coste K, Hadden H, Robert-Gnansia E, Laurichesse H, Déchelotte PJ, Labbé A, Dastugue B, Lémery D, Sapin V. Congenital diaphragmatic hernia: a retinoid-signaling pathway disruption during lung development? ACTA ACUST UNITED AC 2005; 73:523-31. [PMID: 15981190 DOI: 10.1002/bdra.20151] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Congenital diaphragmatic hernia (CDH) usually occurs sporadically. The prognosis remains poor, with a 50% perinatal mortality rate. Most deaths result from hypoxemia due to lung hypoplasia and abnormal development of pulmonary vasculature that results in persistent pulmonary hypertension. Our current understanding of the pathogenesis of CDH is based on an assumption linking herniation of abdominal viscera into the thorax with compression of the developing lung. Pulmonary hypoplasia, however, can also result from reduced distension of the developing lung secondary to impaired fetal breathing movements. Moreover, a nitrofen-induced CDH model shows that lung hypoplasia precedes the diaphragmatic defect, leading to a "dual-hit hypothesis." Recent data reveal the role of a retinoid-signaling pathway disruption in the pathogenesis of CDH. We describe the clinical and epidemiological aspects of human CDH, the metabolic and molecular aspects of the retinoid-signaling pathway, and the implications of retinoids in the development of the diaphragm and the lung. Finally, we highlight the existing links between CDH and disruption of the retinoid-signaling pathway, which may suggest an eventual use of retinoids in the treatment of CDH.
Collapse
Affiliation(s)
- Denis Gallot
- Maternal Fetal Medicine Unit, Maternité Hôtel-Dieu, Centre Hospitalier Universitaire, Clermont-Ferrand, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
57
|
Abstract
The v-Erb A oncoprotein of avian erythroblastosis virus is derived from c-Erb A, a hormone-activated transcription factor. Notably, v-Erb A has sustained multiple mutations relative to c-Erb A and functions as a constitutive transcriptional repressor. We report here an analysis of the contributions of these different mutations to v-Erb A function. Our experiments demonstrate that two amino-acid differences between v-Erb A and c-Erb A, located in the 'I-box,' alter the dimerization properties of the viral protein, resulting in more stable homodimer formation, increased corepressor binding, and increased target gene repression. An additional amino-acid difference between v- and c-Erb A, located in helix 3 of the hormone binding domain, renders corepressor binding by the viral protein more resistant to release by thyroid hormone. Finally, we report that a C-terminal truncation in v-Erb A not only inhibits exchange of corepressor and coactivator, as previously noted, but also permits v-Erb A to recruit both SMRT and N-CoR corepressors, whereas c-Erb A is selective for N-CoR. The latter two mutations in v-Erb A also impair its ability to suppress c-Jun function in response to T3 hormone. We propose that the acquisition of oncogenic potential by the v-Erb A protein was a multistep process involving a series of mutations that alter the transcriptional repressive properties of the viral protein through multiple mechanisms.
Collapse
Affiliation(s)
- Sangho Lee
- Section of Microbiology, Division of Biological Sciences, University of California at Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Martin L Privalsky
- Section of Microbiology, Division of Biological Sciences, University of California at Davis, One Shields Avenue, Davis, CA 95616, USA
- Correspondence: ML Privalsky; E-mail:
| |
Collapse
|
58
|
Yu Z, Han J, Lin J, Xiao Y, Zhang X, Li Y. Apoptosis Induced by atRA in MEPM Cells Is Mediated through Activation of Caspase and RAR. Toxicol Sci 2005; 89:504-9. [PMID: 16291826 DOI: 10.1093/toxsci/kfj046] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
We have previously demonstrated that all-trans retinoic (atRA) induced growth inhibition and apoptosis in mouse embryonic palate mesenchymal cells (MEPM). In the present study, we investigated the molecular mechanisms of atRA-induced apoptosis and its putative action pathway. atRA-induced apoptosis is associated with activation of the initiator caspase-9 and the effector caspase-3, but not of the effector caspase-8. A broad caspase inhibitor (z-VAD-fmk), caspase-9 inhibitor z-LEHD-fmk and caspase-3 inhibitor (z-DEVD-fmk) blocked atRA-induced DNA fragmentation and sub-G1 fraction, but not caspase-8 inhibitor z-IETD-fmk. We further showed that atRA dose-dependently promoted mRNA expression of retinoic acid receptor beta (RAR-beta) and gamma. A weaker increase in RAR-alpha mRNA was seen only at the highest concentration of atRA (5 muM). The pan RAR antagonist, BMS493, completely abrogated atRA-induced DNA fragmentation, Sub-G1 fraction, and caspase-3 activation. Taken together, these findings show that caspase-mediated induction of apoptosis by atRA is an RAR-dependent signaling pathway.
Collapse
Affiliation(s)
- Zengli Yu
- School of Stomatology, Peking University Health Science Center, Beijing, China
| | | | | | | | | | | |
Collapse
|
59
|
Stogios PJ, Downs GS, Jauhal JJS, Nandra SK, Privé GG. Sequence and structural analysis of BTB domain proteins. Genome Biol 2005; 6:R82. [PMID: 16207353 PMCID: PMC1257465 DOI: 10.1186/gb-2005-6-10-r82] [Citation(s) in RCA: 525] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2005] [Revised: 06/20/2005] [Accepted: 08/03/2005] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND The BTB domain (also known as the POZ domain) is a versatile protein-protein interaction motif that participates in a wide range of cellular functions, including transcriptional regulation, cytoskeleton dynamics, ion channel assembly and gating, and targeting proteins for ubiquitination. Several BTB domain structures have been experimentally determined, revealing a highly conserved core structure. RESULTS We surveyed the protein architecture, genomic distribution and sequence conservation of BTB domain proteins in 17 fully sequenced eukaryotes. The BTB domain is typically found as a single copy in proteins that contain only one or two other types of domain, and this defines the BTB-zinc finger (BTB-ZF), BTB-BACK-kelch (BBK), voltage-gated potassium channel T1 (T1-Kv), MATH-BTB, BTB-NPH3 and BTB-BACK-PHR (BBP) families of proteins, among others. In contrast, the Skp1 and ElonginC proteins consist almost exclusively of the core BTB fold. There are numerous lineage-specific expansions of BTB proteins, as seen by the relatively large number of BTB-ZF and BBK proteins in vertebrates, MATH-BTB proteins in Caenorhabditis elegans, and BTB-NPH3 proteins in Arabidopsis thaliana. Using the structural homology between Skp1 and the PLZF BTB homodimer, we present a model of a BTB-Cul3 SCF-like E3 ubiquitin ligase complex that shows that the BTB dimer or the T1 tetramer is compatible in this complex. CONCLUSION Despite widely divergent sequences, the BTB fold is structurally well conserved. The fold has adapted to several different modes of self-association and interactions with non-BTB proteins.
Collapse
Affiliation(s)
- Peter J Stogios
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, M5G 2M9, Canada
| | - Gregory S Downs
- Bioinformatics Certificate Program, Seneca College, Toronto, Ontario, M3J 3M6, Canada
| | - Jimmy JS Jauhal
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, M5G 2M9, Canada
| | - Sukhjeen K Nandra
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, M5G 2M9, Canada
| | - Gilbert G Privé
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, M5G 2M9, Canada
- Department of Biochemistry, University of Toronto, Toronto, Ontario, M5S 1A8, Canada
- Ontario Cancer Institute, 610 University Avenue, Toronto, Ontario, M5G 2M9, Canada
| |
Collapse
|