51
|
The clinical and radiological profile of primary lateral sclerosis: a population-based study. J Neurol 2019; 266:2718-2733. [PMID: 31325016 DOI: 10.1007/s00415-019-09473-z] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 07/09/2019] [Accepted: 07/11/2019] [Indexed: 12/17/2022]
Abstract
BACKGROUND Primary lateral sclerosis is a progressive upper-motor-neuron disorder associated with markedly longer survival than ALS. In contrast to ALS, the genetic susceptibility, histopathological profile and imaging signature of PLS are poorly characterised. Suspected PLS patients often face considerable diagnostic delay and prognostic uncertainty. OBJECTIVE To characterise the distinguishing clinical, genetic and imaging features of PLS in contrast to ALS and healthy controls. METHODS A prospective population-based study was conducted with 49 PLS patients, 100 ALS patients and 100 healthy controls using genetic profiling, standardised clinical assessments and neuroimaging. Whole-brain and region-of-interest analyses were undertaken to evaluate patterns of grey and white matter degeneration. RESULTS In PLS, disease burden in the motor cortex is more medial than in ALS consistent with its lower limb symptom-predominance. PLS is associated with considerable cerebellar white and grey matter degeneration and the extra-motor profile of PLS includes marked insular, inferior frontal and left pars opercularis pathology. Contrary to ALS, PLS spares the postcentral gyrus. The body and splenium of the corpus callosum are preferentially affected in PLS, in contrast to the genu involvement observed in ALS. Clinical measures show anatomically meaningful correlations with imaging metrics in a somatotopic distribution. PLS patients tested negative for C9orf72 repeat expansions, known ALS and HSP-associated genes. CONCLUSIONS Multiparametric imaging in PLS highlights disease-specific motor and extra-motor involvement distinct from ALS. In a condition where limited post-mortem data are available, imaging offers invaluable pathological insights. Anatomical correlations with clinical metrics confirm the biomarker potential of quantitative neuroimaging in PLS.
Collapse
|
52
|
Bede P. The histological correlates of imaging metrics: postmortem validation of in vivo findings. Amyotroph Lateral Scler Frontotemporal Degener 2019; 20:457-460. [PMID: 31293187 DOI: 10.1080/21678421.2019.1639195] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Peter Bede
- Computational Neuroimaging Group, Trinity College Dublin , Dublin , Ireland
| |
Collapse
|
53
|
Gatto RG, Amin M, Finkielsztein A, Weissmann C, Barrett T, Lamoutte C, Uchitel O, Sumagin R, Mareci TH, Magin RL. Unveiling early cortical and subcortical neuronal degeneration in ALS mice by ultra-high field diffusion MRI. Amyotroph Lateral Scler Frontotemporal Degener 2019; 20:549-561. [DOI: 10.1080/21678421.2019.1620285] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Rodolfo G. Gatto
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL, USA,
| | - Manish Amin
- Department of Biochemistry and Molecular Biology, National High Magnetic Field Laboratory, University of Florida, Gainesville, FL, USA,
| | - Ariel Finkielsztein
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA,
| | - Carina Weissmann
- Institute for Physiology, Molecular Biology and Neurosciences (IFIBYNE CONICET-UBA), Buenos Aires, Argentina,
| | - Thomas Barrett
- Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA, and
| | - Caroline Lamoutte
- Department of Microbiology, University of Florida, Gainesville, FL, USA
| | - Osvaldo Uchitel
- Institute for Physiology, Molecular Biology and Neurosciences (IFIBYNE CONICET-UBA), Buenos Aires, Argentina,
| | - Ronen Sumagin
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA,
| | - Thomas H. Mareci
- Department of Biochemistry and Molecular Biology, National High Magnetic Field Laboratory, University of Florida, Gainesville, FL, USA,
| | - Richard L. Magin
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL, USA,
| |
Collapse
|
54
|
Shellikeri S, Myers M, Black SE, Abrahao A, Zinman L, Yunusova Y. Speech network regional involvement in bulbar ALS: a multimodal structural MRI study. Amyotroph Lateral Scler Frontotemporal Degener 2019; 20:385-395. [PMID: 31088163 DOI: 10.1080/21678421.2019.1612920] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Objective: To examine gray (GM) and white matter (WM) structural changes in regions of the speech network (SpN) in ALS patients with varying degree of bulbar disease. Methods: T1 and DTI images were obtained for 19 ALS participants and 13 neurologically-intact controls. Surface-based, volumetric, and DTI metrics were obtained for 6 regions-of-interest (ROIs) including the primary motor cortex (PMC), pars triangularis (parsT), pars opercularis (ParsO), posterior superior temporal gyrus (pSTG), and transverse temporal (TT). Disease-effects and brain-behavioral correlates between neuroanatomy and clinical measures of bulbar, limb, and overall disability were examined using linear models. Results: Structural changes were observed in the right oral and limb PMC and left ParsT, TT, and pSTG in ALS. Bulbar motor dysfunction was associated with WM abnormalities in the right oral PMC and left pSTG, and GM changes in bilateral TT. In contrast, symptom progression rate predicted GM and WM changes in bilateral pars opercularis (part of Broca's area). Grip strength and disease duration models were non-significant. Conclusions: The findings suggested that regions of the left-dominant SpN may be implicated in ALS and degeneration of these areas are related to bulbar disease severity. Involvement of regions that overlap across multiple connectomes such as Broca's area, however, may be dependent on the rate of disease progression. The work contributes to our understanding of bulbar ALS subtype, which is crucial for predicting disease progression, delivering targeted clinical care, and appropriate recruitment into clinical trials.
Collapse
Affiliation(s)
- Sanjana Shellikeri
- a Department of Speech Language Pathology , University of Toronto , Ontario , Canada.,b Hurvitz Brain Sciences Program , Sunnybrook Research Institute , Ontario , Canada
| | - Matthew Myers
- b Hurvitz Brain Sciences Program , Sunnybrook Research Institute , Ontario , Canada
| | - Sandra E Black
- b Hurvitz Brain Sciences Program , Sunnybrook Research Institute , Ontario , Canada.,c L.C. Campbell Cognitive Neurology Research Unit , Sunnybrook Research Institute, University of Toronto , Toronto , Canada.,d Department of Medicine, Division of Neurology , Sunnybrook Health Sciences Centre , Toronto , Canada.,e Rotman Research Institute, Baycrest , Toronto , Canada , and
| | - Agessandro Abrahao
- b Hurvitz Brain Sciences Program , Sunnybrook Research Institute , Ontario , Canada.,d Department of Medicine, Division of Neurology , Sunnybrook Health Sciences Centre , Toronto , Canada
| | - Lorne Zinman
- b Hurvitz Brain Sciences Program , Sunnybrook Research Institute , Ontario , Canada.,c L.C. Campbell Cognitive Neurology Research Unit , Sunnybrook Research Institute, University of Toronto , Toronto , Canada.,d Department of Medicine, Division of Neurology , Sunnybrook Health Sciences Centre , Toronto , Canada
| | - Yana Yunusova
- a Department of Speech Language Pathology , University of Toronto , Ontario , Canada.,b Hurvitz Brain Sciences Program , Sunnybrook Research Institute , Ontario , Canada.,f University Health Network, Toronto Rehabilitation Institute , Ontario , Canada
| |
Collapse
|
55
|
Consonni M, Dalla Bella E, Nigri A, Pinardi C, Demichelis G, Porcu L, Gellera C, Pensato V, Cappa SF, Bruzzone MG, Lauria G, Ferraro S. Cognitive Syndromes and C9orf72 Mutation Are Not Related to Cerebellar Degeneration in Amyotrophic Lateral Sclerosis. Front Neurosci 2019; 13:440. [PMID: 31133784 PMCID: PMC6524613 DOI: 10.3389/fnins.2019.00440] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 04/17/2019] [Indexed: 01/30/2023] Open
Abstract
Objective The notion that cerebellar pathology may contribute to cognitive impairment in ALS, especially in patients with C9orf72 repeated expansion, has been inconsistently reported. This study aimed exploring the relationship between cerebellar involvement, cognitive impairment and C9orf72 repeated expansion of patients with ALS. Methods Quantitative in vivo assessment of cerebellar lobules has been investigated in 66 non-demented patients with ALS and 28 healthy controls (HCs). Pathologic C9orf72 repeated expansion was found in 13 patients. Mild cognitive and/or behavioral impairment was diagnosed in 22 C9orf72 negative ALS patients. Measures of cortical volume (CV) and cortical thickness (CT) of cerebellar lobules of all participants were used for Principal Component Analysis (PCA) to identify clusters of lobular measures highly correlated with each other. PCA outcomes were used for between group comparisons and correlation analyses with neuropsychological and clinical features. Results Disease severity measured with ALS functional rating scale and index of disease progression rate significantly correlated with CV reduction of the second PCA cluster loading CV measures of anterior lobules. In all patients, cognitive impairment, measured with verbal fluency, was related to CV reduction of the third cluster comprising posterior lobules. No specific cortical thinning or volume reduction of cerebellar clustering patterns could be detected in ALS subgroups. Conclusion Our data show that specific patterns of subregional cerebellar involvement are associated with physical disability or cognitive impairment in ALS, in line with the topographic organization of the cerebellum. However, there was no specific correlation between cerebellar degeneration and cognitive syndromes or C9orf72 mutations.
Collapse
Affiliation(s)
- Monica Consonni
- 3rd Neurology Unit and Motor Neuron Diseases Centre, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Eleonora Dalla Bella
- 3rd Neurology Unit and Motor Neuron Diseases Centre, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Anna Nigri
- Neuroradiology Department, Fondazione IRCCS Istituto Neurologico "Carlo Besta," Milan, Italy
| | - Chiara Pinardi
- Neuroradiology Department, Fondazione IRCCS Istituto Neurologico "Carlo Besta," Milan, Italy
| | - Greta Demichelis
- Neuroradiology Department, Fondazione IRCCS Istituto Neurologico "Carlo Besta," Milan, Italy
| | - Luca Porcu
- Laboratory of Methodology for Clinical Research, Oncology Department, IRCCS Istituto di Ricerche Farmacologiche Mario Negri, Milan, Italy
| | - Cinzia Gellera
- Unit of Genetics of Neurodegenerative and Metabolic Diseases, Motor Neuron Diseases Centre, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Viviana Pensato
- Unit of Genetics of Neurodegenerative and Metabolic Diseases, Motor Neuron Diseases Centre, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Stefano F Cappa
- Institute for Advanced Study-IUSS Pavia, Pavia, Italy.,IRCCS Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Maria Grazia Bruzzone
- Neuroradiology Department, Fondazione IRCCS Istituto Neurologico "Carlo Besta," Milan, Italy
| | - Giuseppe Lauria
- 3rd Neurology Unit and Motor Neuron Diseases Centre, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy.,Department of Biomedical and Clinical Sciences "Luigi Sacco", University of Milan, Milan, Italy
| | - Stefania Ferraro
- Neuroradiology Department, Fondazione IRCCS Istituto Neurologico "Carlo Besta," Milan, Italy
| |
Collapse
|
56
|
El Mendili MM, Querin G, Bede P, Pradat PF. Spinal Cord Imaging in Amyotrophic Lateral Sclerosis: Historical Concepts-Novel Techniques. Front Neurol 2019; 10:350. [PMID: 31031688 PMCID: PMC6474186 DOI: 10.3389/fneur.2019.00350] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Accepted: 03/21/2019] [Indexed: 01/13/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is the most common adult onset motor neuron disease with no effective disease modifying therapies at present. Spinal cord degeneration is a hallmark feature of ALS, highlighted in the earliest descriptions of the disease by Lockhart Clarke and Jean-Martin Charcot. The anterior horns and corticospinal tracts are invariably affected in ALS, but up to recently it has been notoriously challenging to detect and characterize spinal pathology in vivo. With recent technological advances, spinal imaging now offers unique opportunities to appraise lower motor neuron degeneration, sensory involvement, metabolic alterations, and interneuron pathology in ALS. Quantitative spinal imaging in ALS has now been used in cross-sectional and longitudinal study designs, applied to presymptomatic mutation carriers, and utilized in machine learning applications. Despite its enormous clinical and academic potential, a number of physiological, technological, and methodological challenges limit the routine use of computational spinal imaging in ALS. In this review, we provide a comprehensive overview of emerging spinal cord imaging methods and discuss their advantages, drawbacks, and biomarker potential in clinical applications, clinical trial settings, monitoring, and prognostic roles.
Collapse
Affiliation(s)
- Mohamed Mounir El Mendili
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, United States.,Biomedical Imaging Laboratory (LIB), Sorbonne University, CNRS, INSERM, Paris, France
| | - Giorgia Querin
- Biomedical Imaging Laboratory (LIB), Sorbonne University, CNRS, INSERM, Paris, France.,Department of Neurology, Pitié-Salpêtrière University Hospital (APHP), Paris, France
| | - Peter Bede
- Biomedical Imaging Laboratory (LIB), Sorbonne University, CNRS, INSERM, Paris, France.,Department of Neurology, Pitié-Salpêtrière University Hospital (APHP), Paris, France.,Computational Neuroimaging Group, Trinity College Dublin, Dublin, Ireland
| | - Pierre-François Pradat
- Biomedical Imaging Laboratory (LIB), Sorbonne University, CNRS, INSERM, Paris, France.,Department of Neurology, Pitié-Salpêtrière University Hospital (APHP), Paris, France
| |
Collapse
|
57
|
Connectivity-based characterisation of subcortical grey matter pathology in frontotemporal dementia and ALS: a multimodal neuroimaging study. Brain Imaging Behav 2019; 12:1696-1707. [PMID: 29423814 DOI: 10.1007/s11682-018-9837-9] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Frontotemporal dementia (FTD) phenotypes have distinctive and well-established cortical signatures, but their subcortical grey matter profiles are poorly characterised. The comprehensive characterisation of striatal and thalamic pathology along the ALS-FTD spectrum is particularly timely, as dysfunction of frontostriatal and cortico-thalamic networks contribute to phenotype-defining cognitive, behavioral, and motor deficits. Ten patients with behavioral-variant FTD, 11 patients with non-fluent-variant primary progressive aphasia, 5 patients with semantic-variant primary progressive aphasia, 14 ALS-FTD patients with C9orf72 hexanucleotide expansions, 12 ALS-FTD patients without hexanucleotide repeats, 36 ALS patients without cognitive impairment and 50 healthy controls were included in a prospective neuroimaging study. Striatal, thalamic, hippocampal and amygdala pathology was evaluated using volume measurements, density analyses and connectivity-based segmentation. Significant volume reductions were identified in the thalamus and putamen of non-fluent-variant PPA patients. Marked nucleus accumbens and hippocampal atrophy was observed in the behavioral-variant FTD cohort. Semantic-variant PPA patients only exhibited volumetric changes in the left hippocampus. C9-positive ALS-FTD patients showed preferential density reductions in thalamic sub-regions connected to motor and sensory cortical areas. C9-negative ALS-FTD patients exhibited striatal pathology in sub-regions projecting to rostral-motor and executive cortical areas. The bulk of striatal and thalamic pathology in non-fluent-variant PPA patients was identified in foci projecting to motor areas. Subcortical density alterations in svPPA patients were limited to basal ganglia regions with parietal projections. Striatal and thalamic changes in FTD exhibit selective, network-defined vulnerability patterns mirroring cortical pathology. Multi-modal cortico-basal imaging analyses confirm that the subcortical grey matter profiles of FTD phenotypes are just as distinct as their cortical signatures. Our findings support emerging concepts of network-wise degeneration, preferential circuit vulnerability and disease propagation along connectivity patterns.
Collapse
|
58
|
Christidi F, Karavasilis E, Velonakis G, Rentzos M, Zambelis T, Zouvelou V, Xirou S, Ferentinos P, Efstathopoulos E, Kelekis N, Evdokimidis I, Karandreas N. Motor and extra-motor gray matter integrity may underlie neurophysiologic parameters of motor function in amyotrophic lateral sclerosis: a combined voxel-based morphometry and transcranial stimulation study. Brain Imaging Behav 2019; 12:1730-1741. [PMID: 29417490 DOI: 10.1007/s11682-018-9841-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The association between gray matter (GM) density and neurophysiologic changes is still unclear in amyotrophic lateral sclerosis (ALS). We evaluated the relationship between GM density and motor system integrity combining voxel-based morphometry (VBM) and transcranial magnetic stimulation (TMS) in ALS. We included 17 ALS patients and 22 healthy controls (HC) who underwent 3D-T1-weighted imaging. Among the ALS group, we applied left motor cortex single-pulse TMS. We used whole-brain VBM comparing ALS and HC in GM density. We also conducted regression analysis to examine correlations between GM density and the following TMS parameters: motor evoked potential (MEP)/M ratio and central motor conduction time (CMCT). We found significantly decreased GM density in ALS patients in several frontal, temporal, parietal/occipital and cerebellar regions (p < 0.001 uncorrected; cluster-extent threshold k = 100 voxels per cluster). With regards to TMS parameters, ALS patients showed mostly increased MEP/M ratio and modest prolongation of CMCT. MEP/M ratio was associated with GM density in (a) rolandic operculum/inferior frontal gyrus/precentral gyrus; anterior cingulate gyrus; inferior temporal gyrus; superior parietal lobule; cuneus; superior occipital gyrus and cerebellum (positive association) and (b) paracentral lobule/supplementary motor area (negative association). CMCT was associated with GM density in (a) inferior frontal gyrus and middle cingulated gyrus (positive association) and (b) superior parietal lobule; cuneus and cerebellum (negative association). Our findings support a significant interaction between motor and extra-motor structural and functional changes and highlight that motor and extra-motor GM integrity may underlie TMS parameters of motor function in ALS patients.
Collapse
Affiliation(s)
- Foteini Christidi
- First Department of Neurology, Aeginition Hospital, Medical School, National & Kapodistrian University of Athens, 72-74 Vas. Sophias Avenue, Athens, 11528, Greece.
| | - Efstratios Karavasilis
- Radiology and Medical Imaging Research Unit, Second Department of Radiology, Medical School, National & Kapodistrian University of Athens, Athens, Greece
| | - Georgios Velonakis
- Radiology and Medical Imaging Research Unit, Second Department of Radiology, Medical School, National & Kapodistrian University of Athens, Athens, Greece
| | - Michail Rentzos
- First Department of Neurology, Aeginition Hospital, Medical School, National & Kapodistrian University of Athens, 72-74 Vas. Sophias Avenue, Athens, 11528, Greece
| | - Thomas Zambelis
- First Department of Neurology, Aeginition Hospital, Medical School, National & Kapodistrian University of Athens, 72-74 Vas. Sophias Avenue, Athens, 11528, Greece
| | - Vasiliki Zouvelou
- First Department of Neurology, Aeginition Hospital, Medical School, National & Kapodistrian University of Athens, 72-74 Vas. Sophias Avenue, Athens, 11528, Greece
| | - Sophia Xirou
- First Department of Neurology, Aeginition Hospital, Medical School, National & Kapodistrian University of Athens, 72-74 Vas. Sophias Avenue, Athens, 11528, Greece
| | - Panagiotis Ferentinos
- Second Department of Psychiatry, Attikon University Hospital, Medical School, National & Kapodistrian University of Athens, Athens, Greece
| | - Efstathios Efstathopoulos
- Radiology and Medical Imaging Research Unit, Second Department of Radiology, Medical School, National & Kapodistrian University of Athens, Athens, Greece
| | - Nikolaos Kelekis
- Radiology and Medical Imaging Research Unit, Second Department of Radiology, Medical School, National & Kapodistrian University of Athens, Athens, Greece
| | - Ioannis Evdokimidis
- First Department of Neurology, Aeginition Hospital, Medical School, National & Kapodistrian University of Athens, 72-74 Vas. Sophias Avenue, Athens, 11528, Greece
| | - Nikolaos Karandreas
- First Department of Neurology, Aeginition Hospital, Medical School, National & Kapodistrian University of Athens, 72-74 Vas. Sophias Avenue, Athens, 11528, Greece
| |
Collapse
|
59
|
Finegan E, Chipika RH, Li Hi Shing S, Hardiman O, Bede P. Pathological Crying and Laughing in Motor Neuron Disease: Pathobiology, Screening, Intervention. Front Neurol 2019; 10:260. [PMID: 30949121 PMCID: PMC6438102 DOI: 10.3389/fneur.2019.00260] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 02/26/2019] [Indexed: 12/11/2022] Open
Abstract
Pathological crying and laughing (PCL) has significant quality-of-life implications in amyotrophic lateral sclerosis (ALS); it can provoke restrictive life-style modifications and lead to social isolation. Despite its high prevalence and quality of life implications, it remains surprisingly understudied. Divergent pathophysiological models have been proposed, centered on corticobulbar tract degeneration, prefrontal cortex pathology, sensory deafferentation, and impaired cerebellar gate-control mechanisms. Quantitative MRI techniques and symptom-specific clinical instruments offer unprecedented opportunities to elucidate the anatomical underpinnings of PCL pathogenesis. Emerging neuroimaging studies of ALS support the role of cortico-pontine-cerebellar network dysfunction in context-inappropriate emotional responses. The characterization of PCL-associated pathophysiological processes is indispensable for the development of effective pharmacological therapies.
Collapse
Affiliation(s)
| | | | | | | | - Peter Bede
- Computational Neuroimaging Group, Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
60
|
Chipika RH, Finegan E, Li Hi Shing S, Hardiman O, Bede P. Tracking a Fast-Moving Disease: Longitudinal Markers, Monitoring, and Clinical Trial Endpoints in ALS. Front Neurol 2019; 10:229. [PMID: 30941088 PMCID: PMC6433752 DOI: 10.3389/fneur.2019.00229] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Accepted: 02/22/2019] [Indexed: 12/13/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) encompasses a heterogeneous group of phenotypes with different progression rates, varying degree of extra-motor involvement and divergent progression patterns. The natural history of ALS is increasingly evaluated by large, multi-time point longitudinal studies, many of which now incorporate presymptomatic and post-mortem assessments. These studies not only have the potential to characterize patterns of anatomical propagation, molecular mechanisms of disease spread, but also to identify pragmatic monitoring markers. Sensitive markers of progressive neurodegenerative change are indispensable for clinical trials and individualized patient care. Biofluid markers, neuroimaging indices, electrophysiological markers, rating scales, questionnaires, and other disease-specific instruments have divergent sensitivity profiles. The discussion of candidate monitoring markers in ALS has a dual academic and clinical relevance, and is particularly timely given the increasing number of pharmacological trials. The objective of this paper is to provide a comprehensive and critical review of longitudinal studies in ALS, focusing on the sensitivity profile of established and emerging monitoring markers.
Collapse
Affiliation(s)
| | - Eoin Finegan
- Computational Neuroimaging Group, Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Stacey Li Hi Shing
- Computational Neuroimaging Group, Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Orla Hardiman
- Computational Neuroimaging Group, Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Peter Bede
- Computational Neuroimaging Group, Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
61
|
Basaia S, Filippi M, Spinelli EG, Agosta F. White Matter Microstructure Breakdown in the Motor Neuron Disease Spectrum: Recent Advances Using Diffusion Magnetic Resonance Imaging. Front Neurol 2019; 10:193. [PMID: 30891004 PMCID: PMC6413536 DOI: 10.3389/fneur.2019.00193] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 02/14/2019] [Indexed: 12/11/2022] Open
Abstract
Motor neuron disease (MND) is a fatal progressive neurodegenerative disorder characterized by the breakdown of the motor system. The clinical spectrum of MND encompasses different phenotypes classified according to the relative involvement of the upper or lower motor neurons (LMN) and the presence of genetic or cognitive alterations, with clear prognostic implications. However, the pathophysiological differences of these phenotypes remain largely unknown. Recently, magnetic resonance imaging (MRI) has been recognized as a helpful in-vivo MND biomarker. An increasing number of studies is applying advanced neuroimaging techniques in order to elucidate the pathophysiological processes and to identify quantitative outcomes to be used in clinical trials. Diffusion tensor imaging (DTI) is a non-invasive method to detect white matter alterations involving the upper motor neuron and extra-motor white matter tracts. According to this background, the aim of this review is to highlight the key role of MRI and especially DTI, summarizing cross-sectional and longitudinal results of different approaches applied in MND. Current literature suggests that DTI is a promising tool in order to define anatomical “signatures” of the different phenotypes of MND and to track in vivo the progressive spread of pathological proteins aggregates.
Collapse
Affiliation(s)
- Silvia Basaia
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, Vita-Salute San Raffaele University, Milan, Italy
| | - Massimo Filippi
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, Vita-Salute San Raffaele University, Milan, Italy.,Department of Neurology, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy
| | - Edoardo G Spinelli
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, Vita-Salute San Raffaele University, Milan, Italy
| | - Federica Agosta
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, Vita-Salute San Raffaele University, Milan, Italy
| |
Collapse
|
62
|
Christidi F, Karavasilis E, Riederer F, Zalonis I, Ferentinos P, Velonakis G, Xirou S, Rentzos M, Argiropoulos G, Zouvelou V, Zambelis T, Athanasakos A, Toulas P, Vadikolias K, Efstathopoulos E, Kollias S, Karandreas N, Kelekis N, Evdokimidis I. Gray matter and white matter changes in non-demented amyotrophic lateral sclerosis patients with or without cognitive impairment: A combined voxel-based morphometry and tract-based spatial statistics whole-brain analysis. Brain Imaging Behav 2019; 12:547-563. [PMID: 28425061 DOI: 10.1007/s11682-017-9722-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The phenotypic heterogeneity in amyotrophic lateral sclerosis (ALS) implies that patients show structural changes within but also beyond the motor cortex and corticospinal tract and furthermore outside the frontal lobes, even if frank dementia is not detected. The aim of the present study was to investigate both gray matter (GM) and white matter (WM) changes in non-demented amyotrophic lateral sclerosis (ALS) patients with or without cognitive impairment (ALS-motor and ALS-plus, respectively). Nineteen ALS-motor, 31 ALS-plus and 25 healthy controls (HC) underwent 3D-T1-weighted and 30-directional diffusion-weighted imaging on a 3 T MRI scanner. Voxel-based morphometry and tract-based spatial-statistics analysis were performed to examine GM volume (GMV) changes and WM differences in fractional anisotropy (FA), axial and radial diffusivity (AD, RD, respectively). Compared to HC, ALS-motor patients showed decreased GMV in frontal and cerebellar areas and increased GMV in right supplementary motor area, while ALS-plus patients showed diffuse GMV reduction in primary motor cortex bilaterally, frontotemporal areas, cerebellum and basal ganglia. ALS-motor patients had increased GMV in left precuneus compared to ALS-plus patients. We also found decreased FA and increased RD in the corticospinal tract bilaterally, the corpus callosum and extra-motor tracts in ALS-motor patients, and decreased FA and increased AD and RD in motor and several WM tracts in ALS-plus patients, compared to HC. Multimodal neuroimaging confirms motor and extra-motor GM and WM abnormalities in non-demented cognitively-impaired ALS patients (ALS-plus) and identifies early extra-motor brain pathology in ALS patients without cognitive impairment (ALS-motor).
Collapse
Affiliation(s)
- Foteini Christidi
- First Department of Neurology, Aeginition Hospital, Medical School, National & Kapodistrian University, Athens, Greece.
| | - Efstratios Karavasilis
- Second Department of Radiology, Attikon University Hospital, Medical School, National and Kapodistrian University, Athens, Greece
| | - Franz Riederer
- Neurological Center Rosenhuegel and Karl Landsteiner Institute for Epilepsy Research and Cognitive Neurology, Vienna, Austria
| | - Ioannis Zalonis
- First Department of Neurology, Aeginition Hospital, Medical School, National & Kapodistrian University, Athens, Greece
| | - Panagiotis Ferentinos
- Second Department of Psychiatry, Attikon University Hospital, Medical School, National & Kapodistrian University, Athens, Greece
| | - Georgios Velonakis
- Second Department of Radiology, Attikon University Hospital, Medical School, National and Kapodistrian University, Athens, Greece
| | - Sophia Xirou
- First Department of Neurology, Aeginition Hospital, Medical School, National & Kapodistrian University, Athens, Greece
| | - Michalis Rentzos
- First Department of Neurology, Aeginition Hospital, Medical School, National & Kapodistrian University, Athens, Greece
| | - Georgios Argiropoulos
- Second Department of Radiology, Attikon University Hospital, Medical School, National and Kapodistrian University, Athens, Greece
| | - Vasiliki Zouvelou
- First Department of Neurology, Aeginition Hospital, Medical School, National & Kapodistrian University, Athens, Greece
| | - Thomas Zambelis
- First Department of Neurology, Aeginition Hospital, Medical School, National & Kapodistrian University, Athens, Greece
| | - Athanasios Athanasakos
- Second Department of Radiology, Attikon University Hospital, Medical School, National and Kapodistrian University, Athens, Greece
| | - Panagiotis Toulas
- Second Department of Radiology, Attikon University Hospital, Medical School, National and Kapodistrian University, Athens, Greece
| | | | - Efstathios Efstathopoulos
- Second Department of Radiology, Attikon University Hospital, Medical School, National and Kapodistrian University, Athens, Greece
| | - Spyros Kollias
- Clinic of Neuroradiology, University Hospital Zurich, Zurich, Switzerland
| | - Nikolaos Karandreas
- First Department of Neurology, Aeginition Hospital, Medical School, National & Kapodistrian University, Athens, Greece
| | - Nikolaos Kelekis
- Second Department of Radiology, Attikon University Hospital, Medical School, National and Kapodistrian University, Athens, Greece
| | - Ioannis Evdokimidis
- First Department of Neurology, Aeginition Hospital, Medical School, National & Kapodistrian University, Athens, Greece
| |
Collapse
|
63
|
Grollemund V, Pradat PF, Querin G, Delbot F, Le Chat G, Pradat-Peyre JF, Bede P. Machine Learning in Amyotrophic Lateral Sclerosis: Achievements, Pitfalls, and Future Directions. Front Neurosci 2019; 13:135. [PMID: 30872992 PMCID: PMC6403867 DOI: 10.3389/fnins.2019.00135] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Accepted: 02/06/2019] [Indexed: 12/23/2022] Open
Abstract
Background: Amyotrophic Lateral Sclerosis (ALS) is a relentlessly progressive neurodegenerative condition with limited therapeutic options at present. Survival from symptom onset ranges from 3 to 5 years depending on genetic, demographic, and phenotypic factors. Despite tireless research efforts, the core etiology of the disease remains elusive and drug development efforts are confounded by the lack of accurate monitoring markers. Disease heterogeneity, late-stage recruitment into pharmaceutical trials, and inclusion of phenotypically admixed patient cohorts are some of the key barriers to successful clinical trials. Machine Learning (ML) models and large international data sets offer unprecedented opportunities to appraise candidate diagnostic, monitoring, and prognostic markers. Accurate patient stratification into well-defined prognostic categories is another aspiration of emerging classification and staging systems. Methods: The objective of this paper is the comprehensive, systematic, and critical review of ML initiatives in ALS to date and their potential in research, clinical, and pharmacological applications. The focus of this review is to provide a dual, clinical-mathematical perspective on recent advances and future directions of the field. Another objective of the paper is the frank discussion of the pitfalls and drawbacks of specific models, highlighting the shortcomings of existing studies and to provide methodological recommendations for future study designs. Results: Despite considerable sample size limitations, ML techniques have already been successfully applied to ALS data sets and a number of promising diagnosis models have been proposed. Prognostic models have been tested using core clinical variables, biological, and neuroimaging data. These models also offer patient stratification opportunities for future clinical trials. Despite the enormous potential of ML in ALS research, statistical assumptions are often violated, the choice of specific statistical models is seldom justified, and the constraints of ML models are rarely enunciated. Conclusions: From a mathematical perspective, the main barrier to the development of validated diagnostic, prognostic, and monitoring indicators stem from limited sample sizes. The combination of multiple clinical, biofluid, and imaging biomarkers is likely to increase the accuracy of mathematical modeling and contribute to optimized clinical trial designs.
Collapse
Affiliation(s)
- Vincent Grollemund
- Laboratoire d'Informatique de Paris 6, Sorbonne University, Paris, France
- FRS Consulting, Paris, France
| | - Pierre-François Pradat
- Laboratoire d'Imagerie Biomédicale, INSERM, CNRS, Sorbonne Université, Paris, France
- APHP, Département de Neurologie, Hôpital Pitié-Salpêtrière, Centre Référent SLA, Paris, France
- Northern Ireland Center for Stratified Medecine, Biomedical Sciences Research Institute Ulster University, C-TRIC, Altnagelvin Hospital, Londonderry, United Kingdom
| | - Giorgia Querin
- Laboratoire d'Imagerie Biomédicale, INSERM, CNRS, Sorbonne Université, Paris, France
- APHP, Département de Neurologie, Hôpital Pitié-Salpêtrière, Centre Référent SLA, Paris, France
| | - François Delbot
- Laboratoire d'Informatique de Paris 6, Sorbonne University, Paris, France
- Département de Mathématiques et Informatique, Paris Nanterre University, Nanterre, France
| | | | - Jean-François Pradat-Peyre
- Laboratoire d'Informatique de Paris 6, Sorbonne University, Paris, France
- Département de Mathématiques et Informatique, Paris Nanterre University, Nanterre, France
- Modal'X, Paris Nanterre University, Nanterre, France
| | - Peter Bede
- Laboratoire d'Imagerie Biomédicale, INSERM, CNRS, Sorbonne Université, Paris, France
- APHP, Département de Neurologie, Hôpital Pitié-Salpêtrière, Centre Référent SLA, Paris, France
- Computational Neuroimaging Group, Trinity College, Dublin, Ireland
| |
Collapse
|
64
|
Panman JL, Jiskoot LC, Bouts MJRJ, Meeter LHH, van der Ende EL, Poos JM, Feis RA, Kievit AJA, van Minkelen R, Dopper EGP, Rombouts SARB, van Swieten JC, Papma JM. Gray and white matter changes in presymptomatic genetic frontotemporal dementia: a longitudinal MRI study. Neurobiol Aging 2019; 76:115-124. [PMID: 30711674 DOI: 10.1016/j.neurobiolaging.2018.12.017] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 12/19/2018] [Accepted: 12/27/2018] [Indexed: 10/27/2022]
Abstract
In genetic frontotemporal dementia, cross-sectional studies have identified profiles of presymptomatic neuroanatomical loss for C9orf72 repeat expansion, MAPT, and GRN mutations. In this study, we characterize longitudinal gray matter (GM) and white matter (WM) brain changes in presymptomatic frontotemporal dementia. We included healthy carriers of C9orf72 repeat expansion (n = 12), MAPT (n = 15), GRN (n = 33) mutations, and related noncarriers (n = 53), that underwent magnetic resonance imaging at baseline and 2-year follow-up. We analyzed cross-sectional baseline, follow-up, and longitudinal GM and WM changes using voxel-based morphometry and cortical thickness analysis in SPM and tract-based spatial statistics in FSL. Compared with noncarriers, C9orf72 repeat expansion carriers showed lower GM volume in the cerebellum and insula, and WM differences in the anterior thalamic radiation, at baseline and follow-up. MAPT mutation carriers showed emerging GM temporal lobe changes and longitudinal WM degeneration of the uncinate fasciculus. GRN mutation carriers did not show presymptomatic neurodegeneration. This study shows distinct presymptomatic cross-sectional and longitudinal patterns of GM and WM changes across C9orf72 repeat expansion, MAPT, and GRN mutation carriers compared with noncarriers.
Collapse
Affiliation(s)
- Jessica L Panman
- Department of Neurology, Erasmus Medical Center, Rotterdam, the Netherlands; Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Lize C Jiskoot
- Department of Neurology, Erasmus Medical Center, Rotterdam, the Netherlands; Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Mark J R J Bouts
- Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands; Institute of Psychology, Leiden University, Leiden, the Netherlands
| | - Lieke H H Meeter
- Department of Neurology, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Emma L van der Ende
- Department of Neurology, Erasmus Medical Center, Rotterdam, the Netherlands; Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Jackie M Poos
- Department of Neurology, Erasmus Medical Center, Rotterdam, the Netherlands; Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Rogier A Feis
- Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands; Institute of Psychology, Leiden University, Leiden, the Netherlands; Leiden Institute for Brain and Cognition, Leiden University, Leiden, the Netherlands
| | - Anneke J A Kievit
- Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Rick van Minkelen
- Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Elise G P Dopper
- Department of Neurology, Erasmus Medical Center, Rotterdam, the Netherlands; Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands; Department of Neurology, VU medical Center, Amsterdam, the Netherlands
| | - Serge A R B Rombouts
- Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands; Institute of Psychology, Leiden University, Leiden, the Netherlands; Leiden Institute for Brain and Cognition, Leiden University, Leiden, the Netherlands
| | - John C van Swieten
- Department of Neurology, Erasmus Medical Center, Rotterdam, the Netherlands; Department of Clinical Genetics, VU Medical Center, Amsterdam, the Netherlands
| | - Janne M Papma
- Department of Neurology, Erasmus Medical Center, Rotterdam, the Netherlands.
| |
Collapse
|
65
|
Abstract
Frontotemporal dementia (FTD) is the second commonest cause of young onset dementia. Our understanding of FTD and its related syndromes has advanced significantly in recent years. Among the most prominent areas of progress is the overlap between FTD, MND, and other neurodegenerative conditions at a clinicopathologic and genetic level. In parallel major advances in neuroimaging techniques, the discovery of new genetic mutations as well as the development of potential biomarkers may serve to further expand knowledge of the biologic processes at play in FTD and may in turn propel research toward identifying curative and preventative pharmacologic therapies. The aim of this chapter is to discuss the clinical, pathologic, and genetic complexities of FTD and related disorders.
Collapse
Affiliation(s)
- Emma M Devenney
- Brain and Mind Centre, University of Sydney, Sydney, NSW, Australia
| | - Rebekah M Ahmed
- Department of Clinical Neuroscience, Royal Prince Alfred Hospital, Sydney, NSW, Australia
| | - John R Hodges
- Brain and Mind Centre, University of Sydney, Sydney, NSW, Australia.
| |
Collapse
|
66
|
Floeter MK, Gendron TF. Biomarkers for Amyotrophic Lateral Sclerosis and Frontotemporal Dementia Associated With Hexanucleotide Expansion Mutations in C9orf72. Front Neurol 2018; 9:1063. [PMID: 30568632 PMCID: PMC6289985 DOI: 10.3389/fneur.2018.01063] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 11/21/2018] [Indexed: 12/11/2022] Open
Abstract
Now that genetic testing can identify persons at risk for developing amyotrophic lateral sclerosis (ALS) many decades before symptoms begin, there is a critical need for biomarkers that signal the onset and progression of degeneration. The search for candidate disease biomarkers in patients with mutations in the gene C9orf72 has included imaging, physiology, and biofluid measurements. In cross-sectional imaging studies, C9+ ALS patients display diffuse reductions of gray and white matter integrity compared to ALS patients without mutations. This structural imaging signature overlaps with frontotemporal dementia (FTD), reflecting the frequent co-occurrence of cognitive impairment, even frank FTD, in C9+ ALS patients. Changes in functional connectivity occur as critical components of the networks associated with cognition and behavior degenerate. In presymptomatic C9+carriers, subtle differences in volumes of subcortical structures and functional connectivity can be detected, often decades before the typical family age of symptom onset. Dipeptide repeat proteins produced by the repeat expansion mutation are also measurable in the cerebrospinal fluid (CSF) of presymptomatic gene carriers, possibly throughout their lives. In contrast, a rise in the level of neurofilament proteins in the CSF appears to presage the onset of degeneration in presymptomatic carriers in one longitudinal study. Cross-sectional studies indicate that neurofilament protein levels may provide prognostic information for survival in C9+ ALS patients. Longitudinal studies will be needed to validate the candidate biomarkers discussed here. Understanding how these candidate biomarkers change over time is critical if they are to be used in future therapeutic decisions.
Collapse
Affiliation(s)
- Mary Kay Floeter
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
| | - Tania F Gendron
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, United States
| |
Collapse
|
67
|
Christidi F, Karavasilis E, Rentzos M, Kelekis N, Evdokimidis I, Bede P. Clinical and Radiological Markers of Extra-Motor Deficits in Amyotrophic Lateral Sclerosis. Front Neurol 2018; 9:1005. [PMID: 30524366 PMCID: PMC6262087 DOI: 10.3389/fneur.2018.01005] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 11/06/2018] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is now universally recognized as a complex multisystem disorder with considerable extra-motor involvement. The neuropsychological manifestations of frontotemporal, parietal, and basal ganglia involvement in ALS have important implications for compliance with assistive devices, survival, participation in clinical trials, caregiver burden, and the management of individual care needs. Recent advances in neuroimaging have been instrumental in characterizing the biological substrate of heterogeneous cognitive and behavioral deficits in ALS. In this review we discuss the clinical and radiological aspects of cognitive and behavioral impairment in ALS focusing on the recognition, assessment, and monitoring of these symptoms.
Collapse
Affiliation(s)
- Foteini Christidi
- First Department of Neurology, Aeginition Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Efstratios Karavasilis
- Second Department of Radiology, University General Hospital Attikon, National and Kapodistrian University of Athens, Athens, Greece
| | - Michail Rentzos
- First Department of Neurology, Aeginition Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Nikolaos Kelekis
- Second Department of Radiology, University General Hospital Attikon, National and Kapodistrian University of Athens, Athens, Greece
| | - Ioannis Evdokimidis
- First Department of Neurology, Aeginition Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Peter Bede
- Computational Neuroimaging Group, Academic Unit of Neurology, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
68
|
Mazón M, Vázquez Costa JF, Ten-Esteve A, Martí-Bonmatí L. Imaging Biomarkers for the Diagnosis and Prognosis of Neurodegenerative Diseases. The Example of Amyotrophic Lateral Sclerosis. Front Neurosci 2018; 12:784. [PMID: 30410433 PMCID: PMC6209630 DOI: 10.3389/fnins.2018.00784] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 10/10/2018] [Indexed: 12/17/2022] Open
Abstract
The term amyotrophic lateral sclerosis (ALS) comprises a heterogeneous group of fatal neurodegenerative disorders of largely unknown etiology characterized by the upper motor neurons (UMN) and/or lower motor neurons (LMN) degeneration. The development of brain imaging biomarkers is essential to advance in the diagnosis, stratification and monitoring of ALS, both in the clinical practice and clinical trials. In this review, the characteristics of an optimal imaging biomarker and common pitfalls in biomarkers evaluation will be discussed. Moreover, the development and application of the most promising brain magnetic resonance (MR) imaging biomarkers will be reviewed. Finally, the integration of both qualitative and quantitative multimodal brain MR biomarkers in a structured report will be proposed as a support tool for ALS diagnosis and stratification.
Collapse
Affiliation(s)
- Miguel Mazón
- Radiology and Biomedical Imaging Research Group (GIBI230), La Fe University and Polytechnic Hospital and La Fe Health Research Institute, Valencia, Spain
| | - Juan Francisco Vázquez Costa
- Neuromuscular Research Unit, Instituto de Investigación Sanitaria la Fe (IIS La Fe), Valencia, Spain
- ALS Unit, Department of Neurology, Hospital Universitario y Politécnico La Fe, Valencia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Valencia, Spain
| | - Amadeo Ten-Esteve
- Radiology and Biomedical Imaging Research Group (GIBI230), La Fe University and Polytechnic Hospital and La Fe Health Research Institute, Valencia, Spain
| | - Luis Martí-Bonmatí
- Radiology and Biomedical Imaging Research Group (GIBI230), La Fe University and Polytechnic Hospital and La Fe Health Research Institute, Valencia, Spain
| |
Collapse
|
69
|
Ferrer I. Oligodendrogliopathy in neurodegenerative diseases with abnormal protein aggregates: The forgotten partner. Prog Neurobiol 2018; 169:24-54. [DOI: 10.1016/j.pneurobio.2018.07.004] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Revised: 07/24/2018] [Accepted: 07/27/2018] [Indexed: 12/31/2022]
|
70
|
Christidi F, Karavasilis E, Velonakis G, Ferentinos P, Rentzos M, Kelekis N, Evdokimidis I, Bede P. The Clinical and Radiological Spectrum of Hippocampal Pathology in Amyotrophic Lateral Sclerosis. Front Neurol 2018; 9:523. [PMID: 30018591 PMCID: PMC6037820 DOI: 10.3389/fneur.2018.00523] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 06/13/2018] [Indexed: 12/29/2022] Open
Abstract
Hippocampal pathology in Amyotrophic Lateral Sclerosis (ALS) remains surprisingly under recognized despite compelling evidence from neuropsychology, neuroimaging and neuropathology studies. Hippocampal dysfunction contributes significantly to the clinical heterogeneity of ALS and requires structure-specific cognitive and neuroimaging tools for accurate in vivo evaluation. Recent imaging studies have generated unprecedented insights into the presymptomatic and longitudinal processes affecting this structure and have contributed to the characterisation of both focal and network-level changes. Emerging neuropsychology data suggest that memory deficits in ALS may be independent from executive dysfunction. In the era of precision medicine, where the development of individualized care strategies and patient stratification for clinical trials are key priorities, the comprehensive review of hippocampal dysfunction in ALS is particularly timely.
Collapse
Affiliation(s)
- Foteini Christidi
- First Department of Neurology, Aeginition Hospital National and Kapodistrian University of Athens, Athens, Greece
| | - Efstratios Karavasilis
- Second Department of Radiology, General University Hospital “Attikon”, National and Kapodistrian University of Athens, Athens, Greece
| | - Georgios Velonakis
- Second Department of Radiology, General University Hospital “Attikon”, National and Kapodistrian University of Athens, Athens, Greece
| | - Panagiotis Ferentinos
- Second Department of Psychiatry, General University Hospital “Attikon”, National and Kapodistrian University of Athens, Athens, Greece
| | - Michail Rentzos
- First Department of Neurology, Aeginition Hospital National and Kapodistrian University of Athens, Athens, Greece
| | - Nikolaos Kelekis
- Second Department of Radiology, General University Hospital “Attikon”, National and Kapodistrian University of Athens, Athens, Greece
| | - Ioannis Evdokimidis
- First Department of Neurology, Aeginition Hospital National and Kapodistrian University of Athens, Athens, Greece
| | - Peter Bede
- Computational Neuroimaging Group, Academic Unit of Neurology, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
71
|
Moszczynski AJ, Hintermayer MA, Strong MJ. Phosphorylation of Threonine 175 Tau in the Induction of Tau Pathology in Amyotrophic Lateral Sclerosis-Frontotemporal Spectrum Disorder (ALS-FTSD). A Review. Front Neurosci 2018; 12:259. [PMID: 29731706 PMCID: PMC5919950 DOI: 10.3389/fnins.2018.00259] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2018] [Accepted: 04/04/2018] [Indexed: 11/17/2022] Open
Abstract
Approximately 50–60% of all patients with amyotrophic lateral sclerosis (ALS) will develop a deficit of frontotemporal function, ranging from frontotemporal dementia (FTD) to one or more deficits of neuropsychological, speech or language function which are collectively known as the frontotemporal spectrum disorders of ALS (ALS-FTSD). While the neuropathology underlying these disorders is most consistent with a widespread alteration in the metabolism of transactive response DNA-binding protein 43 (TDP-43), in both ALS with cognitive impairment (ALSci) and ALS with FTD (ALS-FTD; also known as MND-FTD) there is evidence for alterations in the metabolism of the microtubule associated protein tau. This alteration in tau metabolism is characterized by pathological phosphorylation at residue Thr175 (pThr175 tau) which in vitro is associated with activation of GSK3β (pTyr216GSK3β), phosphorylation of Thr231tau, and the formation of cytoplasmic inclusions with increased rates of cell death. This putative pathway of pThr175 induction of pThr231 and the formation of pathogenic tau inclusions has been recently shown to span a broad range of tauopathies, including chronic traumatic encephalopathy (CTE) and CTE in association with ALS (CTE-ALS). This pathway can be experimentally triggered through a moderate traumatic brain injury, suggesting that it is a primary neuropathological event and not secondary to a more widespread neuronal dysfunction. In this review, we discuss the neuropathological underpinnings of the postulate that ALS is associated with a tauopathy which manifests as a FTSD, and examine possible mechanisms by which phosphorylation at Thr175tau is induced. We hypothesize that this might lead to an unfolding of the hairpin structure of tau, activation of GSK3β and pathological tau fibril formation through the induction of cis-Thr231 tau conformers. A potential role of TDP-43 acting synergistically with pathological tau metabolism is proposed.
Collapse
Affiliation(s)
- Alexander J Moszczynski
- Molecular Medicine Research Group, Schulich School of Medicine & Dentistry, Robarts Research Institute, Western University, London, ON, Canada
| | - Matthew A Hintermayer
- Molecular Medicine Research Group, Schulich School of Medicine & Dentistry, Robarts Research Institute, Western University, London, ON, Canada
| | - Michael J Strong
- Molecular Medicine Research Group, Schulich School of Medicine & Dentistry, Robarts Research Institute, Western University, London, ON, Canada.,Department of Clinical Neurological Sciences, Schulich School of Medicine & Dentistry, Western University, London, ON, Canada
| |
Collapse
|
72
|
Dharmadasa T, Huynh W, Tsugawa J, Shimatani Y, Ma Y, Kiernan MC. Implications of structural and functional brain changes in amyotrophic lateral sclerosis. Expert Rev Neurother 2018; 18:407-419. [PMID: 29667443 DOI: 10.1080/14737175.2018.1464912] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
INTRODUCTION Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease that causes progressive muscle weakness and disability, eventually leading to death. Heterogeneity of disease has become a major barrier to understanding key clinical questions such as prognosis and disease spread, and has disadvantaged clinical trials in search of therapeutic intervention. Patterns of disease have been explored through recent advances in neuroimaging, elucidating structural, molecular and functional changes. Unique brain signatures have emerged that have lent a greater understanding of critical disease mechanisms, offering opportunities to improve diagnosis, guide prognosis, and establish candidate biomarkers to direct future therapeutic strategies. Areas covered: This review explores patterns of cortical and subcortical change in ALS through advanced neuroimaging techniques and discusses the implications of these findings. Expert commentary: Cortical and subcortical signatures and patterns of atrophy are now consistently recognised, providing important pathophysiological insight into this heterogenous disease. The spread of cortical change, particularly involving frontotemporal networks, correlates with cognitive impairment and poorer prognosis. Cortical differences are also evident between ALS phenotypes and genotypes, which may partly explain the heterogeneity of prognosis. Ultimately, multimodal approaches with larger cohorts will be needed to provide sensitive biomarkers of disease spread at the level of the individual patient.
Collapse
Affiliation(s)
| | - William Huynh
- a Brain and Mind Centre , The University of Sydney , Sydney , Australia
| | - Jun Tsugawa
- c Department of Neurology , Fukuoka University Hospital , Fukuoka city , Japan
| | - Yoshimitsu Shimatani
- d Department of Neurology , Tokushima Prefectural Hospital , Tokushima city , Japan
| | - Yan Ma
- a Brain and Mind Centre , The University of Sydney , Sydney , Australia
| | - Matthew C Kiernan
- a Brain and Mind Centre , The University of Sydney , Sydney , Australia.,b Department of Neurology , Royal Prince Alfred Hospital , Sydney , Australia
| |
Collapse
|
73
|
Agosta F, Spinelli EG, Filippi M. Neuroimaging in amyotrophic lateral sclerosis: current and emerging uses. Expert Rev Neurother 2018; 18:395-406. [PMID: 29630421 DOI: 10.1080/14737175.2018.1463160] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
INTRODUCTION Several neuroimaging techniques have been used to define in vivo markers of pathological alterations underlying amyotrophic lateral sclerosis (ALS). Growing evidence supports the use of magnetic resonance imaging (MRI) and positron emission tomography (PET) for the non-invasive detection of central nervous system involvement in patients with ALS. Areas covered: A comprehensive overview of structural and functional neuroimaging applications in ALS is provided, focusing on motor and extra-motor involvement in the brain and the spinal cord. Implications for pathogenetic models, patient diagnosis, prognosis, monitoring, and the design of clinical trials are discussed. Expert commentary: State-of-the-art neuroimaging techniques provide fundamental instruments for the detection and quantification of upper motor neuron and extra-motor brain involvement in ALS, with relevance for both pathophysiologic investigation and clinical practice. Network-based analysis of structural and functional connectivity alterations and multimodal approaches combining several neuroimaging measures are promising tools for the development of novel diagnostic and prognostic markers to be used at the individual patient level.
Collapse
Affiliation(s)
- Federica Agosta
- a Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience , San Raffaele Scientific Institute, Vita-Salute San Raffaele University , Milan , Italy
| | - Edoardo Gioele Spinelli
- a Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience , San Raffaele Scientific Institute, Vita-Salute San Raffaele University , Milan , Italy.,b Department of Neurology, Institute of Experimental Neurology, Division of Neuroscience , San Raffaele Scientific Institute, Vita-Salute San Raffaele University , Milan , Italy
| | - Massimo Filippi
- a Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience , San Raffaele Scientific Institute, Vita-Salute San Raffaele University , Milan , Italy.,b Department of Neurology, Institute of Experimental Neurology, Division of Neuroscience , San Raffaele Scientific Institute, Vita-Salute San Raffaele University , Milan , Italy
| |
Collapse
|
74
|
Physiological changes in neurodegeneration - mechanistic insights and clinical utility. Nat Rev Neurol 2018; 14:259-271. [PMID: 29569624 DOI: 10.1038/nrneurol.2018.23] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The effects of neurodegenerative syndromes extend beyond cognitive function to involve key physiological processes, including eating and metabolism, autonomic nervous system function, sleep, and motor function. Changes in these physiological processes are present in several conditions, including frontotemporal dementia, amyotrophic lateral sclerosis, Alzheimer disease and the parkinsonian plus conditions. Key neural structures that mediate physiological changes across these conditions include neuroendocrine and hypothalamic pathways, reward pathways, motor systems and the autonomic nervous system. In this Review, we highlight the key changes in physiological processing in neurodegenerative syndromes and the similarities in these changes between different progressive neurodegenerative brain conditions. The changes and similarities between disorders might provide novel insights into the human neural correlates of physiological functioning. Given the evidence that physiological changes can arise early in the neurodegenerative process, these changes could provide biomarkers to aid in the early diagnosis of neurodegenerative diseases and in treatment trials.
Collapse
|
75
|
Schönecker S, Neuhofer C, Otto M, Ludolph A, Kassubek J, Landwehrmeyer B, Anderl-Straub S, Semler E, Diehl-Schmid J, Prix C, Vollmar C, Fortea J, Huppertz HJ, Arzberger T, Edbauer D, Feddersen B, Dieterich M, Schroeter ML, Volk AE, Fließbach K, Schneider A, Kornhuber J, Maler M, Prudlo J, Jahn H, Boeckh-Behrens T, Danek A, Klopstock T, Levin J. Atrophy in the Thalamus But Not Cerebellum Is Specific for C9orf72 FTD and ALS Patients - An Atlas-Based Volumetric MRI Study. Front Aging Neurosci 2018; 10:45. [PMID: 29599716 PMCID: PMC5863593 DOI: 10.3389/fnagi.2018.00045] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 02/12/2018] [Indexed: 11/13/2022] Open
Abstract
Background: The neuropathology of patients with frontotemporal dementia (FTD) or amyotrophic lateral sclerosis (ALS) due to a C9orf72 mutation is characterized by two distinct types of characteristic protein depositions containing either TDP-43 or so-called dipeptide repeat proteins that extend beyond frontal and temporal regions. Thalamus and cerebellum seem to be preferentially affected by the dipeptide repeat pathology unique to C9orf72 mutation carriers. Objective: This study aimed to determine if mutation carriers showed an enhanced degree of thalamic and cerebellar atrophy compared to sporadic patients or healthy controls. Methods: Atlas-based volumetry was performed in 13 affected C9orf72 FTD, ALS and FTD/ALS patients, 45 sporadic FTD and FTD/ALS patients and 19 healthy controls. Volumes and laterality indices showing significant differences between mutation carriers and sporadic patients were subjected to binary logistic regression to determine the best predictor of mutation carrier status. Results: Compared to sporadic patients, mutation carriers showed a significant volume reduction of the thalamus, which was most striking in the occipital, temporal and prefrontal subregion of the thalamus. Disease severity measured by mini mental status examination (MMSE) and FTD modified Clinical Dementia Rating Scale Sum of Boxes (FTD-CDR-SOB) significantly correlated with volume reduction in the aforementioned thalamic subregions. No significant atrophy of cerebellar regions could be detected. A logistic regression model using the volume of the prefrontal and the laterality index of the occipital subregion of the thalamus as predictor variables resulted in an area under the curve (AUC) of 0.88 while a model using overall thalamic volume still resulted in an AUC of 0.82. Conclusion: Our data show that thalamic atrophy in C9orf72 mutation carriers goes beyond the expected atrophy in the prefrontal and temporal subregion and is in good agreement with the cortical atrophy pattern described in C9orf72 mutation carriers, indicating a retrograde degeneration of functionally connected regions. Clinical relevance of the detected thalamic atrophy is illustrated by a correlation with disease severity. Furthermore, the findings suggest MRI volumetry of the thalamus to be of high predictive value in differentiating C9orf72 mutation carriers from patients with sporadic FTD.
Collapse
Affiliation(s)
- Sonja Schönecker
- Department of Neurology, Ludwig Maximilians Universität München, Munich, Germany
| | - Christiane Neuhofer
- Department of Neurology, Ludwig Maximilians Universität München, Munich, Germany
| | - Markus Otto
- Department of Neurology, University of Ulm, Ulm, Germany
| | - Albert Ludolph
- Department of Neurology, University of Ulm, Ulm, Germany
| | - Jan Kassubek
- Department of Neurology, University of Ulm, Ulm, Germany
| | | | | | - Elisa Semler
- Department of Neurology, University of Ulm, Ulm, Germany
| | - Janine Diehl-Schmid
- Department of Psychiatry and Psychotherapy, Technical University of Munich, Munich, Germany
| | - Catharina Prix
- Department of Neurology, Ludwig Maximilians Universität München, Munich, Germany
| | - Christian Vollmar
- Department of Neurology, Ludwig Maximilians Universität München, Munich, Germany
| | - Juan Fortea
- Hospital San Pau Barcelona, Barcelona, Spain
| | | | | | - Thomas Arzberger
- Center for Neuropathology and Prion Research, Ludwig Maximilians Universität München, Munich, Germany
| | - Dieter Edbauer
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.,Institute for Metabolic Biochemistry, Ludwig Maximilians Universität München, Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Berend Feddersen
- Department of Palliative Medicine, Ludwig Maximilians Universität München, Munich, Germany
| | - Marianne Dieterich
- Department of Neurology, Ludwig Maximilians Universität München, Munich, Germany.,German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Matthias L Schroeter
- Max Planck Institute for Human Cognitive and Brain Sciences (MPG), Leipzig, Germany.,Clinic for Cognitive Neurology, University Hospital Leipzig, Leipzig, Germany
| | - Alexander E Volk
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Klaus Fließbach
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany.,Department for Neurodegenerative Diseases and Geriatric Psychiatry, University Hospital Bonn, Bonn, Germany
| | - Anja Schneider
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany.,Department for Neurodegenerative Diseases and Geriatric Psychiatry, University Hospital Bonn, Bonn, Germany
| | - Johannes Kornhuber
- Department of Psychiatry and Psychotherapy, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Manuel Maler
- Department of Psychiatry and Psychotherapy, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Johannes Prudlo
- Department of Neurology, Rostock University Medical Center, Rostock, Germany.,German Center for Neurodegenerative Diseases (DZNE), Rostock, Germany
| | - Holger Jahn
- Department of Psychiatry and Psychotherapy, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,AMEOS Klinikum Heiligenhafen, Heiligenhafen, Germany
| | - Tobias Boeckh-Behrens
- Department of Diagnostic and Interventional Neuroradiology, Technical University of Munich, Munich, Germany
| | - Adrian Danek
- Department of Neurology, Ludwig Maximilians Universität München, Munich, Germany
| | - Thomas Klopstock
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany.,Friedrich Baur Institute at the Department of Neurology, Ludwig Maximilians Universität München, Munich, Germany
| | - Johannes Levin
- Department of Neurology, Ludwig Maximilians Universität München, Munich, Germany.,German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| |
Collapse
|
76
|
Branco LMT, de Rezende TJR, Roversi CDO, Zanao T, Casseb RF, de Campos BM, França MC. Brain signature of mild stages of cognitive and behavioral impairment in amyotrophic lateral sclerosis. Psychiatry Res Neuroimaging 2018; 272:58-64. [PMID: 29175194 DOI: 10.1016/j.pscychresns.2017.11.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Revised: 11/15/2017] [Accepted: 11/17/2017] [Indexed: 12/11/2022]
Abstract
We aimed to assess the brain signature of cognitive and behavioral impairment in C9orf72-negative non-demented ALS patients. The study included 50 amyotrophic lateral sclerosis (ALS) patients (out of 75 initially recruited) and 38 healthy controls. High-resolution T1-weighted and spin-echo diffusion tensor images were acquired in a 3T MRI scanner. The multi atlas-based analysis protocol and the FreeSurfer tool were employed for gray matter assessment, and fiber tractography for white matter evaluation. Cognitively impaired ALS patients (n = 12) had bilateral amygdalae and left thalamic volumetric reduction compared to non-impaired ALS patients. Behaviorally impaired ALS patients (n = 14) had lower fractional anisotropy (FA) at the fornix in comparison with healthy subjects. These parameters did correlate with cognitive/behavioral scores, but not with motor-functional parameters in the ALS cohort. We believe that basal ganglia and fornix damage might be related to cognitive and behavioral impairment across ALS-frontotemporal dementia continuum. Also, distinct anatomical areas seem to influence the behavioral and cognitive status of these individuals.
Collapse
Affiliation(s)
- Lucas M T Branco
- Departments of Neurology and Neuroimaging Laboratory, School of Medicine, University of Campinas - UNICAMP, Campinas, SP, Brazil
| | - Thiago J R de Rezende
- Departments of Neurology and Neuroimaging Laboratory, School of Medicine, University of Campinas - UNICAMP, Campinas, SP, Brazil
| | - Caroline de O Roversi
- Departments of Neurology and Neuroimaging Laboratory, School of Medicine, University of Campinas - UNICAMP, Campinas, SP, Brazil
| | - Tamires Zanao
- Departments of Neurology and Neuroimaging Laboratory, School of Medicine, University of Campinas - UNICAMP, Campinas, SP, Brazil
| | - Raphael F Casseb
- Departments of Neurology and Neuroimaging Laboratory, School of Medicine, University of Campinas - UNICAMP, Campinas, SP, Brazil
| | - Brunno M de Campos
- Departments of Neurology and Neuroimaging Laboratory, School of Medicine, University of Campinas - UNICAMP, Campinas, SP, Brazil
| | - Marcondes C França
- Departments of Neurology and Neuroimaging Laboratory, School of Medicine, University of Campinas - UNICAMP, Campinas, SP, Brazil.
| |
Collapse
|
77
|
Bocchetta M, Gordon E, Cardoso MJ, Modat M, Ourselin S, Warren JD, Rohrer JD. Thalamic atrophy in frontotemporal dementia - Not just a C9orf72 problem. Neuroimage Clin 2018; 18:675-681. [PMID: 29876259 PMCID: PMC5988457 DOI: 10.1016/j.nicl.2018.02.019] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 02/07/2018] [Accepted: 02/21/2018] [Indexed: 12/12/2022]
Abstract
Background Frontotemporal dementia (FTD) is a heterogeneous neurodegenerative disorder associated with frontal and temporal atrophy. Subcortical involvement has been described as well, with early thalamic atrophy most commonly associated with the C9orf72 expansion. However thalamic involvement has not been comprehensively investigated across the FTD spectrum. Methods We investigated thalamic volumes in a sample of 341 FTD patients (age: mean(standard deviation) 64.2(8.5) years; disease duration: 4.6(2.7) years) compared with 99 age-matched controls (age: 61.9(11.4) years). We performed a parcellation of T1 MRIs using an atlas propagation and label fusion approach to extract left and right thalamus volumes, which were corrected for total intracranial volumes. We assessed subgroups stratified by clinical diagnosis (141 behavioural variant FTD (bvFTD), 76 semantic dementia (SD), 103 progressive nonfluent aphasia (PNFA), 7 with associated motor neurone disease (FTD-MND) and 14 primary progressive aphasia not otherwise specified (PPA-NOS), genetic diagnosis (24 with MAPT, 24 with C9orf72, and 15 with GRN mutations), and pathological diagnosis (40 tauopathy, 61 TDP-43opathy, 3 FUSopathy). We assessed the diagnostic accuracy based on thalamic volume. Results Overall, FTD patients had smaller thalami than controls (8% difference in volume, p < 0.0005, ANCOVA). Stratifying by genetics, C9orf72 group had the smallest thalami (14% difference from controls, p < 0.0005). However, the thalami were also smaller than controls in the other genetic groups: GRN and MAPT groups showed a difference of 11% and 9% respectively (p < 0.0005). ROC analysis showed a relatively poor ability to separate C9orf72 from MAPT (AUC = 0.651, p = 0.073) and from GRN cases (AUC = 0.644, p = 0.133) using thalamic volume. All clinical subtypes had significantly smaller thalami than controls (p < 0.0005), with the FTD-MND group having the smallest (15%), followed by bvFTD (9%), PNFA (8%), PPA-NOS (7%), and lastly SD (5%). In the pathological groups, the TDP-43opathies had an 11% difference from controls, and tauopathies 9%, while the FUSopathies showed only 2% of difference from controls (p < 0.0005). GRN, PPA-NOS and SD were the subgroups showing the highest asymmetry in volumes. Conclusions The thalamus was most affected in C9orf72 genetically, TDP-43opathies pathologically and FTD-MND clinically. However, thalamic atrophy is a common feature across all FTD groups.
Collapse
Affiliation(s)
- Martina Bocchetta
- Dementia Research Centre, Department of Neurodegenerative Disease, Institute of Neurology, University College London, London, United Kingdom
| | - Elizabeth Gordon
- Dementia Research Centre, Department of Neurodegenerative Disease, Institute of Neurology, University College London, London, United Kingdom
| | - M Jorge Cardoso
- Translational Imaging Group, Centre for Medical Image Computing, University College London, London, United Kingdom
| | - Marc Modat
- Translational Imaging Group, Centre for Medical Image Computing, University College London, London, United Kingdom
| | - Sebastien Ourselin
- Translational Imaging Group, Centre for Medical Image Computing, University College London, London, United Kingdom
| | - Jason D Warren
- Dementia Research Centre, Department of Neurodegenerative Disease, Institute of Neurology, University College London, London, United Kingdom
| | - Jonathan D Rohrer
- Dementia Research Centre, Department of Neurodegenerative Disease, Institute of Neurology, University College London, London, United Kingdom.
| |
Collapse
|
78
|
Popuri K, Dowds E, Beg MF, Balachandar R, Bhalla M, Jacova C, Buller A, Slack P, Sengdy P, Rademakers R, Wittenberg D, Feldman HH, Mackenzie IR, Hsiung GYR. Gray matter changes in asymptomatic C9orf72 and GRN mutation carriers. Neuroimage Clin 2018; 18:591-598. [PMID: 29845007 PMCID: PMC5964622 DOI: 10.1016/j.nicl.2018.02.017] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 01/25/2018] [Accepted: 02/16/2018] [Indexed: 01/10/2023]
Abstract
Frontotemporal dementia (FTD) is a neurodegenerative disease with a strong genetic basis. Understanding the structural brain changes during pre-symptomatic stages may allow for earlier diagnosis of patients suffering from FTD; therefore, we investigated asymptomatic members of FTD families with mutations in C9orf72 and granulin (GRN) genes. Clinically asymptomatic subjects from families with C9orf72 mutation (15 mutation carriers, C9orf72+; and 23 non-carriers, C9orf72-) and GRN mutations (9 mutation carriers, GRN+; and 15 non-carriers, GRN-) underwent structural neuroimaging (MRI). Cortical thickness and subcortical gray matter volumes were calculated using FreeSurfer. Group differences were evaluated, correcting for age, sex and years to mean age of disease onset within the subject's family. Mean age of C9orf72+ and C9orf72- were 42.6 ± 11.3 and 49.7 ± 15.5 years, respectively; while GRN+ and GRN- groups were 50.1 ± 8.7 and 53.2 ± 11.2 years respectively. The C9orf72+ group exhibited cortical thinning in the temporal, parietal and frontal regions, as well as reduced volumes of bilateral thalamus and left caudate compared to the entire group of mutation non-carriers (NC: C9orf72- and GRN- combined). In contrast, the GRN+ group did not show any significant differences compared to NC. C9orf72 mutation carriers demonstrate a pattern of reduced gray matter on MRI prior to symptom onset compared to GRN mutation carriers. These findings suggest that the preclinical course of FTD differs depending on the genetic basis and that the choice of neuroimaging biomarkers for FTD may need to take into account the specific genes involved in causing the disease.
Collapse
Affiliation(s)
- Karteek Popuri
- School of Engineering Science, Simon Fraser University, Canada
| | - Emma Dowds
- Division of Neurology, Department of Medicine, University of British Columbia, Canada
| | | | | | - Mahadev Bhalla
- School of Engineering Science, Simon Fraser University, Canada
| | - Claudia Jacova
- School of Professional Psychology, Pacific University, Hillsboro, OR, USA
| | - Adrienne Buller
- School of Engineering Science, Simon Fraser University, Canada
| | - Penny Slack
- Division of Neurology, Department of Medicine, University of British Columbia, Canada
| | - Pheth Sengdy
- Division of Neurology, Department of Medicine, University of British Columbia, Canada
| | - Rosa Rademakers
- Department of Neuroscience, Mayo Clinic Jacksonville, FL, USA
| | - Dana Wittenberg
- Division of Neurology, Department of Medicine, University of British Columbia, Canada
| | - Howard H Feldman
- Department of Neurosciences, University of California San Diego, CA, USA
| | - Ian R Mackenzie
- Department of Pathology and Laboratory Medicine, University of British Columbia, Canada
| | - Ging-Yuek R Hsiung
- Division of Neurology, Department of Medicine, University of British Columbia, Canada.
| |
Collapse
|
79
|
A combined tract-based spatial statistics and voxel-based morphometry study of the first MRI scan after diagnosis of amyotrophic lateral sclerosis with subgroup analysis. J Neuroradiol 2018; 45:41-48. [DOI: 10.1016/j.neurad.2017.03.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2016] [Revised: 12/25/2016] [Accepted: 03/29/2017] [Indexed: 12/11/2022]
|
80
|
Vázquez‐Costa JF, Mazón M, Carreres‐Polo J, Hervás D, Pérez‐Tur J, Martí‐Bonmatí L, Sevilla T. Brain signal intensity changes as biomarkers in amyotrophic lateral sclerosis. Acta Neurol Scand 2018; 137:262-271. [PMID: 29082510 DOI: 10.1111/ane.12863] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/11/2017] [Indexed: 01/31/2023]
Abstract
OBJECTIVES To evaluate the contribution of the demographical, clinical, analytical and genetic factors to brain signal intensity changes in T2-weighted MR images in amyotrophic lateral sclerosis (ALS) patients and controls. METHODS Susceptibility-weighted and FLAIR sequences were obtained in a 3T MR scanner. Iron-related hypointensities in the motor cortex (IRhMC) and hyperintensities of the corticospinal tract (HCT) were qualitatively scored. Age, gender, family history and clinical variables were recorded. Baseline levels of ferritin were measured. C9orf72 was tested in all patients and SOD1 only in familial ALS patients not carrying a C9orf72 expansion. Patients who carried a mutation were categorized as genetic. Associations of these variables with visual scores were assessed with multivariable analysis. RESULTS A total of 102 ALS patients (92 non-genetic and 10 genetic) and 48 controls (28 ALS mimics and 20 healthy controls) were recruited. In controls, IRhMC associated with age, but HCT did not. In ALS patients, both HTC and IRhMC strongly associated with clinical UMN impairment and bulbar onset. The intensity/extent of IRhMC in the different motor homunculus regions (lower limbs, upper limbs and bulbar) were linked to the symptoms onset site. Between genetic and sporadic patients, no difference in IRhMC and HCT was found. CONCLUSIONS IRhMC and HCT are reliable markers of UMN degeneration in ALS patients and are more frequent in bulbar onset patients, independently of the mutation status. Age should be considered when evaluating IRhMC. The regional measurement of IRhMC following the motor homunculus could be used as a measure of disease progression.
Collapse
Affiliation(s)
- Juan F. Vázquez‐Costa
- Neuromuscular Research Unit Instituto de Investigación Sanitaria la Fe Valencia Spain
- ALS Unit Department of Neurology Hospital Universitario y Politécnico La Fe Valencia Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER) Valencia Spain
| | - Miguel Mazón
- Department of Radiology and Biomedical Imaging Research Group GIBI2 Hospital Universitario y Politécnico La Fe and Instituto de Investigación Sanitaria la Fe Valencia Spain
| | - Joan Carreres‐Polo
- Department of Radiology and Biomedical Imaging Research Group GIBI2 Hospital Universitario y Politécnico La Fe and Instituto de Investigación Sanitaria la Fe Valencia Spain
| | - David Hervás
- Biostatistics Unit Instituto de Investigación Sanitaria la Fe Valencia Spain
| | - Jordi Pérez‐Tur
- Laboratory of Molecular Genetics Institut de Biomedicina de València‐CSIC Valencia Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED) Valencia Spain
- Unidad mixta de Neurología y Genética Instituto de Investigación Sanitaria la Fe (IIS La Fe) Valencia Spain
| | - Luis Martí‐Bonmatí
- Department of Radiology and Biomedical Imaging Research Group GIBI2 Hospital Universitario y Politécnico La Fe and Instituto de Investigación Sanitaria la Fe Valencia Spain
| | - Teresa Sevilla
- Neuromuscular Research Unit Instituto de Investigación Sanitaria la Fe Valencia Spain
- ALS Unit Department of Neurology Hospital Universitario y Politécnico La Fe Valencia Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER) Valencia Spain
- Department of Medicine University of Valencia Valencia Spain
| |
Collapse
|
81
|
Floeter MK, Danielian LE, Braun LE, Wu T. Longitudinal diffusion imaging across the C9orf72 clinical spectrum. J Neurol Neurosurg Psychiatry 2018; 89:53-60. [PMID: 29054917 PMCID: PMC6454927 DOI: 10.1136/jnnp-2017-316799] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Revised: 09/26/2017] [Accepted: 10/04/2017] [Indexed: 12/11/2022]
Abstract
INTRODUCTION Discrepancies between diffusion tensor imaging (DTI) findings and functional rating scales in amyotrophic lateral sclerosis (ALS) may be due to symptom heterogeneity, particularly coexisting cognitive-behavioural dysfunction affecting non-motor regions of the brain. Carriers of expansion mutations in the C9orf72 gene, whose motor and cognitive-behavioural symptoms span a range from ALS to frontotemporal dementia, present an opportunity to evaluate the relationship between symptom heterogeneity and DTI changes. METHODS Twenty-eight C9orf72 mutation carriers with varied cognitive and motor symptoms underwent clinical evaluation and DTI imaging. Twenty returned for two or more follow-up evaluations. Each evaluation included motor, executive and behavioural scales and disease staging using the King's college staging system. RESULTS Widespread reduction of white matter integrity occurred in C9orf72 mutation carriers compared with 28 controls. The ALS Functional Rating Scale (ALSFRS-R) and King's stage correlated with DTI measures of the corticospinal tract and mid-callosum. Cognitive and behavioural scores correlated with diffusion measures of frontal white matter. King's stage, but not ALSFRS-R, correlated with anterior callosum DTI measures. Over a 6-month follow-up, DTI changes spread from anterior to posterior, and from deep to superficial subcortical white matter. In C9orf72 carriers with ALS or ALS-FTD, changes in corticospinal tractography measures correlated with changes in ALSFRS-R. CONCLUSION Discrepancies between DTI findings and clinical measures of disease severity in ALS may partly be accounted for by cognitive-behavioural deficits affecting extramotor white matter tracts. Both ALSFRS-R and King's stage correlated with corticospinal DTI measures. Group-level DTI changes could be detected over 6 months.
Collapse
Affiliation(s)
- Mary Kay Floeter
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| | - Laura E Danielian
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| | - Laura E Braun
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| | - Tianxia Wu
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
82
|
Turner MR. Non-invasive in vivo neuropathology of the C9orf72-related ALS-FTD syndrome. J Neurol Neurosurg Psychiatry 2018; 89:4-5. [PMID: 29054918 DOI: 10.1136/jnnp-2017-317010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Accepted: 08/18/2017] [Indexed: 12/13/2022]
|
83
|
Bede P, Hardiman O. Longitudinal structural changes in ALS: a three time-point imaging study of white and gray matter degeneration. Amyotroph Lateral Scler Frontotemporal Degener 2017; 19:232-241. [DOI: 10.1080/21678421.2017.1407795] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Peter Bede
- Quantitative Neuroimaging Group, Academic Unit of Neurology, Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland and
- Department of Neurology, Beaumont Hospital, Dublin, Ireland
| | - Orla Hardiman
- Quantitative Neuroimaging Group, Academic Unit of Neurology, Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland and
- Department of Neurology, Beaumont Hospital, Dublin, Ireland
| |
Collapse
|
84
|
Bede P, Finegan E. Revisiting the pathoanatomy of pseudobulbar affect: mechanisms beyond corticobulbar dysfunction. Amyotroph Lateral Scler Frontotemporal Degener 2017; 19:4-6. [DOI: 10.1080/21678421.2017.1392578] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Peter Bede
- Quantitative Neuroimaging Group, Academic Unit of Neurology, Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Eoin Finegan
- Quantitative Neuroimaging Group, Academic Unit of Neurology, Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
85
|
Papma JM, Jiskoot LC, Panman JL, Dopper EG, den Heijer T, Donker Kaat L, Pijnenburg YA, Meeter LH, van Minkelen R, Rombouts SA, van Swieten JC. Cognition and gray and white matter characteristics of presymptomatic C9orf72 repeat expansion. Neurology 2017; 89:1256-1264. [DOI: 10.1212/wnl.0000000000004393] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 06/29/2017] [Indexed: 11/15/2022] Open
Abstract
Objective:To investigate cognitive function, gray matter volume, and white matter integrity in the presymptomatic stage of chromosome 9 open reading frame 72 repeat expansion (C9orf72RE).Methods:Presymptomatic C9orf72RE carriers (n = 18) and first-degree family members without a pathogenic expansion (healthy controls [HC], n = 15) underwent a standardized protocol of neuropsychological tests, T1-weighted MRI, and diffusion tensor imaging within our cohort study of autosomal dominant frontotemporal dementia (FTD). We investigated group differences in cognitive function, gray matter volume through voxel-based morphometry, and white matter integrity by means of tract-based spatial statistics. We correlated cognitive change with underlying gray or white matter.Results:Our data demonstrate lower scores on letter fluency, Stroop card I, and Stroop card III, accompanied by white matter integrity loss in tracts connecting the frontal lobe, the thalamic radiation, and tracts associated with motor functioning in presymptomatic C9orf72RE compared with HC. In a subgroup of C9orf72RE carriers above 40 years of age, we found gray matter volume loss in the thalamus, cerebellum, and parietal and temporal cortex. We found no significant relationship between subtle cognitive decline and underlying gray or white matter.Conclusions:This study demonstrates that a decline in cognitive functioning, white matter integrity, and gray matter volumes are present in presymptomatic C9orf72RE carriers. These findings suggest that neuropsychological assessment, T1-weighted MRI, and diffusion tensor imaging might be useful to identify early biomarkers in the presymptomatic stage of FTD or amyotrophic lateral sclerosis.
Collapse
|
86
|
Geronimo A, Sheldon KE, Broach JR, Simmons Z, Schiff SJ. Expansion of C9ORF72 in amyotrophic lateral sclerosis correlates with brain-computer interface performance. Sci Rep 2017; 7:8875. [PMID: 28827593 PMCID: PMC5567164 DOI: 10.1038/s41598-017-08857-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 07/14/2017] [Indexed: 11/29/2022] Open
Abstract
Abnormal expansion of hexanucleotide GGGGCC (G4C2) in the C9ORF72 gene has been associated with multiple neurodegenerative disorders, with particularly high prevalence in amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Repeat expansions of this type have been associated with altered pathology, symptom rate and severity, as well as psychological changes. In this study, we enrolled twenty-five patients with ALS and fifteen neurologically healthy controls in a P300 brain-computer interface (BCI) training procedure. Four of the patients were found to possess an expanded allele, which was associated with a reduction in the quality of evoked potentials that led to reduced performance on the BCI task. Our findings warrant further exploration of the relationship between brain function and G4C2 repeat length. Such a relationship suggests that personalized assessment of suitability of BCI as a communication device in patients with ALS may be feasible.
Collapse
Affiliation(s)
- Andrew Geronimo
- Penn State College of Medicine, Department of Neurosurgery, Hershey, PA, 17033, USA.
- Penn State University, Center for Neural Engineering, University Park, PA, 16802, USA.
| | - Kathryn E Sheldon
- Penn State College of Medicine, Department of Biochemistry and Molecular Biology, Hershey, PA, 17033, USA
| | - James R Broach
- Penn State College of Medicine, Department of Biochemistry and Molecular Biology, Hershey, PA, 17033, USA
| | - Zachary Simmons
- Penn State College of Medicine, Departments of Neurology and Humanities, Hershey, PA, 17033, USA
| | - Steven J Schiff
- Penn State College of Medicine, Department of Neurosurgery, Hershey, PA, 17033, USA
- Penn State University, Center for Neural Engineering, University Park, PA, 16802, USA
- The Pennsylvania State University, Departments of Engineering Science and Mechanics, and Physics, University Park, PA, 16802, USA
| |
Collapse
|
87
|
Xu J, Li H, Li C, Yao JC, Hu J, Wang J, Hu Q, Zhang Y, Zhang J. Abnormal cortical-basal ganglia network in amyotrophic lateral sclerosis: A voxel-wise network efficiency analysis. Behav Brain Res 2017; 333:123-128. [DOI: 10.1016/j.bbr.2017.06.050] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 06/29/2017] [Accepted: 06/30/2017] [Indexed: 12/28/2022]
|
88
|
Bede P, Iyer PM, Finegan E, Omer T, Hardiman O. Virtual brain biopsies in amyotrophic lateral sclerosis: Diagnostic classification based on in vivo pathological patterns. NEUROIMAGE-CLINICAL 2017; 15:653-658. [PMID: 28664036 PMCID: PMC5479963 DOI: 10.1016/j.nicl.2017.06.010] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2017] [Revised: 05/28/2017] [Accepted: 06/08/2017] [Indexed: 11/16/2022]
Abstract
Background Diagnostic uncertainty in ALS has serious management implications and delays recruitment into clinical trials. Emerging evidence of presymptomatic disease-burden provides the rationale to develop diagnostic applications based on the evaluation of in-vivo pathological patterns early in the disease. Objectives To outline and test a diagnostic classification approach based on an array of complementary imaging metrics in key disease-associated anatomical structures. Methods Data from 75 ALS patients and 75 healthy controls were randomly allocated in a ‘training’ and ‘validation’ cohort. Spatial masks were created for anatomical foci which best discriminate patients from controls in the ‘training sample’. In a virtual ‘brain biopsy’, data was then retrieved from these key disease-associated brain regions. White matter diffusivity indices, grey matter T1-signal intensity values and basal ganglia volumes were evaluated as predictor variables in a canonical discriminant function. Results Following predictor variable selection, a classification specificity of 85.5% and sensitivity of 89.1% was achieved in the training sample and 90% specificity and 90% sensitivity in the validation sample. Discussion This study evaluates disease-associated imaging measures in a dummy diagnostic application. Although larger samples will be required for robust validation, the study confirms the potential of multimodal quantitative imaging in future clinical applications. Reliable diagnostic, monitoring and prognostic biomarkers are urgently in ALS. Accurate diagnostic classification may be achieved based on MRI metrics. Basal ganglia, grey and white matter indices were integrated in a diagnostic model. 85.5% specificity and 89.1% sensitivity were achieved in the training sample. 90% specificity and 90% sensitivity were achieved in the validation sample.
Collapse
Affiliation(s)
- Peter Bede
- Quantitative Neuroimaging Group, Academic Unit of Neurology, Biomedical Sciences Institute, Trinity College Dublin, Ireland.
| | - Parameswaran M Iyer
- Quantitative Neuroimaging Group, Academic Unit of Neurology, Biomedical Sciences Institute, Trinity College Dublin, Ireland
| | - Eoin Finegan
- Quantitative Neuroimaging Group, Academic Unit of Neurology, Biomedical Sciences Institute, Trinity College Dublin, Ireland.
| | - Taha Omer
- Quantitative Neuroimaging Group, Academic Unit of Neurology, Biomedical Sciences Institute, Trinity College Dublin, Ireland
| | - Orla Hardiman
- Quantitative Neuroimaging Group, Academic Unit of Neurology, Biomedical Sciences Institute, Trinity College Dublin, Ireland.
| |
Collapse
|
89
|
Agosta F, Ferraro PM, Riva N, Spinelli EG, Domi T, Carrera P, Copetti M, Falzone Y, Ferrari M, Lunetta C, Comi G, Falini A, Quattrini A, Filippi M. Structural and functional brain signatures of C9orf72 in motor neuron disease. Neurobiol Aging 2017; 57:206-219. [PMID: 28666709 DOI: 10.1016/j.neurobiolaging.2017.05.024] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 05/29/2017] [Accepted: 05/30/2017] [Indexed: 11/18/2022]
Abstract
This study investigated structural and functional magnetic resonance imaging abnormalities in hexanucleotide repeat expansion in chromosome 9 open reading frame 72 (C9orf72) motor neuron disease (MND) relative to disease severity-matched sporadic MND cases. We enrolled 19 C9orf72 and 67 disease severity-matched sporadic MND patients, and 22 controls. Sporadic cases were grouped in patients with: no cognitive/behavioral deficits (sporadic-motor); same patterns of cognitive/behavioral impairment as C9orf72 cases (sporadic-cognitive); shorter disease duration versus other sporadic groups (sporadic-early). C9orf72 patients showed cerebellar and thalamic atrophy versus all sporadic cases. All MND patients showed motor, frontal, and temporoparietal cortical thinning and motor and extramotor white matter damage versus controls, independent of genotype and presence of cognitive impairment. Compared with sporadic-early, C9orf72 patients revealed an occipital cortical thinning. C9orf72 patients had enhanced visual network functional connectivity versus sporadic-motor and sporadic-early cases. Structural cerebellar and thalamic damage and posterior cortical alterations are the brain magnetic resonance imaging signatures of C9orf72 MND. Frontotemporal cortical and widespread white matter involvement are likely to be an effect of the disease evolution rather than a C9orf72 marker.
Collapse
Affiliation(s)
- Federica Agosta
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, Milan, Italy
| | - Pilar M Ferraro
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, Milan, Italy
| | - Nilo Riva
- Department of Neurology, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, Milan, Italy; Neuropathology Unit, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, Milan, Italy
| | - Edoardo Gioele Spinelli
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, Milan, Italy; Department of Neurology, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, Milan, Italy; Vita-Salute San Raffaele University, Milan, Italy
| | - Teuta Domi
- Neuropathology Unit, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, Milan, Italy
| | - Paola Carrera
- Laboratory of Clinical Molecular Biology and Cytogenetics, San Raffaele Scientific Institute, Milan, Italy; Division of Genetics and Cell Biology, Unit of Genomics for Human Disease Diagnosis, San Raffaele Scientific Institute, Milan, Italy
| | - Massimiliano Copetti
- Biostatistics Unit, IRCCS-Ospedale Casa Sollievo della Sofferenza, Foggia, Italy
| | - Yuri Falzone
- Department of Neurology, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, Milan, Italy; Vita-Salute San Raffaele University, Milan, Italy
| | - Maurizio Ferrari
- Vita-Salute San Raffaele University, Milan, Italy; Laboratory of Clinical Molecular Biology and Cytogenetics, San Raffaele Scientific Institute, Milan, Italy; Division of Genetics and Cell Biology, Unit of Genomics for Human Disease Diagnosis, San Raffaele Scientific Institute, Milan, Italy
| | | | - Giancarlo Comi
- Department of Neurology, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, Milan, Italy; Vita-Salute San Raffaele University, Milan, Italy
| | - Andrea Falini
- Vita-Salute San Raffaele University, Milan, Italy; Department of Neuroradiology, Division of Neuroscience, San Raffaele Scientific Institute, Milan, Italy
| | - Angelo Quattrini
- Neuropathology Unit, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, Milan, Italy
| | - Massimo Filippi
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, Milan, Italy; Department of Neurology, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, Milan, Italy; Vita-Salute San Raffaele University, Milan, Italy.
| |
Collapse
|
90
|
Omer T, Finegan E, Hutchinson S, Doherty M, Vajda A, McLaughlin RL, Pender N, Hardiman O, Bede P. Neuroimaging patterns along the ALS-FTD spectrum: a multiparametric imaging study. Amyotroph Lateral Scler Frontotemporal Degener 2017; 18:611-623. [DOI: 10.1080/21678421.2017.1332077] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Taha Omer
- Quantitative Neuroimaging Group, Academic Unit of Neurology, Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Eoin Finegan
- Quantitative Neuroimaging Group, Academic Unit of Neurology, Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | | | - Mark Doherty
- Population Genetics Laboratory, Smurfit Institute of Genetics, Trinity College Dublin, Dublin, Ireland
| | - Alice Vajda
- Quantitative Neuroimaging Group, Academic Unit of Neurology, Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Russell L. McLaughlin
- Population Genetics Laboratory, Smurfit Institute of Genetics, Trinity College Dublin, Dublin, Ireland
| | - Niall Pender
- Quantitative Neuroimaging Group, Academic Unit of Neurology, Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Orla Hardiman
- Quantitative Neuroimaging Group, Academic Unit of Neurology, Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Peter Bede
- Quantitative Neuroimaging Group, Academic Unit of Neurology, Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
91
|
Strong MJ, Abrahams S, Goldstein LH, Woolley S, Mclaughlin P, Snowden J, Mioshi E, Roberts-South A, Benatar M, HortobáGyi T, Rosenfeld J, Silani V, Ince PG, Turner MR. Amyotrophic lateral sclerosis - frontotemporal spectrum disorder (ALS-FTSD): Revised diagnostic criteria. Amyotroph Lateral Scler Frontotemporal Degener 2017; 18:153-174. [PMID: 28054827 DOI: 10.1080/21678421.2016.1267768.amyotrophic] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
This article presents the revised consensus criteria for the diagnosis of frontotemporal dysfunction in amyotrophic lateral sclerosis (ALS) based on an international research workshop on frontotemporal dementia (FTD) and ALS held in London, Canada in June 2015. Since the publication of the Strong criteria, there have been considerable advances in the understanding of the neuropsychological profile of patients with ALS. Not only is the breadth and depth of neuropsychological findings broader than previously recognised - - including deficits in social cognition and language - but mixed deficits may also occur. Evidence now shows that the neuropsychological deficits in ALS are extremely heterogeneous, affecting over 50% of persons with ALS. When present, these deficits significantly and adversely impact patient survival. It is the recognition of this clinical heterogeneity in association with neuroimaging, genetic and neuropathological advances that has led to the current re-conceptualisation that neuropsychological deficits in ALS fall along a spectrum. These revised consensus criteria expand upon those of 2009 and embrace the concept of the frontotemporal spectrum disorder of ALS (ALS-FTSD).
Collapse
Affiliation(s)
- Michael J Strong
- a Department of Clinical Neurological Sciences, Schulich School of Medicine & Dentistry , London , Ontario , Canada
| | - Sharon Abrahams
- b Department of Psychology, School of Philosophy, Psychology & Language Sciences , Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh , Edinburgh , UK
| | - Laura H Goldstein
- c King's College London, Department of Psychology, Institute of Psychiatry, Psychology and Neuroscience , London , UK
| | - Susan Woolley
- d Forbes Norris MDA/ALS Research Centre, California Pacific Medical Centre , San Francisco , CA , USA
| | - Paula Mclaughlin
- e Western University , Schulich School of Medicine & Dentistry , London , ON , Canada
| | - Julie Snowden
- f Greater Manchester Neuroscience Centre , Salford Royal NHS Trust and University of Manchester , Manchester , UK
| | - Eneida Mioshi
- g Faculty of Medicine and Health Sciences , University of East Anglia , Norwich , UK
| | - Angie Roberts-South
- h Northwestern University , Roxelyn and Richard Pepper Department of Communication Sciences and Disorders , Evanston , IL , USA
| | - Michael Benatar
- i Department of Neurology , University of Miami Miller School of Medicine , Miami , FL , USA
| | - Tibor HortobáGyi
- j Department of Neuropathology , Institute of Pathology, University of Debrecen , Debrecen , Hungary
| | - Jeffrey Rosenfeld
- k Department of Neurology , Loma Linda University School of Medicine , Loma Linda , CA , USA
| | - Vincenzo Silani
- l Department of Neurology and Laboratory Neuroscience - IRCCS Istituto Auxologico Italiano, Department of Pathophysiology and Transplantation , 'Dino Ferrari' Centre, Università degli Studi di Milano , Milan , Italy
| | - Paul G Ince
- m Sheffield Institute for Translational Neuroscience, Department of Neuroscience , The University of Sheffield , Sheffield , UK , and
| | - Martin R Turner
- n Nuffield Department of Clinical Neurosciences , University of Oxford , Oxford , UK
| |
Collapse
|
92
|
Strong MJ, Abrahams S, Goldstein LH, Woolley S, Mclaughlin P, Snowden J, Mioshi E, Roberts-South A, Benatar M, HortobáGyi T, Rosenfeld J, Silani V, Ince PG, Turner MR. Amyotrophic lateral sclerosis - frontotemporal spectrum disorder (ALS-FTSD): Revised diagnostic criteria. Amyotroph Lateral Scler Frontotemporal Degener 2017; 18:153-174. [PMID: 28054827 PMCID: PMC7409990 DOI: 10.1080/21678421.2016.1267768] [Citation(s) in RCA: 585] [Impact Index Per Article: 83.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2016] [Revised: 11/15/2016] [Accepted: 11/18/2016] [Indexed: 10/20/2022]
Abstract
This article presents the revised consensus criteria for the diagnosis of frontotemporal dysfunction in amyotrophic lateral sclerosis (ALS) based on an international research workshop on frontotemporal dementia (FTD) and ALS held in London, Canada in June 2015. Since the publication of the Strong criteria, there have been considerable advances in the understanding of the neuropsychological profile of patients with ALS. Not only is the breadth and depth of neuropsychological findings broader than previously recognised - - including deficits in social cognition and language - but mixed deficits may also occur. Evidence now shows that the neuropsychological deficits in ALS are extremely heterogeneous, affecting over 50% of persons with ALS. When present, these deficits significantly and adversely impact patient survival. It is the recognition of this clinical heterogeneity in association with neuroimaging, genetic and neuropathological advances that has led to the current re-conceptualisation that neuropsychological deficits in ALS fall along a spectrum. These revised consensus criteria expand upon those of 2009 and embrace the concept of the frontotemporal spectrum disorder of ALS (ALS-FTSD).
Collapse
Affiliation(s)
- Michael J Strong
- a Department of Clinical Neurological Sciences, Schulich School of Medicine & Dentistry , London , Ontario , Canada
| | - Sharon Abrahams
- b Department of Psychology, School of Philosophy, Psychology & Language Sciences , Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh , Edinburgh , UK
| | - Laura H Goldstein
- c King's College London, Department of Psychology, Institute of Psychiatry, Psychology and Neuroscience , London , UK
| | - Susan Woolley
- d Forbes Norris MDA/ALS Research Centre, California Pacific Medical Centre , San Francisco , CA , USA
| | - Paula Mclaughlin
- e Western University , Schulich School of Medicine & Dentistry , London , ON , Canada
| | - Julie Snowden
- f Greater Manchester Neuroscience Centre , Salford Royal NHS Trust and University of Manchester , Manchester , UK
| | - Eneida Mioshi
- g Faculty of Medicine and Health Sciences , University of East Anglia , Norwich , UK
| | - Angie Roberts-South
- h Northwestern University , Roxelyn and Richard Pepper Department of Communication Sciences and Disorders , Evanston , IL , USA
| | - Michael Benatar
- i Department of Neurology , University of Miami Miller School of Medicine , Miami , FL , USA
| | - Tibor HortobáGyi
- j Department of Neuropathology , Institute of Pathology, University of Debrecen , Debrecen , Hungary
| | - Jeffrey Rosenfeld
- k Department of Neurology , Loma Linda University School of Medicine , Loma Linda , CA , USA
| | - Vincenzo Silani
- l Department of Neurology and Laboratory Neuroscience - IRCCS Istituto Auxologico Italiano, Department of Pathophysiology and Transplantation , 'Dino Ferrari' Centre, Università degli Studi di Milano , Milan , Italy
| | - Paul G Ince
- m Sheffield Institute for Translational Neuroscience, Department of Neuroscience , The University of Sheffield , Sheffield , UK , and
| | - Martin R Turner
- n Nuffield Department of Clinical Neurosciences , University of Oxford , Oxford , UK
| |
Collapse
|
93
|
Schuster C, Hardiman O, Bede P. Survival prediction in Amyotrophic lateral sclerosis based on MRI measures and clinical characteristics. BMC Neurol 2017; 17:73. [PMID: 28412941 PMCID: PMC5393027 DOI: 10.1186/s12883-017-0854-x] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 04/01/2017] [Indexed: 11/20/2022] Open
Abstract
Background Amyotrophic lateral sclerosis (ALS) a highly heterogeneous neurodegenerative condition. Accurate diagnostic, monitoring and prognostic biomarkers are urgently needed both for individualised patient care and clinical trials. A multimodal magnetic resonance imaging study is presented, where MRI measures of ALS-associated brain regions are utilised to predict 18-month survival. Methods A total of 60 ALS patients and 69 healthy controls were included in this study. 20% of the patient sample was utilised as an independent validation sample. Surface-based morphometry and diffusion tensor white matter parameters were used to identify anatomical patterns of neurodegeneration in 80% of the patient sample compared to healthy controls. Binary logistic ridge regressions were carried out to predict 18-month survival based on clinical measures alone, MRI features, and a combination of clinical and MRI data. Clinical indices included age at symptoms onset, site of disease onset, diagnostic delay from first symptom to diagnosis, and physical disability (ALSFRS-r). MRI features included the average cortical thickness of the precentral and paracentral gyri, the average fractional anisotropy, radial-, medial-, and axial diffusivity of the superior and inferior corona radiata, internal capsule, cerebral peduncles and the genu, body and splenium of the corpus callosum. Results Clinical data alone had a survival prediction accuracy of 66.67%, with 62.50% sensitivity and 70.84% specificity. MRI data alone resulted in a prediction accuracy of 77.08%, with 79.16% sensitivity and 75% specificity. The combination of clinical and MRI measures led to a survival prediction accuracy of 79.17%, with 75% sensitivity and 83.34% specificity. Conclusion Quantitative MRI measures of ALS-specific brain regions enhance survival prediction in ALS and should be incorporated in future clinical trial designs. Electronic supplementary material The online version of this article (doi:10.1186/s12883-017-0854-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Christina Schuster
- Quantitative Neuroimaging Group, Academic Unit of Neurology, Room 5.43, Biomedical Sciences Institute, Trinity College Dublin, Pearse Street, Dublin 2, Ireland
| | - Orla Hardiman
- Quantitative Neuroimaging Group, Academic Unit of Neurology, Room 5.43, Biomedical Sciences Institute, Trinity College Dublin, Pearse Street, Dublin 2, Ireland
| | - Peter Bede
- Quantitative Neuroimaging Group, Academic Unit of Neurology, Room 5.43, Biomedical Sciences Institute, Trinity College Dublin, Pearse Street, Dublin 2, Ireland.
| |
Collapse
|
94
|
Burke T, Pinto-Grau M, Lonergan K, Bede P, O'Sullivan M, Heverin M, Vajda A, McLaughlin RL, Pender N, Hardiman O. A Cross-sectional population-based investigation into behavioral change in amyotrophic lateral sclerosis: subphenotypes, staging, cognitive predictors, and survival. Ann Clin Transl Neurol 2017; 4:305-317. [PMID: 28491898 PMCID: PMC5420811 DOI: 10.1002/acn3.407] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Revised: 03/03/2017] [Accepted: 03/08/2017] [Indexed: 12/16/2022] Open
Abstract
Objective Amyotrophic Lateral Sclerosis (ALS) is a clinically heterogeneous neurodegenerative disorder associated with cognitive and behavioral impairment. The primary aim of this study was to identify behavioral subphenotypes in ALS using a custom designed behavioral assessment tool (Beaumont Behavioural Inventory, BBI). Secondary aims were to (1) investigate the predictive nature of cognitive assessment on behavioral change, (2) report the behavioral profile associated with the C9orf72 expansion, (3) categorize behavioral change through disease staging, and (4) to investigate the relationship between cross‐sectional behavioral classification and survival. Methods A cross‐sectional population‐based research design was applied to examine behavioral data from ALS patients (n = 317) and healthy controls (n = 66). Patients were screened for the C9orf72 repeat expansion. A subcohort of ALS patients completed an extensive cognitive assessment battery (n = 65), to investigate predictors of behavior change. Principal component analysis (PCA) determined factors associated with altered behavior. Survival data were extracted from the Irish ALS register. Results No behavioral changes were reported in 180 patients (57%); 95 patients had mild‐moderate behavioral change (30%); 42 patients met the cut‐off for Clinically Severe Behavioral Change (13%), suggestive of a bvFTD diagnosis. The most frequently endorsed behaviors in ALS were reduced concern for hygiene (36.8%), irritability (36.2%), new unusual habits (33.4%), and increased apathy (31.1%). Five independent factors were identified through factor analysis. Social cognitive performance was predictive of behavior change (P = 0.031), yielding an R2 = 0.188. Behavioral categorization (mild/moderate/severe) at the time of assessment was not associated with survival (P = 0.198). Interpretation These data imply the presence of distinct subphenotypes of behavioral change in ALS, which most likely reflect subcategories of extramotor network disruption.
Collapse
Affiliation(s)
- Tom Burke
- Academic Unit of Neurology Trinity Biomedical Sciences Institute Trinity College Dublin Dublin Ireland.,Beaumont Hospital Dublin Ireland
| | - Marta Pinto-Grau
- Academic Unit of Neurology Trinity Biomedical Sciences Institute Trinity College Dublin Dublin Ireland.,Beaumont Hospital Dublin Ireland
| | - Katie Lonergan
- Academic Unit of Neurology Trinity Biomedical Sciences Institute Trinity College Dublin Dublin Ireland.,Beaumont Hospital Dublin Ireland
| | - Peter Bede
- Academic Unit of Neurology Trinity Biomedical Sciences Institute Trinity College Dublin Dublin Ireland.,Beaumont Hospital Dublin Ireland
| | - Meabhdh O'Sullivan
- Academic Unit of Neurology Trinity Biomedical Sciences Institute Trinity College Dublin Dublin Ireland
| | - Mark Heverin
- Academic Unit of Neurology Trinity Biomedical Sciences Institute Trinity College Dublin Dublin Ireland
| | - Alice Vajda
- Academic Unit of Neurology Trinity Biomedical Sciences Institute Trinity College Dublin Dublin Ireland
| | | | - Niall Pender
- Academic Unit of Neurology Trinity Biomedical Sciences Institute Trinity College Dublin Dublin Ireland.,Beaumont Hospital Dublin Ireland
| | - Orla Hardiman
- Academic Unit of Neurology Trinity Biomedical Sciences Institute Trinity College Dublin Dublin Ireland.,Beaumont Hospital Dublin Ireland
| |
Collapse
|
95
|
Shellikeri S, Karthikeyan V, Martino R, Black SE, Zinman L, Keith J, Yunusova Y. The neuropathological signature of bulbar-onset ALS: A systematic review. Neurosci Biobehav Rev 2017; 75:378-392. [PMID: 28163193 DOI: 10.1016/j.neubiorev.2017.01.045] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Revised: 01/24/2017] [Accepted: 01/31/2017] [Indexed: 12/11/2022]
Abstract
ALS is a multisystem disorder affecting motor and cognitive functions. Bulbar-onset ALS (bALS) may be preferentially associated with cognitive and language impairments, compared with spinal-onset ALS (sALS), stemming from a potentially unique neuropathology. The objective of this systematic review was to compare neuropathology findings reported for bALS and sALS subtypes in studies of cadaveric brains. Using Cochrane guidelines, we reviewed articles in MEDLINE, Embase, and PsycINFO databases using standardized search terms for ALS and neuropathology, from inception until July 16th 2016. 17 studies were accepted for analysis. The analysis revealed that both subtypes presented with involvement in motor and frontotemporal cortices, deep cortical structures, and cerebellum and were characterized by neuronal loss, spongiosis, myelin pallor, and ubiquitin+ and TDP43+ inclusion bodies. Changes in Broca and Wernicke areas - regions associated with speech and language processing - were noted exclusively in bALS. Further, some bALS cases presented with atypical pathology such as neurofibrillary tangles and basophilic inclusions, which were not found in sALS cases. Given the limited number of studies, all with methodological biases, further work is required to better understand neuropathology of ALS subtypes.
Collapse
Affiliation(s)
- S Shellikeri
- Department of Speech-Language Pathology, University of Toronto, Toronto, Ontario, Canada; Hurvitz Brain Sciences Research Program, Sunnybrook Research Institute, University of Toronto, Toronto, Ontario, Canada.
| | - V Karthikeyan
- Department of Speech-Language Pathology, University of Toronto, Toronto, Ontario, Canada; Hurvitz Brain Sciences Research Program, Sunnybrook Research Institute, University of Toronto, Toronto, Ontario, Canada
| | - R Martino
- Department of Speech-Language Pathology, University of Toronto, Toronto, Ontario, Canada; Health Care and Outcomes Research, Krembil Research Institute, Toronto, Ontario, Canada; Department of Otolaryngology-Head and Neck Surgery, University of Toronto, Toronto, Ontario, Canada
| | - S E Black
- Hurvitz Brain Sciences Research Program, Sunnybrook Research Institute, University of Toronto, Toronto, Ontario, Canada; L.C. Campbell Cognitive Neurology Research Unit, Sunnybrook Health Sciences, Toronto, Ontario, Canada; Department of Medicine, Neurology, Sunnybrook Health Sciences, Toronto, Ontario, Canada; Department of Medicine, Neurology, University of Toronto, Toronto, Ontario, Canada; Heart & Stroke Foundation Canadian Partnership for Stroke Recovery, Sunnybrook Health Sciences, Toronto, Ontario, Canada
| | - L Zinman
- Hurvitz Brain Sciences Research Program, Sunnybrook Research Institute, University of Toronto, Toronto, Ontario, Canada; Department of Medicine, Neurology, Sunnybrook Health Sciences, Toronto, Ontario, Canada; Department of Medicine, Neurology, University of Toronto, Toronto, Ontario, Canada
| | - J Keith
- Hurvitz Brain Sciences Research Program, Sunnybrook Research Institute, University of Toronto, Toronto, Ontario, Canada; Department of Laboratory Medicine and Pathobiology, Sunnybrook Health Sciences, Toronto, Ontario, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Y Yunusova
- Department of Speech-Language Pathology, University of Toronto, Toronto, Ontario, Canada; Hurvitz Brain Sciences Research Program, Sunnybrook Research Institute, University of Toronto, Toronto, Ontario, Canada; University Health Network - Toronto Rehabilitation Institute, Toronto, Ontario, Canada
| |
Collapse
|
96
|
Bede P. From qualitative radiological cues to machine learning: MRI-based diagnosis in neurodegeneration. FUTURE NEUROLOGY 2017. [DOI: 10.2217/fnl-2016-0029] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Peter Bede
- Quantitative Neuroimaging Group, Academic Unit of Neurology, Biomedical Sciences Institute, Trinity College Dublin, Ireland
| |
Collapse
|
97
|
Burke T, Lonergan K, Pinto-Grau M, Elamin M, Bede P, Madden C, Hardiman O, Pender N. Visual encoding, consolidation, and retrieval in amyotrophic lateral sclerosis: executive function as a mediator, and predictor of performance. Amyotroph Lateral Scler Frontotemporal Degener 2017; 18:193-201. [DOI: 10.1080/21678421.2016.1272615] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Tom Burke
- Department of Psychology, Beaumont Hospital, Dublin, Ireland,
- Academic Unit of Neurology, Trinity Biomedical Sciences Institute, Ireland,
| | - Katie Lonergan
- Department of Psychology, Beaumont Hospital, Dublin, Ireland,
- Academic Unit of Neurology, Trinity Biomedical Sciences Institute, Ireland,
| | - Marta Pinto-Grau
- Department of Psychology, Beaumont Hospital, Dublin, Ireland,
- Academic Unit of Neurology, Trinity Biomedical Sciences Institute, Ireland,
| | - Marwa Elamin
- Academic Unit of Neurology, Trinity Biomedical Sciences Institute, Ireland,
| | - Peter Bede
- Academic Unit of Neurology, Trinity Biomedical Sciences Institute, Ireland,
| | - Caoifa Madden
- Academic Unit of Neurology, Trinity Biomedical Sciences Institute, Ireland,
| | - Orla Hardiman
- Academic Unit of Neurology, Trinity Biomedical Sciences Institute, Ireland,
- Department of Neurology, Beaumont Hospital, Dublin, Ireland, and
| | - Niall Pender
- Department of Psychology, Beaumont Hospital, Dublin, Ireland,
- Academic Unit of Neurology, Trinity Biomedical Sciences Institute, Ireland,
- Department of Psychology, Royal College of Surgeons, Dublin, Ireland
| |
Collapse
|
98
|
Lee SE, Sias AC, Mandelli ML, Brown JA, Brown AB, Khazenzon AM, Vidovszky AA, Zanto TP, Karydas AM, Pribadi M, Dokuru D, Coppola G, Geschwind DH, Rademakers R, Gorno-Tempini ML, Rosen HJ, Miller BL, Seeley WW. Network degeneration and dysfunction in presymptomatic C9ORF72 expansion carriers. Neuroimage Clin 2016; 14:286-297. [PMID: 28337409 PMCID: PMC5349617 DOI: 10.1016/j.nicl.2016.12.006] [Citation(s) in RCA: 120] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Revised: 12/06/2016] [Accepted: 12/08/2016] [Indexed: 12/12/2022]
Abstract
Hexanucleotide repeat expansions in C9ORF72 are the most common known genetic cause of familial and sporadic frontotemporal dementia and amyotrophic lateral sclerosis. Previous work has shown that patients with behavioral variant frontotemporal dementia due to C9ORF72 show salience and sensorimotor network disruptions comparable to those seen in sporadic behavioral variant frontotemporal dementia, but it remains unknown how early in the lifespan these and other changes in brain structure and function arise. To gain insights into this question, we compared 15 presymptomatic carriers (age 43.7 ± 10.2 years, nine females) to matched healthy controls. We used voxel-based morphometry to assess gray matter, diffusion tensor imaging to interrogate white matter tracts, and task-free functional MRI to probe the salience, sensorimotor, default mode, and medial pulvinar thalamus-seeded networks. We further used a retrospective chart review to ascertain psychiatric histories in carriers and their non-carrier family members. Carriers showed normal cognition and behavior despite gray matter volume and brain connectivity deficits that were apparent as early as the fourth decade of life. Gray matter volume deficits were topographically similar though less severe than those in patients with behavioral variant frontotemporal dementia due to C9ORF72, with major foci in cingulate, insula, thalamus, and striatum. Reduced white matter integrity was found in the corpus callosum, cingulum bundles, corticospinal tracts, uncinate fasciculi and inferior longitudinal fasciculi. Intrinsic connectivity deficits were detected in all four networks but most prominent in salience and medial pulvinar thalamus-seeded networks. Carrier and control groups showed comparable relationships between imaging metrics and age, suggesting that deficits emerge during early adulthood. Carriers and non-carrier family members had comparable lifetime histories of psychiatric symptoms. Taken together, the findings suggest that presymptomatic C9ORF72 expansion carriers exhibit functionally compensated brain volume and connectivity deficits that are similar, though less severe, to those reported during the symptomatic phase. The early adulthood emergence of these deficits suggests that they represent aberrant network patterning during development, an early neurodegeneration prodrome, or both.
Collapse
Key Words
- ALS, amyotrophic lateral sclerosis
- Amyotrophic lateral sclerosis
- CDR, Clinical Dementia Rating scale
- DMN, default mode network
- Diffusion tensor imaging
- FA, fractional anisotropy
- FTD, frontotemporal dementia
- FWE, familywise error
- Frontotemporal dementia
- Functional MRI
- Genetics
- HC, healthy control
- ICN, intrinsic connectivity network
- IRI, Interpersonal Reactivity Index
- MMSE, Mini-Mental State Exam
- MND, motor neuron disease
- NPI, Neuropsychiatric Inventory
- ROI, region of interest
- SMN, sensorimotor network
- TIV, total intracranial volume
- VBM, voxel-based morphometry
- bvFTD, behavioral variant frontotemporal dementia
- fMRI, functional MRI
- preSxC9, presymptomatic C9ORF72 expansion carriers
Collapse
Affiliation(s)
- Suzee E Lee
- University of California, San Francisco, Memory and Aging Center, Department of Neurology, 675 Nelson Rising Lane, MC:1207, San Francisco, CA 94158, USA
| | - Ana C Sias
- University of California, San Francisco, Memory and Aging Center, Department of Neurology, 675 Nelson Rising Lane, MC:1207, San Francisco, CA 94158, USA
| | - Maria Luisa Mandelli
- University of California, San Francisco, Memory and Aging Center, Department of Neurology, 675 Nelson Rising Lane, MC:1207, San Francisco, CA 94158, USA
| | - Jesse A Brown
- University of California, San Francisco, Memory and Aging Center, Department of Neurology, 675 Nelson Rising Lane, MC:1207, San Francisco, CA 94158, USA
| | - Alainna B Brown
- University of California, San Francisco, Memory and Aging Center, Department of Neurology, 675 Nelson Rising Lane, MC:1207, San Francisco, CA 94158, USA
| | - Anna M Khazenzon
- University of California, San Francisco, Memory and Aging Center, Department of Neurology, 675 Nelson Rising Lane, MC:1207, San Francisco, CA 94158, USA; Stanford University, Department of Psychology, Jordan Hall, 450 Serra Mall, Stanford, CA 94305, USA
| | - Anna A Vidovszky
- University of California, San Francisco, Memory and Aging Center, Department of Neurology, 675 Nelson Rising Lane, MC:1207, San Francisco, CA 94158, USA
| | - Theodore P Zanto
- University of California, San Francisco, Department of Neurology, 675 Nelson Rising Lane, MC: 0444, San Francisco, CA 94158, USA
| | - Anna M Karydas
- University of California, San Francisco, Memory and Aging Center, Department of Neurology, 675 Nelson Rising Lane, MC:1207, San Francisco, CA 94158, USA
| | - Mochtar Pribadi
- Department of Neurology and Department of Psychiatry, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, 760 Westwood Plaza Los Angeles, CA 90024, USA
| | - Deepika Dokuru
- Department of Neurology and Department of Psychiatry, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, 760 Westwood Plaza Los Angeles, CA 90024, USA
| | - Giovanni Coppola
- Department of Neurology and Department of Psychiatry, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, 760 Westwood Plaza Los Angeles, CA 90024, USA
| | - Dan H Geschwind
- Department of Neurology and Department of Psychiatry, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, 760 Westwood Plaza Los Angeles, CA 90024, USA
| | - Rosa Rademakers
- Mayo Clinic, Department of Neuroscience, Birdsall Research Building 207, 4500 San Pablo Road, Jacksonville, FL 32224, USA
| | - Maria Luisa Gorno-Tempini
- University of California, San Francisco, Memory and Aging Center, Department of Neurology, 675 Nelson Rising Lane, MC:1207, San Francisco, CA 94158, USA
| | - Howard J Rosen
- University of California, San Francisco, Memory and Aging Center, Department of Neurology, 675 Nelson Rising Lane, MC:1207, San Francisco, CA 94158, USA
| | - Bruce L Miller
- University of California, San Francisco, Memory and Aging Center, Department of Neurology, 675 Nelson Rising Lane, MC:1207, San Francisco, CA 94158, USA
| | - William W Seeley
- University of California, San Francisco, Memory and Aging Center, Department of Neurology, 675 Nelson Rising Lane, MC:1207, San Francisco, CA 94158, USA; University of California, San Francisco, Department of Pathology, 675 Nelson Rising Lane, Suite 140, MC:1207, San Francisco, CA 94158, USA
| |
Collapse
|
99
|
Schulthess I, Gorges M, Müller HP, Lulé D, Del Tredici K, Ludolph AC, Kassubek J. Functional connectivity changes resemble patterns of pTDP-43 pathology in amyotrophic lateral sclerosis. Sci Rep 2016; 6:38391. [PMID: 27929102 PMCID: PMC5144012 DOI: 10.1038/srep38391] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Accepted: 11/08/2016] [Indexed: 12/11/2022] Open
Abstract
‘Resting-state’ fMRI allows investigation of alterations in functional brain organization that are associated with an underlying pathological process. We determine whether abnormal connectivity in amyotrophic lateral sclerosis (ALS) in a priori-defined intrinsic functional connectivity networks, according to a neuropathological staging scheme and its DTI-based tract correlates, permits recognition of a sequential involvement of functional networks. ‘Resting-state’ fMRI data from 135 ALS patients and 56 matched healthy controls were investigated for the motor network (corresponding to neuropathological stage 1), brainstem (stage 2), ventral attention (stage 3), default mode/hippocampal network (stage 4), and primary visual network (as the control network) in a cross-sectional analysis and longitudinally in a subgroup of 27 patients after 6 months. Group comparison from cross-sectional and longitudinal data revealed significantly increased functional connectivity (p < 0.05, corrected) in all four investigated networks (but not in the control network), presenting as a network expansion that was correlated with physical disability. Increased connectivity of functional networks, as investigated in a hypothesis-driven approach, is characterized by network expansions and resembled the pattern of pTDP-43 pathology in ALS. However, our data did not allow for the recognition of a sequential involvement of functional connectivity networks at the individual level.
Collapse
Affiliation(s)
| | - Martin Gorges
- Department of Neurology, University of Ulm, Ulm, Germany
| | | | - Dorothée Lulé
- Department of Neurology, University of Ulm, Ulm, Germany
| | - Kelly Del Tredici
- Clinical Neuroanatomy, Department of Neurology, University of Ulm, Germany
| | | | - Jan Kassubek
- Department of Neurology, University of Ulm, Ulm, Germany
| |
Collapse
|
100
|
Devenney EM, Landin-Romero R, Irish M, Hornberger M, Mioshi E, Halliday GM, Kiernan MC, Hodges JR. The neural correlates and clinical characteristics of psychosis in the frontotemporal dementia continuum and the C9orf72 expansion. Neuroimage Clin 2016; 13:439-445. [PMID: 28116236 PMCID: PMC5233794 DOI: 10.1016/j.nicl.2016.11.028] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2016] [Revised: 11/07/2016] [Accepted: 11/26/2016] [Indexed: 11/28/2022]
Abstract
OBJECTIVE This present study aims to address the gap in the literature regarding the severity and underlying neural correlates of psychotic symptoms in frontotemporal dementia with and without the C9orf72 gene expansion. METHODS Fifty-six patients with behavioural variant frontotemporal dementia (20 with concomitant amyotrophic lateral sclerosis) and 23 healthy controls underwent neuropsychological assessments, detailed clinical interview for assessment of psychosis symptoms, brain MRI and genetic testing. Carers underwent a clinical interview based upon the neuropsychiatric inventory. Patients were assessed at ForeFront, the Frontotemporal Dementia Research Group at Neuroscience Research Australia or at the Brain and Mind Centre, between January 2008 and December 2013. An index of psychosis was calculated, taking into account the degree and severity of psychosis in each case. Voxel-based morphometry analyses were used to explore relationships between the psychosis index and grey matter changes. RESULTS Thirty-four percent of frontotemporal dementia patients showed psychotic features. C9orf72 expansion cases were more likely to exhibit psychotic symptoms than non-carriers (64% vs. 26%; p = 0.006), which were also more severe (psychotic index 23.1 vs. 8.1; p = 0.002). Delusions comprised persecutory, somatic, jealous and grandiose types and were present in 57% of C9orf72 carriers and 19% of non-carriers (p = 0.006). Auditory, visual or tactile hallucinations were present in 36% of C9orf72 carriers and 17% of non-carriers (p = 0.13). Increased psychotic symptoms in C9orf72 expansion carriers correlated with atrophy in a distributed cortical and subcortical network that included discrete regions of the frontal, temporal and occipital cortices, as well as the thalamus, striatum and cerebellum. CONCLUSIONS This study underlines the need to consider and assess for psychotic symptoms in the frontotemporal dementia-amyotrophic lateral sclerosis continuum particularly in those with C9orf72 gene expansions. The network of brain regions identified in this study is strikingly similar to that identified in other psychotic disorders such as schizophrenia, which suggests that treatment strategies in psychiatry may be beneficial for the management of psychotic symptoms in frontotemporal dementia.
Collapse
Affiliation(s)
- Emma M Devenney
- Neuroscience Research Australia, Barker Street, Sydney, NSW 2031, Australia
- University of New South Wales, Sydney, NSW 2031, Australia
- Brain and Mind Research Institute, Camperdown, Sydney, NSW 2050, Australia
- ARC Centre of Excellence in Cognition and its Disorders, Macquarie University, Sydney, NSW 2109, Australia
| | - Ramon Landin-Romero
- Neuroscience Research Australia, Barker Street, Sydney, NSW 2031, Australia
- University of New South Wales, Sydney, NSW 2031, Australia
- ARC Centre of Excellence in Cognition and its Disorders, Macquarie University, Sydney, NSW 2109, Australia
| | - Muireann Irish
- Neuroscience Research Australia, Barker Street, Sydney, NSW 2031, Australia
- University of New South Wales, Sydney, NSW 2031, Australia
- ARC Centre of Excellence in Cognition and its Disorders, Macquarie University, Sydney, NSW 2109, Australia
| | | | - Eneida Mioshi
- University of East Anglia, Norwich NR4 7TJ, United Kingdom
| | - Glenda M. Halliday
- Neuroscience Research Australia, Barker Street, Sydney, NSW 2031, Australia
- University of New South Wales, Sydney, NSW 2031, Australia
| | - Matthew C. Kiernan
- Neuroscience Research Australia, Barker Street, Sydney, NSW 2031, Australia
- University of New South Wales, Sydney, NSW 2031, Australia
- Brain and Mind Research Institute, Camperdown, Sydney, NSW 2050, Australia
| | - John R. Hodges
- Neuroscience Research Australia, Barker Street, Sydney, NSW 2031, Australia
- University of New South Wales, Sydney, NSW 2031, Australia
- ARC Centre of Excellence in Cognition and its Disorders, Macquarie University, Sydney, NSW 2109, Australia
| |
Collapse
|