51
|
A small pons as a characteristic finding in Down syndrome: A quantitative MRI study. Brain Dev 2017; 39:298-305. [PMID: 27865668 DOI: 10.1016/j.braindev.2016.10.016] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Revised: 10/24/2016] [Accepted: 10/29/2016] [Indexed: 12/29/2022]
Abstract
BACKGROUND Down syndrome (DS) is the most common chromosomal aberration, but the characteristics of the brainstem component in this condition during childhood (from newborn to preteen stages) have not been clarified. OBJECTIVE To evaluate the morphological features of the brainstem in DS on magnetic resonance imaging (MRI). MATERIALS AND METHODS MRIs for 32 children with DS (16 boys and girls each; age range, 0-11years) without major brain insults, and 32 age-matched controls (16 boys and girls each) were retrospectively analyzed. Height, width, and area of the midbrain, pons, and medulla oblongata were measured on sagittal T1-weighted images; these were compared in children with DS and age-matched controls. The ratios of the brainstem to the size of the posterior fossa (BS/PF index) were calculated; these were also compared in the children with DS and the control group. RESULTS The width and area of the midbrain; height, width, area of the pons; and area of the medulla oblongata were significantly smaller in children with DS than in control children (P<0.05); the area of the pons, particularly for the ventral part, showed the largest differences in the mean relative differences. The BS/PF indices of the height, width, and area of the pons were significantly smaller in children with DS than in the control group (P<0.01). However, the BS/PF indices for the midbrain and the medulla oblongata did not differ between these two groups. CONCLUSIONS Children with DS may have small brainstems, particularly in the pons; this may be a characteristic morphological feature of the brainstem on MRI in childhood including neonates.
Collapse
|
52
|
Contestabile A, Magara S, Cancedda L. The GABAergic Hypothesis for Cognitive Disabilities in Down Syndrome. Front Cell Neurosci 2017; 11:54. [PMID: 28326014 PMCID: PMC5339239 DOI: 10.3389/fncel.2017.00054] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 02/14/2017] [Indexed: 12/04/2022] Open
Abstract
Down syndrome (DS) is a genetic disorder caused by the presence of a third copy of chromosome 21. DS affects multiple organs, but it invariably results in altered brain development and diverse degrees of intellectual disability. A large body of evidence has shown that synaptic deficits and memory impairment are largely determined by altered GABAergic signaling in trisomic mouse models of DS. These alterations arise during brain development while extending into adulthood, and include genesis of GABAergic neurons, variation of the inhibitory drive and modifications in the control of neural-network excitability. Accordingly, different pharmacological interventions targeting GABAergic signaling have proven promising preclinical approaches to rescue cognitive impairment in DS mouse models. In this review, we will discuss recent data regarding the complex scenario of GABAergic dysfunctions in the trisomic brain of DS mice and patients, and we will evaluate the state of current clinical research targeting GABAergic signaling in individuals with DS.
Collapse
Affiliation(s)
- Andrea Contestabile
- Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia (IIT) Genova, Italy
| | - Salvatore Magara
- Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia (IIT) Genova, Italy
| | - Laura Cancedda
- Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia (IIT)Genova, Italy; Dulbecco Telethon InstituteGenova, Italy
| |
Collapse
|
53
|
Annus T, Wilson LR, Acosta-Cabronero J, Cardenas-Blanco A, Hong YT, Fryer TD, Coles JP, Menon DK, Zaman SH, Holland AJ, Nestor PJ. The Down syndrome brain in the presence and absence of fibrillar β-amyloidosis. Neurobiol Aging 2017; 53:11-19. [PMID: 28192686 PMCID: PMC5391869 DOI: 10.1016/j.neurobiolaging.2017.01.009] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Revised: 01/01/2017] [Accepted: 01/06/2017] [Indexed: 11/26/2022]
Abstract
People with Down syndrome (DS) have a neurodevelopmentally distinct brain and invariably developed amyloid neuropathology by age 50. This cross-sectional study aimed to provide a detailed account of DS brain morphology and the changes occuring with amyloid neuropathology. Forty-six adults with DS underwent structural and amyloid imaging—the latter using Pittsburgh compound B (PIB) to stratify the cohort into PIB-positive (n = 19) and PIB-negative (n = 27). Age-matched controls (n = 30) underwent structural imaging. Group differences in deep gray matter volumetry and cortical thickness were studied. PIB-negative people with DS have neurodevelopmentally atypical brain, characterized by disproportionately thicker frontal and occipitoparietal cortex and thinner motor cortex and temporal pole with larger putamina and smaller hippocampi than controls. In the presence of amyloid neuropathology, the DS brains demonstrated a strikingly similar pattern of posterior dominant cortical thinning and subcortical atrophy in the hippocampus, thalamus, and striatum, to that observed in non-DS Alzheimer's disease. Care must be taken to avoid underestimating amyloid-associated morphologic changes in DS due to disproportionate size of some subcortical structures and thickness of the cortex.
Collapse
Affiliation(s)
- Tiina Annus
- Cambridge Intellectual and Developmental Disabilities Research Group, Department of Psychiatry, University of Cambridge, Douglas House, Cambridge, UK.
| | - Liam R Wilson
- Cambridge Intellectual and Developmental Disabilities Research Group, Department of Psychiatry, University of Cambridge, Douglas House, Cambridge, UK
| | - Julio Acosta-Cabronero
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany; Wellcome Trust Centre for Neuroimaging, Institute of Neurology, University College London, London, UK
| | | | - Young T Hong
- Wolfson Brain Imaging Centre, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Tim D Fryer
- Wolfson Brain Imaging Centre, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Jonathan P Coles
- Division of Anaesthesia, Department of Medicine, University of Cambridge, Cambridge, UK
| | - David K Menon
- Division of Anaesthesia, Department of Medicine, University of Cambridge, Cambridge, UK
| | - Shahid H Zaman
- Cambridge Intellectual and Developmental Disabilities Research Group, Department of Psychiatry, University of Cambridge, Douglas House, Cambridge, UK; Cambridgeshire and Peterborough NHS Foundation Trust, Elizabeth House, Fulbourn Hospital, Fulbourn, Cambridge, UK
| | - Anthony J Holland
- Cambridge Intellectual and Developmental Disabilities Research Group, Department of Psychiatry, University of Cambridge, Douglas House, Cambridge, UK; Cambridgeshire and Peterborough NHS Foundation Trust, Elizabeth House, Fulbourn Hospital, Fulbourn, Cambridge, UK
| | - Peter J Nestor
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
| |
Collapse
|
54
|
Mangum R, Varga E, Boué DR, Capper D, Benesch M, Leonard J, Osorio DS, Pierson CR, Zumberge N, Sahm F, Schrimpf D, Pfister SM, Finlay JL. SHH desmoplastic/nodular medulloblastoma and Gorlin syndrome in the setting of Down syndrome: case report, molecular profiling, and review of the literature. Childs Nerv Syst 2016; 32:2439-2446. [PMID: 27444290 DOI: 10.1007/s00381-016-3185-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Accepted: 07/07/2016] [Indexed: 12/27/2022]
Abstract
INTRODUCTION Individuals with Down syndrome (DS) have an increased risk of acute leukemia compared to a markedly decreased incidence of solid tumors. Medulloblastoma, the most common malignant brain tumor of childhood, is particularly rare in the DS population, with only one published case. As demonstrated in a mouse model, DS is associated with cerebellar hypoplasia and a decreased number of cerebellar granule neuron progenitor cells (CGNPs) in the external granule cell layer (EGL). Treatment of these mice with sonic hedgehog signaling pathway (Shh) agonists promote normalization of CGNPs and improved cognitive functioning. CASE REPORT We describe a 21-month-old male with DS and concurrent desmoplastic/nodular medulloblastoma (DNMB)-a tumor derived from Shh dysregulation and over-activation of CGNPs. Molecular profiling further classified the tumor into the new consensus SHH molecular subgroup. Additional testing revealed a de novo heterozygous germ line mutation in the PTCH1 gene encoding a tumor suppressor protein in the Shh pathway. DISCUSSION The developmental failure of CGNPs in DS patients offers a plausible explanation for the rarity of medulloblastoma in this population. Conversely, patients with PTCH1 germline mutations experience Shh overstimulation resulting in Gorlin (Nevoid Basal Cell Carcinoma) syndrome and an increased incidence of malignant transformation of CGNPs leading to medulloblastoma formation. This represents the first documented report of an individual with DS simultaneously carrying PTCH1 germline mutation. CONCLUSION We have observed a highly unusual circumstance in which the PTCH1 mutation appears to "trump" the effects of DS in causation of Shh-activated medulloblastoma.
Collapse
Affiliation(s)
- Ross Mangum
- The Divisions of Hematology/Oncology/BMT, Neurosurgery and Neuropathology, the Departments of Pediatrics, Surgery and Pathology, Nationwide Children's Hospital and The Ohio State University, Columbus, OH, USA.
| | - Elizabeth Varga
- The Divisions of Hematology/Oncology/BMT, Neurosurgery and Neuropathology, the Departments of Pediatrics, Surgery and Pathology, Nationwide Children's Hospital and The Ohio State University, Columbus, OH, USA
| | - Daniel R Boué
- The Divisions of Hematology/Oncology/BMT, Neurosurgery and Neuropathology, the Departments of Pediatrics, Surgery and Pathology, Nationwide Children's Hospital and The Ohio State University, Columbus, OH, USA
| | - David Capper
- German Cancer Consortium (DKTK), Core Center Heidelberg, Heidelberg, Germany.,Department of Neuropathology, University Hospital Heidelberg, Heidelberg, Germany
| | - Martin Benesch
- Division of Pediatric Hematology/Oncology, Medical University of Graz, Graz, Austria
| | - Jeffrey Leonard
- The Divisions of Hematology/Oncology/BMT, Neurosurgery and Neuropathology, the Departments of Pediatrics, Surgery and Pathology, Nationwide Children's Hospital and The Ohio State University, Columbus, OH, USA
| | - Diana S Osorio
- The Divisions of Hematology/Oncology/BMT, Neurosurgery and Neuropathology, the Departments of Pediatrics, Surgery and Pathology, Nationwide Children's Hospital and The Ohio State University, Columbus, OH, USA
| | - Christopher R Pierson
- The Divisions of Hematology/Oncology/BMT, Neurosurgery and Neuropathology, the Departments of Pediatrics, Surgery and Pathology, Nationwide Children's Hospital and The Ohio State University, Columbus, OH, USA
| | - Nicholas Zumberge
- The Divisions of Hematology/Oncology/BMT, Neurosurgery and Neuropathology, the Departments of Pediatrics, Surgery and Pathology, Nationwide Children's Hospital and The Ohio State University, Columbus, OH, USA
| | - Felix Sahm
- German Cancer Consortium (DKTK), Core Center Heidelberg, Heidelberg, Germany.,Department of Neuropathology, University Hospital Heidelberg, Heidelberg, Germany
| | - Daniel Schrimpf
- German Cancer Consortium (DKTK), Core Center Heidelberg, Heidelberg, Germany.,Department of Neuropathology, University Hospital Heidelberg, Heidelberg, Germany
| | - Stefan M Pfister
- German Cancer Consortium (DKTK), Core Center Heidelberg, Heidelberg, Germany.,Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jonathan L Finlay
- The Divisions of Hematology/Oncology/BMT, Neurosurgery and Neuropathology, the Departments of Pediatrics, Surgery and Pathology, Nationwide Children's Hospital and The Ohio State University, Columbus, OH, USA
| |
Collapse
|
55
|
Çağlayan ES. Generation of improved human cerebral organoids from single copy DYRK1A knockout induced pluripotent stem cells in trisomy 21: hypothetical solutions for neurodevelopmental models and therapeutic alternatives in down syndrome. Cell Biol Int 2016; 40:1256-1270. [PMID: 27743462 DOI: 10.1002/cbin.10694] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 10/12/2016] [Indexed: 01/02/2023]
Abstract
Dual-specificity thyrosine phosphorylation-regulated kinase 1A (DYRK1A) is a strong therapeutic target to ameliorate cognitive functions of Down Syndrome (DS). Genetic normalization of Dyrk1a is sufficient to normalize early cortical developmental phenotypes in DS mouse models. Gyrencephalic human neocortical development is more complex than that in lissencephalic mice; hence, cerebral organoids (COs) can be used to model early neurodevelopmental defects of DS. Single copy DYRK1A knockout COs (scDYRK1AKO-COs) can be generated from manipulated DS derived (DS-) induced pluripotent stem cells (iPSCs) and genetic normalization of DYRK1A is expected to result in corrected neurodevelopmental phenotypes that can be reminiscent of normal COs. DYRK1A knock-in (DYRK1AKI) COs can be derived after genetic manipulations of normal iPSCs and would be valuable to evaluate impaired neocortical development as can be seen in DS-COs. DYRK1A mutations cause severe human primary microcephaly; hence, dose optimization studies of DYRK1A inhibitors will be critical for prenatal therapeutic applications in DS. Several doses of DYRK1A inhibitors can be tested in the neurodevelopment process of DS-COs and DS-scDYRK1AKO-COs would be used as optimum models for evaluating phenotypic ameliorations. Overdose drug exposure in DS-COs can be explained by similar defects present in DS-baDYRK1AKO-COs and DYRK1AKO-COs. There are several limitations in the current CO technology, which can be reduced by the generation of vascularized brain-like organoids giving opportunities to mimic late-stage corticogenesis and complete hippocampal development. In the future, improved DS-DYRK1AKO-COs can be efficient in studies that aim to generate efficiently transplantable and implantable neurons for tissue regeneration alternatives in DS individuals.
Collapse
Affiliation(s)
- E Sacide Çağlayan
- Faculty of Health Science, Department of Nutrition and Dietetics, Ankara Yıldırım Beyazıt University, Ankara, 06010, Turkey
| |
Collapse
|
56
|
Powell NM, Modat M, Cardoso MJ, Ma D, Holmes HE, Yu Y, O’Callaghan J, Cleary JO, Sinclair B, Wiseman FK, Tybulewicz VLJ, Fisher EMC, Lythgoe MF, Ourselin S. Fully-Automated μMRI Morphometric Phenotyping of the Tc1 Mouse Model of Down Syndrome. PLoS One 2016; 11:e0162974. [PMID: 27658297 PMCID: PMC5033246 DOI: 10.1371/journal.pone.0162974] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 08/31/2016] [Indexed: 01/07/2023] Open
Abstract
We describe a fully automated pipeline for the morphometric phenotyping of mouse brains from μMRI data, and show its application to the Tc1 mouse model of Down syndrome, to identify new morphological phenotypes in the brain of this first transchromosomic animal carrying human chromosome 21. We incorporate an accessible approach for simultaneously scanning multiple ex vivo brains, requiring only a 3D-printed brain holder, and novel image processing steps for their separation and orientation. We employ clinically established multi-atlas techniques–superior to single-atlas methods–together with publicly-available atlas databases for automatic skull-stripping and tissue segmentation, providing high-quality, subject-specific tissue maps. We follow these steps with group-wise registration, structural parcellation and both Voxel- and Tensor-Based Morphometry–advantageous for their ability to highlight morphological differences without the laborious delineation of regions of interest. We show the application of freely available open-source software developed for clinical MRI analysis to mouse brain data: NiftySeg for segmentation and NiftyReg for registration, and discuss atlases and parameters suitable for the preclinical paradigm. We used this pipeline to compare 29 Tc1 brains with 26 wild-type littermate controls, imaged ex vivo at 9.4T. We show an unexpected increase in Tc1 total intracranial volume and, controlling for this, local volume and grey matter density reductions in the Tc1 brain compared to the wild-types, most prominently in the cerebellum, in agreement with human DS and previous histological findings.
Collapse
Affiliation(s)
- Nick M. Powell
- Translational Imaging Group, Centre for Medical Image Computing, University College London, 3rd Floor, Wolfson House, 4 Stephenson Way, London NW1 2HE, United Kingdom
- Centre for Advanced Biomedical Imaging, Division of Medicine, University College London, Paul O’Gorman Building, 72 Huntley Street, London WC1E 6DD, United Kingdom
- * E-mail:
| | - Marc Modat
- Translational Imaging Group, Centre for Medical Image Computing, University College London, 3rd Floor, Wolfson House, 4 Stephenson Way, London NW1 2HE, United Kingdom
| | - M. Jorge Cardoso
- Translational Imaging Group, Centre for Medical Image Computing, University College London, 3rd Floor, Wolfson House, 4 Stephenson Way, London NW1 2HE, United Kingdom
| | - Da Ma
- Translational Imaging Group, Centre for Medical Image Computing, University College London, 3rd Floor, Wolfson House, 4 Stephenson Way, London NW1 2HE, United Kingdom
- Centre for Advanced Biomedical Imaging, Division of Medicine, University College London, Paul O’Gorman Building, 72 Huntley Street, London WC1E 6DD, United Kingdom
| | - Holly E. Holmes
- Centre for Advanced Biomedical Imaging, Division of Medicine, University College London, Paul O’Gorman Building, 72 Huntley Street, London WC1E 6DD, United Kingdom
| | - Yichao Yu
- Centre for Advanced Biomedical Imaging, Division of Medicine, University College London, Paul O’Gorman Building, 72 Huntley Street, London WC1E 6DD, United Kingdom
| | - James O’Callaghan
- Centre for Advanced Biomedical Imaging, Division of Medicine, University College London, Paul O’Gorman Building, 72 Huntley Street, London WC1E 6DD, United Kingdom
| | - Jon O. Cleary
- Centre for Advanced Biomedical Imaging, Division of Medicine, University College London, Paul O’Gorman Building, 72 Huntley Street, London WC1E 6DD, United Kingdom
- Melbourne Brain Centre Imaging Unit, Department of Anatomy and Neuroscience, University of Melbourne, Parkville, Victoria 3052, Australia
| | - Ben Sinclair
- Centre for Advanced Biomedical Imaging, Division of Medicine, University College London, Paul O’Gorman Building, 72 Huntley Street, London WC1E 6DD, United Kingdom
| | - Frances K. Wiseman
- Department of Neurodegenerative Disease, Institute of Neurology, University College, London WC1N 3BG, United Kingdom
| | - Victor L. J. Tybulewicz
- The Francis Crick Institute, Mill Hill Laboratory, London NW7 1AA, United Kingdom
- Imperial College, London W12 0NN, United Kingdom
| | - Elizabeth M. C. Fisher
- Department of Neurodegenerative Disease, Institute of Neurology, University College, London WC1N 3BG, United Kingdom
| | - Mark F. Lythgoe
- Centre for Advanced Biomedical Imaging, Division of Medicine, University College London, Paul O’Gorman Building, 72 Huntley Street, London WC1E 6DD, United Kingdom
| | - Sébastien Ourselin
- Translational Imaging Group, Centre for Medical Image Computing, University College London, 3rd Floor, Wolfson House, 4 Stephenson Way, London NW1 2HE, United Kingdom
| |
Collapse
|
57
|
Lee NR, Adeyemi EI, Lin A, Clasen LS, Lalonde FM, Condon E, Driver DI, Shaw P, Gogtay N, Raznahan A, Giedd JN. Dissociations in Cortical Morphometry in Youth with Down Syndrome: Evidence for Reduced Surface Area but Increased Thickness. Cereb Cortex 2016; 26:2982-90. [PMID: 26088974 PMCID: PMC4898663 DOI: 10.1093/cercor/bhv107] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Detailed descriptions of cortical anatomy in youth with Down syndrome (DS), the most common genetic cause of intellectual disability (ID), are scant. Thus, the current study examined deviations in cortical thickness (CT) and surface area (SA), at high spatial resolution, in youth with DS, to identify focal differences relative to typically developing (TD) youth. Participants included 31 youth with DS and 45 age- and sex-matched TD controls (mean age ∼16 years; range = 5-24 years). All participants completed T1-weighted ASSET-calibrated magnetization prepared rapid gradient echo scans on a 3-T magnetic resonance imaging scanner. Replicating prior investigations, cortical volume was reduced in DS compared with controls. However, a novel dissociation for SA and CT was found-namely, SA was reduced (predominantly in frontal and temporal regions) while CT was increased (notably in several regions thought to belong to the default mode network; DMN). These findings suggest that reductions in SA rather than CT are driving the cortical volume reductions reported in prior investigations of DS. Moreover, given the link between DMN functionality and Alzheimer's symptomatology in chromosomally typical populations, future DS studies may benefit from focusing on the cortex in DMN regions, as such investigations may provide clues to the precocious onset of Alzheimer's disease in this at-risk group.
Collapse
Affiliation(s)
- Nancy Raitano Lee
- Child Psychiatry Branch
- Department of Psychology, Drexel University, Philadelphia, PA 19104, USA
| | | | | | | | | | - Ellen Condon
- Functional MRI Core Facility, National Institute of Mental Health, NIH, Bethesda, MD 20892, USA
| | | | - Philip Shaw
- Social and Behavioral Research Branch, National Human Genome Research Institute, NIH, Bethesda, MD 20892, USA
| | | | | | - Jay N. Giedd
- Child Psychiatry Branch
- Department of Psychiatry, University of California, La Jolla, CA 92093, USA
| |
Collapse
|
58
|
Ruiz-Mejias M, Martinez de Lagran M, Mattia M, Castano-Prat P, Perez-Mendez L, Ciria-Suarez L, Gener T, Sancristobal B, García-Ojalvo J, Gruart A, Delgado-García JM, Sanchez-Vives MV, Dierssen M. Overexpression of Dyrk1A, a Down Syndrome Candidate, Decreases Excitability and Impairs Gamma Oscillations in the Prefrontal Cortex. J Neurosci 2016; 36:3648-59. [PMID: 27030752 PMCID: PMC6601739 DOI: 10.1523/jneurosci.2517-15.2016] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2015] [Revised: 01/12/2016] [Accepted: 01/14/2016] [Indexed: 11/21/2022] Open
Abstract
The dual-specificity tyrosine phosphorylation-regulated kinase DYRK1A is a serine/threonine kinase involved in neuronal differentiation and synaptic plasticity and a major candidate of Down syndrome brain alterations and cognitive deficits. DYRK1A is strongly expressed in the cerebral cortex, and its overexpression leads to defective cortical pyramidal cell morphology, synaptic plasticity deficits, and altered excitation/inhibition balance. These previous observations, however, do not allow predicting how the behavior of the prefrontal cortex (PFC) network and the resulting properties of its emergent activity are affected. Here, we integrate functional, anatomical, and computational data describing the prefrontal network alterations in transgenic mice overexpressingDyrk1A(TgDyrk1A). Usingin vivoextracellular recordings, we show decreased firing rate and gamma frequency power in the prefrontal network of anesthetized and awakeTgDyrk1Amice. Immunohistochemical analysis identified a selective reduction of vesicular GABA transporter punctae on parvalbumin positive neurons, without changes in the number of cortical GABAergic neurons in the PFC ofTgDyrk1Amice, which suggests that selective disinhibition of parvalbumin interneurons would result in an overinhibited functional network. Using a conductance-based computational model, we quantitatively demonstrate that this alteration could explain the observed functional deficits including decreased gamma power and firing rate. Our results suggest that dysfunction of cortical fast-spiking interneurons might be central to the pathophysiology of Down syndrome. SIGNIFICANCE STATEMENT DYRK1Ais a major candidate gene in Down syndrome. Its overexpression results into altered cognitive abilities, explained by defective cortical microarchitecture and excitation/inhibition imbalance. An open question is how these deficits impact the functionality of the prefrontal cortex network. Combining functional, anatomical, and computational approaches, we identified decreased neuronal firing rate and deficits in gamma frequency in the prefrontal cortices of transgenic mice overexpressingDyrk1A We also identified a reduction of vesicular GABA transporter punctae specifically on parvalbumin positive interneurons. Using a conductance-based computational model, we demonstrate that this decreased inhibition on interneurons recapitulates the observed functional deficits, including decreased gamma power and firing rate. Our results suggest that dysfunction of cortical fast-spiking interneurons might be central to the pathophysiology of Down syndrome.
Collapse
Affiliation(s)
- Marcel Ruiz-Mejias
- Systems Neuroscience, August Pi i Sunyer Biomedical research Institute (IDIBAPS), 08036 Barcelona, Spain
| | - Maria Martinez de Lagran
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, 08003 Barcelona, Spain, Pompeu Fabra University (UPF), 08003 Barcelona, Spain, Centre for Biomedical Research on Rare Diseases (CIBERER) 08003 Barcelona, Spain
| | | | - Patricia Castano-Prat
- Systems Neuroscience, August Pi i Sunyer Biomedical research Institute (IDIBAPS), 08036 Barcelona, Spain
| | - Lorena Perez-Mendez
- Systems Neuroscience, August Pi i Sunyer Biomedical research Institute (IDIBAPS), 08036 Barcelona, Spain
| | - Laura Ciria-Suarez
- Systems Neuroscience, August Pi i Sunyer Biomedical research Institute (IDIBAPS), 08036 Barcelona, Spain
| | - Thomas Gener
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, 08003 Barcelona, Spain, Pompeu Fabra University (UPF), 08003 Barcelona, Spain, Centre for Biomedical Research on Rare Diseases (CIBERER) 08003 Barcelona, Spain
| | - Belen Sancristobal
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, 08003 Barcelona, Spain, Pompeu Fabra University (UPF), 08003 Barcelona, Spain, Centre for Biomedical Research on Rare Diseases (CIBERER) 08003 Barcelona, Spain
| | | | - Agnès Gruart
- Neuroscience Department, Pablo de Olavide University 41013 Seville, Spain, and
| | | | - Maria V Sanchez-Vives
- Systems Neuroscience, August Pi i Sunyer Biomedical research Institute (IDIBAPS), 08036 Barcelona, Spain, Catalan Institution for Research and Advanced Studies (ICREA) 08010 Barcelona, Spain
| | - Mara Dierssen
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, 08003 Barcelona, Spain, Pompeu Fabra University (UPF), 08003 Barcelona, Spain, Centre for Biomedical Research on Rare Diseases (CIBERER) 08003 Barcelona, Spain,
| |
Collapse
|
59
|
Matthews DC, Lukic AS, Andrews RD, Marendic B, Brewer J, Rissman RA, Mosconi L, Strother SC, Wernick MN, Mobley WC, Ness S, Schmidt ME, Rafii MS. Dissociation of Down syndrome and Alzheimer's disease effects with imaging. ALZHEIMERS & DEMENTIA-TRANSLATIONAL RESEARCH & CLINICAL INTERVENTIONS 2016. [PMID: 28642933 PMCID: PMC5477635 DOI: 10.1016/j.trci.2016.02.004] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Introduction Down Syndrome (DS) adults experience accumulation of Alzheimer's disease (AD)–like amyloid plaques and tangles and a high incidence of dementia and could provide an enriched population to study AD-targeted treatments. However, to evaluate effects of therapeutic intervention, it is necessary to dissociate the contributions of DS and AD from overall phenotype. Imaging biomarkers offer the potential to characterize and stratify patients who will worsen clinically but have yielded mixed findings in DS subjects. Methods We evaluated 18F fluorodeoxyglucose positron emission tomography (PET), florbetapir PET, and structural magnetic resonance (sMR) image data from 12 nondemented DS adults using advanced multivariate machine learning methods. Results Our results showed distinctive patterns of glucose metabolism and brain volume enabling dissociation of DS and AD effects. AD-like pattern expression corresponded to amyloid burden and clinical measures. Discussion These findings lay groundwork to enable AD clinical trials with characterization and disease-specific tracking of DS adults.
Collapse
Affiliation(s)
| | | | | | | | - James Brewer
- Alzheimer's Disease Cooperative Study, Department of Neurosciences, University of California San Diego School of Medicine, La Jolla, CA, USA
| | - Robert A Rissman
- Alzheimer's Disease Cooperative Study, Department of Neurosciences, University of California San Diego School of Medicine, La Jolla, CA, USA
| | - Lisa Mosconi
- Department of Psychiatry, New York University Langone School of Medicine, New York, NY, USA
| | - Stephen C Strother
- ADM Diagnostics, Northbrook, IL, USA.,Rotman Research Institute, Baycrest Hospital and Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Miles N Wernick
- ADM Diagnostics, Northbrook, IL, USA.,Departments of Electrical and Computer Engineering and Biomedical Engineering, Medical Imaging Research Center, Illinois Institute of Technology, Chicago, IL, USA
| | - William C Mobley
- Alzheimer's Disease Cooperative Study, Department of Neurosciences, University of California San Diego School of Medicine, La Jolla, CA, USA
| | - Seth Ness
- Janssen Research and Development LLC, Raritan, NJ, USA
| | | | - Michael S Rafii
- Alzheimer's Disease Cooperative Study, Department of Neurosciences, University of California San Diego School of Medicine, La Jolla, CA, USA
| |
Collapse
|
60
|
de Knegt N, Defrin R, Schuengel C, Lobbezoo F, Evenhuis H, Scherder E. Quantitative sensory testing of temperature, pain, and touch in adults with Down syndrome. RESEARCH IN DEVELOPMENTAL DISABILITIES 2015; 47:306-317. [PMID: 26460852 DOI: 10.1016/j.ridd.2015.08.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Revised: 07/18/2015] [Accepted: 08/26/2015] [Indexed: 06/05/2023]
Abstract
The spinothalamic pathway mediates sensations of temperature, pain, and touch. These functions seem impaired in children with Down syndrome (DS), but have not been extensively examined in adults. The objective of the present study was to compare the spinothalamic-mediated sensory functions between adults with DS and adults from the general population and to examine in the DS group the relationship between the sensory functions and level of intellectual functioning. Quantitative sensory testing (QST) was performed in 188 adults with DS (mean age 37.5 years) and 142 age-matched control participants (median age 40.5 years). Temperature, pain, and touch were evaluated with tests for cold-warm discrimination, sharp-dull discrimination (pinprick), and tactile threshold, respectively. Level of intellectual functioning was estimated with the Social Functioning Scale for Intellectual Disability (intellectual disability level) and the Wechsler Preschool and Primary Scale of Intelligence--Revised (intelligence level). Overall, the difference in spinothalamic-mediated sensory functions between the DS and control groups was not statistically significant. However, DS participants with a lower intelligence level had a statistically significant lower performance on the sharp-dull discrimination test than DS participants with higher intelligence level (adjusted p=.006) and control participants (adjusted p=.017). It was concluded that intellectual functioning level is an important factor to take into account for the assessment of spinothalamic-mediated sensory functioning in adults with DS: a lower level could coincide with impaired sensory functioning, but could also hamper QST assessment.
Collapse
Affiliation(s)
- Nanda de Knegt
- Department of Clinical Neuropsychology, VU University, Van der Boechorststraat 1, 1081 BT Amsterdam, The Netherlands.
| | - Ruth Defrin
- Department of Physical Therapy, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv 69978, Israel.
| | - Carlo Schuengel
- Department of Clinical Child and Family Studies, VU University, Van der Boechorststraat 1, 1081 BT Amsterdam, The Netherlands.
| | - Frank Lobbezoo
- Department of Oral Kinesiology, Academic Center for Dentistry Amsterdam (ACTA) , Gustav Mahlerlaan 3004, 1081 LA Amsterdam, The Netherlands.
| | - Heleen Evenhuis
- Department of General Practice, Erasmus MC, University Medical Center, 's-Gravendijkwal 230, 3015 CE Rotterdam, The Netherlands.
| | - Erik Scherder
- Department of Clinical Neuropsychology, VU University, Van der Boechorststraat 1, 1081 BT Amsterdam, The Netherlands.
| |
Collapse
|
61
|
Liogier d'Ardhuy X, Edgin JO, Bouis C, de Sola S, Goeldner C, Kishnani P, Nöldeke J, Rice S, Sacco S, Squassante L, Spiridigliozzi G, Visootsak J, Heller J, Khwaja O. Assessment of Cognitive Scales to Examine Memory, Executive Function and Language in Individuals with Down Syndrome: Implications of a 6-month Observational Study. Front Behav Neurosci 2015; 9:300. [PMID: 26635554 PMCID: PMC4650711 DOI: 10.3389/fnbeh.2015.00300] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Accepted: 10/28/2015] [Indexed: 02/04/2023] Open
Abstract
Down syndrome (DS) is the most commonly identifiable genetic form of intellectual disability. Individuals with DS have considerable deficits in intellectual functioning (i.e., low intellectual quotient, delayed learning and/or impaired language development) and adaptive behavior. Previous pharmacological studies in this population have been limited by a lack of appropriate endpoints that accurately measured change in cognitive and functional abilities. Therefore, the current longitudinal observational study assessed the suitability and reliability of existing cognitive scales to determine which tools would be the most effective in future interventional clinical studies. Subtests of the Repeatable Battery for the Assessment of Neuropsychological Status (RBANS), Cambridge Neuropsychological Test Automated Battery (CANTAB), and Clinical Evaluation of Language Fundamentals-Preschool-2 (CELF-P-2), and the Observer Memory Questionnaire-Parent Form (OMQ-PF), Behavior Rating Inventory of Executive Function®-Preschool Version (BRIEF-P) and Leiter International Performance Scale-Revised were assessed. The results reported here have contributed to the optimization of trial design and endpoint selection for the Phase 2 study of a new selective negative allosteric modulator of the GABAA receptor α5-subtype (Basmisanil), and can be applied to other studies in the DS population.
Collapse
Affiliation(s)
- Xavier Liogier d'Ardhuy
- F. Hoffmann-La Roche, Roche Pharma Research and Early Development, Neuroscience, Roche Innovation Center Basel Basel, Switzerland
| | - Jamie O Edgin
- Department of Psychology, University of Arizona Tucson, AZ, USA
| | - Charles Bouis
- Research Department, Institut Jérôme Lejeune Paris, France
| | - Susana de Sola
- Cellular and Systems Neurobiology Research Group, Human Pharmacology and Clinical Neurosciences Research Group-Neurosciences Program, Systems Biology Program, Centre for Genomic Regulation, Hospital del Mar Medical Research Institute Barcelona, Spain
| | - Celia Goeldner
- F. Hoffmann-La Roche, Roche Pharma Research and Early Development, Neuroscience, Roche Innovation Center Basel Basel, Switzerland
| | - Priya Kishnani
- Medical Genetics, Duke University Medical Center Durham, NC, USA
| | - Jana Nöldeke
- F. Hoffmann-La Roche, Roche Pharma Research and Early Development, Neuroscience, Roche Innovation Center Basel Basel, Switzerland
| | - Sydney Rice
- Department of Pediatrics, University of Arizona Tucson, AZ, USA
| | - Silvia Sacco
- Research Department, Institut Jérôme Lejeune Paris, France
| | | | | | - Jeannie Visootsak
- F. Hoffmann-La Roche, Roche Pharma Research and Early Development, Neuroscience and Rare Diseases, Roche Innovation Center New York New York, NY, USA
| | - James Heller
- Formerly of Duke University Medical Center Durham, NC, USA
| | - Omar Khwaja
- F. Hoffmann-La Roche, Roche Pharma Research and Early Development, Rare Diseases, Roche Innovation Center Basel Basel, Switzerland
| |
Collapse
|
62
|
Hoyo LD, Xicota L, Sánchez-Benavides G, Cuenca-Royo A, de Sola S, Langohr K, Fagundo AB, Farré M, Dierssen M, de la Torre R. Semantic Verbal Fluency Pattern, Dementia Rating Scores and Adaptive Behavior Correlate With Plasma Aβ42 Concentrations in Down Syndrome Young Adults. Front Behav Neurosci 2015; 9:301. [PMID: 26635555 PMCID: PMC4649024 DOI: 10.3389/fnbeh.2015.00301] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Accepted: 10/28/2015] [Indexed: 12/19/2022] Open
Abstract
Down syndrome (DS) is an intellectual disability (ID) disorder in which language and specifically, verbal fluency are strongly impaired domains; nearly all adults show neuropathology of Alzheimer’s disease (AD), including amyloid deposition by their fifth decade of life. In the general population, verbal fluency deficits are considered a strong AD predictor being the semantic verbal fluency task (SVFT) a useful tool for enhancing early diagnostic. However, there is a lack of information about the association between the semantic verbal fluency pattern (SVFP) and the biological amyloidosis markers in DS. In the current study, we used the SVFT in young adults with DS to characterize their SVFP, assessing total generated words, clustering, and switching. We then explored its association with early indicators of dementia, adaptive behavior and amyloidosis biomarkers, using the Dementia Questionnaire for Persons with Intellectual Disability (DMR), the Adaptive Behavior Assessment System-Second Edition (ABAS-II), and plasma levels of Aβ peptides (Aβ40 and Aβ42), as a potent biomarker of AD. In DS, worse performance in SVFT and poorer communication skills were associated with higher plasma Aβ42 concentrations, a higher DMR score and impaired communication skills (ABAS–II). The total word production and switching ability in SVFT were good indicators of plasma Aβ42 concentration. In conclusion, we propose the SVFT as a good screening test for early detection of dementia and amyloidosis in young adults with DS.
Collapse
Affiliation(s)
- Laura Del Hoyo
- Neurosciences Research Program, Integrative Pharmacology and Systems Neuroscience Research Group, IMIM-Institut de Hospital del Mar d'Investigacions Mèdiques Barcelona, Spain ; Departamento de farmacología, Universitat Autònoma de Barcelona Barcelona, Spain
| | - Laura Xicota
- Neurosciences Research Program, Integrative Pharmacology and Systems Neuroscience Research Group, IMIM-Institut de Hospital del Mar d'Investigacions Mèdiques Barcelona, Spain ; Systems Biology Program, Cellular and Systems Neurobiology, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology Barcelona, Spain ; Department of Experimental and Health Sciences, Universitat Pompeu Fabra Barcelona, Spain
| | - Gonzalo Sánchez-Benavides
- Neurosciences Research Program, Integrative Pharmacology and Systems Neuroscience Research Group, IMIM-Institut de Hospital del Mar d'Investigacions Mèdiques Barcelona, Spain
| | - Aida Cuenca-Royo
- Neurosciences Research Program, Integrative Pharmacology and Systems Neuroscience Research Group, IMIM-Institut de Hospital del Mar d'Investigacions Mèdiques Barcelona, Spain
| | - Susana de Sola
- Neurosciences Research Program, Integrative Pharmacology and Systems Neuroscience Research Group, IMIM-Institut de Hospital del Mar d'Investigacions Mèdiques Barcelona, Spain ; Systems Biology Program, Cellular and Systems Neurobiology, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology Barcelona, Spain
| | - Klaus Langohr
- Neurosciences Research Program, Integrative Pharmacology and Systems Neuroscience Research Group, IMIM-Institut de Hospital del Mar d'Investigacions Mèdiques Barcelona, Spain ; Department of Statistics and Operations Research, Universitat Politècnica de Barcelona/BarcelonaTech Barcelona, Spain
| | - Ana B Fagundo
- Department of Psychiatry, University Hospital of Bellvitge-IDIBELL Barcelona, Spain ; CIBER Fisiopatología Obesidad y Nutrición (CIBERObn), Instituto Salud Carlos III Madrid, Spain
| | - Magí Farré
- Neurosciences Research Program, Integrative Pharmacology and Systems Neuroscience Research Group, IMIM-Institut de Hospital del Mar d'Investigacions Mèdiques Barcelona, Spain ; Departamento de farmacología, Universitat Autònoma de Barcelona Barcelona, Spain
| | - Mara Dierssen
- Systems Biology Program, Cellular and Systems Neurobiology, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology Barcelona, Spain ; Department of Experimental and Health Sciences, Universitat Pompeu Fabra Barcelona, Spain ; CIBER de Enfermedades Raras (CIBERER), Instituto Salud Carlos III Madrid, Spain
| | - Rafael de la Torre
- Neurosciences Research Program, Integrative Pharmacology and Systems Neuroscience Research Group, IMIM-Institut de Hospital del Mar d'Investigacions Mèdiques Barcelona, Spain ; Department of Experimental and Health Sciences, Universitat Pompeu Fabra Barcelona, Spain ; CIBER Fisiopatología Obesidad y Nutrición (CIBERObn), Instituto Salud Carlos III Madrid, Spain
| |
Collapse
|
63
|
Pietschnig J, Penke L, Wicherts JM, Zeiler M, Voracek M. Meta-analysis of associations between human brain volume and intelligence differences: How strong are they and what do they mean? Neurosci Biobehav Rev 2015; 57:411-32. [PMID: 26449760 DOI: 10.1016/j.neubiorev.2015.09.017] [Citation(s) in RCA: 153] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Revised: 09/07/2015] [Accepted: 09/30/2015] [Indexed: 11/16/2022]
Abstract
Positive associations between human intelligence and brain size have been suspected for more than 150 years. Nowadays, modern non-invasive measures of in vivo brain volume (Magnetic Resonance Imaging) make it possible to reliably assess associations with IQ. By means of a systematic review of published studies and unpublished results obtained by personal communications with researchers, we identified 88 studies examining effect sizes of 148 healthy and clinical mixed-sex samples (>8000 individuals). Our results showed significant positive associations of brain volume and IQ (r=.24, R(2)=.06) that generalize over age (children vs. adults), IQ domain (full-scale, performance, and verbal IQ), and sex. Application of a number of methods for detection of publication bias indicates that strong and positive correlation coefficients have been reported frequently in the literature whilst small and non-significant associations appear to have been often omitted from reports. We show that the strength of the positive association of brain volume and IQ has been overestimated in the literature, but remains robust even when accounting for different types of dissemination bias, although reported effects have been declining over time. While it is tempting to interpret this association in the context of human cognitive evolution and species differences in brain size and cognitive ability, we show that it is not warranted to interpret brain size as an isomorphic proxy of human intelligence differences.
Collapse
Affiliation(s)
- Jakob Pietschnig
- Department of Applied Psychology-Health, Development, Enhancement and Intervention, Faculty of Psychology, University of Vienna, Vienna, Austria; Department of Basic Psychological Research and Research Methods, Faculty of Psychology, University of Vienna, Vienna, Austria; Department of Psychology, School of Science and Technology, Middlesex University Dubai, Dubai, United Arab Emirates.
| | - Lars Penke
- Georg Elias Müller Department of Psychology, Georg August University Göttingen, Göttingen, Germany
| | - Jelte M Wicherts
- Tilburg School of Social and Behavioral Sciences, Tilburg University, Tilburg, The Netherlands
| | - Michael Zeiler
- Department of Basic Psychological Research and Research Methods, Faculty of Psychology, University of Vienna, Vienna, Austria
| | - Martin Voracek
- Department of Basic Psychological Research and Research Methods, Faculty of Psychology, University of Vienna, Vienna, Austria; Georg Elias Müller Department of Psychology, Georg August University Göttingen, Göttingen, Germany; Department of Psychology, University of Zürich, Zürich, Switzerland
| |
Collapse
|
64
|
Vega JN, Hohman TJ, Pryweller JR, Dykens EM, Thornton-Wells TA. Resting-State Functional Connectivity in Individuals with Down Syndrome and Williams Syndrome Compared with Typically Developing Controls. Brain Connect 2015; 5:461-75. [PMID: 25712025 PMCID: PMC4601631 DOI: 10.1089/brain.2014.0266] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The emergence of resting-state functional connectivity (rsFC) analysis, which examines temporal correlations of low-frequency (<0.1 Hz) blood oxygen level-dependent signal fluctuations between brain regions, has dramatically improved our understanding of the functional architecture of the typically developing (TD) human brain. This study examined rsFC in Down syndrome (DS) compared with another neurodevelopmental disorder, Williams syndrome (WS), and TD. Ten subjects with DS, 18 subjects with WS, and 40 subjects with TD each participated in a 3-Tesla MRI scan. We tested for group differences (DS vs. TD, DS vs. WS, and WS vs. TD) in between- and within-network rsFC connectivity for seven functional networks. For the DS group, we also examined associations between rsFC and other cognitive and genetic risk factors. In DS compared with TD, we observed higher levels of between-network connectivity in 6 out 21 network pairs but no differences in within-network connectivity. Participants with WS showed lower levels of within-network connectivity and no significant differences in between-network connectivity relative to DS. Finally, our comparison between WS and TD controls revealed lower within-network connectivity in multiple networks and higher between-network connectivity in one network pair relative to TD controls. While preliminary due to modest sample sizes, our findings suggest a global difference in between-network connectivity in individuals with neurodevelopmental disorders compared with controls and that such a difference is exacerbated across many brain regions in DS. However, this alteration in DS does not appear to extend to within-network connections, and therefore, the altered between-network connectivity must be interpreted within the framework of an intact intra-network pattern of activity. In contrast, WS shows markedly lower levels of within-network connectivity in the default mode network and somatomotor network relative to controls. These findings warrant further investigation using a task-based procedure that may help disentangle the relationship between brain function and cognitive performance across the spectrum of neurodevelopmental disorders.
Collapse
Affiliation(s)
- Jennifer N. Vega
- Neuroscience Graduate Program, Center for Cognitive Medicine, Vanderbilt University, Nashville, Tennessee
- Center for Cognitive Medicine, Department of Psychiatry, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Timothy J. Hohman
- Department of Molecular Physiology & Biophysics, Vanderbilt Genetics Institute, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Jennifer R. Pryweller
- Interdisciplinary Studies in Neuroimaging of Neurodevelopmental Disorders, The Graduate School, Vanderbilt University, Nashville, Tennessee
- Vanderbilt Kennedy Center for Research on Human Development, Vanderbilt University, Nashville, Tennessee
- Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, Tennessee
| | - Elisabeth M. Dykens
- Center for Cognitive Medicine, Department of Psychiatry, Vanderbilt University School of Medicine, Nashville, Tennessee
- Vanderbilt Kennedy Center for Research on Human Development, Vanderbilt University, Nashville, Tennessee
- Department of Psychology and Human Development, Vanderbilt University, Nashville, Tennessee
| | - Tricia A. Thornton-Wells
- Department of Molecular Physiology & Biophysics, Vanderbilt Genetics Institute, Vanderbilt University School of Medicine, Nashville, Tennessee
- Vanderbilt Kennedy Center for Research on Human Development, Vanderbilt University, Nashville, Tennessee
- Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, Tennessee
| |
Collapse
|
65
|
Witton J, Padmashri R, Zinyuk L, Popov V, Kraev I, Line S, Jensen T, Tedoldi A, Cummings D, Tybulewicz V, Fisher E, Bannerman D, Randall A, Brown J, Edwards F, Rusakov D, Stewart M, Jones M. Hippocampal circuit dysfunction in the Tc1 mouse model of Down syndrome. Nat Neurosci 2015; 18:1291-1298. [PMID: 26237367 PMCID: PMC4552261 DOI: 10.1038/nn.4072] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 06/29/2015] [Indexed: 12/11/2022]
Abstract
Hippocampal pathology is likely to contribute to cognitive disability in Down syndrome, yet the neural network basis of this pathology and its contributions to different facets of cognitive impairment remain unclear. Here we report dysfunctional connectivity between dentate gyrus and CA3 networks in the transchromosomic Tc1 mouse model of Down syndrome, demonstrating that ultrastructural abnormalities and impaired short-term plasticity at dentate gyrus-CA3 excitatory synapses culminate in impaired coding of new spatial information in CA3 and CA1 and disrupted behavior in vivo. These results highlight the vulnerability of dentate gyrus-CA3 networks to aberrant human chromosome 21 gene expression and delineate hippocampal circuit abnormalities likely to contribute to distinct cognitive phenotypes in Down syndrome.
Collapse
Affiliation(s)
- J. Witton
- School of Physiology & Pharmacology, University of Bristol, University Walk, Bristol BS8 1TD, UK
| | - R. Padmashri
- Department of Clinical and Experimental Epilepsy, UCL Institute of Neurology, University College London, Queen Square, London WC1N 3BG, UK
| | - L.E. Zinyuk
- School of Physiology & Pharmacology, University of Bristol, University Walk, Bristol BS8 1TD, UK
| | - V.I. Popov
- Institute of Cell Biophysics, Russian Academy of Sciences, Pushchino, Moscow Reg. 142290, Russia
- The Open University, Department of Life Sciences, Walton Hall, Milton Keynes, MK7 6AA, UK
| | - I. Kraev
- The Open University, Department of Life Sciences, Walton Hall, Milton Keynes, MK7 6AA, UK
| | - S.J. Line
- Department of Experimental Psychology, University of Oxford, Oxford OX1 3UD, UK
| | - T.P. Jensen
- Department of Clinical and Experimental Epilepsy, UCL Institute of Neurology, University College London, Queen Square, London WC1N 3BG, UK
| | - A. Tedoldi
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London WC1E 6BT, UK
| | - D.M. Cummings
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London WC1E 6BT, UK
| | - V.L.J. Tybulewicz
- MRC National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, UK
| | - E.M.C. Fisher
- Department of Neurodegenerative Disease, UCL Institute of Neurology, University College London, Queen Square, London WC1N 3BG, UK
| | - D.M. Bannerman
- Department of Experimental Psychology, University of Oxford, Oxford OX1 3UD, UK
| | - A.D. Randall
- School of Physiology & Pharmacology, University of Bristol, University Walk, Bristol BS8 1TD, UK
| | - J.T. Brown
- School of Physiology & Pharmacology, University of Bristol, University Walk, Bristol BS8 1TD, UK
| | - F.A. Edwards
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London WC1E 6BT, UK
| | - D.A. Rusakov
- Department of Clinical and Experimental Epilepsy, UCL Institute of Neurology, University College London, Queen Square, London WC1N 3BG, UK
- Laboratory of Brain Microcircuits, Institute of Biology and Biomedicine, University of Nizhny Novgorod, Nizhny Novgorod 603950, Russia
| | - M.G. Stewart
- The Open University, Department of Life Sciences, Walton Hall, Milton Keynes, MK7 6AA, UK
| | - M.W. Jones
- School of Physiology & Pharmacology, University of Bristol, University Walk, Bristol BS8 1TD, UK
| |
Collapse
|
66
|
de Sola S, de la Torre R, Sánchez-Benavides G, Benejam B, Cuenca-Royo A, del Hoyo L, Rodríguez J, Catuara-Solarz S, Sanchez-Gutierrez J, Dueñas-Espin I, Hernandez G, Peña-Casanova J, Langohr K, Videla S, Blehaut H, Farre M, Dierssen M. A new cognitive evaluation battery for Down syndrome and its relevance for clinical trials. Front Psychol 2015; 6:708. [PMID: 26089807 PMCID: PMC4455308 DOI: 10.3389/fpsyg.2015.00708] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Accepted: 05/12/2015] [Indexed: 12/13/2022] Open
Abstract
The recent prospect of pharmaceutical interventions for cognitive impairment of Down syndrome (DS) has boosted a number of clinical trials in this population. However, running the trials has raised some methodological challenges and questioned the prevailing methodology used to evaluate cognitive functioning of DS individuals. This is usually achieved by comparing DS individuals to matched healthy controls of the same mental age. We propose a new tool, the TESDAD Battery that uses comparison with age-matched typically developed adults. This is an advantageous method for probing the clinical efficacy of DS therapies, allowing the interpretation and prediction of functional outcomes in clinical trials. In our DS population the TESDAD battery permitted a quantitative assessment of cognitive defects, which indicated language dysfunction and deficits in executive function, as the most important contributors to other cognitive and adaptive behavior outcomes as predictors of functional change in DS. Concretely, auditory comprehension and functional academics showed the highest potential as end-point measures of therapeutic intervention for clinical trials: the former as a cognitive key target for therapeutic intervention, and the latter as a primary functional outcome measure of clinical efficacy. Our results also emphasize the need to explore the modulating effects of IQ, gender and age on cognitive enhancing treatments. Noticeably, women performed significantly better than men of the same age and IQ in most cognitive tests, with the most consistent differences occurring in memory and executive functioning and negative trends rarely emerged on quality of life linked to the effect of age after adjusting for IQ and gender. In sum, the TESDAD battery is a useful neurocognitive tool for probing the clinical efficacy of experimental therapies in interventional studies in the DS population suggesting that age-matched controls are advantageous for determining normalization of DS.
Collapse
Affiliation(s)
- Susana de Sola
- Human Pharmacology and Clinical Neurosciences Research Group-Neurosciences Program, IMIM-Hospital del Mar Medical Research InstituteBarcelona, Spain
- Cellular and Systems Neurobiology Research Group, Systems Biology Program, Centre for Genomic RegulationBarcelona, Spain
| | - Rafael de la Torre
- Human Pharmacology and Clinical Neurosciences Research Group-Neurosciences Program, IMIM-Hospital del Mar Medical Research InstituteBarcelona, Spain
- Biomedical Research Centre in Physiopathology of Obesity and Nutrition (CIBEROBN)Santiago de Compostela, Spain
- CEXS, Universitat Pompeu FabraBarcelona, Spain
| | - Gonzalo Sánchez-Benavides
- Human Pharmacology and Clinical Neurosciences Research Group-Neurosciences Program, IMIM-Hospital del Mar Medical Research InstituteBarcelona, Spain
- Neurofunctionality of Brain and Language Group-Neurosciences Program, IMIM-Hospital del Mar Medical Research InstituteBarcelona, Spain
| | | | - Aida Cuenca-Royo
- Human Pharmacology and Clinical Neurosciences Research Group-Neurosciences Program, IMIM-Hospital del Mar Medical Research InstituteBarcelona, Spain
- Drug Abuse Epidemiology Research Group-Epidemiology and Public Health Program, IMIM-Hospital del Mar Medical Research InstituteBarcelona, Spain
| | - Laura del Hoyo
- Human Pharmacology and Clinical Neurosciences Research Group-Neurosciences Program, IMIM-Hospital del Mar Medical Research InstituteBarcelona, Spain
| | - Joan Rodríguez
- Human Pharmacology and Clinical Neurosciences Research Group-Neurosciences Program, IMIM-Hospital del Mar Medical Research InstituteBarcelona, Spain
| | - Silvina Catuara-Solarz
- Cellular and Systems Neurobiology Research Group, Systems Biology Program, Centre for Genomic RegulationBarcelona, Spain
| | | | - Ivan Dueñas-Espin
- Human Pharmacology and Clinical Neurosciences Research Group-Neurosciences Program, IMIM-Hospital del Mar Medical Research InstituteBarcelona, Spain
- CEXS, Universitat Pompeu FabraBarcelona, Spain
| | - Gimena Hernandez
- Human Pharmacology and Clinical Neurosciences Research Group-Neurosciences Program, IMIM-Hospital del Mar Medical Research InstituteBarcelona, Spain
- Universitat Autónoma de BarcelonaUDIMAS, Barcelona, Spain
| | - Jordi Peña-Casanova
- Human Pharmacology and Clinical Neurosciences Research Group-Neurosciences Program, IMIM-Hospital del Mar Medical Research InstituteBarcelona, Spain
- Neurofunctionality of Brain and Language Group-Neurosciences Program, IMIM-Hospital del Mar Medical Research InstituteBarcelona, Spain
| | - Klaus Langohr
- Human Pharmacology and Clinical Neurosciences Research Group-Neurosciences Program, IMIM-Hospital del Mar Medical Research InstituteBarcelona, Spain
- Department of Statistics and Operations Research, Universitat Politècnica de CatalunyaBarcelona, Spain
| | | | | | - Magi Farre
- Human Pharmacology and Clinical Neurosciences Research Group-Neurosciences Program, IMIM-Hospital del Mar Medical Research InstituteBarcelona, Spain
- Universitat Autònoma de Barcelona, i Hospital Universitari Germans Trias i Pujol (IGTP)Barcelona, Spain
| | - Mara Dierssen
- Cellular and Systems Neurobiology Research Group, Systems Biology Program, Centre for Genomic RegulationBarcelona, Spain
- Biomedical Research Centre on Rare Diseases (CIBERER)Valencia, Barcelona, Spain
| |
Collapse
|
67
|
Romano A, Cornia R, Moraschi M, Bozzao A, Chiacchiararelli L, Coppola V, Iani C, Stella G, Albertini G, Pierallini A. Age-Related Cortical Thickness Reduction in Non-Demented Down's Syndrome Subjects. J Neuroimaging 2015; 26:95-102. [DOI: 10.1111/jon.12259] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2014] [Revised: 03/09/2015] [Accepted: 04/04/2015] [Indexed: 11/27/2022] Open
Affiliation(s)
- Andrea Romano
- San Raffaele Foundation, Rehabilitation Facility; Merit Project RBNE08E8CZ
| | - Riccardo Cornia
- University of Modena and Reggio Emilia, Departments of Biomedical; Metabolic and Neurosciences
| | - Marta Moraschi
- San Raffaele Foundation, Rehabilitation Facility; Merit Project RBNE08E8CZ
| | - Alessandro Bozzao
- University Sapienza, NESMOS, Department of Neuroradiology; S.Andrea Hospital
| | | | - Valeria Coppola
- University Sapienza, NESMOS, Department of Neuroradiology; S.Andrea Hospital
| | - Cristina Iani
- University of Modena and Reggio Emilia; Department of Communication and Economy
| | - Giacomo Stella
- University of Modena and Reggio Emilia, Departments of Biomedical; Metabolic and Neurosciences
| | | | | |
Collapse
|
68
|
Roldan-Valadez E, Suarez-May MA, Favila R, Aguilar-Castañeda E, Rios C. Selected Gray Matter Volumes and Gender but Not Basal Ganglia nor Cerebellum Gyri Discriminate Left Versus Right Cerebral Hemispheres: Multivariate Analyses in human Brains at 3T. Anat Rec (Hoboken) 2015; 298:1336-46. [PMID: 25902919 DOI: 10.1002/ar.23165] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Revised: 02/22/2015] [Accepted: 03/11/2015] [Indexed: 02/05/2023]
Abstract
Interest in the lateralization of the human brain is evident through a multidisciplinary number of scientific studies. Understanding volumetric brain asymmetries allows the distinction between normal development stages and behavior, as well as brain diseases. We aimed to evaluate volumetric asymmetries in order to select the best gyri able to classify right- versus left cerebral hemispheres. A cross-sectional study performed in 47 right-handed young-adults healthy volunteers. SPM-based software performed brain segmentation, automatic labeling and volumetric analyses for 54 regions involving the cerebral lobes, basal ganglia and cerebellum from each cerebral hemisphere. Multivariate discriminant analysis (DA) allowed the assembling of a predictive model. DA revealed one discriminant function that significantly differentiated left vs. right cerebral hemispheres: Wilks' λ = 0.008, χ(2) (9) = 238.837, P < 0.001. The model explained 99.20% of the variation in the grouping variable and depicted an overall predictive accuracy of 98.8%. With the influence of gender; the selected gyri able to discriminate between hemispheres were middle orbital frontal gyrus (g.), angular g., supramarginal g., middle cingulum g., inferior orbital frontal g., calcarine g., inferior parietal lobule and the pars triangularis inferior frontal g. Specific brain gyri are able to accurately classify left vs. right cerebral hemispheres by using a multivariate approach; the selected regions correspond to key brain areas involved in attention, internal thought, vision and language; our findings favored the concept that lateralization has been evolutionary favored by mental processes increasing cognitive efficiency and brain capacity.
Collapse
Affiliation(s)
- Ernesto Roldan-Valadez
- MRI Unit, Division of Medial Imaging, Medica Sur Clinic & Foundation, Mexico City, Mexico
| | - Marcela A Suarez-May
- MRI Unit, Division of Medial Imaging, Medica Sur Clinic & Foundation, Mexico City, Mexico
| | - Rafael Favila
- GE Healthcare, Division of Healthcare, Mexico City, Mexico
| | - Erika Aguilar-Castañeda
- Cognitive and Behavioral Unit, Department of Neuropsychology, National Institute of Neurology and Neurosurgery, Mexico City, Mexico
| | - Camilo Rios
- Neurochemistry Department, National Institute of Neurology and Neurosurgery, Mexico City, Mexico
| |
Collapse
|
69
|
Brault V, Duchon A, Romestaing C, Sahun I, Pothion S, Karout M, Borel C, Dembele D, Bizot JC, Messaddeq N, Sharp AJ, Roussel D, Antonarakis SE, Dierssen M, Hérault Y. Opposite phenotypes of muscle strength and locomotor function in mouse models of partial trisomy and monosomy 21 for the proximal Hspa13-App region. PLoS Genet 2015; 11:e1005062. [PMID: 25803843 PMCID: PMC4372517 DOI: 10.1371/journal.pgen.1005062] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2014] [Accepted: 02/09/2015] [Indexed: 12/22/2022] Open
Abstract
The trisomy of human chromosome 21 (Hsa21), which causes Down syndrome (DS), is the most common viable human aneuploidy. In contrast to trisomy, the complete monosomy (M21) of Hsa21 is lethal, and only partial monosomy or mosaic monosomy of Hsa21 is seen. Both conditions lead to variable physiological abnormalities with constant intellectual disability, locomotor deficits, and altered muscle tone. To search for dosage-sensitive genes involved in DS and M21 phenotypes, we created two new mouse models: the Ts3Yah carrying a tandem duplication and the Ms3Yah carrying a deletion of the Hspa13-App interval syntenic with 21q11.2-q21.3. Here we report that the trisomy and the monosomy of this region alter locomotion, muscle strength, mass, and energetic balance. The expression profiling of skeletal muscles revealed global changes in the regulation of genes implicated in energetic metabolism, mitochondrial activity, and biogenesis. These genes are downregulated in Ts3Yah mice and upregulated in Ms3Yah mice. The shift in skeletal muscle metabolism correlates with a change in mitochondrial proliferation without an alteration in the respiratory function. However, the reactive oxygen species (ROS) production from mitochondrial complex I decreased in Ms3Yah mice, while the membrane permeability of Ts3Yah mitochondria slightly increased. Thus, we demonstrated how the Hspa13-App interval controls metabolic and mitochondrial phenotypes in muscles certainly as a consequence of change in dose of Gabpa, Nrip1, and Atp5j. Our results indicate that the copy number variation in the Hspa13-App region has a peripheral impact on locomotor activity by altering muscle function.
Collapse
Affiliation(s)
- Véronique Brault
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France
- Centre National de la Recherche Scientifique, UMR7104, Illkirch, France
- Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France
- Université de Strasbourg, Illkirch, France
| | - Arnaud Duchon
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France
- Centre National de la Recherche Scientifique, UMR7104, Illkirch, France
- Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France
- Université de Strasbourg, Illkirch, France
| | | | - Ignasi Sahun
- Genes and Disease Program, Center for Genomic Regulation, Barcelona, Spain, and CIBER de Enfermedades Raras (CIBERER), Barcelona, Spain
| | - Stéphanie Pothion
- Transgenese et Archivage Animaux Modèles, TAAM, CNRS, UPS44, Orléans, France
| | - Mona Karout
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France
- Centre National de la Recherche Scientifique, UMR7104, Illkirch, France
- Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France
- Université de Strasbourg, Illkirch, France
| | - Christelle Borel
- Department of Genetic Medicine and Development, University of Geneva Medical School, Geneva, Switzerland
| | - Doulaye Dembele
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France
- Centre National de la Recherche Scientifique, UMR7104, Illkirch, France
- Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France
- Université de Strasbourg, Illkirch, France
| | | | - Nadia Messaddeq
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France
- Centre National de la Recherche Scientifique, UMR7104, Illkirch, France
- Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France
- Université de Strasbourg, Illkirch, France
| | - Andrew J. Sharp
- Department of Genetics and Genomic Sciences, Mount Sinai School of Medicine, New York, New York, United States of America
| | - Damien Roussel
- LEHNA, CNRS UMR502, Université de Lyon, Villeurbanne, France
| | - Stylianos E Antonarakis
- Department of Genetic Medicine and Development, University of Geneva Medical School, Geneva, Switzerland
- iGE3 Institute of Genetics and Genomics of Geneva, Geneva, Switzerland
| | - Mara Dierssen
- Genes and Disease Program, Center for Genomic Regulation, Barcelona, Spain, and CIBER de Enfermedades Raras (CIBERER), Barcelona, Spain
| | - Yann Hérault
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France
- Centre National de la Recherche Scientifique, UMR7104, Illkirch, France
- Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France
- Université de Strasbourg, Illkirch, France
- Institut Clinique de la Souris, PHENOMIN, GIE CERBM, Illkirch, France
| |
Collapse
|
70
|
Fernandez F, Reeves RH. Assessing cognitive improvement in people with Down syndrome: important considerations for drug-efficacy trials. Handb Exp Pharmacol 2015; 228:335-80. [PMID: 25977089 DOI: 10.1007/978-3-319-16522-6_12] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Experimental research over just the past decade has raised the possibility that learning deficits connected to Down syndrome (DS) might be effectively managed by medication. In the current chapter, we touch on some of the work that paved the way for these advances and discuss the challenges associated with translating them. In particular, we highlight sources of phenotypic variability in the DS population that are likely to impact performance assessments. Throughout, suggestions are made on how to detect meaningful changes in cognitive-adaptive function in people with DS during drug treatment. The importance of within-subjects evaluation is emphasized.
Collapse
Affiliation(s)
- Fabian Fernandez
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA,
| | | |
Collapse
|
71
|
Davis M, Merrill EC, Conners FA, Roskos B. Patterns of differences in wayfinding performance and correlations among abilities between persons with and without Down syndrome and typically developing children. Front Psychol 2014; 5:1446. [PMID: 25566127 PMCID: PMC4267194 DOI: 10.3389/fpsyg.2014.01446] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Accepted: 11/26/2014] [Indexed: 12/24/2022] Open
Abstract
Down syndrome (DS) impacts several brain regions including the hippocampus and surrounding structures that have responsibility for important aspects of navigation and wayfinding. Hence it is reasonable to expect that DS may result in a reduced ability to engage in these skills. Two experiments are reported that evaluated route-learning of youth with DS, youth with intellectual disability (ID) and not DS, and typically developing (TD) children matched on mental age (MA). In both experiments, participants learned routes with eight choice point presented via computer. Several objects were placed along the route that could be used as landmarks. Participants navigated the route once with turn indicators pointing the way and then retraced the route without them. In Experiment 1 we found that the TD children and ID participants performed very similarly. They learned the route in the same number of attempts, committed the same number of errors while learning the route, and recalled approximately the same number of landmarks. The participants with DS performed significantly worse on both measures of navigation (attempts and errors) and also recalled significantly fewer landmarks. In Experiment 2, we attempted to reduce TD and ID vs DS differences by focusing participants’ attention on the landmarks. Half of the participants in each group were instructed to identify the landmarks as they passed them the first time. The participants with DS again committed more errors than the participants in the ID and TD groups in the navigation task. In addition, they recalled fewer landmarks. While landmark identification improved landmark memory for both groups, it did not have a significant impact on navigation. Participants with DS still performed more poorly than did the TD and ID participants. Of additional interest, we observed that the performance of persons with DS correlated with different ability measures than did the performance of the other groups. The results the two experiments point to a problem in navigation for persons with DS that exceeds expectations based solely on intellectual level.
Collapse
Affiliation(s)
- Megan Davis
- Department of Psychology, The University of Alabama , Tuscaloosa, AL, USA
| | - Edward C Merrill
- Department of Psychology, The University of Alabama , Tuscaloosa, AL, USA
| | - Frances A Conners
- Department of Psychology, The University of Alabama , Tuscaloosa, AL, USA
| | - Beverly Roskos
- Department of Psychology, The University of Alabama , Tuscaloosa, AL, USA
| |
Collapse
|
72
|
Jacola LM, Byars AW, Hickey F, Vannest J, Holland SK, Schapiro MB. Functional magnetic resonance imaging of story listening in adolescents and young adults with Down syndrome: evidence for atypical neurodevelopment. JOURNAL OF INTELLECTUAL DISABILITY RESEARCH : JIDR 2014; 58:892-902. [PMID: 23962356 DOI: 10.1111/jir.12089] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
BACKGROUND Previous studies have documented differences in neural activation during language processing in individuals with Down syndrome (DS) in comparison with typically developing individuals matched for chronological age. This study used functional magnetic resonance imaging (fMRI) to compare activation during language processing in young adults with DS to typically developing comparison groups matched for chronological age or mental age. We hypothesised that the pattern of neural activation in the DS cohort would differ when compared with both typically developing cohorts. METHOD Eleven persons with DS (mean chronological age = 18.3; developmental age range = 4-6 years) and two groups of typically developing individuals matched for chronological (n = 13; mean age = 18.3 years) and developmental (mental) age (n = 12; chronological age range = 4-6 years) completed fMRI scanning during a passive story listening paradigm. Random effects group comparisons were conducted on individual maps of the contrast between activation (story listening) and rest (tone presentation) conditions. RESULTS Robust activation was seen in typically developing groups in regions associated with processing auditory information, including bilateral superior and middle temporal lobe gyri. In contrast, the DS cohort demonstrated atypical spatial distribution of activation in midline frontal and posterior cingulate regions when compared with both typically developing control groups. Random effects group analyses documented reduced magnitude of activation in the DS cohort when compared with both control groups. CONCLUSIONS Activation in the DS group differed significantly in magnitude and spatial extent when compared with chronological and mental age-matched typically developing control groups during a story listening task. Results provide additional support for an atypical pattern of functional organisation for language processing in this population.
Collapse
Affiliation(s)
- L M Jacola
- Department of Psychology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | | | | | | | | | | |
Collapse
|
73
|
Clinical use of structural magnetic resonance imaging in the diagnosis of dementia in adults with Down's syndrome. Ir J Psychol Med 2014. [DOI: 10.1017/s0790966700006984] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
AbstractObjectives: Magnetic Resonance Imaging (MRI) has been used to assist the diagnosis of Alzheimer's Disease (AD) in adults with Down's syndrome (DS). However, the interpretation of the scans is difficult and clinical usefulness is uncertain. We aimed to summarise the current knowledge of MRI studies in adults with Down's syndrome with and without dementia and to discuss its implications for clinical practice.Method: We identified MRI studies in DS by a computerised literature search with Medline, Embase, and Psychlit from 1986 to 2001. We examined the references of identified articles and hand searched relevant journals. Structural MRI studies were selected as this type of imaging is most frequently used in clinical practice.Results: We included eight volumetric studies in adults with DS. Four of these included adults with DS and dementia. Overall, the size of brain structures such as cerebellum, hippocampus and cortex of adults with DS without dementia was significantly smaller than in normal controls. The basal ganglia were similar in size, and ventricles were enlarged. Furthermore, the size of brain structures in adults with DS and dementia was significantly different than in DS without dementia. In particular, ventricular and hippocampal volumes were affected.Conclusions: The change in brain structure associated with dementia can be detected on MRI of adults with DS. However, these may be difficult to interpret given the extent to which brain appearance in DS differs from that in the general population. Implications for clinical practice and future research directions are discussed.
Collapse
|
74
|
Phillips BA, Conners FA, Merrill E, Klinger MR. Rule-based category learning in Down syndrome. AMERICAN JOURNAL ON INTELLECTUAL AND DEVELOPMENTAL DISABILITIES 2014; 119:220-34. [PMID: 24871791 PMCID: PMC5866920 DOI: 10.1352/1944-7558-119.3.220] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Rule-based category learning was examined in youths with Down syndrome (DS), youths with intellectual disability (ID), and typically developing (TD) youths. Two tasks measured category learning: the Modified Card Sort task (MCST) and the Concept Formation test of the Woodcock-Johnson-III ( Woodock, McGrew, & Mather, 2001 ). In regression-based analyses, DS and ID groups performed below the level expected for their nonverbal ability. In cross-sectional developmental trajectory analyses, results depended on the task. On the MCST, the DS and ID groups were similar to the TD group. On the Concept Formation test, the DS group had slower cross-sectional change than the other 2 groups. Category learning may be an area of difficulty for those with ID, but task-related factors may affect trajectories for youths with DS.
Collapse
|
75
|
Mouton-Liger F, Sahún I, Collin T, Lopes Pereira P, Masini D, Thomas S, Paly E, Luilier S, Même S, Jouhault Q, Bennaï S, Beloeil JC, Bizot JC, Hérault Y, Dierssen M, Créau N. Developmental molecular and functional cerebellar alterations induced by PCP4/PEP19 overexpression: implications for Down syndrome. Neurobiol Dis 2013; 63:92-106. [PMID: 24291518 DOI: 10.1016/j.nbd.2013.11.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Revised: 11/05/2013] [Accepted: 11/19/2013] [Indexed: 11/28/2022] Open
Abstract
PCP4/PEP19 is a modulator of Ca(2+)-CaM signaling. In the brain, it is expressed in a very specific pattern in postmitotic neurons. In particular, Pcp4 is highly expressed in the Purkinje cell, the sole output neuron of the cerebellum. PCP4, located on human chromosome 21, is present in three copies in individuals with Down syndrome (DS). In a previous study using a transgenic mouse model (TgPCP4) to evaluate the consequences of 3 copies of this gene, we found that PCP4 overexpression induces precocious neuronal differentiation during mouse embryogenesis. Here, we report combined analyses of the cerebellum at postnatal stages (P14 and adult) in which we identified age-related molecular, electrophysiological, and behavioral alterations in the TgPCP4 mouse. While Pcp4 overexpression at P14 induces an earlier neuronal maturation, at adult stage it induces increase in cerebellar CaMK2alpha and in cerebellar LTD, as well as learning impairments. We therefore propose that PCP4 contributes significantly to the development of Down syndrome phenotypes through molecular and functional changes.
Collapse
Affiliation(s)
- François Mouton-Liger
- Univ Paris Diderot, Sorbonne Paris Cité, Unité de Biologie Fonctionnelle et Adaptative, EAC4413 CNRS, Paris, France
| | - Ignasi Sahún
- Cellular and Systems Biology, Systems Biology Programme, Center for Genomic Regulation (CRG); Universitat Pompeu Fabra (UPF); Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER): Dr. Aiguader, 88, 08003 Barcelona, Spain
| | - Thibault Collin
- CNRS UMR8118, Brain Physiology Laboratory, Universite Paris-Descartes, Centre universitaire des Saints-Pères, 45 Rue des Saints-Pères, 75270 Paris Cedex 06, France
| | - Patricia Lopes Pereira
- Transgenese et Archivage Animaux Modèles, TAAM, CNRS, UPS44, 3B rue de la Férollerie, 45071 Orléans, France
| | - Debora Masini
- Cellular and Systems Biology, Systems Biology Programme, Center for Genomic Regulation (CRG); Universitat Pompeu Fabra (UPF); Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER): Dr. Aiguader, 88, 08003 Barcelona, Spain
| | - Sophie Thomas
- Univ Paris Diderot, Sorbonne Paris Cité, Unité de Biologie Fonctionnelle et Adaptative, EAC4413 CNRS, Paris, France
| | - Evelyne Paly
- Univ Paris Diderot, Sorbonne Paris Cité, Unité de Biologie Fonctionnelle et Adaptative, EAC4413 CNRS, Paris, France
| | - Sabrina Luilier
- Key-Obs SAS, 13 avenue Buffon, 45071 Orléans Cedex 2, France
| | - Sandra Même
- Centre de Biophysique Moléculaire, CNRS UPR 4301, Orléans, France
| | - Quentin Jouhault
- Univ Paris Diderot, Sorbonne Paris Cité, Unité de Biologie Fonctionnelle et Adaptative, EAC4413 CNRS, Paris, France
| | - Soumia Bennaï
- Univ Paris Diderot, Sorbonne Paris Cité, Unité de Biologie Fonctionnelle et Adaptative, EAC4413 CNRS, Paris, France
| | | | | | - Yann Hérault
- Transgenese et Archivage Animaux Modèles, TAAM, CNRS, UPS44, 3B rue de la Férollerie, 45071 Orléans, France; Institut Clinique de la Souris, ICS, 1 rue Laurent Fries, 67404 Illkirch, France; Institut de Génétique Biologie Moléculaire et Cellulaire, Translational medicine and Neuroscience program, IGBMC, CNRS, INSERM, Université de Strasbourg, UMR7104, UMR964, 1 rue Laurent Fries, 67404 Illkirch, France
| | - Mara Dierssen
- Cellular and Systems Biology, Systems Biology Programme, Center for Genomic Regulation (CRG); Universitat Pompeu Fabra (UPF); Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER): Dr. Aiguader, 88, 08003 Barcelona, Spain
| | - Nicole Créau
- Univ Paris Diderot, Sorbonne Paris Cité, Unité de Biologie Fonctionnelle et Adaptative, EAC4413 CNRS, Paris, France.
| |
Collapse
|
76
|
Timing of muscle response to a sudden leg perturbation: comparison between adolescents and adults with Down syndrome. PLoS One 2013; 8:e81053. [PMID: 24278374 PMCID: PMC3835738 DOI: 10.1371/journal.pone.0081053] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Accepted: 10/08/2013] [Indexed: 11/20/2022] Open
Abstract
Movement disturbances associated with Down syndrome reduce mechanical stability, worsening the execution of important tasks such as walking and upright standing. To compensate these deficits, persons with Down syndrome increase joint stability modulating the level of activation of single muscles or producing an agonist-antagonist co-activation. Such activations are also observed when a relaxed, extended leg is suddenly released and left to oscillate passively under the influence of gravity (Wartenberg test). In this case, the Rectus femoris of adults with Down syndrome displayed peaks of activation after the onset of the first leg flexion. With the aim to verify if these muscular reactions were acquired during the development time and to find evidences useful to give them a functional explanation, we used the Wartenberg test to compare the knee joint kinematics and the surface electromyography of the Rectus femoris and Biceps femoris caput longus between adolescents and adults with Down syndrome. During the first leg flexion, adolescents and adults showed single Rectus femoris activations while, a restricted number of participants exhibited agonist-antagonist co-activations. However, regardless the pattern of activation, adults initiated the muscle activity significantly later than adolescents. Although most of the mechanical parameters and the total movement variability were similar in the two groups, the onset of the Rectus femoris activation was well correlated with the time of the minimum acceleration variability. Thus, in adolescents the maximum mechanical stability occurred short after the onset of the leg fall, while adults reached their best joint stability late during the first flexion. These results suggest that between the adolescence and adulthood, persons with Down syndrome explore a temporal window to select an appropriate timing of muscle activation to overcome their inherent mechanical instability.
Collapse
|
77
|
Neurodevelopmental and psychiatric issues in Down's syndrome: assessment and intervention. Psychiatr Genet 2013; 23:95-107. [PMID: 23492931 DOI: 10.1097/ypg.0b013e32835fe426] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Down's syndrome (DS) is the most frequent genetic cause of intellectual disability and patients with DS show significant psychopathology (18-23%). Moreover, individuals with DS often show a cognitive decline associated with ageing characterized by a deterioration in memory, language and cognitive functioning. According to these relevant findings, an overview is presented of state-of-the-art knowledge of the neurocognitive, neurobiological and psychopathological profile, assessment and treatment of patients with DS. The linguistic characteristics of DS develop differently along distinct developmental trajectories. Thus, for example, morphosyntax deficit, especially in production, is more evident in adolescence than in early childhood and lexicon is usually better preserved in all ages (at least in comprehension). So far, rehabilitation is the only effective approach for improving cognitive and linguistic abilities. However, ongoing preliminary reports on other approaches such as transmagnetic stimulation or drugs suggest alternative or integrative treatment for the future. Individuals with DS show typical organization of brain structures related to some cognitive abilities, such as reduced volume in frontal and prefrontal areas, which is related to poor executive and linguistic abilities. They also frequently show psychiatric disorders such as externalizing disorders as well as depression, anxiety and obsessive-compulsive disorder. Nevertheless, as for other genetic syndrome with intellectual disability, there is a significant lack of research specifically focused on treatments of psychiatric and behavioural problems in DS. This is true both for psychosocial and for pharmacological interventions.
Collapse
|
78
|
Mullins D, Daly E, Simmons A, Beacher F, Foy CML, Lovestone S, Hallahan B, Murphy KC, Murphy DG. Dementia in Down's syndrome: an MRI comparison with Alzheimer's disease in the general population. J Neurodev Disord 2013; 5:19. [PMID: 23962297 PMCID: PMC3765707 DOI: 10.1186/1866-1955-5-19] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2012] [Accepted: 07/30/2013] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND Down's syndrome (DS) is the most common genetic cause of intellectual disability. People with DS are at an increased risk of Alzheimer's disease (AD) compared to the general population. Neuroimaging studies of AD have focused on medial temporal structures; however, to our knowledge, no in vivo case-control study exists comparing the anatomy of dementia in DS to people with AD in the general population. We therefore compared the in vivo brain anatomy of people with DS and dementia (DS+) to those with AD in the general population. METHOD Using MRI in 192 adults, we compared the volume of whole brain matter, lateral ventricles, temporal lobes and hippocampus in DS subjects with and without dementia (DS+, DS-), to each other and to three non-DS groups. These included one group of individuals with AD and two groups of controls (each age-matched for their respective DS and general population AD cohorts). RESULTS AD and DS+ subjects showed significant reductions in the volume of the whole brain, hippocampus and temporal lobes and a significant elevation in the volume of the lateral ventricle, compared to their non-demented counterparts. People with DS+ had a smaller reduction in temporal lobe volume compared to individuals with AD. CONCLUSIONS DS+ and AD subjects have a significant reduction in volume of the same brain regions. We found preliminary evidence that DS individuals may be more sensitive to tissue loss than others and have less 'cognitive reserve'.
Collapse
Affiliation(s)
- Diane Mullins
- Department of Forensic and Neurodevelopmental Sciences, Section of Brain Maturation, Institute of Psychiatry, De Crespigny Park, London, England, UK
- Department of Psychiatry, Royal College of Surgeons in Ireland, Education and Research Centre, Beaumont Hospital, Dublin 9, Ireland
| | - Eileen Daly
- Department of Forensic and Neurodevelopmental Sciences, Section of Brain Maturation, Institute of Psychiatry, De Crespigny Park, London, England, UK
| | - Andrew Simmons
- Department of Neuroimaging, Institute of Psychiatry, King’s College London, London, England, UK
- NIHR Biomedical Research Centre for Medical Health at the South London and Maudsley NHS Foundation Trust and King’s College London, Institute of Psychiatry, London, England, UK
| | - Felix Beacher
- Department of Forensic and Neurodevelopmental Sciences, Section of Brain Maturation, Institute of Psychiatry, De Crespigny Park, London, England, UK
| | - Catherine ML Foy
- Section of Old Age Psychiatry, Institute of Psychiatry, De Crespigny Park, London, England, UK
| | - Simon Lovestone
- NIHR Biomedical Research Centre for Medical Health at the South London and Maudsley NHS Foundation Trust and King’s College London, Institute of Psychiatry, London, England, UK
- MRC Centre for Neurodegeneration Research, Section of Old Age Psychiatry, Institute of Psychiatry, King’s College London, London, England, UK
| | - Brian Hallahan
- Department of Psychiatry, Clinical Science Institute, National University of Ireland Galway, Galway, Ireland
| | - Kieran C Murphy
- Department of Psychiatry, Royal College of Surgeons in Ireland, Education and Research Centre, Beaumont Hospital, Dublin 9, Ireland
| | - Declan G Murphy
- Department of Forensic and Neurodevelopmental Sciences, Section of Brain Maturation, Institute of Psychiatry, De Crespigny Park, London, England, UK
- NIHR Biomedical Research Centre for Medical Health at the South London and Maudsley NHS Foundation Trust and King’s College London, Institute of Psychiatry, London, England, UK
| |
Collapse
|
79
|
Szemes M, Davies RL, Garden CLP, Usowicz MM. Weaker control of the electrical properties of cerebellar granule cells by tonically active GABAA receptors in the Ts65Dn mouse model of Down's syndrome. Mol Brain 2013; 6:33. [PMID: 23870245 PMCID: PMC3723448 DOI: 10.1186/1756-6606-6-33] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Accepted: 07/14/2013] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Down's syndrome (DS) is caused by triplication of all or part of human chromosome 21 and is characterized by a decrease in the overall size of the brain. One of the brain regions most affected is the cerebellum, in which the number of granule cells (GCs) is markedly decreased. GCs process sensory information entering the cerebellum via mossy fibres and pass it on to Purkinje cells and inhibitory interneurons. How GCs transform incoming signals depends on their input-output relationship, which is adjusted by tonically active GABA(A) receptor channels. RESULTS We report that in the Ts65Dn mouse model of DS, in which cerebellar volume and GC number are decreased as in DS, the tonic GABA(A) receptor current in GCs is smaller than in wild-type mice and is less effective in moderating input resistance and raising the minimum current required for action potential firing. We also find that tonically active GABA(A) receptors curb the height and broaden the width of action potentials in wild-type GCs but not in Ts65Dn GCs. Single-cell real-time quantitative PCR reveals that these electrical differences are accompanied by decreased expression of the gene encoding the GABA(A) receptor β3 subunit but not genes coding for some of the other GABA(A) receptor subunits expressed in GCs (α1, α6, β2 and δ). CONCLUSIONS Weaker moderation of excitability and action potential waveform in GCs of the Ts65Dn mouse by tonically active GABA(A) receptors is likely to contribute to atypical transfer of information through the cerebellum. Similar changes may occur in DS.
Collapse
Affiliation(s)
- Marianna Szemes
- Present address: School of Cellular and Molecular Medicine, University of Bristol, University Walk, Bristol BS8 1TD, UK
| | - Rachel L Davies
- Present address: Research & Enterprise Development, University of Bristol, Senate House, Tyndall Avenue, Bristol BS8 1TH, UK
| | - Claire LP Garden
- Present address: School of Life, Sport and Social Sciences, Edinburgh Napier University, Sighthill Court, Edinburgh EH11 4BN, UK
| | - Maria M Usowicz
- School of Physiology & Pharmacology, University of Bristol, University Walk, Bristol BS8 1TD, UK
| |
Collapse
|
80
|
Anderson JS, Nielsen JA, Ferguson MA, Burback MC, Cox ET, Dai L, Gerig G, Edgin JO, Korenberg JR. Abnormal brain synchrony in Down Syndrome. NEUROIMAGE-CLINICAL 2013; 2:703-15. [PMID: 24179822 PMCID: PMC3778249 DOI: 10.1016/j.nicl.2013.05.006] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2013] [Revised: 05/14/2013] [Accepted: 05/15/2013] [Indexed: 11/29/2022]
Abstract
Down Syndrome is the most common genetic cause for intellectual disability, yet the pathophysiology of cognitive impairment in Down Syndrome is unknown. We compared fMRI scans of 15 individuals with Down Syndrome to 14 typically developing control subjects while they viewed 50 min of cartoon video clips. There was widespread increased synchrony between brain regions, with only a small subset of strong, distant connections showing underconnectivity in Down Syndrome. Brain regions showing negative correlations were less anticorrelated and were among the most strongly affected connections in the brain. Increased correlation was observed between all of the distributed brain networks studied, with the strongest internetwork correlation in subjects with the lowest performance IQ. A functional parcellation of the brain showed simplified network structure in Down Syndrome organized by local connectivity. Despite increased interregional synchrony, intersubject correlation to the cartoon stimuli was lower in Down Syndrome, indicating that increased synchrony had a temporal pattern that was not in response to environmental stimuli, but idiosyncratic to each Down Syndrome subject. Short-range, increased synchrony was not observed in a comparison sample of 447 autism vs. 517 control subjects from the Autism Brain Imaging Exchange (ABIDE) collection of resting state fMRI data, and increased internetwork synchrony was only observed between the default mode and attentional networks in autism. These findings suggest immature development of connectivity in Down Syndrome with impaired ability to integrate information from distant brain regions into coherent distributed networks. Adjacent brain regions are more synchronized in Down Syndrome. Distant brain regions show less synchronization in Down Syndrome. Negatively correlated brain regions are less anticorrelated in Down Syndrome. Down Syndrome subjects show simplified brain network architecture. Increased brain synchrony does not reflect a response to environmental stimuli.
Collapse
Affiliation(s)
- Jeffrey S Anderson
- Division of Neuroradiology, University of Utah, USA ; Interdepartmental Program in Neuroscience, University of Utah, USA ; The Brain Institute at the University of Utah, USA ; Department of Bioengineering, University of Utah, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
81
|
A systematic review of brain frontal lobe parcellation techniques in magnetic resonance imaging. Brain Struct Funct 2013; 219:1-22. [DOI: 10.1007/s00429-013-0527-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Accepted: 02/14/2013] [Indexed: 01/06/2023]
|
82
|
Edgin JO. Cognition in Down syndrome: a developmental cognitive neuroscience perspective. WILEY INTERDISCIPLINARY REVIEWS. COGNITIVE SCIENCE 2013; 4:307-317. [PMID: 26304208 DOI: 10.1002/wcs.1221] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Down syndrome (DS) is the most common genetic form of intellectual disability. DS results in a characteristic profile of cognitive and neurological dysfunction. The predominant theory of the pattern of neural deficits in this syndrome suggests that DS affects 'late-developing' neural systems, including the function of the prefrontal cortex and hippocampus. In order to evaluate the validity of this theory, in this review, I highlight data addressing the neurological and cognitive phenotype in DS across development. In particular, I address the evidence suggesting that DS may impact late-developing neural systems and end with the conclusion that some cognitive difficulties in DS must result from poor communication between late-developing regions. Analogous to recent theories of cognitive processing in autism, cognitive deficits in DS may be substantially impacted by less efficient interregional communication. Finally, I discuss some ways in which understanding the impact of altered neurodevelopment in DS has the potential to inform our understanding of species-typical trajectories of cognitive development. WIREs Cogn Sci 2013, 4:307-317. doi: 10.1002/wcs.1221 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Jamie O Edgin
- Department of Psychology, University of Arizona, Tucson, AZ, USA
| |
Collapse
|
83
|
Abstract
Down syndrome is the most common form of intellectual disability and results from one of the most complex genetic perturbations that is compatible with survival, trisomy 21. The study of brain dysfunction in this disorder has largely been based on a gene discovery approach, but we are now moving into an era of functional genome exploration, in which the effects of individual genes are being studied alongside the effects of deregulated non-coding genetic elements and epigenetic influences. Also, new data from functional neuroimaging studies are challenging our views of the cognitive phenotypes associated with Down syndrome and their pathophysiological correlates. These advances hold promise for the development of treatments for intellectual disability.
Collapse
Affiliation(s)
- Mara Dierssen
- Genes and Disease Programme, Centre for Genomic Regulation (CRG), Universitat Pompeu Fabra, Centro de Investigación Biomédica en Red de Enfermedades Raras, E-08003 Barcelona, Spain.
| |
Collapse
|
84
|
Fernandez F, Edgin JO. Poor Sleep as a Precursor to Cognitive Decline in Down Syndrome : A Hypothesis. ACTA ACUST UNITED AC 2013; 3:124. [PMID: 24558640 PMCID: PMC3928031 DOI: 10.4172/2161-0460.1000124] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We propose that sleep disruption is a lever arm that influences how cognition emerges in development and then declines in response to Alzheimer disease in people with Down syndrome. Addressing sleep disruptions might be an overlooked way to improve cognitive outcomes in this population. This article is a contribution to a Special Issue on Down Syndrome curated by the editors of the Journal of Alzheimer’s Disease & Parkinsonism.
Collapse
Affiliation(s)
- Fabian Fernandez
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Jamie O Edgin
- Department of Psychology and Cognitive Science Program, Sonoran University, Center for Excellence in Developmental Disabilities, University of Arizona, Tucson, AZ 85721, USA
| |
Collapse
|
85
|
Gervan P, Gombos F, Kovacs I. Perceptual learning in Williams syndrome: looking beyond averages. PLoS One 2012; 7:e40282. [PMID: 22792262 PMCID: PMC3390366 DOI: 10.1371/journal.pone.0040282] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2012] [Accepted: 06/04/2012] [Indexed: 11/18/2022] Open
Abstract
Williams Syndrome is a genetically determined neurodevelopmental disorder characterized by an uneven cognitive profile and surprisingly large neurobehavioral differences among individuals. Previous studies have already shown different forms of memory deficiencies and learning difficulties in WS. Here we studied the capacity of WS subjects to improve their performance in a basic visual task. We employed a contour integration paradigm that addresses occipital visual function, and analyzed the initial (i.e. baseline) and after-learning performance of WS individuals. Instead of pooling the very inhomogeneous results of WS subjects together, we evaluated individual performance by expressing it in terms of the deviation from the average performance of the group of typically developing subjects of similar age. This approach helped us to reveal information about the possible origins of poor performance of WS subjects in contour integration. Although the majority of WS individuals showed both reduced baseline and reduced learning performance, individual analysis also revealed a dissociation between baseline and learning capacity in several WS subjects. In spite of impaired initial contour integration performance, some WS individuals presented learning capacity comparable to learning in the typically developing population, and vice versa, poor learning was also observed in subjects with high initial performance levels. These data indicate a dissociation between factors determining initial performance and perceptual learning.
Collapse
Affiliation(s)
- Patricia Gervan
- Department of Cognitive Science, Budapest University of Technology and Economics, Budapest, Hungary.
| | | | | |
Collapse
|
86
|
Mouse models of Down syndrome as a tool to unravel the causes of mental disabilities. Neural Plast 2012; 2012:584071. [PMID: 22685678 PMCID: PMC3364589 DOI: 10.1155/2012/584071] [Citation(s) in RCA: 128] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2012] [Revised: 03/23/2012] [Accepted: 03/24/2012] [Indexed: 12/16/2022] Open
Abstract
Down syndrome (DS) is the most common genetic cause of mental disability. Based on the homology of Hsa21 and the murine chromosomes Mmu16, Mmu17 and Mmu10, several mouse models of DS have been developed. The most commonly used model, the Ts65Dn mouse, has been widely used to investigate the neural mechanisms underlying the mental disabilities seen in DS individuals. A wide array of neuromorphological alterations appears to compromise cognitive performance in trisomic mice. Enhanced inhibition due to alterations in GABA(A)-mediated transmission and disturbances in the glutamatergic, noradrenergic and cholinergic systems, among others, has also been demonstrated. DS cognitive dysfunction caused by neurodevelopmental alterations is worsened in later life stages by neurodegenerative processes. A number of pharmacological therapies have been shown to partially restore morphological anomalies concomitantly with cognition in these mice. In conclusion, the use of mouse models is enormously effective in the study of the neurobiological substrates of mental disabilities in DS and in the testing of therapies that rescue these alterations. These studies provide the basis for developing clinical trials in DS individuals and sustain the hope that some of these drugs will be useful in rescuing mental disabilities in DS individuals.
Collapse
|
87
|
Increased excitability and altered action potential waveform in cerebellar granule neurons of the Ts65Dn mouse model of Down syndrome. Brain Res 2012; 1465:10-7. [PMID: 22627164 PMCID: PMC3389345 DOI: 10.1016/j.brainres.2012.05.027] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2012] [Revised: 05/09/2012] [Accepted: 05/14/2012] [Indexed: 12/19/2022]
Abstract
Down syndrome (DS) is characterized by intellectual disability and impaired motor control. Lack of coordinated movement, poor balance, and unclear speech imply dysfunction of the cerebellum, which is known to be reduced in volume in DS. The principal cause of the smaller cerebellum is a diminished number of granule cells (GCs). These neurons form the ‘input layer’ of the cerebellar cortex, where sensorimotor information carried by incoming mossy fibers is transformed before it is conveyed to Purkinje cells and inhibitory interneurons. However, it is not known how processing of this information is affected in the hypogranular cerebellum that characterizes DS. Here we explore the possibility that the electrical properties of the surviving GCs are changed. We find that in the Ts65Dn mouse model of DS, GCs have a higher input resistance at voltages approaching the threshold for firing, which causes them to be more excitable. In addition, they fire narrower and larger amplitude action potentials. These subtly modified electrical properties may result in atypical transfer of information at the input layer of the cerebellum.
Collapse
|
88
|
Kulkarni VA, Firestein BL. The dendritic tree and brain disorders. Mol Cell Neurosci 2012; 50:10-20. [DOI: 10.1016/j.mcn.2012.03.005] [Citation(s) in RCA: 242] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2012] [Accepted: 03/09/2012] [Indexed: 01/21/2023] Open
|
89
|
Haydar TF, Reeves RH. Trisomy 21 and early brain development. Trends Neurosci 2012; 35:81-91. [PMID: 22169531 PMCID: PMC3273608 DOI: 10.1016/j.tins.2011.11.001] [Citation(s) in RCA: 139] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2011] [Revised: 09/17/2011] [Accepted: 11/01/2011] [Indexed: 12/13/2022]
Abstract
Trisomy for human chromosome 21 (Hsa21) results in Down syndrome (DS). The finished human genome sequence provides a thorough catalog of the genetic elements whose altered dosage perturbs development and function in DS. However, understanding how small alterations in the steady state transcript levels for <2% of human genes can disrupt development and function of essentially every cell presents a more complicated problem. Mouse models that recapitulate specific aspects of DS have been used to identify changes in brain morphogenesis and function. Here we provide a few examples of how trisomy for specific genes affects the development of the cortex and cerebellum to illustrate how gene dosage effects might contribute to divergence between the trisomic and euploid brains.
Collapse
Affiliation(s)
- Tarik F Haydar
- Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, MA 02118, USA.
| | | |
Collapse
|
90
|
Abstract
This chapter reviews the neurological phenotype of Down syndrome (DS) in early development, childhood, and aging. Neuroanatomic abnormalities in DS are manifested as aberrations in gross brain structure as well as characteristic microdysgenetic changes. As the result of these morphological abnormalities, brain circuitry is impaired. While an intellectual disability is ubiquitous in DS, there is a wide range of variation in cognitive performance and a growing understanding between aberrant brain circuitry and the cognitive phenotype. Hypotonia is most marked at birth, affecting gait and ligamentous laxity. Seizures are bimodal in presentation with infantile spasms common in infancy and generalized seizures associated with cognitive decline observed in later years. While all individuals have the characteristic neuropathology of Alzheimer's disease (AD) by age 40 years, the prevalence of dementia is not universal. The tendency to develop AD is related, in part, to several genes on chromosome 21 that are overexpressed in DS. Intraneuronal accumulation of β-amyloid appears to trigger a cascade of neurodegeneration resulting in the neuropathological and clinical manifestations of dementia. Functional brain imaging has elucidated the temporal sequence of amyloid deposition and glucose metabolic rate in the development of dementia in DS. Mitochondrial abnormalities contribute to oxidative stress which is part of AD pathogenesis in DS as well as AD in the general population. A variety of medical comorbidities threaten cognitive performance including sleep apnea, abnormalities in thyroid metabolism, and behavioral disturbances. Mouse models for DS are providing a platform for the formulation of clinical trials with intervention targeted to synaptic plasticity, brain biochemistry, and morphological brain alterations.
Collapse
Affiliation(s)
- Ira T Lott
- Department of Pediatrics and Neurology, School of Medicine, University of California Irvine (UCI), Orange, CA, USA.
| |
Collapse
|
91
|
Impaired myelination of the human hippocampal formation in Down syndrome. Int J Dev Neurosci 2011; 30:147-58. [PMID: 22155002 DOI: 10.1016/j.ijdevneu.2011.11.005] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2011] [Revised: 11/25/2011] [Accepted: 11/25/2011] [Indexed: 11/24/2022] Open
Abstract
Myelination is considered as one of the last steps of neuronal development and is essential to the physiologically matured function of afferent and efferent pathways. In the present study, myelin formation was examined in the human fetal, postnatal and adult hippocampal formation in Down syndrome and in age-matched controls with immunohistochemistry detecting a protein component of the myelin sheath, the myelin basic protein synthesized by oligodendroglial cells. Myelination is mainly a postnatal event in the hippocampal formation of both healthy controls and in patients with Down syndrome. In patients with Down syndrome the sequence of myelination of the hippocampal formation followed a similar developmental pattern to that in controls. However, myelin formation was generally delayed in Down syndrome compared to age-matched controls. In addition, in the hilus of the dentate gyrus a decreased density of myelinated axons was detected from the start of myelination until adulthood. The majority of local axons (mossy fibers) are not myelinated in the hilar region and myelinated fibers arriving in the hilus come mainly from the subcortical septal nuclei. Since intact septo-hippocampal connections are necessary for memory formation, we hypothesize that decreased myelination in the hilus may contribute to the mental retardation of Down syndrome patients.
Collapse
|
92
|
|
93
|
Costa ACS. An assessment of optokinetic nystagmus (OKN) in persons with Down syndrome. Exp Brain Res 2011; 214:381-91. [PMID: 21842408 DOI: 10.1007/s00221-011-2834-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2010] [Accepted: 08/04/2011] [Indexed: 10/17/2022]
Abstract
Down syndrome (DS), the most common genetically defined cause of intellectual disability, is the phenotypic consequence of a supernumerary chromosome 21. Persons with DS commonly display deficits in visuomotor integration, motor coordination, and balance. Despite the key roles of the optokinetic and vestibular systems in these submodalities of motor function, a systematic investigation of the optokinetic nystagmus (OKN) and vestibulo-ocular reflex (VOR) in persons with DS had lacked in the literature. Accordingly, this study generated quantitative data on oculomotor function in persons with DS under optokinetic and sinusoidal smooth pursuit stimulation. Thirty-two participants with DS (14-36 years old, equally divided by gender) and 32 chronological age- and gender-matched typically developing controls were recruited from the community. Eye movements were recorded by binocular video oculography and an LCD projector produced visual stimulation. Assessments of the gain and frequency of slow phase of OKN beats and number and mean amplitude of intruding saccades during smooth pursuit were performed. Individuals with DS displayed angular velocity-dependent reduction in OKN gain and number of produced nystagmus beats compared to controls. The gain of the smooth pursuit was not significantly different between participants with DS and control participants. However, the number and mean amplitude of intruding saccades during smooth pursuit were increased in participants with DS compared to control participants. These findings may have implications to the understanding of the neurological basis of the motor dysfunction that affects performance in many practical tasks persons with DS encounter in their everyday lives.
Collapse
Affiliation(s)
- Alberto C S Costa
- Division of Clinical Pharmacology and Toxicology, Department of Medicine, University of Colorado Denver School of Medicine, 12700 East 19th Avenue, Campus Box C-237, Aurora, CO 80045, USA.
| |
Collapse
|
94
|
Costa ACS. An assessment of the vestibulo-ocular reflex (VOR) in persons with Down syndrome. Exp Brain Res 2011; 214:199-213. [DOI: 10.1007/s00221-011-2820-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2010] [Accepted: 07/29/2011] [Indexed: 12/01/2022]
|
95
|
Velikova S, Magnani G, Arcari C, Falautano M, Franceschi M, Comi G, Leocani L. Cognitive impairment and EEG background activity in adults with Down's syndrome: a topographic study. Hum Brain Mapp 2011; 32:716-29. [PMID: 21484947 DOI: 10.1002/hbm.21061] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
OBJECTIVE Studies correlating electroencephalographic (EEG) data and cognitive performance in Down's syndrome (DS) showed conflicting results. The aims of this study were to investigate the sources of EEG rhythms in adults with DS at three dimensional representation of current source density (CSD) using exact/standard Low Resolution Electromagnetic Tomography (e/sLORETA), and their correlation with cognitive performance. METHODS Twenty-five adults with DS underwent a neuropsychological battery and 5 min of resting, eye-closed 29-channel EEG were recorded. After e/sLORETA analysis, data were compared with those from age and gender-matching control subjects as following: absolute and relative power in delta (1-3 Hz), theta (4-7 Hz), alpha1 (8-9 Hz), alpha2 (10-12 Hz), beta1 (13-18 Hz), beta2 (19-21 Hz), beta3 (22-30 Hz); alpha and theta bands adjusted to individual alpha peak frequency (IAF). Current source activities in DS group in regions showing significant differences compared with controls underwent correlation analysis with psychometric scores. RESULTS In DS, IAF was shifted to lower frequencies and correlated positively with Wechsler Adult Intelligence Scale and Mini-Mental State examination. Compared with controls, DS showed increased CSD in: theta, alpha-1, and beta1 classical bands and in IAF-adjusted bands, while relative alpha2 was decreased. A negative correlation between cognitive performance and theta/alpha CSD in the right frontal lobe and right posterior cingulate cortex was found. The relative alpha2 correlated positively with cognitive tests. CONCLUSIONS Increased CSD in DS, correlating with cognitive performance, for both slow and fast rhythms suggests involving of cortical and subcortical mechanisms. LORETA might be useful for objective measure of cognitive decline in DS.
Collapse
Affiliation(s)
- Svetla Velikova
- Department of Neurology, Clinical Neurophysiology, Neurorehabilitation, Institute of Experimental Neurology-INSPE, IRCCS University Hospital, San Raffaele, Via Olgettina 60, Milan, Italy
| | | | | | | | | | | | | |
Collapse
|
96
|
Lott IT, Doran E, Nguyen VQ, Tournay A, Head E, Gillen DL. Down syndrome and dementia: a randomized, controlled trial of antioxidant supplementation. Am J Med Genet A 2011; 155A:1939-48. [PMID: 21739598 DOI: 10.1002/ajmg.a.34114] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2010] [Accepted: 04/22/2011] [Indexed: 01/03/2023]
Abstract
Individuals with Down syndrome over age 40 years are at risk for developing dementia of the Alzheimer type and have evidence for chronic oxidative stress. There is a paucity of treatment trials for dementia in Down syndrome in comparison to Alzheimer disease in the general (non-Down syndrome) population. This 2-year randomized, double-blind, placebo-controlled trial assessed whether daily oral antioxidant supplementation (900 IU of alpha-tocopherol, 200 mg of ascorbic acid and 600 mg of alpha-lipoic acid) was effective, safe and tolerable for 53 individuals with Down syndrome and dementia. The outcome measures comprised a battery of neuropsychological assessments administered at baseline and every 6 months. Compared to the placebo group, those individuals receiving the antioxidant supplement showed neither an improvement in cognitive functioning nor a stabilization of cognitive decline. Mean plasma levels of alpha-tocopherol increased ~2-fold in the treatment group and were consistently higher than the placebo group over the treatment period. Pill counts indicated good compliance with the regimen. No serious adverse events attributed to the treatment were noted. We conclude that antioxidant supplementation is safe, though ineffective as a treatment for dementia in individuals with Down syndrome and Alzheimer type dementia. Our findings are similar to studies of antioxidant supplementation in Alzheimer disease in the general population. The feasibility of carrying out a clinical trial for dementia in Down syndrome is demonstrated.
Collapse
Affiliation(s)
- Ira T Lott
- Department of Pediatrics, School of Medicine, University of California, Irvine (UCI), Orange, California, USA.
| | | | | | | | | | | |
Collapse
|
97
|
Karlsen AS, Pakkenberg B. Total numbers of neurons and glial cells in cortex and basal ganglia of aged brains with Down syndrome--a stereological study. Cereb Cortex 2011; 21:2519-24. [PMID: 21427166 DOI: 10.1093/cercor/bhr033] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The total numbers of neurons and glial cells in the neocortex and basal ganglia in adults with Down syndrome (DS) were estimated with design-based stereological methods, providing quantitative data on brains affected by delayed development and accelerated aging. Cell numbers, volume of regions, and densities of neurons and glial cell subtypes were estimated in brains from 4 female DS subjects (mean age 66 years) and 6 female controls (mean age 70 years). The DS subjects were estimated to have about 40% fewer neocortical neurons in total (11.1 × 10(9) vs. 17.8 × 10(9), 2p ≤ 0.001) and almost 30% fewer neocortical glial cells with no overlap to controls (12.8 × 10(9) vs. 18.2 × 10(9), 2p = 0.004). In contrast, the total number of neurons in the basal ganglia was the same in the 2 groups, whereas the number of oligodendrocytes in the basal ganglia was reduced by almost 50% in DS (405 × 10(6) vs. 816 × 10(6), 2p = 0.01). We conclude that trisomy 21 affects cortical structures more than central gray matter emphasizing the differential impairment of brain development. Despite concomitant Alzheimer-like pathology, the neurodegenerative outcome in a DS brain deviates from common Alzheimer disease.
Collapse
Affiliation(s)
- Anna Schou Karlsen
- Research Laboratory for Stereology and Neuroscience, Copenhagen University Hospital, Bispebjerg, DK-2400 Copenhagen NV, Denmark.
| | | |
Collapse
|
98
|
Bartesaghi R, Guidi S, Ciani E. Is it possible to improve neurodevelopmental abnormalities in Down syndrome? Rev Neurosci 2011; 22:419-55. [DOI: 10.1515/rns.2011.037] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
99
|
Abstract
AbstractWe quantitatively analyzed the dendritic and dendritic spine development on basal and oblique dendrites of large layer IIIc pyramidal neurons of the prospective prefrontal area 9 in the brains of three infants with Down syndrome (DS) and five age-matched-controls over the period from 32 weeks postconception to the 7th postnatal month. By using Neurolucida 3.1 software on rapid Golgi impregnated slices, 9–10 neurons were three-dimensionally reconstructed. There were no significant differences in the pattern of the dendritic and spine development between the basal and apical oblique dendrites. The DS subjects did not depart significantly from the developmental curve of the control subjects. Our data showed that large and significant segment outgrowth, in parallel with dendritic elongation occurred during a limited period of time, between 36 weeks postconception and the first postnatal month. Dendritic spines appeared at the time of birth and their density continued to increase up to the age of 7 months. During the first postnatal month long thin spines and filopodia-like protrusions predominated, but the spines later changed their morphology to a more mature form. No differences in the spine morphology were qualitatively observed between the DS infants and the age matched controls. This data suggests that intensive formation of cortical circuitry occurs on large layer IIIc pyramidal neurons during perinatal period and is not disturbed in DS infants. Consequently, this could be a biological potential to mitigate psychomotor impairment in DS patient.
Collapse
|
100
|
Jackowski AP, Laureano MR, Del’Aquilla MA, de Moura LM, Assunção I, Silva I, Schwartzman JS. Update on Clinical Features and Brain Abnormalities in Neurogenetics Syndromes. JOURNAL OF APPLIED RESEARCH IN INTELLECTUAL DISABILITIES 2010. [DOI: 10.1111/j.1468-3148.2010.00603.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|