51
|
Liu L, Wang S, Dong X, Liu Y, Wei L, Kong L, Zhang Q, Zhang K. Trigone ventricular glioblastoma multiforme with trapped temporal horn: A case report. Front Oncol 2022; 12:995189. [PMID: 36176385 PMCID: PMC9513456 DOI: 10.3389/fonc.2022.995189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 08/18/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundIntraventricular glioblastoma multiforme (GBM) is extremely rare, especially in the trigone region. This report presents a case of trigone ventricular GBM with trapped temporal horn (TTH).Case presentationA 59-year-old woman was admitted to our department with a 1-month history of rapidly progressive headache, nausea, and weakness in the right lower extremity. Head non-contrast computed tomography and enhanced magnetic resonance imaging (MRI) revealed a trigone ventricular mass lesion with TTH and heterogeneous enhancement. The lesion was found 18 months ago as a small asymptomatic tumor mimicking ependymoma. This neoplasm was removed subtotally through the right parieto-occipital approach guided by neuroendoscopy. A ventriculoperitoneal shunt was subsequently performed to relieve TTH. The final pathological diagnosis was GBM. Unfortunately, 36 days after the first surgery, the patient died due to her family’s decision to refuse therapy.ConclusionThis rare case shows that GBM should be considered in the differential diagnosis of trigonal tumors. In this case, the tumor possibly originated from the neural stem cells in the subventricular zone. Patients with intraventricular GBM have a worse prognosis, and careful follow-up and early surgery for small intraventricular tumors are necessary, even for those with ependymoma-like radiological findings.
Collapse
Affiliation(s)
- Lei Liu
- Department of Neurosurgery, Chui Yang Liu Hospital Affiliated to Tsinghua University, Beijing, China
| | - Shaozhen Wang
- Department of Neurosurgery, Chui Yang Liu Hospital Affiliated to Tsinghua University, Beijing, China
| | - Xuetao Dong
- Department of Neurosurgery, Chui Yang Liu Hospital Affiliated to Tsinghua University, Beijing, China
| | - Yaodong Liu
- Department of Neurosurgery, Chui Yang Liu Hospital Affiliated to Tsinghua University, Beijing, China
| | - Liudong Wei
- Department of Neurosurgery, Chui Yang Liu Hospital Affiliated to Tsinghua University, Beijing, China
| | - Linghong Kong
- Department of Pathology, Chui Yang Liu Hospital Affiliated to Tsinghua University, Beijing, China
| | - Qingjun Zhang
- Department of Neurosurgery, Chui Yang Liu Hospital Affiliated to Tsinghua University, Beijing, China
| | - Kun Zhang
- Department of Neurosurgery, Chui Yang Liu Hospital Affiliated to Tsinghua University, Beijing, China
- *Correspondence: Kun Zhang,
| |
Collapse
|
52
|
Zhao K, Liu R, Li Z, Liu M, Zhao Y, Xue Z, Wu W, Sun G, Xu B. The imaging features and prognosis of gliomas involving the subventricular zone: An MRI study. Clin Neurol Neurosurg 2022; 222:107465. [DOI: 10.1016/j.clineuro.2022.107465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 08/02/2022] [Accepted: 09/28/2022] [Indexed: 11/26/2022]
|
53
|
Jiao Y, Wang M, Liu X, Wang J, Shou Y, Sun H. Clinical features and prognostic significance of tumor involved with subventricular zone in pediatric glioblastoma: a 10-year experience in a single hospital. Childs Nerv Syst 2022; 38:1469-1477. [PMID: 35474540 DOI: 10.1007/s00381-022-05522-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Accepted: 04/10/2022] [Indexed: 11/03/2022]
Abstract
PURPOSE Tumors involved with subventricular zone (SVZ) predicted an adverse prognosis had been well proved in adult glioblastoma (GBM). However, we still know less about its impact on children due to the rarity of pediatric glioblastoma (pGBM). We performed this retrospective study to better understand the clinical and prognostic features of pGBM involved with SVZ. METHODS Fifty-two patients diagnosed with pGBM at our center between January 2011 and January 2021 were selected for review to demonstrate the characteristics of tumor contacting SVZ. Thirty patients who underwent concurrent chemoradiotherapy and adjuvant chemotherapy postoperatively were selected for survival analysis. RESULTS Of all the 52 patients, 21 were found to contact SVZ and 31 were not. The median PFS and OS in SVZ + patients were 5.2 and 8.9 months, respectively, whereas median PFS and OS were 11.9 and 17.9 months, respectively, in SVZ - patients. Multivariate analysis showed that involvement of SVZ was an independent prognostic factor for OS while focality at diagnosis was an independent prognostic factor for PFS. Tumors contacted with SVZ tend to have larger volumes, lower incidence of epilepsy, and lower total resect rate and they were more likely to originate from midline location. Age at diagnosis; gender; adjuvant therapy; focality at diagnosis; focality at relapse; mutational status of H3K27M, MGMT, IDH1, and IDH2; and expression of P53 and ATRX protein failed to characterize SVZ + patients. CONCLUSION Involvement of SVZ predicted worse OS in pGBM and it had some distinct clinical features in comparison with those that did not contact with SVZ. Multifocal tumor at diagnosis was related to a shorter PFS. We should make a further step to clarify its molecular features.
Collapse
Affiliation(s)
- Yang Jiao
- Department of Neurosurgery, the First Affiliated Hospital of Zhengzhou University, Jianshe East Road No 1Henan Province, Zhengzhou, 450000, People's Republic of China
| | - Meng Wang
- Department of Neurosurgery, the First Affiliated Hospital of Zhengzhou University, Jianshe East Road No 1Henan Province, Zhengzhou, 450000, People's Republic of China
| | - Xueyou Liu
- Department of Neurosurgery, the First Affiliated Hospital of Zhengzhou University, Jianshe East Road No 1Henan Province, Zhengzhou, 450000, People's Republic of China
| | - Junkuan Wang
- Department of Neurosurgery, the First Affiliated Hospital of Zhengzhou University, Jianshe East Road No 1Henan Province, Zhengzhou, 450000, People's Republic of China
| | - Yuwei Shou
- Department of Pathology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Hongwei Sun
- Department of Neurosurgery, the First Affiliated Hospital of Zhengzhou University, Jianshe East Road No 1Henan Province, Zhengzhou, 450000, People's Republic of China.
| |
Collapse
|
54
|
Norton ES, Whaley LA, Ulloa-Navas MJ, García-Tárraga P, Meneses KM, Lara-Velazquez M, Zarco N, Carrano A, Quiñones-Hinojosa A, García-Verdugo JM, Guerrero-Cázares H. Glioblastoma disrupts the ependymal wall and extracellular matrix structures of the subventricular zone. Fluids Barriers CNS 2022; 19:58. [PMID: 35821139 PMCID: PMC9277938 DOI: 10.1186/s12987-022-00354-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 06/27/2022] [Indexed: 12/04/2022] Open
Abstract
Background Glioblastoma (GBM) is the most aggressive and common type of primary brain tumor in adults. Tumor location plays a role in patient prognosis, with tumors proximal to the lateral ventricles (LVs) presenting with worse overall survival, increased expression of stem cell genes, and increased incidence of distal tumor recurrence. This may be due in part to interaction of GBM with factors of the subventricular zone (SVZ), including those contained within the cerebrospinal fluid (CSF). However, direct interaction of GBM tumors with CSF has not been proved and would be hindered in the presence of an intact ependymal cell layer. Methods Here, we investigate the ependymal cell barrier and its derived extracellular matrix (ECM) fractones in the vicinity of a GBM tumor. Patient-derived GBM cells were orthotopically implanted into immunosuppressed athymic mice in locations distal and proximal to the LV. A PBS vehicle injection in the proximal location was included as a control. At four weeks post-xenograft, brain tissue was examined for alterations in ependymal cell health via immunohistochemistry, scanning electron microscopy, and transmission electron microscopy. Results We identified local invading GBM cells within the LV wall and increased influx of CSF into the LV-proximal GBM tumor bulk compared to controls. In addition to the physical disruption of the ependymal cell barrier, we also identified increased signs of compromised ependymal cell health in LV-proximal tumor-bearing mice. These signs include increased accumulation of lipid droplets, decreased cilia length and number, and decreased expression of cell channel proteins. We additionally identified elevated numbers of small fractones in the SVZ within this group, suggesting increased indirect CSF-contained molecule signaling to tumor cells. Conclusions Our data is the first to show that LV-proximal GBMs physically disrupt the ependymal cell barrier in animal models, resulting in disruptions in ependymal cell biology and increased CSF interaction with the tumor bulk. These findings point to ependymal cell health and CSF-contained molecules as potential axes for therapeutic targeting in the treatment of GBM. Supplementary Information The online version contains supplementary material available at 10.1186/s12987-022-00354-8.
Collapse
Affiliation(s)
- Emily S Norton
- Department of Neurosurgery, Mayo Clinic Florida, 4500 San Pablo Road, Jacksonville, FL, 32224, USA.,Neuroscience Graduate Program, Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Jacksonville, FL, USA.,Regenerative Sciences Training Program, Center for Regenerative Medicine, Mayo Clinic, Jacksonville, FL, USA
| | - Lauren A Whaley
- Department of Neurosurgery, Mayo Clinic Florida, 4500 San Pablo Road, Jacksonville, FL, 32224, USA.,Department of Biology, University of North Florida, Jacksonville, FL, USA
| | - María José Ulloa-Navas
- Laboratory of Comparative Neurobiology, Cavanilles Institute of Biodiversity and Evolutionary Biology, University of Valencia, CIBERNED, Paterna, Spain.,Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | - Patricia García-Tárraga
- Laboratory of Comparative Neurobiology, Cavanilles Institute of Biodiversity and Evolutionary Biology, University of Valencia, CIBERNED, Paterna, Spain
| | - Kayleah M Meneses
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL, USA.,Biochemistry and Molecular Biology Graduate Program, Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Jacksonville, FL, USA
| | | | - Natanael Zarco
- Department of Neurosurgery, Mayo Clinic Florida, 4500 San Pablo Road, Jacksonville, FL, 32224, USA
| | - Anna Carrano
- Department of Neurosurgery, Mayo Clinic Florida, 4500 San Pablo Road, Jacksonville, FL, 32224, USA
| | | | - José Manuel García-Verdugo
- Laboratory of Comparative Neurobiology, Cavanilles Institute of Biodiversity and Evolutionary Biology, University of Valencia, CIBERNED, Paterna, Spain
| | - Hugo Guerrero-Cázares
- Department of Neurosurgery, Mayo Clinic Florida, 4500 San Pablo Road, Jacksonville, FL, 32224, USA.
| |
Collapse
|
55
|
Brighi C, Verburg N, Koh ES, Walker A, Chen C, Pillay S, de Witt Hamer PC, Aly F, Holloway LC, Keall PJ, Waddington DE. Repeatability of radiotherapy dose-painting prescriptions derived from a multiparametric magnetic resonance imaging model of glioblastoma infiltration. Phys Imaging Radiat Oncol 2022; 23:8-15. [PMID: 35734265 PMCID: PMC9207284 DOI: 10.1016/j.phro.2022.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 06/06/2022] [Accepted: 06/08/2022] [Indexed: 12/03/2022] Open
Abstract
Magnetic resonance imaging was used to derive dose-painting prescriptions in glioma. Dose prescriptions derived from magnetic resonance imaging are highly repeatable. Dose-painting plans are more repeatable than their dose prescriptions.
Background and purpose Glioblastoma (GBM) patients have a dismal prognosis. Tumours typically recur within months of surgical resection and post-operative chemoradiation. Multiparametric magnetic resonance imaging (mpMRI) biomarkers promise to improve GBM outcomes by identifying likely regions of infiltrative tumour in tumour probability (TP) maps. These regions could be treated with escalated dose via dose-painting radiotherapy to achieve higher rates of tumour control. Crucial to the technical validation of dose-painting using imaging biomarkers is the repeatability of the derived dose prescriptions. Here, we quantify repeatability of dose-painting prescriptions derived from mpMRI. Materials and methods TP maps were calculated with a clinically validated model that linearly combined apparent diffusion coefficient (ADC) and relative cerebral blood volume (rBV) or ADC and relative cerebral blood flow (rBF) data. Maps were developed for 11 GBM patients who received two mpMRI scans separated by a short interval prior to chemoradiation treatment. A linear dose mapping function was applied to obtain dose-painting prescription (DP) maps for each session. Voxel-wise and group-wise repeatability metrics were calculated for parametric, TP and DP maps within radiotherapy margins. Results DP maps derived from mpMRI were repeatable between imaging sessions (ICC > 0.85). ADC maps showed higher repeatability than rBV and rBF maps (Wilcoxon test, p = 0.001). TP maps obtained from the combination of ADC and rBF were the most stable (median ICC: 0.89). Conclusions Dose-painting prescriptions derived from a mpMRI model of tumour infiltration have a good level of repeatability and can be used to generate reliable dose-painting plans for GBM patients.
Collapse
|
56
|
Yan Y, Dai W, Mei Q. Multicentric Glioma: An Ideal Model to Reveal the Mechanism of Glioma. Front Oncol 2022; 12:798018. [PMID: 35747806 PMCID: PMC9209746 DOI: 10.3389/fonc.2022.798018] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 05/02/2022] [Indexed: 11/13/2022] Open
Abstract
As a special type of glioma, multicentric glioma provides an ideal pathological model for glioma research. According to the stem-cell-origin theory, multiple lesions of multicentric glioma share the same neuro-oncological origin, both in gene level and in cell level. Although the number of studies focusing on genetic evolution in gliomas with the model of multicentric gliomas were limited, some mutations, including IDH1 mutations, TERTp mutations and PTEN deletions, are found to be at an early stage in the process of genetic aberrance during glioma evolution based on the results of these studies. This article reviews the clinical reports and genetic studies of multicentric glioma, and intends to explain the various clinical phenomena of multicentric glioma from the perspective of genetic aberrance accumulation and tumor cell evolution. The malignant degree of a glioma is determined by both the tumorigenicity of early mutant genes, and the stemness of early suffered cells.
Collapse
Affiliation(s)
- Yong Yan
- Departmentof Neurosurgery, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Wei Dai
- Departmentof Neurosurgery, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Qiyong Mei
- Departmentof Neurosurgery, Changzheng Hospital, Naval Medical University, Shanghai, China
| |
Collapse
|
57
|
Adeberg S, Knoll M, Koelsche C, Bernhardt D, Schrimpf D, Sahm F, König L, Harrabi SB, Hörner-Rieber J, Verma V, Bewerunge-Hudler M, Unterberg A, Sturm D, Jungk C, Herold-Mende C, Wick W, von Deimling A, Debus J, Rieken S, Abdollahi A. DNA-methylome-assisted classification of patients with poor prognostic subventricular zone associated IDH-wildtype glioblastoma. Acta Neuropathol 2022; 144:129-142. [PMID: 35660939 PMCID: PMC9217840 DOI: 10.1007/s00401-022-02443-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 05/04/2022] [Accepted: 05/21/2022] [Indexed: 11/25/2022]
Abstract
Glioblastoma (GBM) derived from the “stem cell” rich subventricular zone (SVZ) may constitute a therapy-refractory subgroup of tumors associated with poor prognosis. Risk stratification for these cases is necessary but is curtailed by error prone imaging-based evaluation. Therefore, we aimed to establish a robust DNA methylome-based classification of SVZ GBM and subsequently decipher underlying molecular characteristics. MRI assessment of SVZ association was performed in a retrospective training set of IDH-wildtype GBM patients (n = 54) uniformly treated with postoperative chemoradiotherapy. DNA isolated from FFPE samples was subject to methylome and copy number variation (CNV) analysis using Illumina Platform and cnAnalysis450k package. Deep next-generation sequencing (NGS) of a panel of 130 GBM-related genes was conducted (Agilent SureSelect/Illumina). Methylome, transcriptome, CNV, MRI, and mutational profiles of SVZ GBM were further evaluated in a confirmatory cohort of 132 patients (TCGA/TCIA). A 15 CpG SVZ methylation signature (SVZM) was discovered based on clustering and random forest analysis. One third of CpG in the SVZM were associated with MAB21L2/LRBA. There was a 14.8% (n = 8) discordance between SVZM vs. MRI classification. Re-analysis of these patients favored SVZM classification with a hazard ratio (HR) for OS of 2.48 [95% CI 1.35–4.58], p = 0.004 vs. 1.83 [1.0–3.35], p = 0.049 for MRI classification. In the validation cohort, consensus MRI based assignment was achieved in 62% of patients with an intraclass correlation (ICC) of 0.51 and non-significant HR for OS (2.03 [0.81–5.09], p = 0.133). In contrast, SVZM identified two prognostically distinct subgroups (HR 3.08 [1.24–7.66], p = 0.016). CNV alterations revealed loss of chromosome 10 in SVZM– and gains on chromosome 19 in SVZM– tumors. SVZM– tumors were also enriched for differentially mutated genes (p < 0.001). In summary, SVZM classification provides a novel means for stratifying GBM patients with poor prognosis and deciphering molecular mechanisms governing aggressive tumor phenotypes.
Collapse
Affiliation(s)
- Sebastian Adeberg
- German Cancer Consortium (DKTK), Core Center Heidelberg, Heidelberg, Germany.
- National Center for Tumor Diseases (NCT), Heidelberg University Hospital (UKHD) and German Cancer Research Center (DKFZ), Heidelberg, Germany.
- Department of Radiation Oncology, Heidelberg University Hospital (UKHD), Im Neuenheimer Feld 400, 69120, Heidelberg, Germany.
- Heidelberg Institute for Radiation Oncology (HIRO), National Center for Radiation Research in Oncology (NCRO), UKHD and DKFZ, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany.
- Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany.
| | - Maximilian Knoll
- German Cancer Consortium (DKTK), Core Center Heidelberg, Heidelberg, Germany
- National Center for Tumor Diseases (NCT), Heidelberg University Hospital (UKHD) and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Radiation Oncology, Heidelberg University Hospital (UKHD), Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
- Heidelberg Institute for Radiation Oncology (HIRO), National Center for Radiation Research in Oncology (NCRO), UKHD and DKFZ, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
- Clinical Cooperation Unit Translational Radiation Oncology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 460, 69120, Heidelberg, Germany
| | - Christian Koelsche
- Department of Neuropathology, University Hospital of Heidelberg, Im Neuenheimer Feld 224, 69120, Heidelberg, Germany
- Clinical Cooperation Unit Neuropathology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Denise Bernhardt
- German Cancer Consortium (DKTK), Core Center Heidelberg, Heidelberg, Germany
- Department of Radiation Oncology, TUM, Ismaninger Str. 22, 81675, Munich, Germany
| | - Daniel Schrimpf
- Department of Neuropathology, University Hospital of Heidelberg, Im Neuenheimer Feld 224, 69120, Heidelberg, Germany
- Clinical Cooperation Unit Neuropathology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Felix Sahm
- Department of Neuropathology, University Hospital of Heidelberg, Im Neuenheimer Feld 224, 69120, Heidelberg, Germany
- Clinical Cooperation Unit Neuropathology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Laila König
- German Cancer Consortium (DKTK), Core Center Heidelberg, Heidelberg, Germany
- National Center for Tumor Diseases (NCT), Heidelberg University Hospital (UKHD) and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Radiation Oncology, Heidelberg University Hospital (UKHD), Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
- Heidelberg Institute for Radiation Oncology (HIRO), National Center for Radiation Research in Oncology (NCRO), UKHD and DKFZ, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
- Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Semi Ben Harrabi
- German Cancer Consortium (DKTK), Core Center Heidelberg, Heidelberg, Germany
- National Center for Tumor Diseases (NCT), Heidelberg University Hospital (UKHD) and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Radiation Oncology, Heidelberg University Hospital (UKHD), Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
- Heidelberg Institute for Radiation Oncology (HIRO), National Center for Radiation Research in Oncology (NCRO), UKHD and DKFZ, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
- Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Juliane Hörner-Rieber
- German Cancer Consortium (DKTK), Core Center Heidelberg, Heidelberg, Germany
- National Center for Tumor Diseases (NCT), Heidelberg University Hospital (UKHD) and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Radiation Oncology, Heidelberg University Hospital (UKHD), Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
- Heidelberg Institute for Radiation Oncology (HIRO), National Center for Radiation Research in Oncology (NCRO), UKHD and DKFZ, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
- Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Vivek Verma
- Department of Radiation Oncology, University of Texas M.D. Anderson Cancer Center Houston, Houston, TX, USA
| | - Melanie Bewerunge-Hudler
- Genomics and Proteomics Core Facility, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 580, 69120, Heidelberg, Germany
| | - Andreas Unterberg
- German Cancer Consortium (DKTK), Core Center Heidelberg, Heidelberg, Germany
- Department of Neurosurgery, University Hospital of Heidelberg, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
- Division of Experimental Neurosurgery, Department of Neurosurgery, University Hospital of Heidelberg, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
| | - Dominik Sturm
- Division of Pediatric Glioma Research, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
- Department of Pediatric Oncology, Hematology, Immunology and Pulmonology, Angelika Lautenschläger Children's Hospital, University Medical Center for Children and Adolescents, Im Neuenheimer Feld 430, 69120, Heidelberg, Germany
| | - Christine Jungk
- German Cancer Consortium (DKTK), Core Center Heidelberg, Heidelberg, Germany
- Department of Neurosurgery, University Hospital of Heidelberg, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
- Division of Experimental Neurosurgery, Department of Neurosurgery, University Hospital of Heidelberg, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
| | - Christel Herold-Mende
- German Cancer Consortium (DKTK), Core Center Heidelberg, Heidelberg, Germany
- Division of Experimental Neurosurgery, Department of Neurosurgery, University Hospital of Heidelberg, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
| | - Wolfgang Wick
- German Cancer Consortium (DKTK), Core Center Heidelberg, Heidelberg, Germany
- Department of Neurooncology, University Hospital Heidelberg, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
| | - Andreas von Deimling
- German Cancer Consortium (DKTK), Core Center Heidelberg, Heidelberg, Germany
- Department of Neuropathology, University Hospital of Heidelberg, Im Neuenheimer Feld 224, 69120, Heidelberg, Germany
- Clinical Cooperation Unit Neuropathology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Juergen Debus
- German Cancer Consortium (DKTK), Core Center Heidelberg, Heidelberg, Germany
- National Center for Tumor Diseases (NCT), Heidelberg University Hospital (UKHD) and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Radiation Oncology, Heidelberg University Hospital (UKHD), Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
- Heidelberg Institute for Radiation Oncology (HIRO), National Center for Radiation Research in Oncology (NCRO), UKHD and DKFZ, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
- Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Stefan Rieken
- German Cancer Consortium (DKTK), Core Center Heidelberg, Heidelberg, Germany
- National Center for Tumor Diseases (NCT), Heidelberg University Hospital (UKHD) and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Radiation Oncology, Heidelberg University Hospital (UKHD), Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
- Heidelberg Institute for Radiation Oncology (HIRO), National Center for Radiation Research in Oncology (NCRO), UKHD and DKFZ, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
- Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Amir Abdollahi
- German Cancer Consortium (DKTK), Core Center Heidelberg, Heidelberg, Germany
- National Center for Tumor Diseases (NCT), Heidelberg University Hospital (UKHD) and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Radiation Oncology, Heidelberg University Hospital (UKHD), Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
- Heidelberg Institute for Radiation Oncology (HIRO), National Center for Radiation Research in Oncology (NCRO), UKHD and DKFZ, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
- Clinical Cooperation Unit Translational Radiation Oncology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 460, 69120, Heidelberg, Germany
| |
Collapse
|
58
|
García Vicente AM, Pérez-Beteta J, Bosque JJ, Soriano Castrejón ÁM, Pérez-García VM. Multiple and Diffuse Gliomas by 18F-Fluorocholine PET/CT: Two Sides of the Same Coin. Clin Nucl Med 2022; 47:e457-e465. [PMID: 35507438 DOI: 10.1097/rlu.0000000000004145] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
ABSTRACT Gliomas are characterized by an inherent diffuse and irregular morphology that prevents defining a boundary between tumor and healthy tissue, both in imaging assessment and surgical field. The effective identification of the extent of the disease in diffuse and multiple gliomas is crucial for their management but doing so by radiological means can be challenging. We present a broad spectrum of diffuse and multiple gliomas using 18F-fluorocholine PET/CT, demonstrating the potential of metabolic imaging in the evaluation of these gliomas, with implications in patient clinical management and outcome.
Collapse
Affiliation(s)
| | - Julian Pérez-Beteta
- Mathematical Oncology Laboratory, Castilla-La Mancha University, Ciudad Real, Spain
| | - Jesús J Bosque
- Mathematical Oncology Laboratory, Castilla-La Mancha University, Ciudad Real, Spain
| | | | | |
Collapse
|
59
|
Priambada D, Arifin MT, Briliantika SP, Widyaningrum D, Saputro A, El Muzakka AT, Bakhtiar Y, Prihastomo KT, Muttaqin Z. Serum GFAP and EGFR as Supportive Diagnostic Biomarker of Glioma Patients: A Single-Center Study. Open Access Maced J Med Sci 2022. [DOI: 10.3889/oamjms.2022.9021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Background : High grade Gliomas (HGGs) (World Health Organization grade III and IV) are aggressive brain tumors with a poor prognosis. Serum concentrations of GFAP and EGFR are theoretically raised in glioma patients, especially primary HGGs
Aim : To look at serum levels of GFAP and EGFR in patients with Gliomas (Low Grade and High-Grade Glioma) and see if they were related to clinical outcome, MRI parameter and pathological features.
Method : Between 2020-2021, pre-operative blood samples were taken from 39 patients with radiologically diagnosed glioma who were performed for tumour excision. The time between blood collection and surgical resection was an average of 10 days. GFAP and EGFR serum were compared in glioma and non-glioma patients.
Result : Glioma patients had average of serum GFAP 747.93 + 1349.49 pg/ml and average of Serum EGFR 9.25 + 3.17 ng/ml. Non glioma average of GFAP and EGFR respectively were 292.91 + 369.30 pg/ml and 7.81 + 3.38 ng/ml.From all variable, we performed normality test using the Saphiro-wilk normality test and all variable were no normally distribution with p<0.05
Conclusion : Circulating GFAP and EGFR are promising method for “supportive” methods for differentiate between glioma and non-glioma patients, especially high grade glioma
Collapse
|
60
|
De Luca C, Virtuoso A, Papa M, Certo F, Barbagallo GMV, Altieri R. Regional Development of Glioblastoma: The Anatomical Conundrum of Cancer Biology and Its Surgical Implication. Cells 2022; 11:cells11081349. [PMID: 35456027 PMCID: PMC9025763 DOI: 10.3390/cells11081349] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/02/2022] [Accepted: 04/12/2022] [Indexed: 12/24/2022] Open
Abstract
Glioblastoma (GBM) are among the most common malignant central nervous system (CNS) cancers, they are relatively rare. This evidence suggests that the CNS microenvironment is naturally equipped to control proliferative cells, although, rarely, failure of this system can lead to cancer development. Moreover, the adult CNS is innately non-permissive to glioma cell invasion. Thus, glioma etiology remains largely unknown. In this review, we analyze the anatomical and biological basis of gliomagenesis considering neural stem cells, the spatiotemporal diversity of astrocytes, microglia, neurons and glutamate transporters, extracellular matrix and the peritumoral environment. The precise understanding of subpopulations constituting GBM, particularly astrocytes, is not limited to glioma stem cells (GSC) and could help in the understanding of tumor pathophysiology. The anatomical fingerprint is essential for non-invasive assessment of patients’ prognosis and correct surgical/radiotherapy planning.
Collapse
Affiliation(s)
- Ciro De Luca
- Laboratory of Neuronal Network Morphology and Systems Biology, Department of Mental and Physical Health and Preventive Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (C.D.L.); (A.V.)
| | - Assunta Virtuoso
- Laboratory of Neuronal Network Morphology and Systems Biology, Department of Mental and Physical Health and Preventive Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (C.D.L.); (A.V.)
| | - Michele Papa
- Laboratory of Neuronal Network Morphology and Systems Biology, Department of Mental and Physical Health and Preventive Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (C.D.L.); (A.V.)
- SYSBIO Centre of Systems Biology ISBE-IT, 20126 Milano, Italy
- Correspondence: (M.P.); (R.A.)
| | - Francesco Certo
- Department of Neurological Surgery, Policlinico “G. Rodolico-S. Marco” University Hospital, 95121 Catania, Italy; (F.C.); (G.M.V.B.)
- Interdisciplinary Research Center on Brain Tumors Diagnosis and Treatment, University of Catania, 95123 Catania, Italy
| | - Giuseppe Maria Vincenzo Barbagallo
- Department of Neurological Surgery, Policlinico “G. Rodolico-S. Marco” University Hospital, 95121 Catania, Italy; (F.C.); (G.M.V.B.)
- Interdisciplinary Research Center on Brain Tumors Diagnosis and Treatment, University of Catania, 95123 Catania, Italy
| | - Roberto Altieri
- Department of Neurological Surgery, Policlinico “G. Rodolico-S. Marco” University Hospital, 95121 Catania, Italy; (F.C.); (G.M.V.B.)
- Interdisciplinary Research Center on Brain Tumors Diagnosis and Treatment, University of Catania, 95123 Catania, Italy
- Correspondence: (M.P.); (R.A.)
| |
Collapse
|
61
|
Ren X, Yang X, Huang W, Yang K, Liu L, Cui Y, Guo L, Qiao H, Lin S. The Minimal Subcortical Electronic Threshold Predicts the Motor Deficit and Survivals in Non-Awake Surgery for Gliomas Involving the Motor Pathway. Front Oncol 2022; 12:789705. [PMID: 35372030 PMCID: PMC8965070 DOI: 10.3389/fonc.2022.789705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 02/17/2022] [Indexed: 11/21/2022] Open
Abstract
Purpose Direct subcortical motor mapping is the golden criterion to detect and monitor the motor pathway during glioma surgery. Minimal subcortical monopolar threshold (MSCMT) means the minimal distance away from the motor pathway and is critical to decide to continue or interrupt glioma resection. However, the optimal cutoff value of MSCMT for glioma resection in non-awake patients has not been reported discreetly. In this study, we try to establish the safe cutoff value of MSCMT for glioma resection and analyzed its relationship with postoperative motor deficit and long-term survivals. Methods We designed this prospective study with high-frequency electronic stimulus method. The cutoff MSCMT of postoperative motor deficits was statistically calculated by receiver operating characteristic (ROC) curve, and its relationship with motor deficit and survivals was analyzed by logistic and Cox regression, respectively. Results The cutoff MSCMT to predict motor deficit after surgery was 3.9 mA on day 1, 3.7 mA on day 7, 5.2 mA at 3 months, and 5.2 mA at 6 months. MSCMT ≤3.9 mA and MSCMT ≤5.2 mA independently predicted postoperative motor deficits at four times after surgery (P < 0.05) but had no effect on the removal degree of tumor (P > 0.05). In high-grade gliomas, MSCMT ≤3.9 mA independently predicted shorter progression-free survival [odds ratio (OR) = 3.381 (1.416–8.076), P = 0.006] and overall survival [OR = 3.651 (1.336–9.977), P = 0.012]. Power model has the best fitness for paired monopolar and bipolar high-frequency thresholds. Conclusions This study showed strong cause–effect relation between MSCMT and postoperative motor deficit and prognoses. The cutoff MSCMT was dug out to avoid postoperative motor deficit. Further studies are needed to establish the results above.
Collapse
Affiliation(s)
- Xiaohui Ren
- Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,Beijing Neurosurgical Institute, Beijing, China.,National Clinical Research Center for Neurological Diseases, Beijing, China.,Institute for Brain Disorders and Beijing Key Laboratory of Brain Tumor, Beijing, China
| | - Xiaocui Yang
- Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,Beijing Neurosurgical Institute, Beijing, China.,National Clinical Research Center for Neurological Diseases, Beijing, China.,Institute for Brain Disorders and Beijing Key Laboratory of Brain Tumor, Beijing, China
| | - Wei Huang
- Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,National Clinical Research Center for Neurological Diseases, Beijing, China.,Institute for Brain Disorders and Beijing Key Laboratory of Brain Tumor, Beijing, China
| | - Kaiyuan Yang
- Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,National Clinical Research Center for Neurological Diseases, Beijing, China.,Institute for Brain Disorders and Beijing Key Laboratory of Brain Tumor, Beijing, China
| | - Li Liu
- Beijing Neurosurgical Institute, Beijing, China.,National Clinical Research Center for Neurological Diseases, Beijing, China.,Institute for Brain Disorders and Beijing Key Laboratory of Brain Tumor, Beijing, China
| | - Yong Cui
- Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,Beijing Neurosurgical Institute, Beijing, China.,National Clinical Research Center for Neurological Diseases, Beijing, China.,Institute for Brain Disorders and Beijing Key Laboratory of Brain Tumor, Beijing, China
| | - Lanjun Guo
- Surgical Neuromonitoring Service, University of California, San Francisco, CA, United States
| | - Hui Qiao
- Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,Beijing Neurosurgical Institute, Beijing, China.,National Clinical Research Center for Neurological Diseases, Beijing, China.,Institute for Brain Disorders and Beijing Key Laboratory of Brain Tumor, Beijing, China
| | - Song Lin
- Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,Beijing Neurosurgical Institute, Beijing, China.,National Clinical Research Center for Neurological Diseases, Beijing, China.,Institute for Brain Disorders and Beijing Key Laboratory of Brain Tumor, Beijing, China
| |
Collapse
|
62
|
Campion T, Stoneham S, Al-Busaidi A, Kumar A, Jaunmuktane Z, Brandner S, Kitchen N, Thust S. Diverse imaging features of adolescent glioblastoma. BJR Case Rep 2022; 8:20210207. [PMID: 36177265 PMCID: PMC9499436 DOI: 10.1259/bjrcr.20210207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 12/01/2021] [Accepted: 12/08/2021] [Indexed: 11/25/2022] Open
Abstract
We highlight an unusual case of multifocal glioblastoma in an adolescent patient, manifesting as four discrete brain lesions, each distinct in appearance. Familiarity with the diverse imaging features of glioblastoma can reduce misdiagnosis and avoid treatment delays.
Collapse
Affiliation(s)
- Thomas Campion
- Lysholm Department of Neuroradiology, National Hospital for Neurology and Neurosurgery, London, UK
| | - Sara Stoneham
- Teenage and Young Adult Cancer Unit, Department of Paediatric Oncology, University College London Foundation Hospital, London, UK
| | - Ayisha Al-Busaidi
- Lysholm Department of Neuroradiology, National Hospital for Neurology and Neurosurgery, London, UK
| | - Atul Kumar
- Division of Neuropathology, National Hospital for Neurology and Neurosurgery, University College London NHS Foundation Trust, London, UK
| | - Zane Jaunmuktane
- Division of Neuropathology, National Hospital for Neurology and Neurosurgery, University College London NHS Foundation Trust, London, UK
- Department of Clinical and Movement Neurosciences and Queen Square Brain Bank for Neurological Disorders, Queen Square Institute of Neurology, University College London, London, UK
| | - Sebastian Brandner
- Division of Neuropathology, National Hospital for Neurology and Neurosurgery, University College London NHS Foundation Trust, London, UK
- Department of Neurodegenerative Disease, Queen Square Institute of Neurology, University College London, London, UK
| | - Neil Kitchen
- Department of Neurosurgery, National Hospital for Neurology and Neurosurgery, London, UK
| | - Stefanie Thust
- Lysholm Department of Neuroradiology, National Hospital for Neurology and Neurosurgery, London, UK
- Neuroradiology Academic Unit, Department of Brain, Repair and Rehabilitation, UCL Institute of Neurology, London, UK
- Imaging Department, University College London Foundation Hospital, London, UK
| |
Collapse
|
63
|
Ramos-Fresnedo A, Pullen MW, Perez-Vega C, Domingo RA, Akinduro OO, Almeida JP, Suarez-Meade P, Marenco-Hillembrand L, Jentoft ME, Bendok BR, Trifiletti DM, Chaichana KL, Porter AB, Quiñones-Hinojosa A, Burns TC, Kizilbash SH, Middlebrooks EH, Sherman WJ. The survival outcomes of molecular glioblastoma IDH-wildtype: a multicenter study. J Neurooncol 2022; 157:177-185. [PMID: 35175545 DOI: 10.1007/s11060-022-03960-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 02/01/2022] [Indexed: 12/12/2022]
Abstract
PURPOSE Histological diagnosis of glioblastoma (GBM) was determined by the presence of necrosis or microvascular proliferation (histGBM). The 2021 WHO classification now considers IDH-wildtype diffuse astrocytic tumors without the histological features of glioblastoma (that would have otherwise been classified as grade 2 or 3) as molecular GBM (molGBM, WHO grade 4) if they harbor any of the following molecular abnormalities: TERT promoter mutation, EGFR amplification, or chromosomal + 7/- 10 copy changes. The objective of this study was to explore and compare the survival outcomes between histGBM and molGBM. METHODS Medical records for patients diagnosed with GBM at the three tertiary care academic centers of our institution from November 2017 to October 2021. Only patients who underwent adjuvant chemoradiation were included. Patients without molecular feature testing or with an IDH mutation were excluded. Univariable and multivariable analyses were performed to evaluate progression-free (PFS) and overall- survival (OS). RESULTS 708 consecutive patients were included; 643 with histGBM and 65 with molGBM. Median PFS was 8 months (histGBM) and 13 months (molGBM) (p = 0.0237) and median OS was 21 months (histGBM) versus 26 months (molGBM) (p = 0.435). Multivariable analysis on the molGBM sub-group showed a worse PFS if there was contrast enhancement on MRI (HR 6.224 [CI 95% 2.187-17.714], p < 0.001) and a superior PFS on patients with MGMT methylation (HR 0.026 [CI 95% 0.065-0.655], p = 0.007). CONCLUSIONS molGBM has a similar OS but significantly longer PFS when compared to histGBM. The presence of contrast enhancement and MGMT methylation seem to affect the clinical behavior of this subset of tumors.
Collapse
Affiliation(s)
| | | | | | | | | | - Joao P Almeida
- Department of Neurosurgery, Mayo Clinic, Jacksonville, FL, USA
| | | | | | - Mark E Jentoft
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Jacksonville, FL, USA
| | | | | | | | - Alyx B Porter
- Department of Neurology, Mayo Clinic, Phoenix, AZ, USA
| | | | | | | | | | - Wendy J Sherman
- Division Chair, Neuro-Oncology, Department of Neurology, Mayo Clinic, 4500 San Pablo Rd. S, Jacksonville, FL, 32224, USA.
| |
Collapse
|
64
|
Aftab K, Aamir FB, Mallick S, Mubarak F, Pope WB, Mikkelsen T, Rock JP, Enam SA. Radiomics for precision medicine in glioblastoma. J Neurooncol 2022; 156:217-231. [PMID: 35020109 DOI: 10.1007/s11060-021-03933-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 12/20/2021] [Indexed: 11/26/2022]
Abstract
INTRODUCTION Being the most common primary brain tumor, glioblastoma presents as an extremely challenging malignancy to treat with dismal outcomes despite treatment. Varying molecular epidemiology of glioblastoma between patients and intra-tumoral heterogeneity explains the failure of current one-size-fits-all treatment modalities. Radiomics uses machine learning to identify salient features of the tumor on brain imaging and promises patient-specific management in glioblastoma patients. METHODS We performed a comprehensive review of the available literature on studies investigating the role of radiomics and radiogenomics models for the diagnosis, stratification, prognostication as well as treatment planning and monitoring of glioblastoma. RESULTS Classifiers based on a combination of various MRI sequences, genetic information and clinical data can predict non-invasive tumor diagnosis, overall survival and treatment response with reasonable accuracy. However, the use of radiomics for glioblastoma treatment remains in infancy as larger sample sizes, standardized image acquisition and data extraction techniques are needed to develop machine learning models that can be translated effectively into clinical practice. CONCLUSION Radiomics has the potential to transform the scope of glioblastoma management through personalized medicine.
Collapse
Affiliation(s)
- Kiran Aftab
- Section of Neurosurgery, Department of Surgery, Aga Khan University, Karachi, Pakistan
| | | | - Saad Mallick
- Medical College, Aga Khan University, Karachi, Pakistan
| | - Fatima Mubarak
- Department of Radiology, Aga Khan University, Karachi, Pakistan
| | - Whitney B Pope
- Department of Radiological Sciences, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Tom Mikkelsen
- Departments of Neurology and Neurosurgery, Henry Ford Hospital, Detroit, MI, USA
| | - Jack P Rock
- Department of Neurosurgery, Henry Ford Health System, Detroit, MI, USA
| | - Syed Ather Enam
- Section of Neurosurgery, Department of Surgery, Aga Khan University, Karachi, Pakistan.
| |
Collapse
|
65
|
Soares LC, Al-Dalahmah O, Hillis J, Young CC, Asbed I, Sakaguchi M, O’Neill E, Szele FG. Novel Galectin-3 Roles in Neurogenesis, Inflammation and Neurological Diseases. Cells 2021; 10:3047. [PMID: 34831271 PMCID: PMC8618878 DOI: 10.3390/cells10113047] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 09/27/2021] [Accepted: 09/28/2021] [Indexed: 12/16/2022] Open
Abstract
Galectin-3 (Gal-3) is an evolutionarily conserved and multifunctional protein that drives inflammation in disease. Gal-3's role in the central nervous system has been less studied than in the immune system. However, recent studies show it exacerbates Alzheimer's disease and is upregulated in a large variety of brain injuries, while loss of Gal-3 function can diminish symptoms of neurodegenerative diseases such as Alzheimer's. Several novel molecular pathways for Gal-3 were recently uncovered. It is a natural ligand for TREM2 (triggering receptor expressed on myeloid cells), TLR4 (Toll-like receptor 4), and IR (insulin receptor). Gal-3 regulates a number of pathways including stimulation of bone morphogenetic protein (BMP) signaling and modulating Wnt signalling in a context-dependent manner. Gal-3 typically acts in pathology but is now known to affect subventricular zone (SVZ) neurogenesis and gliogenesis in the healthy brain. Despite its myriad interactors, Gal-3 has surprisingly specific and important functions in regulating SVZ neurogenesis in disease. Gal-1, a similar lectin often co-expressed with Gal-3, also has profound effects on brain pathology and adult neurogenesis. Remarkably, Gal-3's carbohydrate recognition domain bears structural similarity to the SARS-CoV-2 virus spike protein necessary for cell entry. Gal-3 can be targeted pharmacologically and is a valid target for several diseases involving brain inflammation. The wealth of molecular pathways now known further suggest its modulation could be therapeutically useful.
Collapse
Affiliation(s)
- Luana C. Soares
- Department of Physiology, Anatomy and Genetics, University of Oxford, Sherrington Building, South Parks Road, Oxford OX1 3QX, UK; (L.C.S.); (I.A.)
- Department of Oncology, University of Oxford, Oxford OX1 3QX, UK;
| | - Osama Al-Dalahmah
- Irving Medical Center, Columbia University, New York, NY 10032, USA;
| | - James Hillis
- Massachusets General Hospital, Harvard Medical School, 15 Parkman Street, Boston, MA 02114, USA;
| | - Christopher C. Young
- Department of Neurological Surgery, University of Washington, 325 Ninth Avenue, Seattle, WA 98104, USA;
| | - Isaiah Asbed
- Department of Physiology, Anatomy and Genetics, University of Oxford, Sherrington Building, South Parks Road, Oxford OX1 3QX, UK; (L.C.S.); (I.A.)
| | - Masanori Sakaguchi
- International Institute for Integrative Sleep Medicine, University of Tsukuba, Tsukuba 305-8575, Japan;
| | - Eric O’Neill
- Department of Oncology, University of Oxford, Oxford OX1 3QX, UK;
| | - Francis G. Szele
- Department of Physiology, Anatomy and Genetics, University of Oxford, Sherrington Building, South Parks Road, Oxford OX1 3QX, UK; (L.C.S.); (I.A.)
| |
Collapse
|
66
|
Young JS, Gogos AJ, Pereira MP, Morshed RA, Li J, Barkovich MJ, Hervey-Jumper SL, Berger MS. Effects of ventricular entry on patient outcome during glioblastoma resection. J Neurosurg 2021; 135:989-997. [PMID: 33418530 DOI: 10.3171/2020.7.jns201362] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Accepted: 07/29/2020] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Tumor proximity to the ventricle and ventricular entry (VE) during surgery have both been associated with worse prognoses; however, the interaction between these two factors is poorly understood. Given the benefit of maximal tumor resection, it is imperative for surgical planning and technique to know if VE has negative consequences for patient survival and tumor dissemination. METHODS The University of California, San Francisco tumor registry was searched for patients with newly diagnosed and recurrent supratentorial glioblastoma (GBM) who underwent resection by the senior author between 2013 and 2018. Tumor location with respect to the subventricular zone (SVZ), size, and extent of resection were assessed using pre- and postoperative imaging. VE was determined by postoperative imaging and/or the operative report. RESULTS In this 200-patient cohort of newly diagnosed and recurrent GBM, 26.5% of patients had VE during resection. Patients with VE were more likely to have preexisting subependymal disease (41.5% vs 15.0%, p < 0.001). Comparing patients with VE to those without VE, there was no difference in the rates of postoperative hydrocephalus (1.9% vs 4.8%, p = 0.36), ventriculoperitoneal shunting (0% vs 3.4%, p = 0.17), pseudomeningoceles (7.5% vs 5.4%, p = 0.58), or subdural hematomas (11.3% vs 3.4%, p = 0.07). Importantly, rates of subsequent leptomeningeal disease (7.5% vs 10.2%, p = 0.57) and distant parenchymal recurrence (17.0% vs 23.1%, p = 0.35) were not different between the groups. Newly diagnosed patients with tumors contacting the SVZ (type I or II) had worse survival than patients with tumors that did not contact the SVZ (type III or IV) (1.27 vs 1.84 years, p = 0.014, HR 1.8, 95% CI 1.08-3.03), but VE was not associated with worse survival in these patients with high-risk SVZ type I and II tumors (1.15 vs 1.68 years, p = 0.151, HR 0.59, 95% CI 0.26-1.34). CONCLUSIONS VE was well tolerated, with postoperative complications being rare events. There was no increase in leptomeningeal spread or distant parenchymal recurrence in patients with VE. Finally, although survival was worse for patients with preoperative subependymal disease, VE did not change survival for patients with tumors contacting the ventricle. Therefore, VE during GBM resection is not associated with adverse patient outcomes and should be used by surgeons to enhance extent of resection.■ CLASSIFICATION OF EVIDENCE Type of question: therapeutic; study design: retrospective cohort; evidence: class II.
Collapse
Affiliation(s)
| | | | | | | | - Jing Li
- 1Department of Neurological Surgery
| | - Matthew J Barkovich
- 3Department of Radiology and Biomedical Imaging, University of California, San Francisco, California
| | | | | |
Collapse
|
67
|
Periventricular zone involvement as a predictor of survival in glioblastoma patients: A single centre cohort-comparison investigation concerning a distinct clinical entity. INTERDISCIPLINARY NEUROSURGERY 2021. [DOI: 10.1016/j.inat.2021.101185] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
|
68
|
Zhang S, Zhao F, Zhou T, Liu D, Yao X, Fu W, Liu Z, Lan C, Lai Z, Liu C, Li H, Li Y, Hu S, Yin Y, Tan L, Li W, Li F, Hu R, Feng H. Combination of the Distance From Tumor Edge to Subventricular Zone and IDH Mutation Predicts Prognosis of Patients With Glioma. Front Oncol 2021; 11:693693. [PMID: 34490090 PMCID: PMC8417404 DOI: 10.3389/fonc.2021.693693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Accepted: 07/29/2021] [Indexed: 11/13/2022] Open
Abstract
Both subventricular zone (SVZ) contact and isocitrate dehydrogenase 1 (IDH1) mutation have been reported to be related to the outcome of glioma, respectively. However, far too little attention has been paid to the role of tumor edge-SVZ distance in the outcome of glioma. We aim to assess the value of tumor-SVZ distance, as well as combined tumor-SVZ distance and IDH status, in predicting the outcome of gliomas (WHO grade II-IV). Here, the MR images and clinical data from 146 patients were included in the current study. The relationship between survival and the tumor-SVZ distance as well as survival and combination of tumor-SVZ distance and IDH status were determined via univariate and multivariate analyses. In univariate analysis of tumor-SVZ distance, the patients were divided into three types (SVZ involvement, tumor-SVZ distance from 0 to 10 mm, and tumor-SVZ distance >10 mm). The results showed that the OS (p = 0.02) and PFS (p = 0.002) for the patients had a positive correlation with the tumor-SVZ distance. In addition, simple linear correlation found a significant relationship between the two parameters (OS and PFS) and tumor-SVZ distance in patients with non-SVZ-contacting glioma. Combination analysis of the tumor-SVZ distance and IDH status showed that IDH1 mutation and SVZ non-involvement enable favorable outcomes, whereas IDH1 wild type with SVZ involvement indicates a significantly worse prognosis in all patients. Moreover, in patients with non-SVZ-contacting glioma, IDH1 mutation concurrent with tumor-SVZ distance >10 mm has better OS and PFS. IDH1 wild type and tumor-SVZ distance from 0 to 10 mm suggest poorer OS and PFS. Multivariate analysis showed WHO grade IV, SVZ involvement, tumor-SVZ distance from 0 to 10 mm, IDH1 mutation, gross total resection, and chemotherapy serve as independent predictors of OS. WHO grade IV, SVZ involvement, tumor-SVZ distance from 0 to 10 mm, IDH1 mutation, and chemotherapy serve as independent predictors of PFS of patients with glioma. In conclusion, tumor-SVZ distance and IDH1 mutation status are the determinants affecting patient outcome.
Collapse
Affiliation(s)
- Shuixian Zhang
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Fengchun Zhao
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Tengyuan Zhou
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Dan Liu
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Xiaohong Yao
- Department of Pathology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Wenjuan Fu
- Department of Pathology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Zhi Liu
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Chuan Lan
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Zhaopan Lai
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Chen Liu
- Department of Radiology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Haitao Li
- Department of Radiology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Yuhong Li
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Shengli Hu
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Yi Yin
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Liang Tan
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Wenyan Li
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Fei Li
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Rong Hu
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Hua Feng
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| |
Collapse
|
69
|
Carrano A, Juarez JJ, Incontri D, Ibarra A, Cazares HG. Sex-Specific Differences in Glioblastoma. Cells 2021; 10:cells10071783. [PMID: 34359952 PMCID: PMC8303471 DOI: 10.3390/cells10071783] [Citation(s) in RCA: 87] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 07/08/2021] [Accepted: 07/09/2021] [Indexed: 12/13/2022] Open
Abstract
Sex differences have been well identified in many brain tumors. Even though glioblastoma (GBM) is the most common primary malignant brain tumor in adults and has the worst outcome, well-established differences between men and women are limited to incidence and outcome. Little is known about sex differences in GBM at the disease phenotype and genetical/molecular level. This review focuses on a deep understanding of the pathophysiology of GBM, including hormones, metabolic pathways, the immune system, and molecular changes, along with differences between men and women and how these dimorphisms affect disease outcome. The information analyzed in this review shows a greater incidence and worse outcome in male patients with GBM compared with female patients. We highlight the protective role of estrogen and the upregulation of androgen receptors and testosterone having detrimental effects on GBM. Moreover, hormones and the immune system work in synergy to directly affect the GBM microenvironment. Genetic and molecular differences have also recently been identified. Specific genes and molecular pathways, either upregulated or downregulated depending on sex, could potentially directly dictate GBM outcome differences. It appears that sexual dimorphism in GBM affects patient outcome and requires an individualized approach to management considering the sex of the patient, especially in relation to differences at the molecular level.
Collapse
Affiliation(s)
- Anna Carrano
- Department of Neurologic Surgery, Mayo Clinic, Jacksonville, FL 32224, USA;
| | - Juan Jose Juarez
- Centro de Investigación en Ciencias de la Salud (CICSA), FCS, Universidad Anáhuac México Campus Norte, Huixquilucan 52786, Edo. de México, Mexico; (J.J.J.); (D.I.); (A.I.)
| | - Diego Incontri
- Centro de Investigación en Ciencias de la Salud (CICSA), FCS, Universidad Anáhuac México Campus Norte, Huixquilucan 52786, Edo. de México, Mexico; (J.J.J.); (D.I.); (A.I.)
| | - Antonio Ibarra
- Centro de Investigación en Ciencias de la Salud (CICSA), FCS, Universidad Anáhuac México Campus Norte, Huixquilucan 52786, Edo. de México, Mexico; (J.J.J.); (D.I.); (A.I.)
| | - Hugo Guerrero Cazares
- Department of Neurologic Surgery, Mayo Clinic, Jacksonville, FL 32224, USA;
- Correspondence:
| |
Collapse
|
70
|
Ripari LB, Norton ES, Bodoque-Villar R, Jeanneret S, Lara-Velazquez M, Carrano A, Zarco N, Vazquez-Ramos CA, Quiñones-Hinojosa A, de la Rosa-Prieto C, Guerrero-Cázares H. Glioblastoma Proximity to the Lateral Ventricle Alters Neurogenic Cell Populations of the Subventricular Zone. Front Oncol 2021; 11:650316. [PMID: 34268110 PMCID: PMC8277421 DOI: 10.3389/fonc.2021.650316] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 06/07/2021] [Indexed: 12/01/2022] Open
Abstract
Despite current strategies combining surgery, radiation, and chemotherapy, glioblastoma (GBM) is the most common and aggressive malignant primary brain tumor in adults. Tumor location plays a key role in the prognosis of patients, with GBM tumors located in close proximity to the lateral ventricles (LVs) resulting in worse survival expectancy and higher incidence of distal recurrence. Though the reason for worse prognosis in these patients remains unknown, it may be due to proximity to the subventricular zone (SVZ) neurogenic niche contained within the lateral wall of the LVs. We present a novel rodent model to analyze the bidirectional signaling between GBM tumors and cells contained within the SVZ. Patient-derived GBM cells expressing GFP and luciferase were engrafted at locations proximal, intermediate, and distal to the LVs in immunosuppressed mice. Mice were either sacrificed after 4 weeks for immunohistochemical analysis of the tumor and SVZ or maintained for survival analysis. Analysis of the GFP+ tumor bulk revealed that GBM tumors proximal to the LV show increased levels of proliferation and tumor growth than LV-distal counterparts and is accompanied by decreased median survival. Conversely, numbers of innate proliferative cells, neural stem cells (NSCs), migratory cells and progenitors contained within the SVZ are decreased as a result of GBM proximity to the LV. These results indicate that our rodent model is able to accurately recapitulate several of the clinical aspects of LV-associated GBM, including increased tumor growth and decreased median survival. Additionally, we have found the neurogenic and cell division process of the SVZ in these adult mice is negatively influenced according to the presence and proximity of the tumor mass. This model will be invaluable for further investigation into the bidirectional signaling between GBM and the neurogenic cell populations of the SVZ.
Collapse
Affiliation(s)
- Luisina B. Ripari
- Department of Medical Sciences, Facultad de Medicina de Albacete, Universidad de Castilla-La Mancha, Albacete, Spain
| | - Emily S. Norton
- Department of Neurosurgery, Mayo Clinic, Jacksonville, FL, United States
- Neuroscience Graduate Program, Mayo Clinic Graduate School of Biomedical Sciences, Jacksonville, FL, United States
- Regenerative Sciences Training Program, Center for Regenerative Medicine, Mayo Clinic, Jacksonville, FL, United States
| | - Raquel Bodoque-Villar
- Translational Research Unit, Hospital General Universitario de Ciudad Real, Ciudad Real, Spain
| | - Stephanie Jeanneret
- Department of Neurosurgery, Mayo Clinic, Jacksonville, FL, United States
- Faculty of Psychology and Sciences of Education, University of Geneva, Geneva, Switzerland
| | | | - Anna Carrano
- Department of Neurosurgery, Mayo Clinic, Jacksonville, FL, United States
| | - Natanael Zarco
- Department of Neurosurgery, Mayo Clinic, Jacksonville, FL, United States
| | | | | | - Carlos de la Rosa-Prieto
- Department of Medical Sciences, Facultad de Medicina de Albacete, Universidad de Castilla-La Mancha, Albacete, Spain
| | | |
Collapse
|
71
|
van Dijken BRJ, Schuuring B, Jeltema HR, van Laar PJ, Enting RH, Dierckx RAJO, Stormezand GN, van der Hoorn A. Ventricle contact may be associated with higher 11C methionine PET uptake in glioblastoma. Neuroradiology 2021; 64:247-252. [PMID: 34114063 PMCID: PMC8789691 DOI: 10.1007/s00234-021-02742-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 05/30/2021] [Indexed: 11/11/2022]
Abstract
Purpose Ventricle contact is associated with a worse prognosis and more aggressive tumor characteristics in glioblastoma (GBM). This is hypothesized to be a result of neural stem cells located around the lateral ventricles, in the subventricular zone. 11C Methionine positron emission tomography (metPET) is an indicator for increased proliferation, as it shows uptake of methionine, an amino acid needed for protein synthesis. This study is the first to study metPET characteristics of GBM in relation to ventricle contact. Methods A total of 12 patients with IDH wild-type GBM were included. Using MRI, the following regions were determined: primary tumor (defined as contrast enhancing lesion on T1) and peritumoral edema (defined as edema visible on FLAIR excluding the enhancement). PET parameters in these areas were extracted using PET fused with MRI imaging. Parameters extracted from the PET included maximum and mean tumor-to-normal ratio (TNRmax and TNRmean) and metabolic tumor volume (MTV). Results TNRmean of the primary tumor showed significantly higher values for the ventricle-contacting group compared to that for the non-contacting group (4.44 vs 2.67, p = 0.030). Other metPET parameters suggested higher values for the ventricle-contacting group, but these differences did not reach statistical significance. Conclusion GBM with ventricle contact demonstrated a higher methionine uptake and might thus have increased proliferation compared with GBM without ventricle contact. This might explain survival differences and should be considered in treatment decisions. Supplementary Information The online version contains supplementary material available at 10.1007/s00234-021-02742-7.
Collapse
Affiliation(s)
- Bart R J van Dijken
- Department of Radiology, Medical Imaging Center (MIC), University Medical Center Groningen, P.O. Box 30.001, 9700 RB, Groningen, The Netherlands.
| | - Bram Schuuring
- Department of Radiology, Medical Imaging Center (MIC), University Medical Center Groningen, P.O. Box 30.001, 9700 RB, Groningen, The Netherlands
| | - Hanne-Rinck Jeltema
- Department of Neurosurgery, University Medical Center Groningen, Groningen, The Netherlands
| | - Peter Jan van Laar
- Department of Radiology, Hospital Group Twente, Almelo and Hengelo, The Netherlands
| | - Roelien H Enting
- Department of Neurology, University Medical Center Groningen, Groningen, The Netherlands
| | - Rudi A J O Dierckx
- Department of Nuclear Medicine, Medical Imaging Center (MIC), University Medical Center Groningen, Groningen, The Netherlands
| | - Gilles N Stormezand
- Department of Nuclear Medicine, Medical Imaging Center (MIC), University Medical Center Groningen, Groningen, The Netherlands
| | - Anouk van der Hoorn
- Department of Radiology, Medical Imaging Center (MIC), University Medical Center Groningen, P.O. Box 30.001, 9700 RB, Groningen, The Netherlands
| |
Collapse
|
72
|
Nie S, Zhu Y, Yang J, Xin T, Xue S, Zhang X, Sun J, Mu D, Gao Y, Chen Z, Ding X, Yu J, Hu M. Determining optimal clinical target volume margins in high-grade glioma based on microscopic tumor extension and magnetic resonance imaging. Radiat Oncol 2021; 16:97. [PMID: 34098965 PMCID: PMC8186169 DOI: 10.1186/s13014-021-01819-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 05/10/2021] [Indexed: 11/22/2022] Open
Abstract
Introduction In this study, we performed a consecutive macropathologic analysis to assess microscopic extension (ME) in high-grade glioma (HGG) to determine appropriate clinical target volume (CTV) margins for radiotherapy. Materials and methods The study included HGG patients with tumors located in non-functional areas, and supratotal resection was performed. The ME distance from the edge of the tumor to the microscopic tumor cells surrounding brain tissue was measured. Associations between the extent of ME and clinicopathological characteristics were evaluated by multivariate linear regression (MVLR) analysis. An ME predictive model was developed based on the MVLR model. Results Between June 2017 and July 2019, 652 pathologic slides obtained from 30 HGG patients were analyzed. The mean ME distance was 1.70 cm (range, 0.63 to 2.87 cm). The MVLR analysis identified that pathologic grade, subventricular zone (SVZ) contact and O6-methylguanine-DNA methyltransferase (MGMT) methylation, isocitrate dehydrogenase (IDH) mutation and 1p/19q co-deletion status were independent variables predicting ME (all P < 0.05). A multivariable prediction model was developed as follows: YME = 0.672 + 0.513XGrade + 0.380XSVZ + 0.439XMGMT + 0.320XIDH + 0.333X1p/19q. The R-square value of goodness of fit was 0.780. The receiver operating characteristic curve proved that the area under the curve was 0.964 (P < 0.001). Conclusion ME was heterogeneously distributed across different grades of gliomas according to the tumor location and molecular marker status, which indicated that CTV delineation should be individualized. The model could predict the ME of HGG, which may help clinicians determine the CTV for individual patients. Trial registration The trial was registered with Chinese Clinical Trial Registry (ChiCTR2100046106). Registered 4 May 2021-Retrospectively registered. Supplementary Information The online version contains supplementary material available at 10.1186/s13014-021-01819-0.
Collapse
Affiliation(s)
- Shulun Nie
- Department of Radiation Oncology, Shandong First Medical University and Shandong Academy of Medical Sciences, Qingdao Road 6699, Jinan, 250117, Shandong, People's Republic of China.,Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jiyan Road 440, Jinan, 250117, Shandong, People's Republic of China
| | - Yufang Zhu
- Department of Neurosurgery, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, People's Republic of China
| | - Jia Yang
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jiyan Road 440, Jinan, 250117, Shandong, People's Republic of China
| | - Tao Xin
- Department of Neurosurgery, The First Affiliated Hospital of Shandong First Medical University, Jinan, Shandong, People's Republic of China
| | - Song Xue
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jiyan Road 440, Jinan, 250117, Shandong, People's Republic of China
| | - Xianbin Zhang
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jiyan Road 440, Jinan, 250117, Shandong, People's Republic of China
| | - Jujie Sun
- Department of Pathology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, People's Republic of China
| | - Dianbin Mu
- Department of Pathology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, People's Republic of China
| | - Yongsheng Gao
- Department of Pathology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, People's Republic of China
| | - Zhaoqiu Chen
- Department of Radiology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, People's Republic of China
| | - Xingchen Ding
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jiyan Road 440, Jinan, 250117, Shandong, People's Republic of China
| | - Jinming Yu
- Department of Radiation Oncology, Shandong First Medical University and Shandong Academy of Medical Sciences, Qingdao Road 6699, Jinan, 250117, Shandong, People's Republic of China. .,Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jiyan Road 440, Jinan, 250117, Shandong, People's Republic of China.
| | - Man Hu
- Department of Radiation Oncology, Shandong First Medical University and Shandong Academy of Medical Sciences, Qingdao Road 6699, Jinan, 250117, Shandong, People's Republic of China. .,Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jiyan Road 440, Jinan, 250117, Shandong, People's Republic of China.
| |
Collapse
|
73
|
Calinescu AA, Kauss MC, Sultan Z, Al-Holou WN, O'Shea SK. Stem cells for the treatment of glioblastoma: a 20-year perspective. CNS Oncol 2021; 10:CNS73. [PMID: 34006134 PMCID: PMC8162173 DOI: 10.2217/cns-2020-0026] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Glioblastoma, the deadliest form of primary brain tumor, remains a disease without cure. Treatment resistance is in large part attributed to limitations in the delivery and distribution of therapeutic agents. Over the last 20 years, numerous preclinical studies have demonstrated the feasibility and efficacy of stem cells as antiglioma agents, leading to the development of trials to test these therapies in the clinic. In this review we present and analyze these studies, discuss mechanisms underlying their beneficial effect and highlight experimental progress, limitations and the emergence of promising new therapeutic avenues. We hope to increase awareness of the advantages brought by stem cells for the treatment of glioblastoma and inspire further studies that will lead to accelerated implementation of effective therapies. Glioblastoma is the deadliest and most common form of brain tumor, for which there is no cure. It is very difficult to deliver medicine to the tumor cells, because they spread out widely into the normal brain, and local blood vessels represent a barrier that most medicines cannot cross. It was shown, in many studies over the last 20 years, that stem cells are attracted toward the tumor and that they can deliver many kinds of therapeutic agents directly to brain cancer cells and shrink the tumor. In this review we analyze these studies and present new discoveries that can be used to make stem cell therapies for glioblastoma more effective to prolong the life of patients with brain tumors.
Collapse
Affiliation(s)
| | - McKenzie C Kauss
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI 48109, USA.,College of Literature Science & Arts, University of Michigan, Ann Arbor, MI 48109, USA
| | - Zain Sultan
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI 48109, USA.,College of Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Wajd N Al-Holou
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Sue K O'Shea
- Department of Cell & Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| |
Collapse
|
74
|
Assessment of circulating tumor DNA in cerebrospinal fluid by whole exome sequencing to detect genomic alterations of glioblastoma. Chin Med J (Engl) 2021; 133:1415-1421. [PMID: 32558704 PMCID: PMC7339330 DOI: 10.1097/cm9.0000000000000843] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Cerebrospinal fluid (CSF) has been demonstrated as a better source of circulating tumor DNA (ctDNA) than plasma for brain tumors. However, it is unclear whether whole exome sequencing (WES) is qualified for detection of ctDNA in CSF. The aim of this study was to determine if assessment of ctDNA in CSF by WES is a feasible approach to detect genomic alterations of glioblastoma. METHODS CSFs of ten glioblastoma patients were collected pre-operatively at the Department of Neurosurgery, Sun Yat-sen University Cancer Center. ctDNA in CSF and genome DNA in the resected tumor were extracted and subjected to WES. The identified glioblastoma-associated mutations from ctDNA in CSF and genome DNA in the resected tumor were compared. RESULTS Due to the ctDNA in CSF was unqualified for exome sequencing for one patient, nine patients were included into the final analysis. More glioblastoma-associated mutations tended to be detected in CSF compared with the corresponding tumor tissue samples (3.56 ± 0.75 vs. 2.22 ± 0.32, P = 0.097), while the statistical significance was limited by the small sample size. The average mutation frequencies were similar in CSF and tumor tissue samples (74.1% ± 6.0% vs. 73.8% ± 6.0%, P = 0.924). The R132H mutation of isocitrate dehydrogenase 1 and the G34V mutation of H3 histone, family 3A (H3F3A) which had been reported in the pathological diagnoses were also detected from ctDNA in CSF by WES. Patients who received temozolomide chemotherapy previously or those whose tumor involved subventricular zone tended to harbor more mutations in their CSF. CONCLUSION Assessment of ctDNA in CSF by WES is a feasible approach to detect genomic alterations of glioblastoma, which may provide useful information for the decision of treatment strategy.
Collapse
|
75
|
Rohrer Bley C, Staudinger C, Bley T, Marconato L, Sabattini S, Beckmann K. Canine presumed glial brain tumours treated with radiotherapy: Is there an inferior outcome in tumours contacting the subventricular zone? Vet Comp Oncol 2021; 20:29-37. [PMID: 33900018 DOI: 10.1111/vco.12703] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 04/21/2021] [Accepted: 04/21/2021] [Indexed: 12/21/2022]
Abstract
Post-treatment outcome in canine glial tumours is described with a broad range of survival times between 2 and 28 months. After surgery or radiation therapy, the tumours may progress locally or spread within the central nervous system. It is unknown if tumour- or patient-specific factors influence prognosis. In humans, glioblastoma involving the subventricular zone has been found to recur distantly, with shortened time to progression and overall survival. We included 32 dogs irradiated for a presumptive primary glial brain tumour in this retrospective cohort study. Tumours were grouped relative to subventricular zone contact and overt ventricular invasion assessing pre-treatment magnetic resonance images. Median time to progression (TTP) for all cases was 534 days (95%CI, 310-758), with a significantly shorter TTP in dogs with lesions at the subventricular zone (median TTP, 260 vs. 687 days; p = .049). Tumours at the subventricular zone progressed more often (p = .001), and more likely as CNS-metastasis (52.9% vs. 13.3%, p = .028). Median overall survival (OS) was 489 days (95%CI, 147-831) and median tumour-specific survival 609 days (95%CI, 382-835). Involvement of the subventricular zone was significantly associated with a shorter tumour-specific survival (median, 306 vs. 719 days; p = .044). Glial tumours contacting the subventricular zone in dogs have a shorter tumour-specific survival and a higher rate of progression and CNS-metastasis. Despite local tumour control, metastasis must be considered and should prompt further treatment approaches.
Collapse
Affiliation(s)
- Carla Rohrer Bley
- Division of Radiation Oncology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Chris Staudinger
- Division of Radiation Oncology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Tim Bley
- Neurology Service, Small Animal Clinic Aarau West, Oberentfelden, Switzerland
| | - Laura Marconato
- Department of Veterinary Medical Sciences, University of Bologna, Bologna, Italy
| | - Silvia Sabattini
- Department of Veterinary Medical Sciences, University of Bologna, Bologna, Italy
| | - Katrin Beckmann
- Neurology Service, Clinic of Small Animal Surgery, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| |
Collapse
|
76
|
Lara-Velazquez M, Zarco N, Carrano A, Phillipps J, Norton ES, Schiapparelli P, Al-kharboosh R, Rincon-Torroella J, Jeanneret S, Corona T, Segovia J, Jentoft ME, Chaichana KL, Asmann YW, Quiñones-Hinojosa A, Guerrero-Cazares H. Alpha 1-antichymotrypsin contributes to stem cell characteristics and enhances tumorigenicity of glioblastoma. Neuro Oncol 2021; 23:599-610. [PMID: 33249487 PMCID: PMC8041345 DOI: 10.1093/neuonc/noaa264] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Glioblastomas (GBMs) are the main primary brain tumors in adults with almost 100% recurrence rate. Patients with lateral ventricle proximal GBMs (LV-GBMs) exhibit worse survival compared to distal locations for unknown reasons. One hypothesis is the proximity of these tumors to the cerebrospinal fluid (CSF) and its chemical cues that can regulate cellular phenotype. We therefore investigated the role of CSF on GBM gene expression and the role of a CSF-induced gene, SERPINA3, in GBM malignancy in vitro and in vivo. METHODS We utilized human CSF and GBM brain tumor-initiating cells (BTICs). We determined the impact of SERPINA3 expression in glioma patients using The Cancer Genome Atlas (TCGA) database. SERPINA3 expression changes were evaluated at mRNA and protein levels. The effects of knockdown (KD) and overexpression (OE) of SERPINA3 on cell migration, viability and cell proliferation were evaluated. Stem cell characteristics on KD cells were evaluated by differentiation and colony formation experiments. Tumor growth was studied by intracranial and flank injections. RESULTS GBM-CSF increased BTIC migration accompanied by upregulation of the SERPINA3 gene. In patient samples and TCGA data, we observed SERPINA3 to correlate directly with brain tumor grade and indirectly with GBM patient survival. SERPINA3 KD induced a decrease in cell proliferation, migration, invasion, and stem cell characteristics, while SERPINA3 OE increased cell migration. In vivo, SERPINA3 KD BTICs showed increased survival in a murine model. CONCLUSIONS SERPINA3 plays a key role in GBM malignancy and its inhibition results in a better outcome using GBM preclinical models.
Collapse
Affiliation(s)
| | - Natanael Zarco
- Department of Neurosurgery, Mayo Clinic, Jacksonville, Florida, USA
| | | | | | - Emily S Norton
- PECEM, UNAM, Mexico City, Mexico
- Neuroscience Graduate Program, Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, Minnesota, USA
- Regenerative Sciences Training Program, Center for Regenerative Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | | | - Rawan Al-kharboosh
- PECEM, UNAM, Mexico City, Mexico
- Neuroscience Graduate Program, Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, Minnesota, USA
- Regenerative Sciences Training Program, Center for Regenerative Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | | | | | - Teresa Corona
- Clinical Laboratory of Neurodegenerative Diseases, National Institute of Neurology and Neurosurgery, Mexico City, Mexico
| | - Jose Segovia
- Department of Physiology, Biophysics and Neurosciences, Cinvestav-IPN, Mexico City, Mexico
| | - Mark E Jentoft
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Jacksonville, Florida, USA
| | | | - Yan W Asmann
- Department of Health Sciences Research, Mayo Clinic, Jacksonville, Florida, USA
| | | | | |
Collapse
|
77
|
Carrano A, Zarco N, Phillipps J, Lara-Velazquez M, Suarez-Meade P, Norton ES, Chaichana KL, Quiñones-Hinojosa A, Asmann YW, Guerrero-Cázares H. Human Cerebrospinal Fluid Modulates Pathways Promoting Glioblastoma Malignancy. Front Oncol 2021; 11:624145. [PMID: 33747938 PMCID: PMC7969659 DOI: 10.3389/fonc.2021.624145] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 02/05/2021] [Indexed: 01/07/2023] Open
Abstract
Glioblastoma (GBM) is the most common and devastating primary cancer of the central nervous system in adults. High grade gliomas are able to modify and respond to the brain microenvironment. When GBM tumors infiltrate the Subventricular zone (SVZ) they have a more aggressive clinical presentation than SVZ-distal tumors. We suggest that cerebrospinal fluid (CSF) contact contributes to enhance GBM malignant characteristics in these tumors. We evaluated the impact of human CSF on GBM, performing a transcriptome analysis on human primary GBM cells exposed to CSF to measure changes in gene expression profile and their clinical relevance on disease outcome. In addition we evaluated the proliferation and migration changes of CSF-exposed GBM cells in vitro and in vivo. CSF induced transcriptomic changes in pathways promoting cell malignancy, such as apoptosis, survival, cell motility, angiogenesis, inflammation, and glucose metabolism. A genetic signature extracted from the identified transcriptional changes in response to CSF proved to be predictive of GBM patient survival using the TCGA database. Furthermore, CSF induced an increase in viability, proliferation rate, and self-renewing capacity, as well as the migratory capabilities of GBM cells in vitro. In vivo, GBM cells co-injected with human CSF generated larger and more proliferative tumors compared to controls. Taken together, these results provide direct evidence that CSF is a key player in determining tumor growth and invasion through the activation of complex gene expression patterns characteristic of a malignant phenotype. These findings have diagnostic and therapeutic implications for GBM patients. The changes induced by CSF contact might play a role in the increased malignancy of SVZ-proximal GBM.
Collapse
Affiliation(s)
- Anna Carrano
- Department of Neurological Surgery, Mayo Clinic, Jacksonville, FL, United States
| | - Natanael Zarco
- Department of Neurological Surgery, Mayo Clinic, Jacksonville, FL, United States
| | - Jordan Phillipps
- Department of Neurological Surgery, Mayo Clinic, Jacksonville, FL, United States
| | | | - Paola Suarez-Meade
- Department of Neurological Surgery, Mayo Clinic, Jacksonville, FL, United States
| | - Emily S Norton
- Department of Neurological Surgery, Mayo Clinic, Jacksonville, FL, United States.,Neuroscience Graduate Program, Mayo Clinic Graduate School of Biochemical Sciences, Mayo Clinic, Jacksonville, FL, United States.,Regenerative Sciences Training Program, Center for Regenerative Medicine, Mayo Clinic, Jacksonville, FL, United States
| | - Kaisorn L Chaichana
- Department of Neurological Surgery, Mayo Clinic, Jacksonville, FL, United States
| | | | - Yan W Asmann
- Division of Biomedical Statistics and Informatics, Department of Health Sciences Research, Mayo Clinic, Jacksonville, FL, United States
| | | |
Collapse
|
78
|
Furuta T, Sugita Y, Komaki S, Ohshima K, Morioka M, Uchida Y, Tachikawa M, Ohtsuki S, Terasaki T, Nakada M. The Multipotential of Leucine-Rich α-2 Glycoprotein 1 as a Clinicopathological Biomarker of Glioblastoma. J Neuropathol Exp Neurol 2021; 79:873-879. [PMID: 32647893 DOI: 10.1093/jnen/nlaa058] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 06/02/2020] [Indexed: 01/14/2023] Open
Abstract
Leucine-rich α-2 glycoprotein 1 (LRG1) is a diagnostic marker candidate for glioblastoma. Although LRG1 has been associated with angiogenesis, it has been suggested that its biomarker role differs depending on the type of tumor. In this study, a clinicopathological examination of LRG1's role as a biomarker for glioblastoma was performed. We used tumor tissues of 155 cases with diffuse gliomas (27 astrocytomas, 14 oligodendrogliomas, 114 glioblastomas). The immunohistochemical LRG1 intensity scoring was classified into 2 groups: low expression and high expression. Mutations of IDH1, IDH2, and TERT promoter were analyzed through the Sanger method. We examined the relationship between LRG1 expression level in glioblastoma and clinical parameters, such as age, preoperative Karnofsky performance status, tumor location, extent of resection, O6-methylguanine DNA methyltransferase promoter, and prognosis. LRG1 high expression rate was 41.2% in glioblastoma, 3.7% in astrocytoma, and 21.4% in oligodendroglioma. Glioblastoma showed a significantly higher LRG1 expression than lower-grade glioma (p = 0.0003). High expression of LRG1 was an independent favorable prognostic factor (p = 0.019) in IDH-wildtype glioblastoma and correlated with gross total resection (p = 0.002) and the tumor location on nonsubventricular zone (p = 0.00007). LRG1 demonstrated multiple potential as a diagnostic, prognostic, and regional biomarker for glioblastoma.
Collapse
Affiliation(s)
- Takuya Furuta
- From the Department of Pathology; Department of Neuropathology, St. Mary's Hospita, Kurume, Japan.,Department of Neurosurgery, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan
| | - Yasuo Sugita
- From the Department of Pathology; Department of Neuropathology, St. Mary's Hospita, Kurume, Japan.,Department of Neurosurgery; Department of Neuropathology, St. Mary's Hospita, Kurume, Japan.,Kurume University School of Medicine; Department of Neuropathology, St. Mary's Hospita, Kurume, Japan
| | - Satoru Komaki
- Department of Neurosurgery; Department of Neuropathology, St. Mary's Hospita, Kurume, Japan
| | - Koichi Ohshima
- From the Department of Pathology; Department of Neuropathology, St. Mary's Hospita, Kurume, Japan
| | - Motohiro Morioka
- Department of Neurosurgery; Department of Neuropathology, St. Mary's Hospita, Kurume, Japan
| | - Yasuo Uchida
- Division of Membrane Transport and Drug Targeting, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai
| | - Masanori Tachikawa
- Division of Membrane Transport and Drug Targeting, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai.,Graduate School of Biomedical Sciences, Tokushima University, Tokushima
| | - Sumio Ohtsuki
- From the Department of Pathology; Department of Neuropathology, St. Mary's Hospita, Kurume, Japan.,Department of Pharmaceutical Microbiology, Faculty of Life Sciences, Kumamoto University, Kumamoto
| | - Tetsuya Terasaki
- Division of Membrane Transport and Drug Targeting, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai
| | - Mitsutoshi Nakada
- From the Department of Pathology; Department of Neuropathology, St. Mary's Hospita, Kurume, Japan.,Department of Neurosurgery, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan
| |
Collapse
|
79
|
Bender K, Träger M, Wahner H, Onken J, Scheel M, Beck M, Ehret F, Budach V, Kaul D. What is the role of the subventricular zone in radiotherapy of glioblastoma patients? Radiother Oncol 2021; 158:138-145. [PMID: 33636228 DOI: 10.1016/j.radonc.2021.02.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 01/28/2021] [Accepted: 02/13/2021] [Indexed: 01/06/2023]
Abstract
BACKGROUND AND PURPOSE Current glioblastoma (GBM) therapies prolong survival, but overall prognosis is still poor. Irradiation of the subventricular zone (SVZ) has recently been discussed as a promising concept as this tissue harbors stem cells which seem to play a role in the initiation and recurrence of GBM. In this study, we retrospectively examined the relationship of SVZ irradiation dose and survival in a large, homogeneous GBM patient cohort. MATERIALS AND METHODS We included 200 GBM patients who had been treated at our institution with trimodal therapy (surgery, radiotherapy and chemotherapy) between 2009 and 2020. The SVZ was delineated, and dose-volume histograms were calculated and extracted. Tumors were classified according to their contact with the SVZ. The Kaplan-Meier method was used for survival analysis, and univariable and multivariable Cox regression (MVA) were used to determine prognostic effects on progression-free survival (PFS) and overall survival (OS). RESULTS Median PFS of the study group was 7.2 months; median OS was 15.1 months. In MVA (with mean dose to the ipsilateral SVZ as a continuous covariable), PFS was significantly lower for patients with a Karnofsky performance status (KPS) < 70% and without MGMT promoter methylation. Factors prognostic for shorter OS were old age, lower KPS, unmethylated MGMT status, SVZ contact and biopsy instead of subtotal- or gross total resection. There was no significant correlation between survival and SVZ dose. CONCLUSION In this cohort, an increased mean dose to the ipsilateral or contralateral SVZ did not correlate with improved survival in irradiated GBM patients in MVA. Patients whose tumor directly involved the SVZ showed worse OS in MVA.
Collapse
Affiliation(s)
- Katja Bender
- Department of Radiation Oncology Charité- Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Germany
| | - Malte Träger
- Department of Radiation Oncology Charité- Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Germany
| | - Helena Wahner
- Department of Radiation Oncology Charité- Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Germany
| | - Julia Onken
- Department of Neurosurgery, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Germany; German Cancer Consortium (DKTK), partner site Berlin, Germany
| | - Michael Scheel
- Department of Neuroradiology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Germany
| | - Marcus Beck
- Department of Radiation Oncology Charité- Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Germany
| | - Felix Ehret
- Department of Radiation Oncology Charité- Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Germany
| | - Volker Budach
- Department of Radiation Oncology Charité- Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Germany
| | - David Kaul
- Department of Radiation Oncology Charité- Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Germany; German Cancer Consortium (DKTK), partner site Berlin, Germany.
| |
Collapse
|
80
|
Khandwala K, Mubarak F, Minhas K. The many faces of glioblastoma: Pictorial review of atypical imaging features. Neuroradiol J 2021; 34:33-41. [PMID: 33081585 PMCID: PMC7868590 DOI: 10.1177/1971400920965970] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Glioblastoma is an aggressive primary central nervous system tumour that usually has a poor prognosis. Generally, the typical imaging features are easily recognisable, but the behaviour of glioblastoma multiforme (GBM) can often be unusual. Several variations and heterogeneity in GBM appearance have been known to occur. In this pictorial essay, we present cases of pathologically confirmed GBM that illustrate unusual locations and atypical features on neuroimaging, and review the relevant literature. Even innocuous-looking foci, cystic lesions, meningeal-based pathology, intraventricular and infra-tentorial masses, multifocal/multicentric lesions and spinal cord abnormalities may represent GBM. We aim to highlight the atypical characteristics of glioblastoma, clarify their importance and list the potential mimickers. Although a definitive diagnosis in these rare cases of GBM warrants histopathological confirmation, an overview of the many imaging aspects may help make an early diagnosis.
Collapse
Affiliation(s)
| | | | - Khurram Minhas
- Department of Pathology and Laboratory Medicine, Aga Khan University, Pakistan
| |
Collapse
|
81
|
Lombard A, Digregorio M, Delcamp C, Rogister B, Piette C, Coppieters N. The Subventricular Zone, a Hideout for Adult and Pediatric High-Grade Glioma Stem Cells. Front Oncol 2021; 10:614930. [PMID: 33575218 PMCID: PMC7870981 DOI: 10.3389/fonc.2020.614930] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 12/09/2020] [Indexed: 12/23/2022] Open
Abstract
Both in adult and children, high-grade gliomas (WHO grades III and IV) account for a high proportion of death due to cancer. This poor prognosis is a direct consequence of tumor recurrences occurring within few months despite a multimodal therapy consisting of a surgical resection followed by chemotherapy and radiotherapy. There is increasing evidence that glioma stem cells (GSCs) contribute to tumor recurrences. In fact, GSCs can migrate out of the tumor mass and reach the subventricular zone (SVZ), a neurogenic niche persisting after birth. Once nested in the SVZ, GSCs can escape a surgical intervention and resist to treatments. The present review will define GSCs and describe their similarities with neural stem cells, residents of the SVZ. The architectural organization of the SVZ will be described both for humans and rodents. The migratory routes taken by GSCs to reach the SVZ and the signaling pathways involved in their migration will also be described hereafter. In addition, we will debate the advantages of the microenvironment provided by the SVZ for GSCs and how this could contribute to tumor recurrences. Finally, we will discuss the clinical relevance of the SVZ in adult GBM and pediatric HGG and the therapeutic advantages of targeting that neurogenic region in both clinical situations.
Collapse
Affiliation(s)
- Arnaud Lombard
- Laboratory of Nervous System Disorders and Therapy, Groupement Interdisciplinaire de Génoprotéomique Appliquée (GIGA)-Neurosciences Research Centre, University of Liège, Liège, Belgium.,Department of Neurosurgery, CHU of Liège, Liège, Belgium
| | - Marina Digregorio
- Laboratory of Nervous System Disorders and Therapy, Groupement Interdisciplinaire de Génoprotéomique Appliquée (GIGA)-Neurosciences Research Centre, University of Liège, Liège, Belgium
| | - Clément Delcamp
- Laboratory of Nervous System Disorders and Therapy, Groupement Interdisciplinaire de Génoprotéomique Appliquée (GIGA)-Neurosciences Research Centre, University of Liège, Liège, Belgium
| | - Bernard Rogister
- Laboratory of Nervous System Disorders and Therapy, Groupement Interdisciplinaire de Génoprotéomique Appliquée (GIGA)-Neurosciences Research Centre, University of Liège, Liège, Belgium.,Department of Neurology, CHU of Liège, Liège, Belgium
| | - Caroline Piette
- Laboratory of Nervous System Disorders and Therapy, Groupement Interdisciplinaire de Génoprotéomique Appliquée (GIGA)-Neurosciences Research Centre, University of Liège, Liège, Belgium.,Department of Pediatrics, Division of Hematology-Oncology, CHU of Liège, Liège, Belgium
| | - Natacha Coppieters
- Laboratory of Nervous System Disorders and Therapy, Groupement Interdisciplinaire de Génoprotéomique Appliquée (GIGA)-Neurosciences Research Centre, University of Liège, Liège, Belgium
| |
Collapse
|
82
|
Bakhshinyan D, Savage N, Salim SK, Venugopal C, Singh SK. The Strange Case of Jekyll and Hyde: Parallels Between Neural Stem Cells and Glioblastoma-Initiating Cells. Front Oncol 2021; 10:603738. [PMID: 33489908 PMCID: PMC7820896 DOI: 10.3389/fonc.2020.603738] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 11/24/2020] [Indexed: 12/15/2022] Open
Abstract
During embryonic development, radial glial precursor cells give rise to neural lineages, and a small proportion persist in the adult mammalian brain to contribute to long-term neuroplasticity. Neural stem cells (NSCs) reside in two neurogenic niches of the adult brain, the hippocampus and the subventricular zone (SVZ). NSCs in the SVZ are endowed with the defining stem cell properties of self-renewal and multipotent differentiation, which are maintained by intrinsic cellular programs, and extrinsic cellular and niche-specific interactions. In glioblastoma, the most aggressive primary malignant brain cancer, a subpopulation of cells termed glioblastoma stem cells (GSCs) exhibit similar stem-like properties. While there is an extensive overlap between NSCs and GSCs in function, distinct genetic profiles, transcriptional programs, and external environmental cues influence their divergent behavior. This review highlights the similarities and differences between GSCs and SVZ NSCs in terms of their gene expression, regulatory molecular pathways, niche organization, metabolic programs, and current therapies designed to exploit these differences.
Collapse
Affiliation(s)
- David Bakhshinyan
- Department of Biochemistry and Biomedical Sciences, Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada
| | - Neil Savage
- Department of Biochemistry and Biomedical Sciences, Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada
| | - Sabra Khalid Salim
- Department of Biochemistry and Biomedical Sciences, Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada
| | - Chitra Venugopal
- Department of Surgery, Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada
| | - Sheila K. Singh
- Department of Biochemistry and Biomedical Sciences, Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada
- Department of Surgery, Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
83
|
Li Y, Zhang ZX, Huang GH, Xiang Y, Yang L, Pei YC, Yang W, Lv SQ. A systematic review of multifocal and multicentric glioblastoma. J Clin Neurosci 2021; 83:71-76. [PMID: 33358091 DOI: 10.1016/j.jocn.2020.11.025] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 10/23/2020] [Accepted: 11/23/2020] [Indexed: 02/08/2023]
Abstract
Multiple glioblastoma multiforme (GBM) is classified as multifocal and multicentric GBM according to whether there is communication between the lesions. Multiple GBM is more genetically heterogeneous, aggressive and resistant to chemoradiotherapy than unifocal GBM, and has a worse prognosis. There is no international consensus on the treatment of multiple GBM. This review discusses some paradigms of multiple GBM and focuses on the heterogeneity spread pathway, imaging diagnosis, pathology, molecular characterization and prognosis of multifocal and multicentric GBM. Several promising therapeutic methods of multiple GBM are also recommended.
Collapse
Affiliation(s)
- Yao Li
- Department of Neurosurgery, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, PR China
| | - Zuo-Xin Zhang
- Department of Neurosurgery, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, PR China
| | - Guo-Hao Huang
- Department of Neurosurgery, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, PR China
| | - Yan Xiang
- Department of Neurosurgery, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, PR China
| | - Lin Yang
- Department of Neurosurgery, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, PR China
| | - Yu-Chun Pei
- Department of Neurosurgery, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, PR China
| | - Wei Yang
- Department of Neurosurgery, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, PR China
| | - Sheng-Qing Lv
- Department of Neurosurgery, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, PR China.
| |
Collapse
|
84
|
Wang X, Zhou R, Xiong Y, Zhou L, Yan X, Wang M, Li F, Xie C, Zhang Y, Huang Z, Ding C, Shi K, Li W, Liu Y, Cao Z, Zhang ZN, Zhou S, Chen C, Zhang Y, Chen L, Wang Y. Sequential fate-switches in stem-like cells drive the tumorigenic trajectory from human neural stem cells to malignant glioma. Cell Res 2021; 31:684-702. [PMID: 33390587 PMCID: PMC8169837 DOI: 10.1038/s41422-020-00451-z] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 11/19/2020] [Indexed: 02/05/2023] Open
Abstract
Glioblastoma (GBM) is an incurable and highly heterogeneous brain tumor, originating from human neural stem/progenitor cells (hNSCs/hNPCs) years ahead of diagnosis. Despite extensive efforts to characterize hNSCs and end-stage GBM at bulk and single-cell levels, the de novo gliomagenic path from hNSCs is largely unknown due to technical difficulties in early-stage sampling and preclinical modeling. Here, we established two highly penetrant hNSC-derived malignant glioma models, which resemble the histopathology and transcriptional heterogeneity of human GBM. Integrating time-series analyses of whole-exome sequencing, bulk and single-cell RNA-seq, we reconstructed gliomagenic trajectories, and identified a persistent NSC-like population at all stages of tumorigenesis. Through trajectory analyses and lineage tracing, we showed that tumor progression is primarily driven by multi-step transcriptional reprogramming and fate-switches in the NSC-like cells, which sequentially generate malignant heterogeneity and induce tumor phenotype transitions. We further uncovered stage-specific oncogenic cascades, and among the candidate genes we functionally validated C1QL1 as a new glioma-promoting factor. Importantly, the neurogenic-to-gliogenic switch in NSC-like cells marks an early stage characterized by a burst of oncogenic alterations, during which transient AP-1 inhibition is sufficient to inhibit gliomagenesis. Together, our results reveal previously undercharacterized molecular dynamics and fate choices driving de novo gliomagenesis from hNSCs, and provide a blueprint for potential early-stage treatment/diagnosis for GBM.
Collapse
Affiliation(s)
- Xiaofei Wang
- Department of Neurology and Department of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and National Collaborative Innovation Center, Chengdu, Sichuan, 610041, China
| | - Ran Zhou
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Yanzhen Xiong
- Department of Neurology and Department of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and National Collaborative Innovation Center, Chengdu, Sichuan, 610041, China.,National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Lingling Zhou
- Department of Neurology and Department of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and National Collaborative Innovation Center, Chengdu, Sichuan, 610041, China
| | - Xiang Yan
- Department of Neurology and Department of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and National Collaborative Innovation Center, Chengdu, Sichuan, 610041, China
| | - Manli Wang
- Department of Hematology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Fan Li
- Department of Neurology and Department of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and National Collaborative Innovation Center, Chengdu, Sichuan, 610041, China
| | - Chuanxing Xie
- Department of Neurology and Department of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and National Collaborative Innovation Center, Chengdu, Sichuan, 610041, China
| | - Yiming Zhang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Zongyao Huang
- Department of Neurology and Department of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and National Collaborative Innovation Center, Chengdu, Sichuan, 610041, China
| | - Chaoqiong Ding
- Department of Neurology and Department of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and National Collaborative Innovation Center, Chengdu, Sichuan, 610041, China
| | - Kaidou Shi
- Department of Hematology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Weida Li
- Institute of Regenerative Medicine, Shanghai East Hospital, Tongji University, Shanghai, 200092, China
| | - Yu Liu
- Department of Hematology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Zhongwei Cao
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Zhen-Ning Zhang
- Institute of Regenerative Medicine, Shanghai East Hospital, Tongji University, Shanghai, 200092, China
| | - Shengtao Zhou
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Chong Chen
- Department of Hematology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Yan Zhang
- National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China.
| | - Lu Chen
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second Hospital, Sichuan University, Chengdu, Sichuan, 610041, China.
| | - Yuan Wang
- Department of Neurology and Department of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and National Collaborative Innovation Center, Chengdu, Sichuan, 610041, China.
| |
Collapse
|
85
|
Meier R, Pahud de Mortanges A, Wiest R, Knecht U. Exploratory Analysis of Qualitative MR Imaging Features for the Differentiation of Glioblastoma and Brain Metastases. Front Oncol 2020; 10:581037. [PMID: 33425734 PMCID: PMC7793795 DOI: 10.3389/fonc.2020.581037] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 11/09/2020] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVES To identify qualitative VASARI (Visually AcceSIble Rembrandt Images) Magnetic Resonance (MR) Imaging features for differentiation of glioblastoma (GBM) and brain metastasis (BM) of different primary tumors. MATERIALS AND METHODS T1-weighted pre- and post-contrast, T2-weighted, and T2-weighted, fluid attenuated inversion recovery (FLAIR) MR images of a total of 239 lesions from 109 patients with either GBM or BM (breast cancer, non-small cell (NSCLC) adenocarcinoma, NSCLC squamous cell carcinoma, small-cell lung cancer (SCLC)) were included. A set of adapted, qualitative VASARI MR features describing tumor appearance and location was scored (binary; 1 = presence of feature, 0 = absence of feature). Exploratory data analysis was performed on binary scores using a combination of descriptive statistics (proportions with 95% binomial confidence intervals), unsupervised methods and supervised methods including multivariate feature ranking using either repeated fitting or recursive feature elimination with Support Vector Machines (SVMs). RESULTS GBMs were found to involve all lobes of the cerebrum with a fronto-occipital gradient, often affected the corpus callosum (32.4%, 95% CI 19.1-49.2), and showed a strong preference for the right hemisphere (79.4%, 95% CI 63.2-89.7). BMs occurred most frequently in the frontal lobe (35.1%, 95% CI 28.9-41.9) and cerebellum (28.3%, 95% CI 22.6-34.8). The appearance of GBMs was characterized by preference for well-defined non-enhancing tumor margin (100%, 89.8-100), ependymal extension (52.9%, 36.7-68.5) and substantially less enhancing foci than BMs (44.1%, 28.9-60.6 vs. 75.1%, 68.8-80.5). Unsupervised and supervised analyses showed that GBMs are distinctively different from BMs and that this difference is driven by definition of non-enhancing tumor margin, ependymal extension and features describing laterality. Differentiation of histological subtypes of BMs was driven by the presence of well-defined enhancing and non-enhancing tumor margins and localization in the vision center. SVM models with optimal hyperparameters led to weighted F1-score of 0.865 for differentiation of GBMs from BMs and weighted F1-score of 0.326 for differentiation of BM subtypes. CONCLUSION VASARI MR imaging features related to definition of non-enhancing margin, ependymal extension, and tumor localization may serve as potential imaging biomarkers to differentiate GBMs from BMs.
Collapse
Affiliation(s)
- Raphael Meier
- University Institute of Diagnostic and Interventional Neuroradiology, University Hospital Bern, Inselspital, University of Bern, Bern, Switzerland
- Support Center for Advanced Neuroimaging, University Hospital Bern, Inselspital, University of Bern, Bern, Switzerland
| | - Aurélie Pahud de Mortanges
- University Institute of Diagnostic and Interventional Neuroradiology, University Hospital Bern, Inselspital, University of Bern, Bern, Switzerland
| | - Roland Wiest
- University Institute of Diagnostic and Interventional Neuroradiology, University Hospital Bern, Inselspital, University of Bern, Bern, Switzerland
- Support Center for Advanced Neuroimaging, University Hospital Bern, Inselspital, University of Bern, Bern, Switzerland
| | - Urspeter Knecht
- ARTORG Center for Biomedical Research, University of Bern, Bern, Switzerland
- Department of Diagnostic Radiology and Neuroradiology, Regional Hospital Emmental, Burgdorf, Switzerland
| |
Collapse
|
86
|
Glioblastoma with a primitive neuroectodermal component: two cases with implications for glioblastoma cell-of-origin. Clin Imaging 2020; 73:139-145. [PMID: 33406475 DOI: 10.1016/j.clinimag.2020.10.041] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 09/22/2020] [Accepted: 10/17/2020] [Indexed: 12/28/2022]
Abstract
BACKGROUND Glioblastoma (GBM) is the most common primary brain malignancy, but much remains unknown about the histogenesis of these tumors. In the great majority of cases, GBM is a purely glial tumor but in rare cases the classic-appearing high-grade glioma component is admixed with regions of small round blue cells with neuronal immunophenotype, and these tumors have been defined in the WHO 2016 Classification as "glioblastoma with a primitive neuronal component." METHODS In this paper, we present two cases of GBM-PNC with highly divergent clinical courses, and review current theories for the GBM cell-of-origin. RESULTS AND CONCLUSIONS GBM-PNC likely arises from a cell type competent to give rise to glial or neuronal lineages. The thesis that GBM recapitulates to some extent normal neurodevelopmental cellular pathways is supported by molecular and clinical features of our two cases of GBM-PNC, but more work is needed to determine which cellular precursor gives rise to specific cases of GBM. GBM-PNC may have a dramatically altered clinical course compared to standard GBM and may benefit from specific lines of treatment.
Collapse
|
87
|
Valor LM, Hervás-Corpión I. The Epigenetics of Glioma Stem Cells: A Brief Overview. Front Oncol 2020; 10:602378. [PMID: 33344253 PMCID: PMC7738619 DOI: 10.3389/fonc.2020.602378] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 10/29/2020] [Indexed: 11/26/2022] Open
Abstract
Glioma stem cells (GSCs) are crucial in the formation, perpetuation and recurrence of glioblastomas (GBs) due to their self-renewal and proliferation properties. Although GSCs share cellular and molecular characteristics with neural stem cells (NSCs), GSCs show unique transcriptional and epigenetic features that may explain their relevant role in GB and may constitute druggable targets for novel therapeutic approaches. In this review, we will summarize the most important findings in GSCs concerning epigenetic-dependent mechanisms.
Collapse
Affiliation(s)
- Luis M Valor
- Unidad de Investigación, Hospital Universitario Puerta del Mar, Instituto de Investigación e Innovación Biomédica de Cádiz (INiBICA), Cádiz, Spain
| | - Irati Hervás-Corpión
- Unidad de Investigación, Hospital Universitario Puerta del Mar, Instituto de Investigación e Innovación Biomédica de Cádiz (INiBICA), Cádiz, Spain
| |
Collapse
|
88
|
Shin DW, Lee S, Song SW, Cho YH, Hong SH, Kim JH, Kim HS, Park JE, Nam SJ, Kim YH. Survival outcome and prognostic factors in anaplastic oligodendroglioma: a single-institution study of 95 cases. Sci Rep 2020; 10:20162. [PMID: 33214617 PMCID: PMC7677372 DOI: 10.1038/s41598-020-77228-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 11/02/2020] [Indexed: 02/07/2023] Open
Abstract
The aim of this study was to evaluate prognostic factors including surgical, radiographic, and histopathologic analyses in anaplastic oligodendroglioma (AO) patients. We reviewed the electronic records of 95 patients who underwent surgery and were diagnosed with AO for 20 years. The primary endpoints were progression-free survival (PFS) and overall survival (OS). Univariate and multivariable analyses included clinical, histopathological, and radiographic prognostic factors. Subgroup analysis was performed in isocitrate dehydrogenase (IDH1/2)-mutant and 1p/19q-codeleted patients. The median PFS and OS were 24.7 months and 50.8 months, respectively. The 1-, 3-, 5-, and 10-year PFS were 75.8%, 42.9%, 32.4%, and 16.4%, respectively. Furthermore, the 1-, 3-, 5-, and 10-year OS were 98.9%, 76.9%, 42.9%, and 29.7%, respectively. The median PFS and OS of the IDH1/2-mutant and 1p/19q-codeleted patients were 54.2 and 57.8 months, respectively. In univariate analyses, young age, frontal lobe, weak enhancement, gross total resection (GTR), low Ki-67 index, 1p/19q codeletion, and IDH1/2 mutations were associated with a favorable outcome. In multivariable analyses, IDH1/2 mutation was related to better PFS and OS. In subgroup analysis, GTR was associated with favorable outcomes.
Collapse
Affiliation(s)
- Dong-Won Shin
- Department of Neurological Surgery, Asan Medical Center, University of Ulsan College of Medicine, 88, Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Republic of Korea
| | - Seungjoo Lee
- Department of Neurological Surgery, Asan Medical Center, University of Ulsan College of Medicine, 88, Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Republic of Korea
| | - Sang Woo Song
- Department of Neurological Surgery, Asan Medical Center, University of Ulsan College of Medicine, 88, Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Republic of Korea
| | - Young Hyun Cho
- Department of Neurological Surgery, Asan Medical Center, University of Ulsan College of Medicine, 88, Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Republic of Korea
| | - Seok Ho Hong
- Department of Neurological Surgery, Asan Medical Center, University of Ulsan College of Medicine, 88, Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Republic of Korea
| | - Jeong Hoon Kim
- Department of Neurological Surgery, Asan Medical Center, University of Ulsan College of Medicine, 88, Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Republic of Korea
| | - Ho Sung Kim
- Department of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Ji Eun Park
- Department of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Soo Jeong Nam
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Young-Hoon Kim
- Department of Neurological Surgery, Asan Medical Center, University of Ulsan College of Medicine, 88, Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Republic of Korea.
| |
Collapse
|
89
|
Jiang H, Yu K, Li M, Cui Y, Ren X, Yang C, Zhao X, Lin S. Classification of Progression Patterns in Glioblastoma: Analysis of Predictive Factors and Clinical Implications. Front Oncol 2020; 10:590648. [PMID: 33251147 PMCID: PMC7673412 DOI: 10.3389/fonc.2020.590648] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Accepted: 10/12/2020] [Indexed: 12/16/2022] Open
Abstract
Background This study was designed to explore the progression patterns of IDH-wildtype glioblastoma (GBM) at first recurrence after chemoradiotherapy. Methods Records from 247 patients who underwent progression after diagnosis of IDH-wildtype GBM was retrospectively reviewed. Progression patterns were classified as either local, distant, subependymal or leptomeningeal dissemination based on the preoperative and serial postoperative radiographic images. The clinical and molecular characteristics of different progression patterns were analyzed. Results A total of 186 (75.3%) patients had local progression, 15 (6.1%) patients had distant progression, 33 (13.3%) patients had subependymal dissemination, and 13 (5.3%) patients had leptomeningeal dissemination. The most favorable survival occurred in patients with local progression, while no significant difference of survival was found among patients with distant progression, subependymal or leptomeningeal dissemination who were thereby reclassified into non-local group. Multivariable analysis showed that chemotherapy was a protective factor for non-local progression, while gender of male, subventricular zone (SVZ) involvement and O6-methylguanine-DNA-methyltransferase (MGMT) promoter methylation were confirmed as risk factors for non-local progression (P < 0.05). Based on the factors screened by multivariable analysis, a nomogram was constructed which conferred high accuracy in predicting non-local progression. Patients in non-local group could be divided into long- and short-term survivors who differed in the rates of SVZ involvement, MGMT promoter methylation and reirradiation (P < 0.05), and a nomogram integrating these factors showed high accuracy in predicting long-term survivors. Conclusion Patients harboring different progression patterns conferred distinct clinical and molecular characteristics. Our nomograms could provide theoretical references for physicians to make more personalized and precise treatment decisions.
Collapse
Affiliation(s)
- Haihui Jiang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,National Clinical Research Center for Neurological Diseases, Center of Brain Tumor, Beijing Institute for Brain Disorders and Beijing Key Laboratory of Brain Tumor, Beijing, China
| | - Kefu Yu
- Department of Pharmacy, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Mingxiao Li
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,National Clinical Research Center for Neurological Diseases, Center of Brain Tumor, Beijing Institute for Brain Disorders and Beijing Key Laboratory of Brain Tumor, Beijing, China
| | - Yong Cui
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,National Clinical Research Center for Neurological Diseases, Center of Brain Tumor, Beijing Institute for Brain Disorders and Beijing Key Laboratory of Brain Tumor, Beijing, China
| | - Xiaohui Ren
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,National Clinical Research Center for Neurological Diseases, Center of Brain Tumor, Beijing Institute for Brain Disorders and Beijing Key Laboratory of Brain Tumor, Beijing, China
| | - Chuanwei Yang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,National Clinical Research Center for Neurological Diseases, Center of Brain Tumor, Beijing Institute for Brain Disorders and Beijing Key Laboratory of Brain Tumor, Beijing, China
| | - Xuzhe Zhao
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,National Clinical Research Center for Neurological Diseases, Center of Brain Tumor, Beijing Institute for Brain Disorders and Beijing Key Laboratory of Brain Tumor, Beijing, China
| | - Song Lin
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,National Clinical Research Center for Neurological Diseases, Center of Brain Tumor, Beijing Institute for Brain Disorders and Beijing Key Laboratory of Brain Tumor, Beijing, China
| |
Collapse
|
90
|
Bier A, Hong X, Cazacu S, Goldstein H, Rand D, Xiang C, Jiang W, Ben-Asher HW, Attia M, Brodie A, She R, Poisson LM, Brodie C. miR-504 modulates the stemness and mesenchymal transition of glioma stem cells and their interaction with microglia via delivery by extracellular vesicles. Cell Death Dis 2020; 11:899. [PMID: 33093452 PMCID: PMC7581800 DOI: 10.1038/s41419-020-03088-3] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 08/13/2020] [Accepted: 08/24/2020] [Indexed: 12/13/2022]
Abstract
Glioblastoma (GBM) is a highly aggressive tumor with poor prognosis. A small subpopulation of glioma stem cells (GSCs) has been implicated in radiation resistance and tumor recurrence. In this study we analyzed the expression of miRNAs associated with the functions of GSCs using miRNA microarray analysis of these cells compared with human neural stem cells. These analyses identified gene clusters associated with glioma cell invasiveness, axonal guidance, and TGF-β signaling. miR-504 was significantly downregulated in GSCs compared with NSCs, its expression was lower in GBM compared with normal brain specimens and further decreased in the mesenchymal glioma subtype. Overexpression of miR-504 in GSCs inhibited their self-renewal, migration and the expression of mesenchymal markers. The inhibitory effect of miR-504 was mediated by targeting Grb10 expression which acts as an oncogene in GSCs and GBM. Overexpression of exogenous miR-504 resulted also in its delivery to cocultured microglia by GSC-secreted extracellular vesicles (EVs) and in the abrogation of the GSC-induced polarization of microglia to M2 subtype. Finally, miR-504 overexpression prolonged the survival of mice harboring GSC-derived xenografts and decreased tumor growth. In summary, we identified miRNAs and potential target networks that play a role in the stemness and mesenchymal transition of GSCs and the miR-504/Grb10 pathway as an important regulator of this process. Overexpression of miR-504 exerted antitumor effects in GSCs as well as bystander effects on the polarization of microglia via delivery by EVs.
Collapse
Affiliation(s)
- Ariel Bier
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Xin Hong
- Davidson Laboratory of Cell Signaling and Tumorigenesis, Hermelin Brain Tumor Center, Department of Neurosurgery, Henry Ford Hospital, Detroit, MI, USA
| | - Simona Cazacu
- Davidson Laboratory of Cell Signaling and Tumorigenesis, Hermelin Brain Tumor Center, Department of Neurosurgery, Henry Ford Hospital, Detroit, MI, USA
| | - Hodaya Goldstein
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Daniel Rand
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Cunli Xiang
- Davidson Laboratory of Cell Signaling and Tumorigenesis, Hermelin Brain Tumor Center, Department of Neurosurgery, Henry Ford Hospital, Detroit, MI, USA
| | - Wei Jiang
- Davidson Laboratory of Cell Signaling and Tumorigenesis, Hermelin Brain Tumor Center, Department of Neurosurgery, Henry Ford Hospital, Detroit, MI, USA
| | - Hiba Waldman Ben-Asher
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Moshe Attia
- Department of Neurosurgery, Sheba Medical Center, Henry Ford Hospital, Detroit, MI, USA
| | - Aharon Brodie
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Ruicong She
- Department of Public Health Sciences, Henry Ford Hospital, Detroit, MI, USA
| | - Laila M Poisson
- Department of Public Health Sciences, Henry Ford Hospital, Detroit, MI, USA
| | - Chaya Brodie
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel.
- Davidson Laboratory of Cell Signaling and Tumorigenesis, Hermelin Brain Tumor Center, Department of Neurosurgery, Henry Ford Hospital, Detroit, MI, USA.
| |
Collapse
|
91
|
de Sonnaville SFAM, van Strien ME, Middeldorp J, Sluijs JA, van den Berge SA, Moeton M, Donega V, van Berkel A, Deering T, De Filippis L, Vescovi AL, Aronica E, Glass R, van de Berg WDJ, Swaab DF, Robe PA, Hol EM. The adult human subventricular zone: partial ependymal coverage and proliferative capacity of cerebrospinal fluid. Brain Commun 2020; 2:fcaa150. [PMID: 33376983 PMCID: PMC7750937 DOI: 10.1093/braincomms/fcaa150] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 07/30/2020] [Accepted: 08/04/2020] [Indexed: 01/08/2023] Open
Abstract
Neurogenesis continues throughout adulthood in specialized regions of the brain. One of these regions is the subventricular zone. During brain development, neurogenesis is regulated by a complex interplay of intrinsic and extrinsic cues that control stem-cell survival, renewal and cell lineage specification. Cerebrospinal fluid (CSF) is an integral part of the neurogenic niche in development as it is in direct contact with radial glial cells, and it is important in regulating proliferation and migration. Yet, the effect of CSF on neural stem cells in the subventricular zone of the adult human brain is unknown. We hypothesized a persistent stimulating effect of ventricular CSF on neural stem cells in adulthood, based on the literature, describing bulging accumulations of subventricular cells where CSF is in direct contact with the subventricular zone. Here, we show by immunohistochemistry on post-mortem adult human subventricular zone sections that neural stem cells are in close contact with CSF via protrusions through both intact and incomplete ependymal layers. We are the first to systematically quantify subventricular glial nodules denuded of ependyma and consisting of proliferating neural stem and progenitor cells, and showed that they are present from foetal age until adulthood. Neurosphere, cell motility and differentiation assays as well as analyses of RNA expression were used to assess the effects of CSF of adult humans on primary neural stem cells and a human immortalized neural stem cell line. We show that human ventricular CSF increases proliferation and decreases motility of neural stem cells. Our results also indicate that adult CSF pushes neural stem cells from a relative quiescent to a more active state and promotes neuronal over astrocytic lineage differentiation. Thus, CSF continues to stimulate neural stem cells throughout aging.
Collapse
Affiliation(s)
- Sophia F A M de Sonnaville
- Department of Translational Neuroscience, UMC Utrecht Brain Centre, University Medical Centre Utrecht, University Utrecht, Utrecht, The Netherlands
| | - Miriam E van Strien
- Department of Translational Neuroscience, UMC Utrecht Brain Centre, University Medical Centre Utrecht, University Utrecht, Utrecht, The Netherlands
| | - Jinte Middeldorp
- Department of Translational Neuroscience, UMC Utrecht Brain Centre, University Medical Centre Utrecht, University Utrecht, Utrecht, The Netherlands
| | - Jacqueline A Sluijs
- Department of Translational Neuroscience, UMC Utrecht Brain Centre, University Medical Centre Utrecht, University Utrecht, Utrecht, The Netherlands
| | - Simone A van den Berge
- Department of Neuroimmunology, Netherlands Institute for Neuroscience, An Institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands
| | - Martina Moeton
- Department of Neuroimmunology, Netherlands Institute for Neuroscience, An Institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands
| | - Vanessa Donega
- Department of Translational Neuroscience, UMC Utrecht Brain Centre, University Medical Centre Utrecht, University Utrecht, Utrecht, The Netherlands
| | - Annemiek van Berkel
- Department of Translational Neuroscience, UMC Utrecht Brain Centre, University Medical Centre Utrecht, University Utrecht, Utrecht, The Netherlands
| | - Tasmin Deering
- Department of Translational Neuroscience, UMC Utrecht Brain Centre, University Medical Centre Utrecht, University Utrecht, Utrecht, The Netherlands
| | - Lidia De Filippis
- Department of Regenerative Medicine, IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Angelo L Vescovi
- Department of Regenerative Medicine, IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Eleonora Aronica
- Department of (Neuro)pathology, Amsterdam University Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
| | - Rainer Glass
- Department of Neurosurgical Research, Clinic for Neurosurgery, Ludwig Maximilian University of Munich, Munich, Germany
| | - Wilma D J van de Berg
- Department of Anatomy and Neurosciences, Section Clinical Neuroanatomy, Amsterdam University Medical Centre, Location VU, Amsterdam, The Netherlands
| | - Dick F Swaab
- Department of Neuropsychiatric Disorders, Netherlands Institute for Neuroscience, An Institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands
| | - Pierre A Robe
- Department of Neurosurgery, UMC Utrecht Brain Centre, University Medical Centre Utrecht, University Utrecht, Utrecht, The Netherlands
| | - Elly M Hol
- Department of Translational Neuroscience, UMC Utrecht Brain Centre, University Medical Centre Utrecht, University Utrecht, Utrecht, The Netherlands
| |
Collapse
|
92
|
Boonzaier NR, Hales PW, D'Arco F, Walters BC, Kaur R, Mankad K, Cooper J, Liasis A, Smith V, O'Hare P, Hargrave D, Clark CA. Quantitative MRI demonstrates abnormalities of the third ventricle subventricular zone in neurofibromatosis type-1 and sporadic paediatric optic pathway glioma. NEUROIMAGE-CLINICAL 2020; 28:102447. [PMID: 33038669 PMCID: PMC7554210 DOI: 10.1016/j.nicl.2020.102447] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 09/17/2020] [Accepted: 09/20/2020] [Indexed: 11/26/2022]
Abstract
MRI provides supporting evidence of third ventricle subventricular involvement in OPG. Third ventricle subventricular zone ADC and CBF differs between NF1 and sporadic OPG. Third ventricle subventricular zone ADC correlates with vision in sporadic OPG.
Background The subventricular zone of the third ventricle (TVZ) is a germinal stem cell niche, identified as the possible location of optic pathway glioma (OPG) cell origin. Paediatric OPGs are predominantly diagnosed as low-grade astrocytomas, which are either sporadic or are associated with neurofibromatosis type-1 (NF1). These tumours often cause a significant impairment to visual acuity (VA). Infiltrative/invasive tumour activity is associated with increased apparent diffusion coefficient (ADC) and cerebral blood flow (CBF). This study aimed to determine whether TVZ imaging features differed between sporadic-OPG, NF1-OPG and controls, and whether the ADC and CBF profile at the germinal stem cell niche (the TVZ) correlated with the primary outcome of VA. Methods ADC and CBF MRI data were acquired from 30 paediatric OPG patients (median age 6 years; range 8 months–17 years), along with VA measurements, during clinical surveillance of their tumour. Values for mean ADC and maximum CBF were measured at the TVZ, and normalized to normal-appearing grey matter. These values were compared between the two OPG groups and the healthy control subjects, and multivariate linear regression was used to test the linear association between these values and patient’s VA. Results In the TVZ, normalized mean ADC was higher in NF1-associated OPG patients (N = 15), compared to both sporadic OPG patients (N = 15; p = 0.010) and healthy controls (N = 14; p < 0.001). In the same region, normalized maximum CBF was higher in sporadic OPG patients compared to both NF1-OPG patients (p = 0.016) and healthy controls (p < 0.001). In sporadic OPG patients only, normalized mean ADC in the TVZ was significantly correlated with visual acuity (R2 = 0.41, p = 0.019). No significant correlations were found between TVZ CBF and ADC values and visual acuity in the NF1-associated OPG patients. Conclusion Quantitative MRI detects TVZ abnormalities in both sporadic and NF1-OPG patients, and identifies TVZ features that differentiate the two. TVZ features may be useful MRI markers of interest in future predictive studies involving sporadic OPG.
Collapse
Affiliation(s)
- Natalie R Boonzaier
- Developmental Imaging and Biophysics Section, Developmental Neurosciences, University College London Great Ormond Street Institute of Child Health, London, UK
| | - Patrick W Hales
- Developmental Imaging and Biophysics Section, Developmental Neurosciences, University College London Great Ormond Street Institute of Child Health, London, UK.
| | - Felice D'Arco
- Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Bronwen C Walters
- Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Ramneek Kaur
- Developmental Imaging and Biophysics Section, Developmental Neurosciences, University College London Great Ormond Street Institute of Child Health, London, UK
| | - Kshitij Mankad
- Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Jessica Cooper
- Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Alki Liasis
- Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK; University of Pittsburgh Medical Center, Children's Hospital of Pittsburgh, Pittsburgh, USA
| | - Victoria Smith
- Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Patricia O'Hare
- Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Darren Hargrave
- Developmental Imaging and Biophysics Section, Developmental Neurosciences, University College London Great Ormond Street Institute of Child Health, London, UK; Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Christopher A Clark
- Developmental Imaging and Biophysics Section, Developmental Neurosciences, University College London Great Ormond Street Institute of Child Health, London, UK
| |
Collapse
|
93
|
Kikuchi Z, Shibahara I, Yamaki T, Yoshioka E, Shofuda T, Ohe R, Matsuda KI, Saito R, Kanamori M, Kanemura Y, Kumabe T, Tominaga T, Sonoda Y. TERT promoter mutation associated with multifocal phenotype and poor prognosis in patients with IDH wild-type glioblastoma. Neurooncol Adv 2020; 2:vdaa114. [PMID: 33134923 PMCID: PMC7586143 DOI: 10.1093/noajnl/vdaa114] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Background Although mutations in the promoter region of the telomerase reverse transcriptase (TERTp) gene are the most common alterations in glioblastoma (GBM), their clinical significance remains unclear. Therefore, we investigated the impact of TERTp status on patient outcome and clinicopathological features in patients with GBM over a long period of follow-up. Methods We retrospectively analyzed 153 cases of GBM. Six patients with isocitrate dehydrogenase 1 (IDH1) or H3F3A gene mutations were excluded from this study. Among the 147 cases of IDH wild-type GBM, 92 (62.6%) had the TERTp mutation. Clinical, immunohistochemical, and genetic factors (BRAF, TP53 gene mutation, CD133, ATRX expression, O6-methylguanine-DNA methyltransferase [MGMT] promoter methylation) and copy number alterations (CNAs) were investigated. Results GBM patients with the TERTp mutation were older at first diagnosis versus those with TERTp wild type (66.0 vs. 60.0 years, respectively, P = .034), and had shorter progression-free survival (7 vs. 10 months, respectively, P = .015) and overall survival (16 vs. 24 months, respectively, P = .017). Notably, magnetic resonance imaging performed showed that TERTp-mutant GBM was strongly associated with multifocal/distant lesions (P = .004). According to the CNA analysis, TERTp mutations were positively correlated with EGFR amp/gain, CDKN2A deletion, and PTEN deletion; however, these mutations were negatively correlated with PDGFR amp/gain, CDK4 gain, and TP53 deletion. Conclusions TERTp mutations were strongly correlated with multifocal/distant lesions and poor prognosis in patients with IDH wild-type GBM. Less aggressive GBM with TERTp wild type may be a distinct clinical and molecular subtype of IDH wild-type GBM.
Collapse
Affiliation(s)
- Zensho Kikuchi
- Department of Neurosurgery, Faculty of Medicine, Yamagata University, Yamagata City, Yamagata, Japan
| | - Ichiyo Shibahara
- Department of Neurosurgery, Kitasato University School of Medicine, Sagamihara City, Kanagawa, Japan
| | - Tetsu Yamaki
- Department of Neurosurgery, Faculty of Medicine, Yamagata University, Yamagata City, Yamagata, Japan
| | - Ema Yoshioka
- Department of Biomedical Research and Innovation, Institute for Clinical Research, National Hospital Organization Osaka National Hospital, Osaka, Japan
| | - Tomoko Shofuda
- Department of Biomedical Research and Innovation, Institute for Clinical Research, National Hospital Organization Osaka National Hospital, Osaka, Japan
| | - Rintaro Ohe
- Department of Pathological Diagnostics, Faculty of Medicine, Yamagata University, Yamagata City, Yamagata, Japan
| | - Ken-Ichiro Matsuda
- Department of Neurosurgery, Faculty of Medicine, Yamagata University, Yamagata City, Yamagata, Japan
| | - Ryuta Saito
- Department of Neurosurgery, Tohoku University Graduate School of Medicine, Sendai City, Miyagi, Japan
| | - Masayuki Kanamori
- Department of Neurosurgery, Tohoku University Graduate School of Medicine, Sendai City, Miyagi, Japan
| | - Yonehiro Kanemura
- Department of Biomedical Research and Innovation, Institute for Clinical Research, National Hospital Organization Osaka National Hospital, Osaka, Japan
| | - Toshihiro Kumabe
- Department of Neurosurgery, Kitasato University School of Medicine, Sagamihara City, Kanagawa, Japan
| | - Teiji Tominaga
- Department of Neurosurgery, Tohoku University Graduate School of Medicine, Sendai City, Miyagi, Japan
| | - Yukihiko Sonoda
- Department of Neurosurgery, Faculty of Medicine, Yamagata University, Yamagata City, Yamagata, Japan
| |
Collapse
|
94
|
Ahmadipour Y, Krings JI, Rauschenbach L, Gembruch O, Chihi M, Darkwah Oppong M, Pierscianek D, Jabbarli R, Sure U, El Hindy N. The influence of subventricular zone involvement in extent of resection and tumor growth pattern of glioblastoma. Innov Surg Sci 2020; 5:127-132. [PMID: 34966832 PMCID: PMC8668024 DOI: 10.1515/iss-2020-0011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 07/07/2020] [Indexed: 12/13/2022] Open
Abstract
OBJECTIVES Isocitrate dehydrogenase (IDH1/2) mutations and O6-alkylguanine DNA methyltransferase (MGMT) promoter methylations are acknowledged survival predictors in patients with glioblastoma (GB). Moreover, tumor growth patterns like multifocality and subventricular zone (SVZ) involvement seem to be associated with poorer outcomes. Here, we wanted to evaluate the influence of the SVZ involvement and the multifocal tumor growth on the extent of surgical resection and its correlation with overall survival (OS) and molecular characteristics of patients with GB. METHODS Adult patients with primary GB who underwent surgery at our department between 2012 and 2014 were included. Preoperative magnetic resonance imaging findings were analyzed with regard to tumor location, presence of multifocality and SVZ involvement. The extent of surgical resection as well as clinical and molecular parameters was collected from electronic patient records. Univariate and multivariate analyses were performed. RESULTS Two hundred eight patients were retrospectively analyzed, comprising 90 (43.3%) female individuals with a mean age of 62.9 (±12.26) years and OS of 10.2 months (±8.9). Unifocal tumor location was a predictor for better OS with a mean of 11.4 (±9.4) months (vs. 8.0 [±7.4] months, p=0.008). Affection of the SVZ was also associated with lower surgical resection rates (p<0.001). SVZ involvement revealed with 7.8 (±7.0) months a significant worse OS [vs. 13.9 (±10.1) months, p<0.001]. All six IDH1/2 wildtype tumors showed an unifocal location (p=0.066). MGMT promoter methylation was not associated with multifocal tumor growth (p=0.649) or SVZ involvement (p=0.348). Multivariate analysis confirmed independent association between the SVZ involvement and OS (p=0.001). CONCLUSION The involvement of the SVZ appears to have an influence on a lower resection rate of GB. This negative impact of SVZ on GB outcome might be related to lesser extent of resection, higher rates of multifocality and greater surgical morbidity but not inevitably to IDH1/2 mutation and MGMT promoter methylation status.
Collapse
Affiliation(s)
- Yahya Ahmadipour
- Department of Neurosurgery, University Hospital Essen, Essen, Germany
- German Cancer Consortium, Partner Site University Hospital Essen, Essen, Germany
| | - Julie-Inga Krings
- Department of Neurosurgery, University Hospital Essen, Essen, Germany
| | - Laurèl Rauschenbach
- Department of Neurosurgery, University Hospital Essen, Essen, Germany
- German Cancer Consortium, Partner Site University Hospital Essen, Essen, Germany
| | - Oliver Gembruch
- Department of Neurosurgery, University Hospital Essen, Essen, Germany
- German Cancer Consortium, Partner Site University Hospital Essen, Essen, Germany
| | - Mehdi Chihi
- Department of Neurosurgery, University Hospital Essen, Essen, Germany
- German Cancer Consortium, Partner Site University Hospital Essen, Essen, Germany
| | - Marvin Darkwah Oppong
- Department of Neurosurgery, University Hospital Essen, Essen, Germany
- German Cancer Consortium, Partner Site University Hospital Essen, Essen, Germany
| | - Daniela Pierscianek
- Department of Neurosurgery, University Hospital Essen, Essen, Germany
- German Cancer Consortium, Partner Site University Hospital Essen, Essen, Germany
| | - Ramazan Jabbarli
- Department of Neurosurgery, University Hospital Essen, Essen, Germany
- German Cancer Consortium, Partner Site University Hospital Essen, Essen, Germany
| | - Ulrich Sure
- Department of Neurosurgery, University Hospital Essen, Essen, Germany
- German Cancer Consortium, Partner Site University Hospital Essen, Essen, Germany
| | - Nicolai El Hindy
- Department of Neurosurgery, University Hospital Essen, Essen, Germany
- German Cancer Consortium, Partner Site University Hospital Essen, Essen, Germany
| |
Collapse
|
95
|
Kim N, Kim SH, Kang SG, Moon JH, Cho J, Suh CO, In Yoon H, Chang JH. ATM mutations improve radio-sensitivity in wild-type isocitrate dehydrogenase-associated high-grade glioma: retrospective analysis using next-generation sequencing data. Radiat Oncol 2020; 15:184. [PMID: 32736562 PMCID: PMC7393839 DOI: 10.1186/s13014-020-01619-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Accepted: 07/13/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND To identify the association between somatic ataxia-telangiectasia mutated (ATM) mutations and improved radio-sensitivity, we retrospectively reviewed next-generation sequencing data from patients diagnosed with isocitrate dehydrogenase (IDH)-wildtype high-grade glioma. METHODS We included 39 individuals with (IDH)-wildtype high-grade glioma (diffuse astrocytoma n = 2, anaplastic astrocytoma n = 10, and glioblastoma n = 27) not subjected to gross tumor resection and undergoing radiation therapy with a median total dose of 60 Gy in 30 fractions. The mutational status of the ATM gene was obtained through next-generation sequencing using a TruSight Tumor 170 cancer panel. Disease progression was defined according to the Response Assessment in Neuro-Oncology (RANO) criteria as well as neurologic and clinical findings. RESULTS Among the 39 samples, ATM mutations (ATM mut(+)) were detected in 26% of cases (n = 10). No significant differences were observed in the characteristics of the patients or tumors. Among the 10 patients in the ATM mut(+) group, there were 6 patients with glioblastoma and 4 patients with anaplastic astrocytoma. Most mutations were missense mutations (n = 8, 80%). With a median follow-up of 16.5 mo (interquartile range, 11.4-19.8), ATM mut(+) exhibited 1-year in-field control of 100% compared with 44.1% in the ATM mut(-) group (p = 0.002). There was no difference in the out-field control rate or overall survival between the two groups (p = 0.861 and p = 0.247, respectively). CONCLUSIONS Our results demonstrated that ATM mutations might be involved in the increased radio-sensitivity with excellent in-field control despite the aggressive nature of IDH-wildtype high-grade glioma. Further studies are necessary to uncover the potential role of ATM as a biomarker and candidate therapeutic target in high-grade gliomas.
Collapse
Affiliation(s)
- Nalee Kim
- Department of Radiation Oncology, Yonsei Cancer Center, Severance Hospital, Yonsei University Health System, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
- Department of Radiation Oncology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Se Hoon Kim
- Department of Pathology, Severance Hospital, Yonsei University Health System, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
- Brain Tumor Center, Severance Hospital, Yonsei University Health System, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Seok-Gu Kang
- Brain Tumor Center, Severance Hospital, Yonsei University Health System, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
- Department of Neurosurgery, Severance Hospital, Yonsei University Health System, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Ju Hyung Moon
- Brain Tumor Center, Severance Hospital, Yonsei University Health System, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
- Department of Neurosurgery, Severance Hospital, Yonsei University Health System, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Jaeho Cho
- Department of Radiation Oncology, Yonsei Cancer Center, Severance Hospital, Yonsei University Health System, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
- Brain Tumor Center, Severance Hospital, Yonsei University Health System, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Chang-Ok Suh
- Department of Radiation Oncology, CHA Bundang Medical Center, CHA University, Gyeonggi-Do, Republic of Korea
| | - Hong In Yoon
- Department of Radiation Oncology, Yonsei Cancer Center, Severance Hospital, Yonsei University Health System, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea.
- Brain Tumor Center, Severance Hospital, Yonsei University Health System, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea.
| | - Jong Hee Chang
- Brain Tumor Center, Severance Hospital, Yonsei University Health System, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea.
- Department of Neurosurgery, Severance Hospital, Yonsei University Health System, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea.
| |
Collapse
|
96
|
Comas S, Luguera E, Molero J, Balaña C, Estival A, Castañer S, Carrato C, Hostalot C, Teixidor P, Villà S. Influence of glioblastoma contact with the subventricular zone on survival and recurrence patterns. Clin Transl Oncol 2020; 23:554-564. [PMID: 32728970 DOI: 10.1007/s12094-020-02448-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 07/02/2020] [Indexed: 11/26/2022]
Abstract
BACKGROUND There is growing evidence that the subventricular zone (SVZ) may be involved in both the initiation and progression of glioblastoma (GB). We aimed to assess tumor proximity to the SVZ as a potential prognostic factor in GB. METHOD Retrospective study of 133 patients diagnosed with primary GB who underwent surgery followed by temozolomide-based chemoradiation between 2010 and 2016. All lesions were classified according to their anatomic relation with the SVZ. We determined the effect of tumor contact with the SVZ on progression-free survival (PFS), overall survival (OS), type, and patterns of recurrence. RESULTS At a median follow-up of 18.6 months (95% CI 15.9-21.2), PFS and OS were 7.5 (95% CI 6.7-8.3) and 13.9 (95% CI 10.9-16.9) months, respectively. On the univariate analyses, initial contact with the SVZ was a factor for poor prognosis for both PFS (6.1 vs. 8.7 months; p = 0.006) and OS (10.6 vs. 17.9 months; p = 0.037). On the multivariate analysis, tumor contact with the SVZ remained statistically significant for PFS, but not OS. Patients with SVZ-contacting tumors presented a higher rate of aggressive clinical progression (30.9% vs. 11.3%; p = 0.007) and contralateral relapse patterns (23.4% vs. 9.1%; p = 0.048). CONCLUSIONS Our results suggest that glioblastoma contact with the SVZ appears to be an independent prognostic factor for poor PFS. The presence of an SVZ-contacting tumor was associated with more aggressive recurrences and a higher rate of contralateral relapses. These findings suggest that this variable may be a new prognostic factor in glioblastoma.
Collapse
Affiliation(s)
- S Comas
- Radiation Oncology, Institut Català D'Oncologia, c/ del Canyet SN, 08916, Badalona, Catalonia, Spain
| | - E Luguera
- Physics, Institut Català D'Oncologia, Badalona, Catalonia, Spain
| | - J Molero
- Physics, Institut Català D'Oncologia, Badalona, Catalonia, Spain
| | - C Balaña
- Medical Oncology, Institut Català D'Oncologia, Badalona, Catalonia, Spain
| | - A Estival
- Medical Oncology, Institut Català D'Oncologia, Badalona, Catalonia, Spain
| | - S Castañer
- Neuroradiology, Institut de Diagnòstic Per La Imatge, Badalona, Catalonia, Spain
| | - C Carrato
- Pathology. Hospital Universitari Germans Trias I Pujol, Badalona, Catalonia, Spain
| | - C Hostalot
- Neurosurgery. Hospital Universitari Germans Trias I Pujol, Badalona, Catalonia, Spain
| | - P Teixidor
- Neurosurgery. Hospital Universitari Germans Trias I Pujol, Badalona, Catalonia, Spain
| | - S Villà
- Radiation Oncology, Institut Català D'Oncologia, c/ del Canyet SN, 08916, Badalona, Catalonia, Spain.
- Universitat Autònoma de Barcelona, Badalona, Catalonia, Spain.
| |
Collapse
|
97
|
Chiang GC, Pisapia DJ, Liechty B, Magge R, Ramakrishna R, Knisely J, Schwartz TH, Fine HA, Kovanlikaya I. The Prognostic Value of MRI Subventricular Zone Involvement and Tumor Genetics in Lower Grade Gliomas. J Neuroimaging 2020; 30:901-909. [PMID: 32721076 DOI: 10.1111/jon.12763] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 06/20/2020] [Accepted: 07/07/2020] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND AND PURPOSE Glioblastomas (GBMs) that involve the subventricular zone (SVZ) have a poor prognosis, possibly due to recruitment of neural stem cells. The purpose of this study was to evaluate whether SVZ involvement by lower grade gliomas (LGG), WHO grade II and III, similarly predicts poorer outcomes. We further assessed whether tumor genetics and cellularity are associated with SVZ involvement and outcomes. METHODS Forty-five consecutive LGG patients with preoperative imaging and next generation sequencing were included in this study. Regional SVZ involvement and whole tumor apparent diffusion coefficient (ADC) values, as a measure of cellularity, were assessed on magnetic resonance imaging. Progression was determined by RANO criteria. Kaplan-Meier curves and Cox regression analyses were used to determine the hazard ratios (HR) for progression and survival. RESULTS Frontal, parietal, temporal, and overall SVZ involvement and ADC values were not associated with progression or survival (P ≥ .05). However, occipital SVZ involvement, seen in two patients, was associated with a higher risk of tumor progression (HR = 6.6, P = .016) and death (HR = 31.5, P = .015), CDKN2A/B mutations (P = .03), and lower ADC histogram values at the 5th (P = .026) and 10th percentiles (P = .046). Isocitrate dehydrogenase, phosphatase and tensin homolog, epidermal growth factor receptor, and cyclin-dependent kinase 4 mutations were also prognostic (P ≤ .05). CONCLUSIONS Unlike in GBM, overall SVZ involvement was not found to strongly predict poor prognosis in LGGs. However, occipital SVZ involvement, though uncommon, was prognostic and found to be associated with CDKN2A/B mutations and tumor hypercellularity. Further investigation into these molecular mechanisms underlying occipital SVZ involvement in larger cohorts is warranted.
Collapse
Affiliation(s)
- Gloria C Chiang
- Department of Radiology, Division of Neuroradiology, Weill Cornell Medicine, NewYork-Presbyterian Hospital, New York, NY
| | - David J Pisapia
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, NewYork-Presbyterian Hospital, New York, NY
| | - Benjamin Liechty
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, NewYork-Presbyterian Hospital, New York, NY
| | - Rajiv Magge
- Department of Neurology, Weill Cornell Medicine, NewYork-Presbyterian Hospital, New York, NY
| | - Rohan Ramakrishna
- Department of Neurosurgery, Weill Cornell Medicine, NewYork-Presbyterian Hospital, New York, NY
| | - Jonathan Knisely
- Department of Radiation Oncology, Weill Cornell Medicine, NewYork-Presbyterian Hospital, New York, NY
| | - Theodore H Schwartz
- Department of Neurosurgery, Weill Cornell Medicine, NewYork-Presbyterian Hospital, New York, NY
| | - Howard A Fine
- Department of Neurology, Weill Cornell Medicine, NewYork-Presbyterian Hospital, New York, NY
| | - Ilhami Kovanlikaya
- Department of Radiology, Division of Neuroradiology, Weill Cornell Medicine, NewYork-Presbyterian Hospital, New York, NY
| |
Collapse
|
98
|
Li Y, Li B, Li W, Wang Y, Akgül S, Treisman DM, Heist KA, Pierce BR, Hoff B, Ho CY, Ferguson DO, Rehemtulla A, Zheng S, Ross BD, Li JZ, Zhu Y. Murine models of IDH-wild-type glioblastoma exhibit spatial segregation of tumor initiation and manifestation during evolution. Nat Commun 2020; 11:3669. [PMID: 32699356 PMCID: PMC7376246 DOI: 10.1038/s41467-020-17382-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 06/26/2020] [Indexed: 12/28/2022] Open
Abstract
Recent characterization of spatiotemporal genomic architecture of IDH-wild-type multifocal glioblastomas (M-GBMs) suggests a clinically unobserved common-ancestor (CA) with a less aggressive phenotype, generating highly genetically divergent malignant gliomas/GBMs in distant brain regions. Using serial MRI/3D-reconstruction, whole-genome sequencing and spectral karyotyping-based single-cell phylogenetic tree building, we show two distinct types of tumor evolution in p53-mutant driven mouse models. Malignant gliomas/GBMs grow as a single mass (Type 1) and multifocal masses (Type 2), respectively, despite both exhibiting loss of Pten/chromosome 19 (chr19) and PI3K/Akt activation with sub-tetraploid/4N genomes. Analysis of early biopsied and multi-segment tumor tissues reveals no evidence of less proliferative diploid/2N lesions in Type 1 tumors. Strikingly, CA-derived relatively quiescent tumor precursors with ancestral diploid/2N genomes and normal Pten/chr19 are observed in the subventricular zone (SVZ), but are distantly segregated from multi focal Type 2 tumors. Importantly, PI3K/Akt inhibition by Rictor/mTORC2 deletion blocks distant dispersal, restricting glioma growth in the SVZ.
Collapse
Affiliation(s)
- Yinghua Li
- Gilbert Family Neurofibromatosis Institute, Children's National Hospital, Washington, DC, 20010, USA
- Center for Cancer and Immunology Research, Children's National Hospital, Washington, DC, 20010, USA
- Center for Neuroscience Research, Children's National Hospital, Washington, DC, 20010, USA
| | - Bo Li
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Wei Li
- Center for Genetic Medicine Research, Children's National Hospital, Washington, DC, 20010, USA
| | - Yuan Wang
- Gilbert Family Neurofibromatosis Institute, Children's National Hospital, Washington, DC, 20010, USA
- Center for Cancer and Immunology Research, Children's National Hospital, Washington, DC, 20010, USA
- Center for Neuroscience Research, Children's National Hospital, Washington, DC, 20010, USA
| | - Seçkin Akgül
- Gilbert Family Neurofibromatosis Institute, Children's National Hospital, Washington, DC, 20010, USA
- Center for Cancer and Immunology Research, Children's National Hospital, Washington, DC, 20010, USA
- Center for Neuroscience Research, Children's National Hospital, Washington, DC, 20010, USA
- Cellular and Molecular Biology Graduate Program, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
- Sid Faithfull Brain Cancer Laboratory, Department of Cell and Molecular Biology, QIMR Berghofer Medical Research Institute, Brisbane, QLD, 4006, Australia
| | - Daniel M Treisman
- Gilbert Family Neurofibromatosis Institute, Children's National Hospital, Washington, DC, 20010, USA
- Center for Cancer and Immunology Research, Children's National Hospital, Washington, DC, 20010, USA
- Center for Neuroscience Research, Children's National Hospital, Washington, DC, 20010, USA
- Cellular and Molecular Biology Graduate Program, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Kevin A Heist
- Department of Radiology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Brianna R Pierce
- Gilbert Family Neurofibromatosis Institute, Children's National Hospital, Washington, DC, 20010, USA
- Center for Cancer and Immunology Research, Children's National Hospital, Washington, DC, 20010, USA
- Center for Neuroscience Research, Children's National Hospital, Washington, DC, 20010, USA
| | - Benjamin Hoff
- Department of Radiology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Cheng-Ying Ho
- Center for Genetic Medicine Research, Children's National Hospital, Washington, DC, 20010, USA
| | - David O Ferguson
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Alnawaz Rehemtulla
- Department of Radiation Oncology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Siyuan Zheng
- Greehey Children's Cancer Research Institute, The University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Brian D Ross
- Department of Radiology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Jun Z Li
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Yuan Zhu
- Gilbert Family Neurofibromatosis Institute, Children's National Hospital, Washington, DC, 20010, USA.
- Center for Cancer and Immunology Research, Children's National Hospital, Washington, DC, 20010, USA.
- Center for Neuroscience Research, Children's National Hospital, Washington, DC, 20010, USA.
- Cellular and Molecular Biology Graduate Program, University of Michigan Medical School, Ann Arbor, MI, 48109, USA.
- GW Cancer Center, The George Washington University, Washington, DC, 20052, USA.
| |
Collapse
|
99
|
Gaps and Doubts in Search to Recognize Glioblastoma Cellular Origin and Tumor Initiating Cells. JOURNAL OF ONCOLOGY 2020; 2020:6783627. [PMID: 32774372 PMCID: PMC7396023 DOI: 10.1155/2020/6783627] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 05/22/2020] [Accepted: 06/13/2020] [Indexed: 12/20/2022]
Abstract
Cellular origin of glioblastoma (GB) is constantly discussed and remains a controversial subject. Unfortunately, neurobiologists are not consistent in defining neural stem cells (NSC) complicating this issue even further. Nevertheless, some suggestions referring to GB origin can be proposed based on comparing GB to central nervous system (CNS) cells. Firstly, GB cells show in vitro differentiation pattern similar to GFAP positive neural cells, rather than classical (GFAP negative) NSC. GB cells in primary cultures become senescent in vitro, similar to GFAP positive neural progenitors, whereas classical NSC proliferate in vitro infinitely. Classical NSC apoptosis triggered by introduction of IDH1R132H undermines hypothesis stating that IDH-mutant (secondary) GB origins from these NSC. Analysis of biological role of typical IDH-wildtype (primary) GB oncogene such as EGFRvIII also favors GFAP positive cells rather than classical NSC as source of GB. Single-cell NGS and single-cell transcriptomics also suggest that GFAP positive cells are GB origin. Considering the above-mentioned and other discussed in articles data, we suggest that GFAP positive cells (astrocytes, radial glia, or GFAP positive neural progenitors) are more likely to be source of GB than classical GFAP negative NSC, and further in vitro assays should be focused on these cells. It is highly possible that several populations of tumor initiating cells (TIC) exist within GB, adjusting their phenotype and even genotype to various environmental conditions including applied therapy and periodically going through different TIC states as well as non-TIC state. This adjustment is driven by changes in number and types of amplicons. The existence of various populations of TIC would enable creating neoplastic foci in different environments and increase tumor aggressiveness.
Collapse
|
100
|
Gan C, Pierscianek D, El Hindy N, Ahmadipour Y, Keyvani K, Sure U, Zhu Y. The predominant expression of cancer stem cell marker ALDH1A3 in tumor infiltrative area is associated with shorter overall survival of human glioblastoma. BMC Cancer 2020; 20:672. [PMID: 32680476 PMCID: PMC7368792 DOI: 10.1186/s12885-020-07153-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 07/08/2020] [Indexed: 12/15/2022] Open
Abstract
Background ALDH1A3 is a cancer stem cell marker in neoplasms including glioblastoma (GBM). However, the comprehensive role of ALDH1A3 in GBM remains unclear. This study attempted to investigate the expression of ALDH1A3 in human GBM tissues and its association with clinical parameters. Methods Thirty primary GBM and 9 control were enrolled in this study. ALDH1A3 mRNA and protein expression levels were detected by RT2-PCR and western blot, respectively. Immunohistochemistry and immunofluorescence staining were performed to evaluate the regional and cellular expression manner of ALDH1A3. The association of ALDH1A3 expression with multiple clinical parameters was analyzed. Results ALDH1A3 protein level, but not mRNA level, in a subgroup of GBM was significantly higher than that in the control group. ALDH1A3 immunoreactivity was detected heterogeneously in individual GBMs. Fifteen of 30 cases showed a positive of ALDH1A3 immunoreactivity which was predominantly observed in the tumor infiltrative area (TI). Double immunofluorescence staining revealed a co-localization of ALDH1A3 with GFAP in glial-shaped cells and in tumor cells. ALDH1A3 immunoreactivity was often merged with CD44, but not with CD68. Moreover, ALDH1A3 expression was positively associated with the tumor edema grade and inversely with overall survival (OS) (median OS: 16 months vs 10 months), but with neither MGMT promoter methylation status nor Ki67 index in GBM. An upregulation of ALDH1A3 was accompanied by a reduced expression of STAT3β and p-STAT3β. Conclusions Inter- and intra-tumoral heterogeneous expression of ALDH1A3 was exhibited in GBMs. A high immunoreactivity of ALDH1A3 in tumor infiltrative area was associated with shorter OS, especially in patients with MGMT promoter methylation. Our findings propose ALDH1A3 not only as a predictive biomarker but also as a potential target for personalized therapy of GBM.
Collapse
Affiliation(s)
- Chao Gan
- Department of Neurosurgery and Spine Surgery, University hospital Essen, University of Duisburg-Essen, Hufelandstrasse 55, 45122, Essen, Germany.,Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Daniela Pierscianek
- Department of Neurosurgery and Spine Surgery, University hospital Essen, University of Duisburg-Essen, Hufelandstrasse 55, 45122, Essen, Germany
| | - Nicolai El Hindy
- Department of Neurosurgery and Spine Surgery, University hospital Essen, University of Duisburg-Essen, Hufelandstrasse 55, 45122, Essen, Germany.,Present Address: Department of Spine- and Peripheral Nerve-Surgery, St. Christophorus 625 Hospital, Werne, Germany
| | - Yahya Ahmadipour
- Department of Neurosurgery and Spine Surgery, University hospital Essen, University of Duisburg-Essen, Hufelandstrasse 55, 45122, Essen, Germany
| | - Kathy Keyvani
- Institute of Neuropathology, University hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Ulrich Sure
- Department of Neurosurgery and Spine Surgery, University hospital Essen, University of Duisburg-Essen, Hufelandstrasse 55, 45122, Essen, Germany
| | - Yuan Zhu
- Department of Neurosurgery and Spine Surgery, University hospital Essen, University of Duisburg-Essen, Hufelandstrasse 55, 45122, Essen, Germany.
| |
Collapse
|