51
|
Ali OA, Doherty E, Bell WJ, Fradet T, Hudak J, Laliberte MT, Mooney DJ, Emerich DF. The efficacy of intracranial PLG-based vaccines is dependent on direct implantation into brain tissue. J Control Release 2011; 154:249-57. [PMID: 21704093 DOI: 10.1016/j.jconrel.2011.06.021] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2010] [Revised: 05/17/2011] [Accepted: 06/08/2011] [Indexed: 01/14/2023]
Abstract
We previously engineered a macroporous, polymer-based vaccine that initially produces GM-CSF gradients to recruit local dendritic cells and subsequently presents CpG oligonucleotides, and tumor lysate to cell infiltrates to induce immune cell activation and immunity against tumor cells in peripheral tumor models. Here, we demonstrate that this system eradicates established intracranial glioma following implantation into brain tissue, whereas implantation in resection cavities obviates vaccine efficacy. Rats bearing seven-day old, intracranial glioma tumors were treated with PLG vaccines implanted into the tumor bed, resulting in retention of contralateral forelimb function (day 17) that is compromised by tumor formation in control animals, and 90% long-term survival (>100 days). Similar benefits were observed in animals receiving tumor resection plus vaccine implants into the adjacent parenchyma, but direct implantation of PLG vaccines into the resection cavity conferred no benefit. This dissociation of efficacy was likely related to GM-CSF distribution, as implantation of PLG vaccines within brain tissue produced significant GM-CSF gradients for prolonged periods, which was not detected after implantation in resection cavities. These studies demonstrate that PLG vaccine efficacy is correlated to GM-CSF gradient formation, which requires direct implantation into brain tissue, and justify further exploration of this approach for glioma treatment.
Collapse
Affiliation(s)
- Omar A Ali
- Wyss Institute for Biologically Inspired Engineering, Cambridge, MA 02138, USA
| | | | | | | | | | | | | | | |
Collapse
|
52
|
Garbayo E, Ansorena E, Lanciego JL, Blanco-Prieto MJ, Aymerich MS. Long-term neuroprotection and neurorestoration by glial cell-derived neurotrophic factor microspheres for the treatment of Parkinson's disease. Mov Disord 2011; 26:1943-7. [DOI: 10.1002/mds.23793] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2010] [Revised: 04/19/2011] [Accepted: 04/21/2011] [Indexed: 02/01/2023] Open
|
53
|
Ding D, Zhu Z, Li R, Li X, Wu W, Jiang X, Liu B. Nanospheres-incorporated implantable hydrogel as a trans-tissue drug delivery system. ACS NANO 2011; 5:2520-2534. [PMID: 21428432 DOI: 10.1021/nn102138u] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
The objective of this study is to investigate the anticancer efficacy of a drug delivery system comprised of gelatin hydrogel (jelly) containing cisplatin (CDDP)-loaded gelatin/poly(acrylic acid) nanoparticles by peritumoral implantation and to compare the treatment response between the implantation administration of the jelly and intravenous (i.v.) administration of the nanoparticles. It is found that the implantation of the jelly containing CDDP-loaded nanoparticles on tumor tissue exhibited significantly superior efficacy in impeding tumor growth and prolonging the lifetime of mice than that of i.v. injection of CDDP-loaded nanoparticles in a murine hepatoma H(22) cancer model. An in vivo biodistribution assay performed on tumor-bearing mice demonstrated that the jelly implant caused much higher concentration and retention of CDDP in tumor and lower CDDP accumulation in nontarget organs than that of i.v. injected nanoparticles. Immunohistochemical analysis demonstrated that the nanoparticles from the jelly can be distributed in tumor tissue not only by their diffusion but also by the vasculature in the implantation region into tumor interior, enabling CDDP to efficiently reach more viable cells of tumor compared with i.v. injected nanoparticles. Thus, nanoparticles for peritumoral chemotherapy are promising for higher treatment efficacy due to increased tumor-to-normal organ drug uptake ratios and improved drug penetration in tumors.
Collapse
Affiliation(s)
- Dan Ding
- Laboratory of Mesoscopic Chemistry and Department of Polymer Science & Engineering, College of Chemistry & Chemical Engineering, Nanjing University, Nanjing, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
54
|
Traitements antitumoraux locaux. Neurochirurgie 2010; 56:483-5. [DOI: 10.1016/j.neuchi.2010.07.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2010] [Accepted: 07/19/2010] [Indexed: 11/17/2022]
|
55
|
Traitement chirurgical des glioblastomes. Neurochirurgie 2010; 56:477-82. [DOI: 10.1016/j.neuchi.2010.07.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2010] [Accepted: 07/01/2010] [Indexed: 11/24/2022]
|
56
|
Gilert A, Machluf M. Nano to micro delivery systems: targeting angiogenesis in brain tumors. JOURNAL OF ANGIOGENESIS RESEARCH 2010; 2:20. [PMID: 20932320 PMCID: PMC2964525 DOI: 10.1186/2040-2384-2-20] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2010] [Accepted: 10/08/2010] [Indexed: 01/09/2023]
Abstract
Treating brain tumors using inhibitors of angiogenesis is extensively researched and tested in clinical trials. Although anti-angiogenic treatment holds a great potential for treating primary and secondary brain tumors, no clinical treatment is currently approved for brain tumor patients. One of the main hurdles in treating brain tumors is the blood brain barrier - a protective barrier of the brain, which prevents drugs from entering the brain parenchyma. As most therapeutics are excluded from the brain there is an urgent need to develop delivery platforms which will bypass such hurdles and enable the delivery of anti-angiogenic drugs into the tumor bed. Such delivery systems should be able to control release the drug or a combination of drugs at a therapeutic level for the desired time. In this mini-review we will discuss the latest improvements in nano and micro drug delivery platforms that were designed to deliver inhibitors of angiogenesis to the brain.
Collapse
Affiliation(s)
- Ariel Gilert
- Faculty of Biotechnology and Food Engineering, Technion Israel Institute of Technology, Haifa, Israel.
| | | |
Collapse
|
57
|
McGirt MJ, Brem H. Carmustine wafers (Gliadel) plus concomitant temozolomide therapy after resection of malignant astrocytoma: growing evidence for safety and efficacy. Ann Surg Oncol 2010; 17:1729-31. [PMID: 20422453 DOI: 10.1245/s10434-010-1092-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
58
|
Westphal M, Stummer W. [Local therapy of primary brain tumors]. DER NERVENARZT 2010; 81:913-4, 916-7. [PMID: 20664996 DOI: 10.1007/s00115-010-2954-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
In recent years further forms of local treatment for primary brain tumors have been developed in addition to resection and radiation. There are basically three principles for local therapy, intralesional therapy for primary or recurrent non-resectable tumors as well as intracavitary and pericavitary therapy following microscopic surgical complete resection. Local therapy procedures are complex and suffer from special difficulties in the evaluation of their effectiveness by imaging techniques, because they are inevitably accompanied by alterations in the imaging, barrier disturbances and contrast medium uptake.
Collapse
Affiliation(s)
- M Westphal
- Kopf- und Neurozentrum, Klinik und Poliklinik für Neurochirurgie, Universitätsklinikum Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Deutschland.
| | | |
Collapse
|
59
|
Bauchet L, Mathieu-Daudé H, Fabbro-Peray P, Rigau V, Fabbro M, Chinot O, Pallusseau L, Carnin C, Lainé K, Schlama A, Thiebaut A, Patru MC, Bauchet F, Lionnet M, Wager M, Faillot T, Taillandier L, Figarella-Branger D, Capelle L, Loiseau H, Frappaz D, Campello C, Kerr C, Duffau H, Reme-Saumon M, Trétarre B, Daures JP, Henin D, Labrousse F, Menei P, Honnorat J. Oncological patterns of care and outcome for 952 patients with newly diagnosed glioblastoma in 2004. Neuro Oncol 2010; 12:725-35. [PMID: 20364023 PMCID: PMC2940657 DOI: 10.1093/neuonc/noq030] [Citation(s) in RCA: 138] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2009] [Accepted: 12/07/2009] [Indexed: 11/14/2022] Open
Abstract
This report, an audit requested by the French government, describes oncological patterns of care, prognostic factors, and survival for patients with newly diagnosed and histologically confirmed glioblastoma multiforme (GBM) in France. The French Brain Tumor DataBase, which is a national multidisciplinary (neurosurgeons, neuropathologists, radiotherapists, neurooncologists, epidemiologists, and biostatisticians) network, prospectively collected initial data for the cases of GBM in 2004, and a specific data card was used to retrospectively collect data on the management and follow-up care of these patients between January 1, 2004, and December 1, 2006. We recorded 952 cases of GBM (male/female ratio 1.6, median age 63.9 years, mean preoperative Karnofsky performance status [KPS] 79). Surgery consisted of resection (RS; n = 541) and biopsy (n = 411); 180 patients did not have subsequent oncological treatment. After surgery, first-line treatment (n = 772) consisted of radiotherapy (RT) and temozolomide (TMZ) concomitant +/- adjuvant in 314 patients, RT alone in 236 patients, chemotherapy (CT) alone in 157 patients, and other treatment modalities in 65 patients. Median overall survival was 286 days (95% CI, 266-314) and was significantly affected by age, KPS, and tumor location. Median survival (days, 95% CI) associated with these main strategies, when analyzed by a surgical group, were as follows: RS + RT-TMZ((n=224)): 476 (441-506), biopsy + RT-TMZ((n=90)): 329 (301-413), RS + RT((n=147)): 363 (331-431), biopsy + RT((n=89)): 178 (153-237), RS + CT((n=61)): 245 (190-361), biopsy + CT((n=96)): 244 (198-280), and biopsy only((n=118)): 55 (46-71). This study illustrates the usefulness of a national brain tumor database. To our knowledge, this work is the largest report of recent GBM management in Europe.
Collapse
Affiliation(s)
- Luc Bauchet
- Department of Neurosurgery, Hospital Gui de Chauliac, CHU Montpellier, 80 avenue A. Fliche, 34295 Montpellier cedex 5, France.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
60
|
Grunda JM, Fiveash J, Palmer CA, Cantor A, Fathallah-Shaykh HM, Nabors LB, Johnson MR. Rationally designed pharmacogenomic treatment using concurrent capecitabine and radiotherapy for glioblastoma; gene expression profiles associated with outcome. Clin Cancer Res 2010; 16:2890-8. [PMID: 20460474 PMCID: PMC2871063 DOI: 10.1158/1078-0432.ccr-09-3151] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
PURPOSE Previous preclinical studies suggested that concurrent capecitabine and radiation could be an effective new treatment modality for glioblastoma (GBM). In the current study, we investigate toxicity and response to this regimen and explore associations between gene expression and patient outcome. EXPERIMENTAL DESIGN Eighteen newly diagnosed GBM patients received concurrent capecitabine at 625 mg/m2 BID (25% escalation) and irradiation (60 Gy total) for 6 weeks followed by 4 weeks of capecitabine only. Maintenance capecitabine was administered for 14 days every 3 weeks until progression or unacceptable toxicity. Expression analysis of 94 genes involved in capecitabine metabolism and radiation response was done on tissues obtained before therapy. The relationship of gene expression with time-to-progression (TTP) and overall survival (OS) was investigated using univariate Cox proportional hazards regression, semi-supervised principle component analysis, and class prediction modeling. RESULTS The maximum tolerated dose of capecitabine was 625 mg/m2 BID. Median patient TTP and OS were 247 and 367 days, respectively. Cox regression identified 24 genes significantly (P<0.025) associated with patient outcome. Semi-supervised principle component analysis identified two patient populations significantly different in both TTP (P=0.005) and OS (P=0.015). Class prediction modeling determined that eight genes (RAD54B, MTOR, DCTD, APEX2, TK1, RRM2, SLC29A1, and ERCC6) could collectively classify patients into outcome subgroups with 100% accuracy and precision. CONCLUSIONS Capecitabine and concurrent radiation for newly diagnosed GBM seems to be well tolerated and comparable to temozolomide and radiation. A gene expression profile predictive of patient outcome that may be useful in patient stratification for therapy was also elucidated.
Collapse
Affiliation(s)
- Jessica M Grunda
- Division of Clinical Pharmacology, Department of Pharmacology and Toxicology, Department of Radiation Oncology, Division of Neuropathology, Department of Pathology, Division of Preventive Medicine, Department of Medicine, and Division of Neuro-oncology, Department of Neurology, University of Alabama at Birmingham, Birmingham, Alabama
| | | | | | | | | | | | | |
Collapse
|
61
|
Baltes S, Freund I, Lewis AL, Nolte I, Brinker T. Doxorubicin and irinotecan drug-eluting beads for treatment of glioma: a pilot study in a rat model. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2010; 21:1393-402. [PMID: 20162337 DOI: 10.1007/s10856-009-3803-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2009] [Accepted: 06/10/2009] [Indexed: 05/05/2023]
Abstract
Despite some progress in therapy, the prognosis of patients with malignant gliomas remains poor. Local delivery of cytostatics to the tumour has been proven to be an efficacious therapeutic approach but which nevertheless needs further improvements. Drug Eluting Beads (DEB), have been developed as drug delivery embolisation systems for use in trans-arterial chemoembolisation. We tested in a rat model of malignant glioma, whether DEB, loaded with doxorubicin or irinotecan, may be used for local treatment of brain tumours. Unloaded and drug loaded DEB were implanted into the brains of healthy and tumour bearing BD IX rats followed by histological investigations and survival assessment. Intracerebral implantation of unloaded DEB caused no significant local tissue damage, whilst both doxorubicin and irinotecan DEB improved survival time significantly. However, a significant local toxicity was found after the implantation of doxorubicin DEB but not with irinotecan DEB. We concluded that irinotecan appears to be superior in terms of the risk-benefit ratio and that DEB may be used for local treatment of brain tumours.
Collapse
Affiliation(s)
- Steffen Baltes
- International Neuroscience Institute GmbH, Hannover, Germany
| | | | | | | | | |
Collapse
|
62
|
Brain Tumors. Neurosurgery 2010. [DOI: 10.1007/978-3-540-79565-0_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
63
|
Kudo M, Jono H, Shinriki S, Yano S, Nakamura H, Makino K, Hide T, Muta D, Ueda M, Ota K, Ando Y, Kuratsu JI. Antitumor effect of humanized anti–interleukin-6 receptor antibody (tocilizumab) on glioma cell proliferation. J Neurosurg 2009; 111:219-25. [DOI: 10.3171/2008.12.jns081284] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Object
Interleukin-6 (IL-6) is a pleiotropic cytokine that regulates diverse physiological functions, including cell proliferation and survival. Recent studies have shown that IL-6 expression is often elevated in response to several types of glioma. Although IL-6 is said to play an important role in glioma, the involvement of IL-6 signaling has been quite controversial. The aim of this study was to evaluate the involvement of IL-6 signaling in glioma and the inhibitory effect of IL-6 signaling on glioma tumor proliferation.
Methods
The expression of IL-6 receptors (IL-6Rs) was evaluated in glioma tissues by means of immunohistochemical analysis, and the involvement of IL-6 signaling in glioblastoma multiforme (GBM) U87MG cell proliferation was also determined. In addition, to examine the inhibitory effect of IL-6 signaling on glioma cell proliferation, the authors investigated the effects of tocilizumab, the humanized anti–human IL-6R antibody in U87MG cells.
Results
Increased immunoreactivity for IL-6R was predominantly found in the cytoplasm of endothelial cells in all GBM samples. Inhibition of IL-6 signaling by both IL-6– and IL-6R–specific small interfering RNA and AG490, a specific inhibitor of JAK2 phosphorylation, suppressed glioma cell proliferation. Furthermore, tocilizumab, a clinically developed humanized anti–human IL-6R antibody, exerted an antiproliferative effect on cells from the GBM cell line U87MG via the IL-6R–dependent JAK-STAT3 pathway.
Conclusions
The IL-6 signaling pathway plays an important role in glioma cell proliferation, and tocilizumab exerts an antitumor effect in U87MG glioma cells. These results may bring new insight into the molecular pathogenesis of glioma and may lead to a new therapeutic intervention.
Collapse
Affiliation(s)
- Mareina Kudo
- 1Departments of Neurosurgery and
- 2Diagnostic Medicine, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Hirofumi Jono
- 2Diagnostic Medicine, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Satoru Shinriki
- 2Diagnostic Medicine, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | | | | | | | | | | | - Mitsuharu Ueda
- 2Diagnostic Medicine, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Kazutoshi Ota
- 2Diagnostic Medicine, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Yukio Ando
- 2Diagnostic Medicine, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | | |
Collapse
|
64
|
Slager J, Tyler B, Shikanov A, Domb AJ, Shogen K, Sidransky D, Brem H. Local controlled delivery of anti-neoplastic RNAse to the brain. Pharm Res 2009; 26:1838-46. [PMID: 19415468 DOI: 10.1007/s11095-009-9893-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2009] [Accepted: 04/11/2009] [Indexed: 11/25/2022]
Abstract
PURPOSE Antineoplastic RNAse proteins, also known as Amphibinases, have been shown effective against various solid tumors but were found selectively neurotoxic to Purkinje cells in the cerebellum. This work describes the use of a waxy biodegradable poly(ricinoleic-co-sebacic acid) for the local controlled delivery of cytotoxic amphibinases in the parietal lobe of the brain in an attempt to overcome cerebellar neuronal toxicity while affecting glioma cells. METHODS Amphibinase analogues were encapsulated in poly(ricinoleic-co-sebacic acid) formulations using mix-melt technology and loaded onto surgical foam. In-vitro release was monitored by BCA colorimetry and by RNAse specific bioactivity. The implants were inserted into rat brains bearing 9L glioma to assess toxicity and efficacy. RESULTS The various formulations showed extended linear release for several weeks with minimal burst effect. Best in-vivo efficacy was obtained with ACC7201 containing implants, resulting in the extension of the median survival from 13 to 18 days with 13% long-term survivors. CONCLUSION Antineoplastic proteins were released from a p(SA-RA) polyanhydride implants in a controlled manner, providing efficacy against 9L glioma, while evading neurotoxicity in the cerebellum. The controlled release of Amphibinases forms the potential for a new therapy against brain tumors.
Collapse
Affiliation(s)
- Joram Slager
- Department of Neurosurgery, Johns Hopkins University, CRB2-2M41, 1550 Orleans Street, Baltimore, Maryland 21231, USA.
| | | | | | | | | | | | | |
Collapse
|
65
|
Abstract
Experimental therapies for glioma are mostly based on the insights into the cell biology of the tumors studied by modern methods including genomics and metabolomics. In surgery, intraoperative visualization of residual tumor by fluorescence has helped with the radicality of resection. Although temozolamide has become an important agent in the combined radiochemotherapy of newly diagnosed glioblastoma, understanding the underlying mechanisms of action and resistance has led to alterations in dosing schemes, which may be more beneficial than the introduction of new agents. Targeted therapies that have been highly promising in other solid tumors have been rather disappointing in gliomas, not for the lack of promising targets but most likely due to inefficacy of the reagents to reach their target. Direct delivery of reagents with interstitial infusion via convection-enhanced delivery has proven to be safe and effective, but the potential of that technology has not been exploited because many technicalities are still to be worked out, and better, more selective reagents are needed. Gene therapy has been reactivated with direct adeno-viral application to transfer HSV-Tk into tumor cells by adenoviral vectors, still awaiting final analysis. Oncolytic viruses are also under long-term refinement and await definitive pivotal clinical trials. Immunotherapy is currently focusing on vaccination strategies using either specifically pulsed dendritic cells or immunization with a specific peptide, which is unique to the vIII variant of the epidemal growth factor receptor. An area attracting immense attention for basic research as well as translation into clinical use is the characterization of neural stem cells and their theraputic potential when appropriately manipulated.In general, there is a wide spectrum of specific neuro-oncological therapy developments, which are not only extrapolated from general oncology but also based on translational research in the field of glioma biology.
Collapse
|
66
|
Post-mortem studies in glioblastoma patients treated with thermotherapy using magnetic nanoparticles. Biomaterials 2008; 30:52-7. [PMID: 18848723 DOI: 10.1016/j.biomaterials.2008.09.044] [Citation(s) in RCA: 209] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2008] [Accepted: 09/15/2008] [Indexed: 11/22/2022]
Abstract
Patients with glioblastoma multiforme (GBM), the most common primary brain tumor in adults, have still a poor prognosis though new strategies of radio- and chemotherapy have been developed. Recently, our group demonstrated the feasibility, tolerability and anti-tumoral effects of a newly developed therapeutic approach, termed thermotherapy using magnetic nanoparticles or magnetic fluid hyperthermia (MFH), in a murine model of malignant glioma. Currently, the efficacy of MFH is being evaluated in a phase II study. Here, we report on post-mortem neuropathological findings of patients with GBM receiving MFH. In brain autopsies the installed magnetic nanoparticles were dispersed or distributed as aggregates within geographic tumor necroses, restricted in distribution to the sites of instillation. Therefore, our results underscore the need for multiple trajectories of instillation. The typical GBM necrosis with pseudopalisading was free of particles. Dispersed particles and particle aggregates were phagocytosed mainly by macrophages whereas glioblastoma cells showed an uptake to a minor extent. MFH therapy further promotes uptake of nanoparticles in macrophages, likely as a consequence of tumor inherent and therapy induced formation of necrosis with subsequent infiltration and activation of phagocytes. We did not observe bystander effects of MFH such as sarcomatous tumour formation, formation of a sterile abscess or foreign body giant cell reaction. Furthermore, all patients did not present any clinical symptoms related to possible adverse effects of MFH.
Collapse
|
67
|
Model simulation and experimental validation of intratumoral chemotherapy using multiple polymer implants. Med Biol Eng Comput 2008; 46:1039-49. [PMID: 18523817 DOI: 10.1007/s11517-008-0354-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2007] [Accepted: 05/08/2008] [Indexed: 10/22/2022]
Abstract
Radiofrequency ablation has emerged as a minimally invasive option for liver cancer treatment, but local tumor recurrence is common. To eliminate residual tumor cells in the ablated tumor, biodegradable polymer millirods have been designed for local drug (e.g., doxorubicin) delivery. A limitation of this method has been the extent of drug penetration into the tumor (<5 mm), especially in the peripheral tumor rim where thermal ablation is less effective. To provide drug concentration above the therapeutic level as needed throughout a large tumor, implant strategies with multiple millirods were devised using a computational model. This dynamic, 3-D mass balance model of drug distribution in tissue was used to simulate the consequences of various numbers of implants in different locations. Experimental testing of model predictions was performed in a rabbit VX2 carcinoma model. This study demonstrates the value of multiple implants to provide therapeutic drug levels in large ablated tumors.
Collapse
|
68
|
Petit S, Garcion E, Benoit JP, Menei P. Chimiothérapie locale dans les gliomes malins : de l’injection à la seringue aux nanotechnologies. Rev Neurol (Paris) 2008; 164:547-53. [DOI: 10.1016/j.neurol.2008.03.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2007] [Accepted: 03/13/2008] [Indexed: 10/22/2022]
|
69
|
Weinberg BD, Blanco E, Gao J. Polymer Implants for Intratumoral Drug Delivery and Cancer Therapy. J Pharm Sci 2008; 97:1681-702. [PMID: 17847077 DOI: 10.1002/jps.21038] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
To address the need for minimally invasive treatment of unresectable tumors, intratumoral polymer implants have been developed to release a variety of chemotherapeutic agents for the locoregional therapy of cancer. These implants, also termed "polymer millirods," were designed to provide optimal drug release kinetics to improve drug delivery efficiency and antitumor efficacy when treating unresectable tumors. Modeling of drug transport properties in different tissue environments has provided theoretical insights on rational implant design, and several imaging techniques have been established to monitor the local drug concentrations surrounding these implants both ex vivo and in vivo. Preliminary antitumor efficacy and drug distribution studies in a rabbit liver tumor model have shown that these implants can restrict tumor growth in small animal tumors (diameter < 1 cm). In the future, new approaches, such as three-dimensional (3-D) drug distribution modeling and the use of multiple drug-releasing implants, will be used to extend the efficacy of these implants in treating larger tumors more similar to intractable human tumors.
Collapse
Affiliation(s)
- Brent D Weinberg
- Department of Biomedical Engineering, Case Western Reserve University, 10900 Euclid Ave, Cleveland, Ohio 44106, USA
| | | | | |
Collapse
|
70
|
Kreye F, Siepmann F, Siepmann J. Lipid implants as drug delivery systems. Expert Opin Drug Deliv 2008; 5:291-307. [DOI: 10.1517/17425247.5.3.291] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
71
|
Liu R, Chang SM, Prados M. Recent advances in the treatment of central nervous system tumors. ACTA ACUST UNITED AC 2008. [DOI: 10.1016/j.uct.2007.11.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
72
|
Grunda JM, Nabors LB, Palmer CA, Chhieng DC, Steg A, Mikkelsen T, Diasio RB, Zhang K, Allison D, Grizzle WE, Wang W, Gillespie GY, Johnson MR. Increased Expression of Thymidylate Synthetase (TS), Ubiquitin Specific Protease 10 (USP10) and Survivin is Associated with Poor Survival in Glioblastoma Multiforme (GBM). J Neurooncol 2006; 80:261-74. [PMID: 16773218 DOI: 10.1007/s11060-006-9191-4] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2006] [Accepted: 05/01/2006] [Indexed: 01/17/2023]
Abstract
BACKGROUND The limited success of empirically designed treatment paradigms for patients diagnosed with glioblastoma multiforme (GBM) emphasizes the need for rationally designed treatment strategies based on the molecular profile of tumor samples and their correlation to clinical parameters. METHODS In the current study, we utilize a novel real-time quantitative low density array (RTQ-LDA) to identify differentially expressed genes in de novo GBM tissues obtained from patients with distinctly different clinical outcomes. Total RNA was isolated from a cohort of 21 GBM specimens obtained from patients with either good (long-term survival (LTS) >36 months post surgery, n = 8) or poor (died of the disease (DOD) <24 months post surgery, n = 13) prognosis. Non-neoplastic brain tissue (n = 5) was obtained from patients who underwent surgery for refractory epilepsy. Demographic data was assessed for correlation with survival using Cox proportional hazards models. Sufficient RNA was available to use RTQ-LDA to quantify the expression of 93 independent genes in 5 LTS, 4 DOD, and 5 non-neoplastic brain samples. The eight differentially expressed genes identified by RTQ-LDA in LTS versus DOD (P <or= 0.050) were subsequently quantified in all 21 GBM samples by real-time quantitative PCR (RTQ). RESULTS A correlation between younger patients and good prognosis was demonstrated (P <or= 0.05). The combination of RTQ-LDA and RTQ identified thymidylate synthetase (TS), ubiquitin specific protease 10 (USP10), and survivin as significantly over-expressed (P <or= 0.050) in DOD compared to LTS patients. Ribonucleotide reductase subunit M2 (RRM2) was identified as tumor-specific, but not associated with survival. CONCLUSIONS Taken collectively, TS, USP10, survivin and RRM2 may be useful as prognostic indicators and/or in the development of rationally designed treatment protocols.
Collapse
Affiliation(s)
- Jessica M Grunda
- Departments of Pharmacology and Toxicology, Division of Clinical Pharmacology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
73
|
Maier-Hauff K, Rothe R, Scholz R, Gneveckow U, Wust P, Thiesen B, Feussner A, von Deimling A, Waldoefner N, Felix R, Jordan A. Intracranial thermotherapy using magnetic nanoparticles combined with external beam radiotherapy: results of a feasibility study on patients with glioblastoma multiforme. J Neurooncol 2006; 81:53-60. [PMID: 16773216 DOI: 10.1007/s11060-006-9195-0] [Citation(s) in RCA: 406] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2006] [Accepted: 05/09/2006] [Indexed: 11/26/2022]
Abstract
We aimed to evaluate the feasibility and tolerability of the newly developed thermotherapy using magnetic nanoparticles on recurrent glioblastoma multiforme. Fourteen patients received 3-dimensional image guided intratumoral injection of aminosilane coated iron oxide nanoparticles. The patients were then exposed to an alternating magnetic field to induce particle heating. The amount of fluid and the spatial distribution of the depots were planned in advance by means of a specially developed treatment planning software following magnetic resonance imaging (MRI). The actually achieved magnetic fluid distribution was measured by computed tomography (CT), which after matching to pre-operative MRI data enables the calculation of the expected heat distribution within the tumor in dependence of the magnetic field strength. Patients received 4-10 (median: 6) thermotherapy treatments following instillation of 0.1-0.7 ml (median: 0.2) of magnetic fluid per ml tumor volume and single fractions (2 Gy) of a radiotherapy series of 16-70 Gy (median: 30). Thermotherapy using magnetic nanoparticles was tolerated well by all patients with minor or no side effects. Median maximum intratumoral temperatures of 44.6 degrees C (42.4-49.5 degrees C) were measured and signs of local tumor control were observed. In conclusion, deep cranial thermotherapy using magnetic nanoparticles can be safely applied on glioblastoma multiforme patients.
Collapse
|
74
|
Siepmann J, Siepmann F, Florence AT. Local controlled drug delivery to the brain: mathematical modeling of the underlying mass transport mechanisms. Int J Pharm 2006; 314:101-19. [PMID: 16647231 DOI: 10.1016/j.ijpharm.2005.07.027] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2005] [Accepted: 07/12/2005] [Indexed: 10/24/2022]
Abstract
The mass transport mechanisms involved in the controlled delivery of drugs to living brain tissue are complex and yet not fully understood. Often the drug is embedded within a polymeric or lipidic matrix, which is directly administered into the brain tissue, that is, intracranially. Different types of systems, including microparticles and disc- or rod-shaped implants are used to control the release rate and, thus, to optimize the drug concentrations at the site of action in the brain over prolonged periods of time. Most of these dosage forms are biodegradable to avoid the need for the removal of empty remnants after drug exhaustion. Various physical and chemical processes are involved in the control of drug release from these systems, including water penetration, drug dissolution, degradation of the matrix and drug diffusion. Once the drug has been released from the delivery system, it has to be transported through the living brain tissue to the target site(s). Again, a variety of phenomena, including diffusion, drug metabolism and degradation, passive or active uptake into CNS tissue and convection can be of importance for the fate of the drug. An overview is given of the current knowledge of the nature of barriers to free access of drug to tumour sites within the brain and the state of the art of: (i) mathematical modeling approaches describing the physical transport processes and chemical reactions which can occur in different types of intracranially administered drug delivery systems, and of (ii) theories quantifying the mass transport phenomena occurring after drug release in the living tissue. Both, simplified as well as complex mathematical models are presented and their major advantages and shortcomings discussed. Interestingly, there is a significant lack of mechanistically realistic, comprehensive theories describing both parts in detail, namely, drug transport in the dosage form and in the living brain tissue. High quality experimental data on drug concentrations in the brain tissue are difficult to obtain, hence this is itself an issue in testing mathematical approaches. As a future perspective, the potential benefits and limitations of these mathematical theories aiming to facilitate the design of advanced intracranial drug delivery systems and to improve the efficiency of the respective pharmacotherapies are discussed.
Collapse
Affiliation(s)
- J Siepmann
- College of Pharmacy, Freie Universitaet Berlin, Kelchstr. 31, 12169 Berlin, Germany.
| | | | | |
Collapse
|
75
|
Faisant N, Akiki J, Siepmann F, Benoit JP, Siepmann J. Effects of the type of release medium on drug release from PLGA-based microparticles: Experiment and theory. Int J Pharm 2006; 314:189-97. [PMID: 16510257 DOI: 10.1016/j.ijpharm.2005.07.030] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2005] [Accepted: 07/02/2005] [Indexed: 10/25/2022]
Abstract
The major objectives of the present study were: (i) to prepare 5-fluorouracil (5-FU)-loaded, poly(lactic-co-glycolic acid) (PLGA)-based microparticles, which can be used for the treatment of brain tumors, (ii) to study the effects of the type of release medium on the resulting drug release kinetics, and (iii) to get further insight into the underlying drug release mechanisms. Spherical microparticles were prepared by a solvent extraction method and characterized using different techniques, including size exclusion chromatography (SEC), differential scanning calorimetry (DSC), scanning electron microscopy (SEM) and particle size analysis before and upon exposure to various release media. Interestingly, very different drug release patterns (including mono-, bi- and tri-phasic ones) were observed, depending on the pH, osmolarity and temperature of the release medium. An adequate mathematical theory was used to quantitatively describe the experimentally measured 5-FU release patterns. The model considers the limited solubility of the drug, polymer degradation as well as drug diffusion and allowed to determine system and release medium specific parameters, such as the diffusion coefficient of the drug. In particular, the pH and temperature of the release medium were found to be of major importance for the resulting release patterns. Based on the obtained knowledge the selection of an appropriate release medium for in vitro tests simulating in vivo conditions can be facilitated, and "stress tests" can be developed allowing to get rapid feedback on the release characteristics of a specific batch.
Collapse
Affiliation(s)
- N Faisant
- INSERM U646, University of Angers, 10, rue André Boquel, 49100 Angers, France
| | | | | | | | | |
Collapse
|
76
|
Guse C, Koennings S, Kreye F, Siepmann F, Goepferich A, Siepmann J. Drug release from lipid-based implants: Elucidation of the underlying mass transport mechanisms. Int J Pharm 2006; 314:137-44. [PMID: 16503388 DOI: 10.1016/j.ijpharm.2005.08.030] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2005] [Accepted: 08/22/2005] [Indexed: 11/17/2022]
Abstract
The aim of this study was to better understand the mass transport mechanisms involved in the control of drug release from lipid-based implants. Different types of triglyceride-based cylinders were prepared by compression. Glycerol-trilaurate, -trimyristate, -tripalmitate and -tristearate were used as model lipids, lysozyme and pyranine as model drugs. The effects of several formulation and processing parameters on the resulting drug release kinetics in phosphate buffer pH 7.4 were studied and the obtained results analyzed using Fick's second law of diffusion. Interestingly, lysozyme release from implants prepared by compression of a lyophilized emulsion (containing dissolved drug and lipid) was found to be purely diffusion-controlled, irrespective of the type of triglyceride. In contrast, the dominating release mechanism depended on the type of lipid in the case of pyranine-loaded implants prepared by compression of a lyophilized lipid-drug solution: with glycerol-trilaurate and -tristearate the systems were found to be purely diffusion-controlled, whereas also other mass transport phenomena are of importance in glycerol-trimyristate and -tripalmitate-based devices. Similarly, changes in the size of the compressed lipid-drug particles, drug loading and compression force significantly affected the underlying release mechanisms. The addition of a drug-free, poly(lactic-co-glycolic acid) (PLGA)-based coating around the implants delayed the onset of pyranine release for about 20 days. Interestingly, the subsequent drug release was purely diffusion-controlled, irrespective of the type of triglyceride. Also the addition of different amounts (and particle size fractions) of saccharose to pyranine-loaded implants led to purely diffusion-controlled drug release.
Collapse
Affiliation(s)
- C Guse
- College of Pharmacy, University of Regensburg, Universitaetsstr. 31, 93040 Regensburg, Germany
| | | | | | | | | | | |
Collapse
|
77
|
Elkharraz K, Faisant N, Guse C, Siepmann F, Arica-Yegin B, Oger JM, Gust R, Goepferich A, Benoit JP, Siepmann J. Paclitaxel-loaded microparticles and implants for the treatment of brain cancer: preparation and physicochemical characterization. Int J Pharm 2006; 314:127-36. [PMID: 16490330 DOI: 10.1016/j.ijpharm.2005.07.028] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2005] [Accepted: 07/12/2005] [Indexed: 11/21/2022]
Abstract
The aim of this study was to prepare different types of paclitaxel-loaded, PLGA-based microparticles and lipidic implants, which can directly be injected into the brain tissue. Releasing the drug in a time-controlled manner over several weeks, these systems are intended to optimize the treatment of brain tumors. The latter is particularly difficult because of the blood-brain barrier (BBB), hindering most drugs to reach the target tissue upon systemic administration. Especially paclitaxel (being effective for the treatment of ovarian, breast, lung and other cancers) is not able to cross the BBB to a notable extent since it is a substrate of the efflux transporter P-glycoprotein. Both, biodegradable microparticles as well as small, cylindrical, glycerol tripalmitate-based implants (which can be injected using standard needles) were prepared with different paclitaxel loadings. The effects of several formulation and processing parameters on the resulting drug release kinetics were investigated in phosphate buffer pH 7.4 as well as in a diethylnicotinamide (DENA)/phosphate buffer mixture. Using DSC, SEM, SEC and optical microscopy deeper insight into the underlying drug release mechanisms could be gained. The presence of DENA in the release medium significantly increased the solubility of paclitaxel, accelerated PLGA degradation, increased the mobility of the polymer and drug molecules and fundamentally altered the geometry of the systems, resulting in increased paclitaxel release rates.
Collapse
Affiliation(s)
- K Elkharraz
- College of Pharmacy, Freie Universitaet Berlin, Kelchstr. 31, 12169 Berlin, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
78
|
Menei P, Montero-Menei C, Venier MC, Benoit JP. Drug delivery into the brain using poly(lactide-co-glycolide) microspheres. Expert Opin Drug Deliv 2005; 2:363-76. [PMID: 16296760 DOI: 10.1517/17425247.2.2.363] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Among the strategies developed for drug delivery into the CNS, locally controlled drug release by the way of an implantable polymeric device has been developed in recent years. The first polymeric devices developed were macroscopic implants needing open surgery for implantation. Over the last few years, poly(lactide-co-glycolide) microspheres have been shown to be safe and promising for drug delivery into the brain. Poly(lactide-co-glycolide) is biodegradable and biocompatible with brain tissue. Due to their size, these microspheres can be easily implanted by stereotaxy in discrete, precise and functional areas of the brain without causing damage to the surrounding -tissue. Brain tumour treatments have been developed using this approach and clinical trials have been performed. Potential applications in neurodegenerative diseases have also been explored, particularly neurotrophic factor delivery and cell therapy.
Collapse
Affiliation(s)
- Philippe Menei
- Centre Hospitalo-Universitaire, Departement de Neurochirurgie, Angers, France.
| | | | | | | |
Collapse
|
79
|
Literature Alerts. Drug Deliv 2005. [DOI: 10.1080/10717540500201502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|