51
|
Hersh DS, Kim AJ, Winkles JA, Eisenberg HM, Woodworth GF, Frenkel V. Emerging Applications of Therapeutic Ultrasound in Neuro-oncology: Moving Beyond Tumor Ablation. Neurosurgery 2017; 79:643-654. [PMID: 27552589 DOI: 10.1227/neu.0000000000001399] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
: Transcranial focused ultrasound (FUS) can noninvasively transmit acoustic energy with a high degree of accuracy and safety to targets and regions within the brain. Technological advances, including phased-array transducers and real-time temperature monitoring with magnetic resonance thermometry, have created new opportunities for FUS research and clinical translation. Neuro-oncology, in particular, has become a major area of interest because FUS offers a multifaceted approach to the treatment of brain tumors. FUS has the potential to generate cytotoxicity within tumor tissue, both directly via thermal ablation and indirectly through radiosensitization and sonodynamic therapy; to enhance the delivery of therapeutic agents to brain tumors by transiently opening the blood-brain barrier or improving distribution through the brain extracellular space; and to modulate the tumor microenvironment to generate an immune response. In this review, we describe each of these applications for FUS, the proposed mechanisms of action, and the preclinical and clinical studies that have set the foundation for using FUS in neuro-oncology. ABBREVIATIONS BBB, blood-brain barrierCED, convection-enhanced delivery5-Ala, 5-aminolevulinic acidFUS, focused ultrasoundGBM, glioblastoma multiformeHSP, heat shock proteinMRgFUS, magnetic resonance-guided focused ultrasoundpFUS, pulsed focused ultrasound.
Collapse
Affiliation(s)
- David S Hersh
- *Department of Neurosurgery,‡Marlene and Stewart Greenebaum Cancer Center,¶Center for Biomedical Engineering and Technology,‖Department of Surgery,#Center for Vascular and Inflammatory Diseases, and**Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, Maryland;§Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland
| | | | | | | | | | | |
Collapse
|
52
|
Lee I, Kalkanis S, Hadjipanayis CG. Stereotactic Laser Interstitial Thermal Therapy for Recurrent High-Grade Gliomas. Neurosurgery 2017; 79 Suppl 1:S24-S34. [PMID: 27861323 DOI: 10.1227/neu.0000000000001443] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND The value of maximal safe cytoreductive surgery in recurrent high-grade gliomas (HGGs) is gaining wider acceptance. However, patients may harbor recurrent tumors that may be difficult to access with open surgery. Laser interstitial thermal therapy (LITT) is emerging as a technique for treating a variety of brain pathologies, including primary and metastatic tumors, radiation necrosis, and epilepsy. OBJECTIVE To review the role of LITT in the treatment of recurrent HGGs, for which current treatments have limited efficacy, and to discuss the possible role of LITT in the disruption of the blood-brain barrier to increase delivery of chemotherapy locoregionally. METHODS A MEDLINE search was performed to identify 17 articles potentially appropriate for review. Of these 17, 6 reported currently commercially available systems and as well as magnetic resonance thermometry to monitor the ablation and, thus, were thought to be most appropriate for this review. These studies were then reviewed for complications associated with LITT. Ablation volume, tumor coverage, and treatment times were also reviewed. RESULTS Sixty-four lesions in 63 patients with recurrent HGGs were treated with LITT. Frontal (n = 34), temporal (n = 14), and parietal (n = 16) were the most common locations. Permanent neurological deficits were seen in 7 patients (12%), vascular injuries occurred in 2 patients (3%), and wound infection was observed in 1 patient (2%). Ablation coverage of the lesions ranged from 78% to 100%. CONCLUSION Although experience using LITT for recurrent HGGs is growing, current evidence is insufficient to offer a recommendation about its role in the treatment paradigm for recurrent HGGs. ABBREVIATIONS BBB, blood-brain barrierFDA, US Food and Drug AdministrationGBM, glioblastoma multiformeHGG, high-grade gliomaLITT, laser interstitial thermal therapy.
Collapse
Affiliation(s)
- Ian Lee
- *Hermelin Brain Tumor Center, Department of Neurosurgery, Henry Ford Hospital, Detroit, Michigan; ‡Department of Neurosurgery, Mt. Sinai Beth Israel Hospital, New York City, New York
| | | | | |
Collapse
|
53
|
Buttrick SS, Shah AH, Basil GW, Komotar RJ. The Future of Cranial Neurosurgery-Adapting New Approaches. Neurosurgery 2017; 64:144-150. [PMID: 28899040 DOI: 10.1093/neuros/nyx214] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 04/03/2017] [Indexed: 01/11/2023] Open
Affiliation(s)
- Simon S Buttrick
- Department of Neurological Surgery, University of Miami/Jackson Memorial Hospital, Miami, Florida
| | - Ashish H Shah
- Department of Neurological Surgery, University of Miami/Jackson Memorial Hospital, Miami, Florida
| | - Gregory W Basil
- Department of Neurological Surgery, University of Miami/Jackson Memorial Hospital, Miami, Florida
| | - Ricardo J Komotar
- Department of Neurological Surgery, University of Miami/Jackson Memorial Hospital, Miami, Florida
| |
Collapse
|
54
|
Jeys L, Morris G, Evans S, Stevenson J, Parry M, Gregory J. Surgical Innovation in Sarcoma Surgery. Clin Oncol (R Coll Radiol) 2017; 29:489-499. [PMID: 28502707 DOI: 10.1016/j.clon.2017.04.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 03/30/2017] [Accepted: 04/05/2017] [Indexed: 12/24/2022]
Abstract
The field of orthopaedic oncology relies on innovative techniques to resect and reconstruct a bone or soft tissue tumour. This article reviews some of the most recent and important innovations in the field, including biological and implant reconstructions, together with computer-assisted surgery. It also looks at innovations in other fields of oncology to assess the impact and change that has been required by surgeons; topics including surgical margins, preoperative radiotherapy and future advances are discussed.
Collapse
Affiliation(s)
- L Jeys
- Royal Orthopaedic Hospital, Birmingham, UK; School of Health and Life Sciences, Aston University, Birmingham, UK.
| | - G Morris
- Royal Orthopaedic Hospital, Birmingham, UK
| | - S Evans
- Royal Orthopaedic Hospital, Birmingham, UK
| | | | - M Parry
- Royal Orthopaedic Hospital, Birmingham, UK
| | - J Gregory
- Royal Orthopaedic Hospital, Birmingham, UK
| |
Collapse
|
55
|
Habboub G, Sharma M, Barnett GH, Mohammadi AM. A novel combination of two minimally invasive surgical techniques in the management of refractory radiation necrosis: Technical note. J Clin Neurosci 2017; 35:117-121. [DOI: 10.1016/j.jocn.2016.09.020] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 09/26/2016] [Indexed: 11/25/2022]
|
56
|
Mangraviti A, Gullotti D, Tyler B, Brem H. Nanobiotechnology-based delivery strategies: New frontiers in brain tumor targeted therapies. J Control Release 2016; 240:443-453. [DOI: 10.1016/j.jconrel.2016.03.031] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Revised: 02/05/2016] [Accepted: 03/18/2016] [Indexed: 02/06/2023]
|
57
|
Hynynen K, Jones RM. Image-guided ultrasound phased arrays are a disruptive technology for non-invasive therapy. Phys Med Biol 2016; 61:R206-48. [PMID: 27494561 PMCID: PMC5022373 DOI: 10.1088/0031-9155/61/17/r206] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Focused ultrasound offers a non-invasive way of depositing acoustic energy deep into the body, which can be harnessed for a broad spectrum of therapeutic purposes, including tissue ablation, the targeting of therapeutic agents, and stem cell delivery. Phased array transducers enable electronic control over the beam geometry and direction, and can be tailored to provide optimal energy deposition patterns for a given therapeutic application. Their use in combination with modern medical imaging for therapy guidance allows precise targeting, online monitoring, and post-treatment evaluation of the ultrasound-mediated bioeffects. In the past there have been some technical obstacles hindering the construction of large aperture, high-power, densely-populated phased arrays and, as a result, they have not been fully exploited for therapy delivery to date. However, recent research has made the construction of such arrays feasible, and it is expected that their continued development will both greatly improve the safety and efficacy of existing ultrasound therapies as well as enable treatments that are not currently possible with existing technology. This review will summarize the basic principles, current statures, and future potential of image-guided ultrasound phased arrays for therapy.
Collapse
Affiliation(s)
- Kullervo Hynynen
- Physical Sciences Platform, Sunnybrook Research Institute, Toronto, Canada. Department of Medical Biophysics, University of Toronto, Toronto, Canada. Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Canada
| | | |
Collapse
|
58
|
Xiao X, Huang Z, Rube MA, Melzer A. Investigation of active tracking for robotic arm assisted magnetic resonance guided focused ultrasound ablation. Int J Med Robot 2016; 13. [DOI: 10.1002/rcs.1768] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Revised: 07/15/2016] [Accepted: 07/20/2016] [Indexed: 12/18/2022]
Affiliation(s)
- Xu Xiao
- Institute for Medical Science and Technology; University of Dundee; Dundee UK
| | - Zhihong Huang
- School of Engineering, Physics and Mathematics; University of Dundee; Dundee UK
| | - Martin A. Rube
- Institute for Medical Science and Technology; University of Dundee; Dundee UK
| | - Andreas Melzer
- Institute for Medical Science and Technology; University of Dundee; Dundee UK
| |
Collapse
|
59
|
Piper RJ, Hughes MA, Moran CM, Kandasamy J. Focused ultrasound as a non-invasive intervention for neurological disease: a review. Br J Neurosurg 2016; 30:286-93. [DOI: 10.3109/02688697.2016.1173189] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
60
|
Jones RM, O'Reilly MA, Hynynen K. Experimental demonstration of passive acoustic imaging in the human skull cavity using CT-based aberration corrections. Med Phys 2016; 42:4385-400. [PMID: 26133635 DOI: 10.1118/1.4922677] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
PURPOSE Experimentally verify a previously described technique for performing passive acoustic imaging through an intact human skull using noninvasive, computed tomography (CT)-based aberration corrections Jones et al. [Phys. Med. Biol. 58, 4981-5005 (2013)]. METHODS A sparse hemispherical receiver array (30 cm diameter) consisting of 128 piezoceramic discs (2.5 mm diameter, 612 kHz center frequency) was used to passively listen through ex vivo human skullcaps (n = 4) to acoustic emissions from a narrow-band fixed source (1 mm diameter, 516 kHz center frequency) and from ultrasound-stimulated (5 cycle bursts, 1 Hz pulse repetition frequency, estimated in situ peak negative pressure 0.11-0.33 MPa, 306 kHz driving frequency) Definity™ microbubbles flowing through a thin-walled tube phantom. Initial in vivo feasibility testing of the method was performed. The performance of the method was assessed through comparisons to images generated without skull corrections, with invasive source-based corrections, and with water-path control images. RESULTS For source locations at least 25 mm from the inner skull surface, the modified reconstruction algorithm successfully restored a single focus within the skull cavity at a location within 1.25 mm from the true position of the narrow-band source. The results obtained from imaging single bubbles are in good agreement with numerical simulations of point source emitters and the authors' previous experimental measurements using source-based skull corrections O'Reilly et al. [IEEE Trans. Biomed. Eng. 61, 1285-1294 (2014)]. In a rat model, microbubble activity was mapped through an intact human skull at pressure levels below and above the threshold for focused ultrasound-induced blood-brain barrier opening. During bursts that led to coherent bubble activity, the location of maximum intensity in images generated with CT-based skull corrections was found to deviate by less than 1 mm, on average, from the position obtained using source-based corrections. CONCLUSIONS Taken together, these results demonstrate the feasibility of using the method to guide bubble-mediated ultrasound therapies in the brain. The technique may also have application in ultrasound-based cerebral angiography.
Collapse
Affiliation(s)
- Ryan M Jones
- Physical Sciences Platform, Sunnybrook Research Institute, Toronto, Ontario M4N 3M5, Canada and Department of Medical Biophysics, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - Meaghan A O'Reilly
- Physical Sciences Platform, Sunnybrook Research Institute, Toronto, Ontario M4N 3M5, Canada
| | - Kullervo Hynynen
- Physical Sciences Platform, Sunnybrook Research Institute, Toronto, Ontario M4N 3M5, Canada; Department of Medical Biophysics, University of Toronto, Toronto, Ontario M5G 1L7, Canada; and Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario M5S 3G9, Canada
| |
Collapse
|
61
|
Abstract
Like cardiovascular disease and cancer, neurological disorders present an increasing challenge for an ageing population. Whereas nonpharmacological procedures are routine for eliminating cancer tissue or opening a blocked artery, the focus in neurological disease remains on pharmacological interventions. Setbacks in clinical trials and the obstacle of access to the brain for drug delivery and surgery have highlighted the potential for therapeutic use of ultrasound in neurological diseases, and the technology has proved useful for inducing focused lesions, clearing protein aggregates, facilitating drug uptake, and modulating neuronal function. In this Review, we discuss milestones in the development of therapeutic ultrasound, from the first steps in the 1950s to recent improvements in technology. We provide an overview of the principles of diagnostic and therapeutic ultrasound, for surgery and transient opening of the blood-brain barrier, and its application in clinical trials of stroke, Parkinson disease and chronic pain. We discuss the promising outcomes of safety and feasibility studies in preclinical models, including rodents, pigs and macaques, and efficacy studies in models of Alzheimer disease. We also consider the challenges faced on the road to clinical translation.
Collapse
|
62
|
Monteith S, Snell J, Eames M, Kassell NF, Kelly E, Gwinn R. Transcranial magnetic resonance-guided focused ultrasound for temporal lobe epilepsy: a laboratory feasibility study. J Neurosurg 2016; 125:1557-1564. [PMID: 26871207 DOI: 10.3171/2015.10.jns1542] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECTIVE In appropriate candidates, the treatment of medication-refractory mesial temporal lobe epilepsy (MTLE) is primarily surgical. Traditional anterior temporal lobectomy yields seizure-free rates of 60%-70% and possibly higher. The field of magnetic resonance-guided focused ultrasound (MRgFUS) is an evolving field in neurosurgery. There is potential to treat MTLE with MRgFUS; however, it has appeared that the temporal lobe structures were beyond the existing treatment envelope of currently available clinical systems. The purpose of this study was to determine whether lesional temperatures can be achieved in the target tissue and to assess potential safety concerns. METHODS Cadaveric skulls with tissue-mimicking gels were used as phantom targets. An ablative volume was then mapped out for a "virtual temporal lobectomy." These data were then used to create a target volume on the InSightec ExAblate Neuro system. The target was the amygdala, uncus, anterior 20 mm of hippocampus, and adjacent parahippocampal gyrus. This volume was approximately 5cm3. Thermocouples were placed on critical skull base structures to monitor skull base heating. RESULTS Adequate focusing of the ultrasound energy was possible in the temporal lobe structures. Using clinically relevant ultrasound parameters (power 900 W, duration 10 sec, frequency 650 kHz), ablative temperatures were not achieved (maximum temperature 46.1°C). Increasing sonication duration to 30 sec demonstrated lesional temperatures in the mesial temporal lobe structures of interest (up to 60.5°C). Heating of the skull base of up to 24.7°C occurred with 30-sec sonications. CONCLUSIONS MRgFUS thermal ablation of the mesial temporal lobe structures relevant in temporal lobe epilepsy is feasible in a laboratory model. Longer sonications were required to achieve temperatures that would create permanent lesions in brain tissue. Heating of the skull base occurred with longer sonications. Blocking algorithms would be required to restrict ultrasound beams causing skull base heating. In the future, MRgFUS may present a minimally invasive, non-ionizing treatment of MTLE.
Collapse
Affiliation(s)
- Stephen Monteith
- Department of Neurosurgery, Swedish Neuroscience Institute, Seattle, Washington
| | - John Snell
- Focused Ultrasound Foundation, Charlottesville; and
| | - Mathew Eames
- Focused Ultrasound Foundation, Charlottesville; and
| | - Neal F Kassell
- Department of Neurosurgery, University of Virginia, Charlottesville, Virginia
| | - Edward Kelly
- Focused Ultrasound Foundation, Charlottesville; and
| | - Ryder Gwinn
- Department of Neurosurgery, Swedish Neuroscience Institute, Seattle, Washington
| |
Collapse
|
63
|
Alkins R, Burgess A, Kerbel R, Wels WS, Hynynen K. Early treatment of HER2-amplified brain tumors with targeted NK-92 cells and focused ultrasound improves survival. Neuro Oncol 2016; 18:974-81. [PMID: 26819443 DOI: 10.1093/neuonc/nov318] [Citation(s) in RCA: 94] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2015] [Accepted: 12/03/2015] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND Malignant brain tumors have a dismal prognosis, with residual tumor remaining after surgery necessitating adjuvant chemoradiotherapy. The blood-brain barrier hinders many chemotherapeutic agents, resulting in modest treatment efficacy. We previously demonstrated that targeted natural killer (NK)-92 cells could be delivered to desired regions of the brain using MRI-guided focused ultrasound and Definity microbubbles. Targeted NK-92 cells have advantages over many systemic therapies including their specific cytotoxicity to malignant cells (particularly those expressing the target antigen), ability to spare healthy cells, and being unaffected by efflux channels. METHODS We investigated whether longitudinal treatments with targeted NK-92 cells, focused ultrasound, and microbubbles could slow tumor growth and improve survival in an orthotopic HER2-amplified rodent brain tumor model using a human breast cancer line as a prototype. The HER2 receptor, involved in cell growth and differentiation, is expressed by both primary and metastatic brain tumors. Breast cancers with HER2 amplification have a higher risk of CNS metastasis and poorer prognosis. RESULTS Early intensive treatment with targeted NK-92 cells and ultrasound improved survival compared with biweekly treatments or either treatment alone. The intensive treatment paradigm resulted in long-term survival in 50% of subjects. CONCLUSIONS Many tumor proteins could be exploited for targeted therapy with the NK-92 cell line; combined with the mounting safety evidence for transcranial ultrasound, these results may soon be translatable to a highly targeted treatment option for patients with brain tumors.
Collapse
Affiliation(s)
- Ryan Alkins
- Physical Sciences Platform, Sunnybrook Research Institute, Toronto, Ontario, Canada (R.A., A.B., K.H.); Medical Biophysics, University of Toronto, Toronto, Ontario, Canada (R.A., R.K., K.H.); Biological Sciences Platform, Sunnybrook Research Institute, Toronto, Ontario, Canada (R.K.); Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt am Main, Germany (W.S.W.)
| | - Alison Burgess
- Physical Sciences Platform, Sunnybrook Research Institute, Toronto, Ontario, Canada (R.A., A.B., K.H.); Medical Biophysics, University of Toronto, Toronto, Ontario, Canada (R.A., R.K., K.H.); Biological Sciences Platform, Sunnybrook Research Institute, Toronto, Ontario, Canada (R.K.); Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt am Main, Germany (W.S.W.)
| | - Robert Kerbel
- Physical Sciences Platform, Sunnybrook Research Institute, Toronto, Ontario, Canada (R.A., A.B., K.H.); Medical Biophysics, University of Toronto, Toronto, Ontario, Canada (R.A., R.K., K.H.); Biological Sciences Platform, Sunnybrook Research Institute, Toronto, Ontario, Canada (R.K.); Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt am Main, Germany (W.S.W.)
| | - Winfried S Wels
- Physical Sciences Platform, Sunnybrook Research Institute, Toronto, Ontario, Canada (R.A., A.B., K.H.); Medical Biophysics, University of Toronto, Toronto, Ontario, Canada (R.A., R.K., K.H.); Biological Sciences Platform, Sunnybrook Research Institute, Toronto, Ontario, Canada (R.K.); Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt am Main, Germany (W.S.W.)
| | - Kullervo Hynynen
- Physical Sciences Platform, Sunnybrook Research Institute, Toronto, Ontario, Canada (R.A., A.B., K.H.); Medical Biophysics, University of Toronto, Toronto, Ontario, Canada (R.A., R.K., K.H.); Biological Sciences Platform, Sunnybrook Research Institute, Toronto, Ontario, Canada (R.K.); Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt am Main, Germany (W.S.W.)
| |
Collapse
|
64
|
Kealy J, Campbell M. The Blood-Brain Barrier in Glioblastoma: Pathology and Therapeutic Implications. RESISTANCE TO TARGETED ANTI-CANCER THERAPEUTICS 2016. [DOI: 10.1007/978-3-319-46505-0_4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
65
|
Xiong X, Sun Y, Sattiraju A, Jung Y, Mintz A, Hayasaka S, Li KCP. Remote spatiotemporally controlled and biologically selective permeabilization of blood-brain barrier. J Control Release 2015; 217:113-20. [PMID: 26334482 DOI: 10.1016/j.jconrel.2015.08.044] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Revised: 08/19/2015] [Accepted: 08/24/2015] [Indexed: 12/13/2022]
Abstract
The blood-brain barrier (BBB), comprised of brain endothelial cells with tight junctions (TJ) between them, regulates the extravasation of molecules and cells into and out of the central nervous system (CNS). Overcoming the difficulty of delivering therapeutic agents to specific regions of the brain presents a major challenge to treatment of a broad range of brain disorders. Current strategies for BBB opening are invasive, not specific, and lack precise control over the site and timing of BBB opening, which may limit their clinical translation. In the present report, we describe a novel approach based on a combination of stem cell delivery, heat-inducible gene expression and mild heating with high-intensity focused ultrasound (HIFU) under MRI guidance to remotely permeabilize BBB. The permeabilization of the BBB will be controlled with, and limited to where selected pro-inflammatory factors will be secreted secondary to HIFU activation, which is in the vicinity of the engineered stem cells and consequently both the primary and secondary disease foci. This therapeutic platform thus represents a non-invasive way for BBB opening with unprecedented spatiotemporal precision, and if properly and specifically modified, can be clinically translated to facilitate delivery of different diagnostic and therapeutic agents which can have great impact in treatment of various disease processes in the central nervous system.
Collapse
Affiliation(s)
- Xiaobing Xiong
- Department of Radiology, Wake Forest School of Medicine, Winston-Salem 27157, USA
| | - Yao Sun
- Department of Radiology, Wake Forest School of Medicine, Winston-Salem 27157, USA
| | - Anirudh Sattiraju
- Comprehensive Cancer Center, Brain Tumor Center of Excellence, Wake Forest School of Medicine, Winston-Salem 27157, USA
| | - Youngkyoo Jung
- Department of Radiology, Wake Forest School of Medicine, Winston-Salem 27157, USA; Comprehensive Cancer Center, Brain Tumor Center of Excellence, Wake Forest School of Medicine, Winston-Salem 27157, USA; Department of Biomedical Engineering, Wake Forest School of Medicine, Winston-Salem 27157, USA
| | - Akiva Mintz
- Department of Radiology, Wake Forest School of Medicine, Winston-Salem 27157, USA; Comprehensive Cancer Center, Brain Tumor Center of Excellence, Wake Forest School of Medicine, Winston-Salem 27157, USA
| | - Satoru Hayasaka
- Department of Radiology, Wake Forest School of Medicine, Winston-Salem 27157, USA; Department of Biostatistics Sciences, Wake Forest School of Medicine, Winston-Salem 27157, USA
| | - King C P Li
- Department of Radiology, Wake Forest School of Medicine, Winston-Salem 27157, USA.
| |
Collapse
|
66
|
Ghanouni P, Pauly KB, Elias WJ, Henderson J, Sheehan J, Monteith S, Wintermark M. Transcranial MRI-Guided Focused Ultrasound: A Review of the Technologic and Neurologic Applications. AJR Am J Roentgenol 2015; 205:150-9. [PMID: 26102394 PMCID: PMC4687492 DOI: 10.2214/ajr.14.13632] [Citation(s) in RCA: 151] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
OBJECTIVE This article reviews the physical principles of MRI-guided focused ultra-sound and discusses current and potential applications of this exciting technology. CONCLUSION MRI-guided focused ultrasound is a new minimally invasive method of targeted tissue thermal ablation that may be of use to treat central neuropathic pain, essential tremor, Parkinson tremor, and brain tumors. The system has also been used to temporarily disrupt the blood-brain barrier to allow targeted drug delivery to brain tumors.
Collapse
Affiliation(s)
- Pejman Ghanouni
- Stanford University, Department of Radiology, Division of Body MRI, Stanford, CA
| | - Kim Butts Pauly
- Stanford University, Departments of Radiology and Electrical Engineering and Bioengineering, Stanford, CA
| | - W. Jeff Elias
- University of Virginia, Department of Neurosurgery, Charlottesville, VA
| | - Jaimie Henderson
- Stanford University, Department of Neurosurgery and Neurology and Neurological Sciences, Stanford, CA
| | - Jason Sheehan
- University of Virginia, Department of Neurosurgery, Charlottesville, VA
| | | | - Max Wintermark
- Stanford University, Department of Radiology, Division of Neuroradiology, Stanford, CA
| |
Collapse
|
67
|
Coluccia D, Fandino J, Schwyzer L, O'Gorman R, Remonda L, Anon J, Martin E, Werner B. First noninvasive thermal ablation of a brain tumor with MR-guided focused ultrasound. J Ther Ultrasound 2014; 2:17. [PMID: 25671132 PMCID: PMC4322509 DOI: 10.1186/2050-5736-2-17] [Citation(s) in RCA: 163] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2014] [Accepted: 08/27/2014] [Indexed: 11/21/2022] Open
Abstract
Magnetic resonance-guided focused ultrasound surgery (MRgFUS) allows for precise
thermal ablation of target tissues. While this emerging modality is increasingly
used for the treatment of various types of extracranial soft tissue tumors, it
has only recently been acknowledged as a modality for noninvasive neurosurgery.
MRgFUS has been particularly successful for functional neurosurgery, whereas its
clinical application for tumor neurosurgery has been delayed for various
technical and procedural reasons. Here, we report the case of a 63-year-old
patient presenting with a centrally located recurrent glioblastoma who was
included in our ongoing clinical phase I study aimed at evaluating the
feasibility and safety of transcranial MRgFUS for brain tumor ablation. Applying
25 high-power sonications under MR imaging guidance, partial tumor ablation
could be achieved without provoking neurological deficits or other adverse
effects in the patient. This proves, for the first time, the feasibility of
using transcranial MR-guided focused ultrasound to safely ablate substantial
volumes of brain tumor tissue.
Collapse
Affiliation(s)
- Daniel Coluccia
- Department of Neurosurgery, Kantonsspital Aarau, Tellstrasse, 5001 Aarau, Switzerland ; Brain Tumor Center, Kantonsspital Aarau, 5001 Aarau, Switzerland
| | - Javier Fandino
- Department of Neurosurgery, Kantonsspital Aarau, Tellstrasse, 5001 Aarau, Switzerland ; Brain Tumor Center, Kantonsspital Aarau, 5001 Aarau, Switzerland
| | - Lucia Schwyzer
- Department of Neurosurgery, Kantonsspital Aarau, Tellstrasse, 5001 Aarau, Switzerland ; Brain Tumor Center, Kantonsspital Aarau, 5001 Aarau, Switzerland
| | - Ruth O'Gorman
- Center for MR Research, University Children's Hospital, 8032 Zürich, Switzerland ; Children's Research Center, University Children's Hospital, 8032 Zürich, Switzerland
| | - Luca Remonda
- Division of Neuroradiology, Department of Radiology, Kantonsspital Aarau, 5001 Aarau, Switzerland
| | - Javier Anon
- Division of Neuroradiology, Department of Radiology, Kantonsspital Aarau, 5001 Aarau, Switzerland
| | - Ernst Martin
- Center for MR Research, University Children's Hospital, 8032 Zürich, Switzerland ; Children's Research Center, University Children's Hospital, 8032 Zürich, Switzerland
| | - Beat Werner
- Center for MR Research, University Children's Hospital, 8032 Zürich, Switzerland ; Children's Research Center, University Children's Hospital, 8032 Zürich, Switzerland
| |
Collapse
|
68
|
Freyhardt P, Heckmann L, Beck A, Stolzenburg N, Schnorr J, Kamp J, Rinnenthal JL, Hamm B, Günther RW, Streitparth F. MR-guided high-focused ultrasound for renal sympathetic denervation-a feasibility study in pigs. J Ther Ultrasound 2014; 2:12. [PMID: 25232481 PMCID: PMC4160576 DOI: 10.1186/2050-5736-2-12] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Accepted: 06/09/2014] [Indexed: 11/19/2022] Open
Abstract
Background Renal sympathetic denervation has recently gained clinical relevance for the treatment of therapy-resistant hypertension. Denervation is currently mainly performed using catheter-based transarterial radiofrequency ablation of periarterial sympathetic nerve fibers. Since this approach has numerous limitations, we conducted a study to evaluate the feasibility, safety, and efficacy of magnetic resonance-guided high-focused ultrasound (MRgHiFUS) for renal sympathetic denervation in pigs as an alternative to catheter-based ablation. Methods Renal periarterial MRgHiFUS was performed under general anesthesia in ten pigs. Blood pressure measurements and magnetic resonance imaging (MRI) of the kidneys, renal arteries, and surrounding structures were obtained immediately before and after the interventions and after 4 weeks. Histological examinations of periarterial tissues and determination of renal norepinephrine (NE) concentration were performed to assess treatment efficacy. Results and discussion In each pig, 9.8 ± 2.6 sonications with a mean energy deposition of 2,670 ± 486 J were performed. The procedure was well tolerated by all pigs. No major complications occurred. MRgHiFUS induced periarterial edema in three pigs, but only one pig showed corresponding histological changes. The NE level of the treated kidney was lower in five pigs (-8% to -38%) compared to the untreated side. Overall, there was no significant difference between the NE values of both kidneys in any of the treated pigs. Postinterventional MRI indicated absorption of ultrasound energy at the transverse process and fascia. Conclusion MRgHiFUS had some thermal periarterial effects but failed to induce renal denervation. Insufficient energy deposition is most likely attributable to a small acoustic window with beam path impediment in the porcine model. Since HiFUS treatment in humans is expected to be easier to perform due to better access to renal sympathetic nerves, further studies of this method are desirable to investigate the potential of MRgHiFUS as an alternative for patients not suitable for catheter-based renal sympathicolysis.
Collapse
Affiliation(s)
- Patrick Freyhardt
- Department of Radiology, Charité - Universitätsmedizin Berlin, Augustenburger Platz 1, Berlin 13353, Germany
| | - Lilian Heckmann
- Department of Radiology, Charité - Universitätsmedizin Berlin, Augustenburger Platz 1, Berlin 13353, Germany
| | - Alexander Beck
- Department of Radiology, Charité - Universitätsmedizin Berlin, Augustenburger Platz 1, Berlin 13353, Germany
| | - Nicola Stolzenburg
- Department of Radiology, Charité - Universitätsmedizin Berlin, Augustenburger Platz 1, Berlin 13353, Germany
| | - Jörg Schnorr
- Department of Radiology, Charité - Universitätsmedizin Berlin, Augustenburger Platz 1, Berlin 13353, Germany
| | - Julia Kamp
- Department of Radiology, Charité - Universitätsmedizin Berlin, Augustenburger Platz 1, Berlin 13353, Germany
| | - Jan L Rinnenthal
- Department of Neuropathology, Charité - Universitätsmedizin Berlin, Berlin 13353, Germany
| | - Bernd Hamm
- Department of Radiology, Charité - Universitätsmedizin Berlin, Augustenburger Platz 1, Berlin 13353, Germany
| | - Rolf W Günther
- Department of Radiology, Charité - Universitätsmedizin Berlin, Augustenburger Platz 1, Berlin 13353, Germany
| | - Florian Streitparth
- Department of Radiology, Charité - Universitätsmedizin Berlin, Augustenburger Platz 1, Berlin 13353, Germany
| |
Collapse
|
69
|
Eljamel S, Volovick A, Saliev T, Eisma R, Melzer A. Evaluation of Thiel cadaveric model for MRI-guided stereotactic procedures in neurosurgery. Surg Neurol Int 2014; 5:S404-9. [PMID: 25289170 PMCID: PMC4173306 DOI: 10.4103/2152-7806.140199] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2013] [Accepted: 03/10/2014] [Indexed: 11/04/2022] Open
Abstract
BACKGROUND Magnetic resonance imaging (MRI)-guided deep brain stimulation (DBS) and high frequency focused ultrasound (FUS) is an emerging modality to treat several neurological disorders of the brain. Developing reliable models to train and assess future neurosurgeons is paramount to ensure safety and adequate training of neurosurgeons of the future. METHODS We evaluated the use of Thiel cadaveric model to practice MRI-guided DBS implantation and high frequency MRI-guided FUS in the human brain. We performed three training sessions for DBS and five sonications using high frequency MRI-guided FUS in five consecutive cadavers to assess the suitability of this model to use in training for stereotactic functional procedures. RESULTS We found the brains of these cadavers preserved in an excellent anatomical condition up to 15 months after embalmment and they were excellent model to use, MRI-guided DBS implantation and FUS produced the desired lesions accurately and precisely in these cadaveric brains. CONCLUSION Thiel cadavers provided a very good model to perform these procedures and a potential model to train and assess neurosurgeons of the future.
Collapse
Affiliation(s)
- Sam Eljamel
- Centre for Neurosciences, College of Medicine, Dentistry and Nursing, Ninewells Hospital and Medical School, Dundee, UK
| | - Alexander Volovick
- Centre for Neurosciences, College of Medicine, Dentistry and Nursing, Ninewells Hospital and Medical School, Dundee, UK ; Department of Anatomy and Human Identification, Institute for Medical Science and Technology, University of Dundee, UK
| | - Timur Saliev
- Centre for Neurosciences, College of Medicine, Dentistry and Nursing, Ninewells Hospital and Medical School, Dundee, UK
| | - Roos Eisma
- Department of Imaging at IMSAT and R and D, Department at Insightic, InSightec Ltd., Tirat Carmel, Israel
| | - Andreas Melzer
- Centre for Neurosciences, College of Medicine, Dentistry and Nursing, Ninewells Hospital and Medical School, Dundee, UK
| |
Collapse
|
70
|
N’Djin WA, Burtnyk M, Lipsman N, Bronskill M, Kucharczyk W, Schwartz ML, Chopra R. Active MR-temperature feedback control of dynamic interstitial ultrasound therapy in brain:In vivoexperiments and modeling in native and coagulated tissues. Med Phys 2014; 41:093301. [DOI: 10.1118/1.4892923] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
71
|
Lipsman N, Mainprize TG, Schwartz ML, Hynynen K, Lozano AM. Intracranial applications of magnetic resonance-guided focused ultrasound. Neurotherapeutics 2014; 11:593-605. [PMID: 24850310 PMCID: PMC4121456 DOI: 10.1007/s13311-014-0281-2] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
The ability to focus acoustic energy through the intact skull on to targets millimeters in size represents an important milestone in the development of neurotherapeutics. Magnetic resonance-guided focused ultrasound (MRgFUS) is a novel, noninvasive method, which--under real-time imaging and thermographic guidance--can be used to generate focal intracranial thermal ablative lesions and disrupt the blood-brain barrier. An established treatment for bone metastases, uterine fibroids, and breast lesions, MRgFUS has now been proposed as an alternative to open neurosurgical procedures for a wide variety of indications. Studies investigating intracranial MRgFUS range from small animal preclinical experiments to large, late-phase randomized trials that span the clinical spectrum from movement disorders, to vascular, oncologic, and psychiatric applications. We review the principles of MRgFUS and its use for brain-based disorders, and outline future directions for this promising technology.
Collapse
Affiliation(s)
- Nir Lipsman
- Division of Neurosurgery, University Health Network, University of Toronto, 399 Bathurst Street, 4W-431, Toronoto, M5T 2S8, Canada,
| | | | | | | | | |
Collapse
|
72
|
Zakaria R, Das K, Bhojak M, Radon M, Walker C, Jenkinson MD. The role of magnetic resonance imaging in the management of brain metastases: diagnosis to prognosis. Cancer Imaging 2014; 14:8. [PMID: 25608557 PMCID: PMC4331840 DOI: 10.1186/1470-7330-14-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Accepted: 02/11/2014] [Indexed: 11/20/2022] Open
Abstract
This article reviews the different MRI techniques available for the diagnosis, treatment and monitoring of brain metastases with a focus on applying advanced MR techniques to practical clinical problems. Topics include conventional MRI sequences and contrast agents, functional MR imaging, diffusion weighted MR, MR spectroscopy and perfusion MR. The role of radiographic biomarkers is discussed as well as future directions such as molecular imaging and MR guided high frequency ultrasound.
Collapse
|
73
|
Wintermark M, Druzgal J, Huss DS, Khaled MA, Monteith S, Raghavan P, Huerta T, Schweickert LC, Burkholder B, Loomba JJ, Zadicario E, Qiao Y, Shah B, Snell J, Eames M, Frysinger R, Kassell N, Elias WJ. Imaging findings in MR imaging-guided focused ultrasound treatment for patients with essential tremor. AJNR Am J Neuroradiol 2013; 35:891-6. [PMID: 24371027 DOI: 10.3174/ajnr.a3808] [Citation(s) in RCA: 114] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
BACKGROUND AND PURPOSE MR imaging-guided focused sonography surgery is a new stereotactic technique that uses high-intensity focused sonography to heat and ablate tissue. The goal of this study was to describe MR imaging findings pre- and post-ventralis intermedius nucleus lesioning by MR imaging-guided focused sonography as a treatment for essential tremor and to determine whether there was an association between these imaging features and the clinical response to MR imaging-guided focused sonography. MATERIALS AND METHODS Fifteen patients with medication-refractory essential tremor prospectively gave consent; were enrolled in a single-site, FDA-approved pilot clinical trial; and were treated with transcranial MR imaging-guided focused sonography. MR imaging studies were obtained on a 3T scanner before the procedure and 24 hours, 1 week, 1 month, and 3 months following the procedure. RESULTS On T2-weighted imaging, 3 time-dependent concentric zones were seen at the site of the focal spot. The inner 2 zones showed reduced ADC values at 24 hours in all patients except one. Diffusion had pseudonormalized by 1 month in all patients, when the cavity collapsed. Very mild postcontrast enhancement was seen at 24 hours and again at 1 month after MR imaging-guided focused sonography. The total lesion size and clinical response evolved inversely compared with each other (coefficient of correlation = 0.29, P value = .02). CONCLUSIONS MR imaging-guided focused sonography can accurately ablate a precisely delineated target, with typical imaging findings seen in the days, weeks, and months following the treatment. Tremor control was optimal early when the lesion size and perilesional edema were maximal and was less later when the perilesional edema had resolved.
Collapse
Affiliation(s)
- M Wintermark
- From the Departments of Radiology, Neuroradiology Division (M.W., J.D., P.R., T.H., L.C.S., B.B., Y.Q.)
| | - J Druzgal
- From the Departments of Radiology, Neuroradiology Division (M.W., J.D., P.R., T.H., L.C.S., B.B., Y.Q.)
| | - D S Huss
- Neurosurgery (D.S.H., M.A.K., S.M., J.J.L., R.F., N.K., W.J.E.)
| | - M A Khaled
- Neurosurgery (D.S.H., M.A.K., S.M., J.J.L., R.F., N.K., W.J.E.)
| | - S Monteith
- Neurosurgery (D.S.H., M.A.K., S.M., J.J.L., R.F., N.K., W.J.E.)
| | - P Raghavan
- From the Departments of Radiology, Neuroradiology Division (M.W., J.D., P.R., T.H., L.C.S., B.B., Y.Q.)
| | - T Huerta
- From the Departments of Radiology, Neuroradiology Division (M.W., J.D., P.R., T.H., L.C.S., B.B., Y.Q.)
| | - L C Schweickert
- From the Departments of Radiology, Neuroradiology Division (M.W., J.D., P.R., T.H., L.C.S., B.B., Y.Q.)
| | - B Burkholder
- From the Departments of Radiology, Neuroradiology Division (M.W., J.D., P.R., T.H., L.C.S., B.B., Y.Q.)
| | - J J Loomba
- Neurosurgery (D.S.H., M.A.K., S.M., J.J.L., R.F., N.K., W.J.E.)
| | | | - Y Qiao
- From the Departments of Radiology, Neuroradiology Division (M.W., J.D., P.R., T.H., L.C.S., B.B., Y.Q.)
| | - B Shah
- Neurology (B.S.), University of Virginia, Charlottesville, Virginia
| | - J Snell
- Focused Ultrasound Surgery Foundation (J.S., M.E.), Charlottesville, Virginia
| | - M Eames
- Focused Ultrasound Surgery Foundation (J.S., M.E.), Charlottesville, Virginia
| | - R Frysinger
- Neurosurgery (D.S.H., M.A.K., S.M., J.J.L., R.F., N.K., W.J.E.)
| | - N Kassell
- Neurosurgery (D.S.H., M.A.K., S.M., J.J.L., R.F., N.K., W.J.E.)
| | - W J Elias
- Neurosurgery (D.S.H., M.A.K., S.M., J.J.L., R.F., N.K., W.J.E.)
| |
Collapse
|
74
|
Abstract
Transcranial MRI-guided focused ultrasound (TcMRgFUS) is an old idea but a new technology that may change the entire clinical field of the neurosciences. TcMRgFUS has no cumulative effect, and it is applicable for repeatable treatments, controlled by real-time dosimetry, and capable of immediate tissue destruction. Most importantly, it has extremely accurate targeting and constant monitoring. It is potentially more precise than proton beam therapy and definitely more cost effective. Neuro-oncology may be the most promising area of future TcMRgFUS applications.
Collapse
|
75
|
Bucknor MD, Rieke V, Do L, Majumdar S, Link TM, Saeed M. MRI-guided high-intensity focused ultrasound ablation of bone: evaluation of acute findings with MR and CT imaging in a swine model. J Magn Reson Imaging 2013; 40:1174-80. [PMID: 24925593 DOI: 10.1002/jmri.24451] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Accepted: 09/12/2013] [Indexed: 12/21/2022] Open
Abstract
PURPOSE To evaluate hyperacute (<1 hour) changes on magnetic resonance (MR) and computed tomography (CT) imaging following MR-guided high-intensity focused ultrasound (MRgHIFU) in a swine bone model as a function of sonication number and energy. MATERIALS AND METHODS Experimental procedures received approval from the local Institutional Animal Care and Use Committee. MRgHIFU was used to create distal and proximal ablations in the right femur of eight pigs. Each target was dosed with four or six sonications within similar volumes. The energy dosed to the distal target was higher (419 ± 19 J) than the proximal target (324 ± 17 J). The targeted femur and contralateral control were imaged before and after ablation using MR at 3T. Qualitative changes in signal on T1-weighted, T2-weighted, and T1-weighted postcontrast images were assessed. Ablation dimensions were calculated from postcontrast MRI. The 64-slice CT images were also obtained before and after ablation and qualitative changes were assessed. RESULTS MRgHIFU bone ablation size measured on average 8.5 × 21.1 × 16.2 mm (transverse × craniocaudal × anteroposterior). Interestingly, within similar prescribed volumes, increasing the number of sonications from 4 to 6 increased the depth of the intramedullary hypoenhanced zone from 2.9 mm to 6.5 mm (P < 0.001). There was no difference in the appearance of low versus high energy ablations. CT imaging did not show structural abnormalities. CONCLUSION The number of MRgHIFU focal sonications can be used to increase the depth of treatment within the targeted bone. Unlike CT, T2-weighted and contrast-enhanced MR demonstrated the hyperacute structural changes in the femur and surrounding soft tissue.
Collapse
Affiliation(s)
- Matthew D Bucknor
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
| | | | | | | | | | | |
Collapse
|
76
|
Izumi M, Ikeuchi M, Kawasaki M, Ushida T, Morio K, Namba H, Graven-Nielsen T, Ogawa Y, Tani T. MR-guided focused ultrasound for the novel and innovative management of osteoarthritic knee pain. BMC Musculoskelet Disord 2013; 14:267. [PMID: 24034866 PMCID: PMC3847454 DOI: 10.1186/1471-2474-14-267] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Accepted: 09/11/2013] [Indexed: 01/04/2023] Open
Abstract
Background Severe knee pain associated with osteoarthritis (OA) is one of the most common and troublesome symptoms in the elderly. Recently, local bone denervation by MR-guided focused ultrasound (MRgFUS) has been demonstrated as a promising tool for pain palliation of bone metastases. The purpose of this study was to develop a novel treatment for knee OA using MRgFUS, and to validate its safety and efficacy. Methods Eight patients with medial knee pain and eligible for total knee arthroplasty were included. MR-guided focused sonication treatments were applied to bone surface just below the rim osteophyte of medial tibia plateau with real-time monitoring of the temperature in the target sites. The pain intensity during walking was assessed on a 100 mm visual analog scale (VAS) before and after treatment. Pressure pain thresholds (PPTs) were also evaluated over several test sites adjacent to the sonication area and control sites one month after treatment. Results Six patients (75%) showed immediate pain alleviation after treatment, and four of them demonstrated long-lasting effect at 6-month follow up (mean VAS reduction; 72.6%). In responders, PPTs in medial knee were significantly increased after treatment (Median; pre- 358 kpa vs post- 534 kpa, p?<?0.0001). There were no adverse side effects or complications during and after treatment. Conclusions These initial results illustrate the safety and efficacy of the newly developing MRgFUS treatment. Significant increase of PPTs on treated area showed successful denervation effect on the nociceptive nerve terminals. MRgFUS is a promising and innovative procedure for noninvasive pain management of knee OA. Trial registration Trial Registration:
UMIN000010193
Collapse
Affiliation(s)
- Masashi Izumi
- Department of Orthopaedic Surgery, Kochi Medical School, Kochi University, Oko-cho Kohasu, Nankoku 783-850, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
77
|
Elias WJ, Khaled M, Hilliard JD, Aubry JF, Frysinger RC, Sheehan JP, Wintermark M, Lopes MB. A magnetic resonance imaging, histological, and dose modeling comparison of focused ultrasound, radiofrequency, and Gamma Knife radiosurgery lesions in swine thalamus. J Neurosurg 2013; 119:307-17. [DOI: 10.3171/2013.5.jns122327] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Object
The purpose of this study was to use MRI and histology to compare stereotactic lesioning modalities in a large brain model of thalamotomy.
Methods
A unilateral thalamotomy was performed in piglets utilizing one of 3 stereotactic lesioning modalities: focused ultrasound (FUS), radiofrequency, and radiosurgery. Standard clinical lesioning parameters were used for each treatment; and clinical, MRI, and histological assessments were made at early (< 72 hours), subacute (1 week), and later (1–3 months) time intervals.
Results
Histological and MRI assessment showed similar development for FUS and radiofrequency lesions. T2-weighted MRI revealed 3 concentric lesional zones at 48 hours with resolution of perilesional edema by 1 week. Acute ischemic infarction with macrophage infiltration was most prominent at 72 hours, with subsequent resolution of the inflammatory reaction and coalescence of the necrotic zone. There was no apparent difference in ischemic penumbra or “sharpness” between FUS or radiofrequency lesions. The radiosurgery lesions presented differently, with latent effects, less circumscribed lesions at 3 months, and apparent histological changes seen in white matter beyond the thalamic target. Additionally, thermal and radiation lesioning gradients were compared with modeling by dose to examine the theoretical penumbra.
Conclusions
In swine thalamus, FUS and radiosurgery lesions evolve similarly as determined by MRI, histological examination, and theoretical modeling. Radiosurgery produces lesions with more delayed effects and seemed to result in changes in the white matter beyond the thalamic target.
Collapse
|
78
|
Monteith SJ, Kassell NF, Goren O, Harnof S. Transcranial MR-guided focused ultrasound sonothrombolysis in the treatment of intracerebral hemorrhage. Neurosurg Focus 2013; 34:E14. [DOI: 10.3171/2013.2.focus1313] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Intracerebral hemorrhage remains a significant cause of morbidity and mortality. Current surgical therapies aim to use a minimally invasive approach to remove as much of the clot as possible without causing undue disruption to surrounding neural structures. Transcranial MR-guided focused ultrasound (MRgFUS) surgery is an emerging technology that permits a highly concentrated focal point of ultrasound energy to be deposited to a target deep within the brain without an incision or craniotomy. With appropriate ultrasound parameters it has been shown that MRgFUS can effectively liquefy large-volume blood clots through the human calvaria. In this review the authors discuss the rationale for using MRgFUS to noninvasively liquefy intracerebral hemorrhage (ICH), thereby permitting minimally invasive aspiration of the liquefied clot via a small drainage tube. The mechanism of action of MRgFUS sonothrombolysis; current investigational work with in vitro, in vivo, and cadaveric models of ICH; and the potential clinical application of this disruptive technology for the treatment of ICH are discussed.
Collapse
Affiliation(s)
- Stephen J. Monteith
- 1Department of Neurosurgery, University of Virginia Health System, Charlottesville, Virginia; and
| | - Neal F. Kassell
- 1Department of Neurosurgery, University of Virginia Health System, Charlottesville, Virginia; and
| | - Oded Goren
- 2Department of Neurosurgery, Sheba Medical Center, Tel Hashomer, Israel
| | - Sagi Harnof
- 2Department of Neurosurgery, Sheba Medical Center, Tel Hashomer, Israel
| |
Collapse
|
79
|
Medel R, Monteith SJ, Elias WJ, Eames M, Snell J, Sheehan JP, Wintermark M, Jolesz FA, Kassell NF. Magnetic resonance-guided focused ultrasound surgery: Part 2: A review of current and future applications. Neurosurgery 2013; 71:755-63. [PMID: 22791029 DOI: 10.1227/neu.0b013e3182672ac9] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Magnetic resonance-guided focused ultrasound surgery (MRgFUS) is a novel combination of technologies that is actively being realized as a noninvasive therapeutic tool for a myriad of conditions. These applications are reviewed with a focus on neurological use. A combined search of PubMed and MEDLINE was performed to identify the key events and current status of MRgFUS, with a focus on neurological applications. MRgFUS signifies a potentially ideal device for the treatment of neurological diseases. As it is nearly real time, it allows monitored provision of treatment location and energy deposition; is noninvasive, thereby limiting or eliminating disruption of normal tissue; provides focal delivery of therapeutic agents; enhances radiation delivery; and permits modulation of neural function. Multiple clinical applications are currently in clinical use and many more are under active preclinical investigation. The therapeutic potential of MRgFUS is expanding rapidly. Although clinically in its infancy, preclinical and early-phase I clinical trials in neurosurgery suggest a promising future for MRgFUS. Further investigation is necessary to define its true potential and impact.
Collapse
Affiliation(s)
- Ricky Medel
- Department of Neurosurgery, University of Virginia Health Sciences Center, University of University, Charlottesville, Virginia 22902, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
80
|
Monteith S, Sheehan J, Medel R, Wintermark M, Eames M, Snell J, Kassell NF, Elias WJ. Potential intracranial applications of magnetic resonance–guided focused ultrasound surgery. J Neurosurg 2013; 118:215-21. [DOI: 10.3171/2012.10.jns12449] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Magnetic resonance–guided focused ultrasound surgery (MRgFUS) has the potential to create a shift in the treatment paradigm of several intracranial disorders. High-resolution MRI guidance combined with an accurate method of delivering high doses of transcranial ultrasound energy to a discrete focal point has led to the exploration of noninvasive treatments for diseases traditionally treated by invasive surgical procedures. In this review, the authors examine the current intracranial applications under investigation and explore other potential uses for MRgFUS in the intracranial space based on their initial cadaveric studies.
Collapse
Affiliation(s)
| | | | | | - Max Wintermark
- 2Neuroradiology, University of Virginia Health System; and
| | - Matthew Eames
- 3Focused Ultrasound Foundation, Charlottesville, Virginia
| | - John Snell
- 3Focused Ultrasound Foundation, Charlottesville, Virginia
| | - Neal F. Kassell
- 1Departments of Neurological Surgery and
- 3Focused Ultrasound Foundation, Charlottesville, Virginia
| | | |
Collapse
|
81
|
Monteith SJ, Harnof S, Medel R, Popp B, Wintermark M, Lopes MBS, Kassell NF, Elias WJ, Snell J, Eames M, Zadicario E, Moldovan K, Sheehan J. Minimally invasive treatment of intracerebral hemorrhage with magnetic resonance-guided focused ultrasound. J Neurosurg 2013; 118:1035-45. [PMID: 23330996 DOI: 10.3171/2012.12.jns121095] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECT Intracerebral hemorrhage (ICH) is a major cause of death and disability throughout the world. Surgical techniques are limited by their invasive nature and the associated disability caused during clot removal. Preliminary data have shown promise for the feasibility of transcranial MR-guided focused ultrasound (MRgFUS) sonothrombolysis in liquefying the clotted blood in ICH and thereby facilitating minimally invasive evacuation of the clot via a twist-drill craniostomy and aspiration tube. METHODS AND RESULTS In an in vitro model, the following optimum transcranial sonothrombolysis parameters were determined: transducer center frequency 230 kHz, power 3950 W, pulse repetition rate 1 kHz, duty cycle 10%, and sonication duration 30 seconds. Safety studies were performed in swine (n = 20). In a swine model of ICH, MRgFUS sonothrombolysis of 4 ml ICH was performed. Magnetic resonance imaging and histological examination demonstrated complete lysis of the ICH without additional brain injury, blood-brain barrier breakdown, or thermal necrosis due to sonothrombolysis. A novel cadaveric model of ICH was developed with 40-ml clots implanted into fresh cadaveric brains (n = 10). Intracerebral hemorrhages were successfully liquefied (> 95%) with transcranial MRgFUS in a highly accurate fashion, permitting minimally invasive aspiration of the lysate under MRI guidance. CONCLUSIONS The feasibility of transcranial MRgFUS sonothrombolysis was demonstrated in in vitro and cadaveric models of ICH. Initial in vivo safety data in a swine model of ICH suggest the process to be safe. Minimally invasive treatment of ICH with MRgFUS warrants evaluation in the setting of a clinical trial.
Collapse
Affiliation(s)
- Stephen J Monteith
- Department of Neurological Surgery, University of Virginia Health System, Charlottesville, Virginia 22908, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
82
|
Low-pressure pulsed focused ultrasound with microbubbles promotes an anticancer immunological response. J Transl Med 2012; 10:221. [PMID: 23140567 PMCID: PMC3543346 DOI: 10.1186/1479-5876-10-221] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2012] [Accepted: 11/07/2012] [Indexed: 11/25/2022] Open
Abstract
Background High-intensity focused-ultrasound (HIFU) has been successfully employed for thermal ablation of tumors in clinical settings. Continuous- or pulsed-mode HIFU may also induce a host antitumor immune response, mainly through expansion of antigen-presenting cells in response to increased cellular debris and through increased macrophage activation/infiltration. Here we demonstrated that another form of focused ultrasound delivery, using low-pressure, pulsed-mode exposure in the presence of microbubbles (MBs), may also trigger an antitumor immunological response and inhibit tumor growth. Methods A total of 280 tumor-bearing animals were subjected to sonographically-guided FUS. Implanted tumors were exposed to low-pressure FUS (0.6 to 1.4 MPa) with MBs to increase the permeability of tumor microvasculature. Results Tumor progression was suppressed by both 0.6 and 1.4-MPa MB-enhanced FUS exposures. We observed a transient increase in infiltration of non-T regulatory (non-Treg) tumor infiltrating lymphocytes (TILs) and continual infiltration of CD8+ cytotoxic T-lymphocytes (CTL). The ratio of CD8+/Treg increased significantly and tumor growth was inhibited. Conclusions Our findings suggest that low-pressure FUS exposure with MBs may constitute a useful tool for triggering an anticancer immune response, for potential cancer immunotherapy.
Collapse
|
83
|
Bidwell GL, Perkins E, Raucher D. A thermally targeted c-Myc inhibitory polypeptide inhibits breast tumor growth. Cancer Lett 2012; 319:136-143. [PMID: 22261328 DOI: 10.1016/j.canlet.2011.12.042] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2011] [Revised: 12/08/2011] [Accepted: 12/25/2011] [Indexed: 01/23/2023]
Abstract
Although surgical resection with adjuvant chemotherapy and/or radiotherapy are used to treat breast tumors, normal tissue tolerance, development of metastases, and inherent tumor resistance to radiation or chemotherapy can hinder a successful outcome. We have developed a thermally responsive polypeptide, based on the sequence of Elastin-like polypeptide (ELP), that inhibits breast cancer cell proliferation by blocking the activity of the oncogenic protein c-Myc. Following systemic administration, the ELP - delivered c-Myc inhibitory peptide was targeted to tumors using focused hyperthermia, and significantly reduced tumor growth in an orthotopic mouse model of breast cancer. This work provides a new modality for targeted delivery of a specific oncogene inhibitory peptide, and this strategy may be expanded for delivery of other therapeutic peptides or small molecule drugs.
Collapse
Affiliation(s)
- Gene L Bidwell
- Department of Biochemistry, The University of Mississippi Medical Center, 2500 North State Street, Jackson, MS 39216, USA; Cancer Institute, The University of Mississippi Medical Center, 2500 North State Street, Jackson, MS 39216, USA.
| | - Eddie Perkins
- Cancer Institute, The University of Mississippi Medical Center, 2500 North State Street, Jackson, MS 39216, USA; Department of Neurosurgery, The University of Mississippi Medical Center, 2500 North State Street, Jackson, MS 39216, USA; Department of Neurobiology and Anatomical Sciences, The University of Mississippi Medical Center, 2500 North State Street, Jackson, MS 39216, USA.
| | - Drazen Raucher
- Department of Biochemistry, The University of Mississippi Medical Center, 2500 North State Street, Jackson, MS 39216, USA; Cancer Institute, The University of Mississippi Medical Center, 2500 North State Street, Jackson, MS 39216, USA.
| |
Collapse
|
84
|
Hearst SM, Walker LR, Shao Q, Lopez M, Raucher D, Vig PJS. The design and delivery of a thermally responsive peptide to inhibit S100B-mediated neurodegeneration. Neuroscience 2011; 197:369-80. [PMID: 21958864 DOI: 10.1016/j.neuroscience.2011.09.025] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2011] [Revised: 09/10/2011] [Accepted: 09/12/2011] [Indexed: 11/13/2022]
Abstract
S100B, a glial-secreted protein, is believed to play a major role in neurodegeneration in Alzheimer's disease, Down syndrome, traumatic brain injury, and spinocerebellar ataxia type 1 (SCA1). SCA1 is a trinucleotide repeat disorder in which the expanded polyglutamine mutation in the protein ataxin-1 primarily targets Purkinje cells of the cerebellum. Currently, the exact mechanism of S100B-mediated Purkinje cell damage in SCA1 is not clear. However, here we show that S100B may act via the activation of the receptor for advanced glycation end product (RAGE) signaling pathway, resulting in oxidative stress-mediated injury to mutant ataxin-1-expressing neurons. To combat S100B-mediated neurodegeneration, we have designed a selective thermally responsive S100B inhibitory peptide, Synb1-ELP-TRTK. Our therapeutic polypeptide was developed using three key elements: (1) the elastin-like polypeptide (ELP), a thermally responsive polypeptide, (2) the TRTK12 peptide, a known S100B inhibitory peptide, and (3) a cell-penetrating peptide, Synb1, to enhance intracellular delivery. Binding studies revealed that our peptide, Synb1-ELP-TRTK, interacts with its molecular target S100B and maintains a high S100B binding affinity as comparable with the TRTK12 peptide alone. In addition, in vitro studies revealed that Synb1-ELP-TRTK treatment reduces S100B uptake in SHSY5Y cells. Furthermore, the Synb1-ELP-TRTK peptide decreased S100B-induced oxidative damage to mutant ataxin-1-expressing neurons. To test the delivery capabilities of ELP-based therapeutic peptides to the cerebellum, we treated mice with fluorescently labeled Synb1-ELP and observed that thermal targeting enhanced peptide delivery to the cerebellum. Here, we have laid the framework for thermal-based therapeutic targeting to regions of the brain, particularly the cerebellum. Overall, our data suggest that thermal targeting of ELP-based therapeutic peptides to the cerebellum is a novel treatment strategy for cerebellar neurodegenerative disorders.
Collapse
Affiliation(s)
- S M Hearst
- Department of Neurology, University of Mississippi Medical Center, Jackson, MS, USA
| | | | | | | | | | | |
Collapse
|
85
|
Magnetic resonance guided high-intensity focused ultrasound ablation of musculoskeletal tumors. CURRENT ORTHOPAEDIC PRACTICE 2011; 22:303-308. [PMID: 26120376 DOI: 10.1097/bco.0b013e318220dad5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
This article reviews the fundamental principles and clinical experimental uses of magnetic resonance guided high-intensity focused ultrasound (MRgHIFU) ablation of musculoskeletal tumors. MRgHIFU is a noninvasive treatment modality that takes advantage of the ability of magnetic resonance to measure tissue temperature and uses this technology to guide high-intensity focused ultrasound waves to a specific focus within the human body that results in heat generation and complete thermal necrosis of the targeted tissue. Adjacent normal tissues are spared because of the accurate delivery of thermal energy, as well as, local blood perfusion that provides a cooling effect. MRgHIFU is approved by the Food and Drug Administration for the treatment of uterine fibroids and is used on an experimental basis to treat breast, prostate, liver, bone, and brain tumors.
Collapse
|
86
|
Tempany CMC, McDannold NJ, Hynynen K, Jolesz FA. Focused ultrasound surgery in oncology: overview and principles. Radiology 2011; 259:39-56. [PMID: 21436096 DOI: 10.1148/radiol.11100155] [Citation(s) in RCA: 161] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Focused ultrasound surgery (FUS) is a noninvasive image-guided therapy and an alternative to surgical interventions. It presents an opportunity to revolutionize cancer therapy and to affect or change drug delivery of therapeutic agents in new focally targeted ways. In this article the background, principles, technical devices, and clinical cancer applications of image-guided FUS are reviewed.
Collapse
Affiliation(s)
- Clare M C Tempany
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, 75 Francis St, Room 050, L1, Boston, MA 02129, USA.
| | | | | | | |
Collapse
|
87
|
McDannold N, Clement GT, Black P, Jolesz F, Hynynen K. Transcranial magnetic resonance imaging- guided focused ultrasound surgery of brain tumors: initial findings in 3 patients. Neurosurgery 2010; 66:323-32; discussion 332. [PMID: 20087132 DOI: 10.1227/01.neu.0000360379.95800.2f] [Citation(s) in RCA: 395] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVE This work evaluated the clinical feasibility of transcranial magnetic resonance imaging-guided focused ultrasound surgery. METHODS Transcranial magnetic resonance imaging-guided focused ultrasound surgery offers a potential noninvasive alternative to surgical resection. The method combines a hemispherical phased-array transducer and patient-specific treatment planning based on acoustic models with feedback control based on magnetic resonance temperature imaging to overcome the effects of the cranium and allow for controlled and precise thermal ablation in the brain. In initial trials in 3 glioblastoma patients, multiple focused ultrasound exposures were applied up to the maximum acoustic power available. Offline analysis of the magnetic resonance temperature images evaluated the temperature changes at the focus and brain surface. RESULTS We found that it was possible to focus an ultrasound beam transcranially into the brain and to visualize the heating with magnetic resonance temperature imaging. Although we were limited by the device power available at the time and thus seemed to not achieve thermal coagulation, extrapolation of the temperature measurements at the focus and on the brain surface suggests that thermal ablation will be possible with this device without overheating the brain surface, with some possible limitation on the treatment envelope. CONCLUSION Although significant hurdles remain, these findings are a major step forward in producing a completely noninvasive alternative to surgical resection for brain disorders.
Collapse
Affiliation(s)
- Nathan McDannold
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA.
| | | | | | | | | |
Collapse
|
88
|
Hynynen K. MRI-guided focused ultrasound treatments. ULTRASONICS 2010; 50:221-229. [PMID: 19818981 DOI: 10.1016/j.ultras.2009.08.015] [Citation(s) in RCA: 118] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2009] [Revised: 08/27/2009] [Accepted: 08/27/2009] [Indexed: 05/28/2023]
Abstract
Focused ultrasound (FUS) allows noninvasive focal delivery of energy deep into soft tissues. The focused energy can be used to modify and eliminate tissue for therapeutic purposes while the energy delivery is targeted and monitored using magnetic resonance imaging (MRI). MRI compatible methods to deliver these exposures have undergone rapid development over the past 10 years such that clinical treatments are now routinely performed. This paper will review the current technical and clinical status of MRI-guided focused ultrasound therapy and discuss future research and development opportunities.
Collapse
Affiliation(s)
- Kullervo Hynynen
- Sunnybrook Health Sciences Centre, Imaging Research, Department of Medical Biophysics, University of Toronto, 2075 Bayview Ave., Toronto, ON, Canada M4N 3M5.
| |
Collapse
|
89
|
Abstract
MRI-guided focused ultrasound (MRgFUS) surgery is a noninvasive thermal ablation method that uses magnetic resonance imaging (MRI) for target definition, treatment planning, and closed-loop control of energy deposition. Integrating FUS and MRI as a therapy delivery system allows us to localize, target, and monitor in real time, and thus to ablate targeted tissue without damaging normal structures. This precision makes MRgFUS an attractive alternative to surgical resection or radiation therapy of benign and malignant tumors. Already approved for the treatment of uterine fibroids, MRgFUS is in ongoing clinical trials for the treatment of breast, liver, prostate, and brain cancer and for the palliation of pain in bone metastasis. In addition to thermal ablation, FUS, with or without the use of microbubbles, can temporarily change vascular or cell membrane permeability and release or activate various compounds for targeted drug delivery or gene therapy. A disruptive technology, MRgFUS provides new therapeutic approaches and may cause major changes in patient management and several medical disciplines.
Collapse
Affiliation(s)
- Ferenc A Jolesz
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA.
| |
Collapse
|
90
|
Jagannathan J, Sanghvi NT, Crum LA, Yen CP, Medel R, Dumont AS, Sheehan JP, Steiner L, Jolesz F, Kassell NF. High-intensity focused ultrasound surgery of the brain: part 1--A historical perspective with modern applications. Neurosurgery 2009; 64:201-10; discussion 210-1. [PMID: 19190451 DOI: 10.1227/01.neu.0000336766.18197.8e] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The field of magnetic resonance imaging-guided high-intensity focused ultrasound surgery (MRgFUS) is a rapidly evolving one, with many potential applications in neurosurgery. The first of 3 articles on MRgFUS, this article focuses on the historical development of the technology and its potential applications in modern neurosurgery. The evolution of MRgFUS has occurred in parallel with modern neurological surgery, and the 2 seemingly distinct disciplines share many of the same pioneering figures. Early studies on focused ultrasound treatment in the 1940s and 1950s demonstrated the ability to perform precise lesioning in the human brain, with a favorable risk-benefit profile. However, the need for a craniotomy, as well as the lack of sophisticated imaging technology, resulted in limited growth of high-intensity focused ultrasound for neurosurgery. More recently, technological advances have permitted the combination of high-intensity focused ultrasound along with magnetic resonance imaging guidance to provide an opportunity to effectively treat a variety of central nervous system disorders. Although challenges remain, high-intensity focused ultrasound-mediated neurosurgery may offer the ability to target and treat central nervous system conditions that were previously extremely difficult to address. The remaining 2 articles in this series will focus on the physical principles of modern MRgFUS as well as current and future avenues for investigation.
Collapse
Affiliation(s)
- Jay Jagannathan
- Department of Neurological Surgery, University of Virginia Health Sciences Center, Charlottesville, Virginia 22902, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
91
|
Kim YS, Rhim H, Choi MJ, Lim HK, Choi D. High-intensity focused ultrasound therapy: an overview for radiologists. Korean J Radiol 2009; 9:291-302. [PMID: 18682666 PMCID: PMC2627265 DOI: 10.3348/kjr.2008.9.4.291] [Citation(s) in RCA: 114] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
High-intensity focused ultrasound therapy is a novel, emerging, therapeutic modality that uses ultrasound waves, propagated through tissue media, as carriers of energy. This completely non-invasive technology has great potential for tumor ablation as well as hemostasis, thrombolysis and targeted drug/gene delivery. However, the application of this technology still has many drawbacks. It is expected that current obstacles to implementation will be resolved in the near future. In this review, we provide an overview of high-intensity focused ultrasound therapy from the basic physics to recent clinical studies with an interventional radiologist's perspective for the purpose of improving the general understanding of this cutting-edge technology as well as speculating on future developments.
Collapse
Affiliation(s)
- Young-sun Kim
- Department of Radiology and Center for Imaging Science, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | | | | | | | | |
Collapse
|
92
|
Carpentier A, McNichols RJ, Stafford RJ, Itzcovitz J, Guichard JP, Reizine D, Delaloge S, Vicaut E, Payen D, Gowda A, George B. Real-time Magnetic Resonance-guided Laser Thermal Therapy for Focal Metastatic Brain Tumors. Oper Neurosurg (Hagerstown) 2008. [DOI: 10.1227/01.neu.0000311254.63848.72] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Abstract
Objective:
We report the initial results of a pilot clinical trial exploring the safety and feasibility of the first real-time magnetic resonance-guided laser-induced thermal therapy of treatment-resistant focal metastatic intracranial tumors.
Methods:
Patients with resistant metastatic intracranial tumors who had previously undergone chemotherapy, whole-brain radiation therapy, and radiosurgery and who were recused from surgery were eligible for this trial. Under local anesthesia, a Leksell stereotactic head frame was used to insert a water-cooled interstitial fiberoptic laser applicator inside the cranium. In the bore of a magnetic resonance imaging (MRI) scanner, laser energy was delivered to heat the tumor while continuous MRI was performed. A computer workstation extracted temperature-sensitive information to display images of laser heating and computed estimates of the thermal damage zone. Posttreatment MRI scans were used to confirm the zone of thermal necrosis, and follow-up was performed at 7, 15, 30, and 90 days after treatment.
Results:
In all cases, the procedure was well tolerated without secondary effect, and patients were discharged to home within 14 hours after the procedure. Follow-up imaging showed an acute increase in apparent lesion volume followed by a gradual and steady decrease. No tumor recurrence within thermal ablation zones was noted.
Conclusion:
In this ongoing trial, a total of four patients have had six metastatic tumors treated with laser thermal ablations. Magnetic resonance-guided laser-induced thermal therapy appears to provide a new, efficient treatment for recurrent focal metastatic brain disease. This therapy is a prelude to the future development of closed-head interventional MRI techniques in neurosurgery.
Collapse
Affiliation(s)
- Alexandre Carpentier
- Department of Neurosurgery, Lariboisière University Hospital, Assistance Publique-Hôpitaux de Paris, Université Paris VII, Paris, France
| | | | - R. Jason Stafford
- Department of Imaging Physics, University of Texas M.D. Anderson Cancer Center, Houston, Texas
| | - Julian Itzcovitz
- Department of Neurosurgery, Lariboisière University Hospital, Assistance Publique-Hôpitaux de Paris, Université Paris VII, Paris, France
| | - Jean-Pierre Guichard
- Department of Neuroradiology, Lariboisière University Hospital, Assistance Publique-Hôpitaux de Paris, Université Paris VII, Paris, France
| | - Daniel Reizine
- Department of Neuroradiology, Lariboisière University Hospital, Assistance Publique-Hôpitaux de Paris, Université Paris VII, Paris, France
| | - Suzette Delaloge
- Breast Oncology Department, Institut Gustave Roussy, Villejuif, France
| | - Eric Vicaut
- Clinical Research Monitoring Department, Fernand Widal Hospital, Assistance Publique-Hôpitaux de Paris, Université Paris VII, Paris, France
| | - Didier Payen
- Department of Neurosurgery, Lariboisière University Hospital, Assistance Publique-Hôpitaux de Paris, Université Paris VII, Paris, France
| | | | - Bernard George
- Department of Neurosurgery, Lariboisière University Hospital, Assistance Publique-Hôpitaux de Paris, Université Paris VII, Paris, France
| |
Collapse
|
93
|
de Senneville BD, Mougenot C, Quesson B, Dragonu I, Grenier N, Moonen CTW. MR thermometry for monitoring tumor ablation. Eur Radiol 2007; 17:2401-10. [PMID: 17701184 DOI: 10.1007/s00330-007-0646-6] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2007] [Accepted: 03/27/2007] [Indexed: 01/10/2023]
Abstract
Local thermal therapies are increasingly used in the clinic for tissue ablation. During energy deposition, the actual tissue temperature is difficult to estimate since physiological processes may modify local heat conduction and energy absorption. Blood flow may increase during temperature increase and thus change heat conduction. In order to improve the therapeutic efficiency and the safety of the intervention, mapping of temperature and thermal dose appear to offer the best strategy to optimize such interventions and to provide therapy endpoints. MRI can be used to monitor local temperature changes during thermal therapies. On-line availability of dynamic temperature mapping allows prediction of tissue death during the intervention based on semi-empirical thermal dose calculations. Much progress has been made recently in MR thermometry research, and some applications are appearing in the clinic. In this paper, the principles of MRI temperature mapping are described with special emphasis on methods employing the temperature dependency of the water proton resonance frequency. Then, the prospects and requirements for widespread applications of MR thermometry in the clinic are evaluated.
Collapse
Affiliation(s)
- Baudouin Denis de Senneville
- Laboratory for Molecular and Functional Imaging: From Physiology to Therapy, CNRS/Université Bordeaux 2, 146 rue Léo Saignat, 33076 Bordeaux, France
| | | | | | | | | | | |
Collapse
|