51
|
Kist R, Watson M, Crosier M, Robinson M, Fuchs J, Reichelt J, Peters H. The formation of endoderm-derived taste sensory organs requires a Pax9-dependent expansion of embryonic taste bud progenitor cells. PLoS Genet 2014; 10:e1004709. [PMID: 25299669 PMCID: PMC4191947 DOI: 10.1371/journal.pgen.1004709] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Accepted: 08/26/2014] [Indexed: 11/18/2022] Open
Abstract
In mammals, taste buds develop in different regions of the oral cavity. Small epithelial protrusions form fungiform papillae on the ectoderm-derived dorsum of the tongue and contain one or few taste buds, while taste buds in the soft palate develop without distinct papilla structures. In contrast, the endoderm-derived circumvallate and foliate papillae located at the back of the tongue contain a large number of taste buds. These taste buds cluster in deep epithelial trenches, which are generated by intercalating a period of epithelial growth between initial placode formation and conversion of epithelial cells into sensory cells. How epithelial trench formation is genetically regulated during development is largely unknown. Here we show that Pax9 acts upstream of Pax1 and Sox9 in the expanding taste progenitor field of the mouse circumvallate papilla. While a reduced number of taste buds develop in a growth-retarded circumvallate papilla of Pax1 mutant mice, its development arrests completely in Pax9-deficient mice. In addition, the Pax9 mutant circumvallate papilla trenches lack expression of K8 and Prox1 in the taste bud progenitor cells, and gradually differentiate into an epidermal-like epithelium. We also demonstrate that taste placodes of the soft palate develop through a Pax9-dependent induction. Unexpectedly, Pax9 is dispensable for patterning, morphogenesis and maintenance of taste buds that develop in ectoderm-derived fungiform papillae. Collectively, our data reveal an endoderm-specific developmental program for the formation of taste buds and their associated papilla structures. In this pathway, Pax9 is essential to generate a pool of taste bud progenitors and to maintain their competence towards prosensory cell fate induction.
Collapse
Affiliation(s)
- Ralf Kist
- Institute of Genetic Medicine, Newcastle University, International Centre for Life, Newcastle upon Tyne, United Kingdom
- Centre for Oral Health Research, School of Dental Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Michelle Watson
- Institute of Genetic Medicine, Newcastle University, International Centre for Life, Newcastle upon Tyne, United Kingdom
| | - Moira Crosier
- Institute of Genetic Medicine, Newcastle University, International Centre for Life, Newcastle upon Tyne, United Kingdom
| | - Max Robinson
- Centre for Oral Health Research, School of Dental Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Jennifer Fuchs
- Department of Craniofacial Development and Stem Cell Biology, King's College London, Guy's Hospital, London, United Kingdom
| | - Julia Reichelt
- Institute of Cellular Medicine, Dermatological Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Heiko Peters
- Institute of Genetic Medicine, Newcastle University, International Centre for Life, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
52
|
Multilineage Potential and Self-Renewal Define an Epithelial Progenitor Cell Population in the Adult Thymus. Cell Rep 2014; 8:1198-209. [DOI: 10.1016/j.celrep.2014.07.029] [Citation(s) in RCA: 122] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Revised: 05/04/2014] [Accepted: 07/17/2014] [Indexed: 12/14/2022] Open
|
53
|
Bredenkamp N, Nowell CS, Blackburn CC. Regeneration of the aged thymus by a single transcription factor. Development 2014; 141:1627-37. [PMID: 24715454 PMCID: PMC3978836 DOI: 10.1242/dev.103614] [Citation(s) in RCA: 127] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Thymic involution is central to the decline in immune system function that occurs with age. By regenerating the thymus, it may therefore be possible to improve the ability of the aged immune system to respond to novel antigens. Recently, diminished expression of the thymic epithelial cell (TEC)-specific transcription factor Forkhead box N1 (FOXN1) has been implicated as a component of the mechanism regulating age-related involution. The effects of upregulating FOXN1 function in the aged thymus are, however, unknown. Here, we show that forced, TEC-specific upregulation of FOXN1 in the fully involuted thymus of aged mice results in robust thymus regeneration characterized by increased thymopoiesis and increased naive T cell output. We demonstrate that the regenerated organ closely resembles the juvenile thymus in terms of architecture and gene expression profile, and further show that this FOXN1-mediated regeneration stems from an enlarged TEC compartment, rebuilt from progenitor TECs. Collectively, our data establish that upregulation of a single transcription factor can substantially reverse age-related thymic involution, identifying FOXN1 as a specific target for improving thymus function and, thus, immune competence in patients. More widely, they demonstrate that organ regeneration in an aged mammal can be directed by manipulation of a single transcription factor, providing a provocative paradigm that may be of broad impact for regenerative biology.
Collapse
Affiliation(s)
- Nicholas Bredenkamp
- Medical Research Council Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, SCRM Building, 5 Little France Drive, Edinburgh EH16 4UU, UK
| | | | | |
Collapse
|
54
|
Blake JA, Ziman MR. Pax genes: regulators of lineage specification and progenitor cell maintenance. Development 2014; 141:737-51. [PMID: 24496612 DOI: 10.1242/dev.091785] [Citation(s) in RCA: 138] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Pax genes encode a family of transcription factors that orchestrate complex processes of lineage determination in the developing embryo. Their key role is to specify and maintain progenitor cells through use of complex molecular mechanisms such as alternate RNA splice forms and gene activation or inhibition in conjunction with protein co-factors. The significance of Pax genes in development is highlighted by abnormalities that arise from the expression of mutant Pax genes. Here, we review the molecular functions of Pax genes during development and detail the regulatory mechanisms by which they specify and maintain progenitor cells across various tissue lineages. We also discuss mechanistic insights into the roles of Pax genes in regeneration and in adult diseases, including cancer.
Collapse
Affiliation(s)
- Judith A Blake
- School of Medical Sciences, Edith Cowan University, Joondalup, WA 6027, Australia
| | | |
Collapse
|
55
|
Hirayama T, Asano Y, Iida H, Watanabe T, Nakamura T, Goitsuka R. Meis1 is required for the maintenance of postnatal thymic epithelial cells. PLoS One 2014; 9:e89885. [PMID: 24594519 PMCID: PMC3942356 DOI: 10.1371/journal.pone.0089885] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2013] [Accepted: 01/24/2014] [Indexed: 12/19/2022] Open
Abstract
Most epithelial tissues retain stem/progenitor cells to maintain homeostasis of the adult tissues; however, the existence of a thymic epithelial cell (TEC) progenitor capable of maintaining homeostasis of the postnatal thymus remains unclear. Here, we show that a cell population expressing high levels of Meis1, a homeodomain transcription factor, is enriched in TECs with an immature cellular phenotype. These TECs selectively express genes involved in embryonic thymic organogenesis and epithelial stem cell maintenance, and also have the potential to proliferate and differentiate into mature TEC populations. Furthermore, postnatal inactivation of Meis1 in TECs caused disorganization of the thymic architecture, which ultimately leads to premature disappearance of the thymus. There was an age-associated reduction in the proportion of the TEC population expressing high levels of Meis1, which may also be related to thymic involution. These findings indicate that Meis1 is potentially involved in the maintenance of postnatal TECs with progenitor activity that is required for homeostasis of the postnatal thymus.
Collapse
Affiliation(s)
- Takehiro Hirayama
- Division of Development and Aging, Research Institute for Biomedical Sciences, Tokyo University of Science, Chiba, Japan
| | - Yusuke Asano
- Division of Development and Aging, Research Institute for Biomedical Sciences, Tokyo University of Science, Chiba, Japan
| | - Hajime Iida
- Division of Development and Aging, Research Institute for Biomedical Sciences, Tokyo University of Science, Chiba, Japan
| | - Takeshi Watanabe
- Center for Innovation in Immunoregulative Technology and Therapeutics, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Takuro Nakamura
- Department of Carcinogenesis, The Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Ryo Goitsuka
- Division of Development and Aging, Research Institute for Biomedical Sciences, Tokyo University of Science, Chiba, Japan
- * E-mail:
| |
Collapse
|
56
|
Boehm T, Swann JB. Thymus involution and regeneration: two sides of the same coin? Nat Rev Immunol 2013; 13:831-8. [DOI: 10.1038/nri3534] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
57
|
Shu J, Wu C, Wu Y, Li Z, Shao S, Zhao W, Tang X, Yang H, Shen L, Zuo X, Yang W, Shi Y, Chi X, Zhang H, Gao G, Shu Y, Yuan K, He W, Tang C, Zhao Y, Deng H. Induction of pluripotency in mouse somatic cells with lineage specifiers. Cell 2013; 153:963-75. [PMID: 23706735 DOI: 10.1016/j.cell.2013.05.001] [Citation(s) in RCA: 214] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2012] [Revised: 02/13/2013] [Accepted: 04/15/2013] [Indexed: 11/15/2022]
Abstract
The reprogramming factors that induce pluripotency have been identified primarily from embryonic stem cell (ESC)-enriched, pluripotency-associated factors. Here, we report that, during mouse somatic cell reprogramming, pluripotency can be induced with lineage specifiers that are pluripotency rivals to suppress ESC identity, most of which are not enriched in ESCs. We found that OCT4 and SOX2, the core regulators of pluripotency, can be replaced by lineage specifiers that are involved in mesendodermal (ME) specification and in ectodermal (ECT) specification, respectively. OCT4 and its substitutes attenuated the elevated expression of a group of ECT genes, whereas SOX2 and its substitutes curtailed a group of ME genes during reprogramming. Surprisingly, the two counteracting lineage specifiers can synergistically induce pluripotency in the absence of both OCT4 and SOX2. Our study suggests a "seesaw model" in which a balance that is established using pluripotency factors and/or counteracting lineage specifiers can facilitate reprogramming.
Collapse
Affiliation(s)
- Jian Shu
- MOE Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking University, Beijing 100871, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
58
|
A hypofunctional PAX1 mutation causes autosomal recessively inherited otofaciocervical syndrome. Hum Genet 2013; 132:1311-20. [PMID: 23851939 DOI: 10.1007/s00439-013-1337-9] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Accepted: 06/28/2013] [Indexed: 10/26/2022]
Abstract
Otofaciocervical syndrome (OFCS) is an autosomal recessively inherited disorder characterized by facial dysmorphism, external ear anomalies with preauricular pits and hearing impairment, branchial cysts or fistulas, anomalies of the vertebrae and the shoulder girdle, and mild intellectual disability. In a large consanguineous family with OFCS from Turkey, we performed whole-exome sequencing (WES) of a single pooled DNA sample of four affected individuals. Filtering for variants with a percentage of alternate reads ≥ 90 % and a coverage of at least five reads identified only a single novel homozygous variant, c.497G>T, located in PAX1 that co-segregated with the disease in the family. PAX1 encodes a transcription factor with a critical role in pattern formation during embryogenesis in vertebrates. The mutation is predicted to substitute the glycine at position 166 to valine (p.G166V) within the highly conserved paired-box domain of the PAX1 protein. We performed a dual luciferase reporter assay to examine the transactivation of a regulatory sequence in the Nkx3-2 promoter region, which is a direct target of mouse Pax1 transcriptional regulation. We observed a significantly reduced transactivation in HEK293T cells overexpressing Pax1(G157V) in comparison to Pax1(WT) expressing cells, indicating a reduced DNA-binding affinity of the mutant protein. Taken together, our results show that the strategy of pooling DNA is a powerful, cost-effective application for WES in consanguineous families and establish PAX1 as a new disease-causing gene for OFCS and as part of the EYA-DACH-SIX-PAX network, important in early embryogenesis.
Collapse
|
59
|
Farley AM, Morris LX, Vroegindeweij E, Depreter MLG, Vaidya H, Stenhouse FH, Tomlinson SR, Anderson RA, Cupedo T, Cornelissen JJ, Blackburn CC. Dynamics of thymus organogenesis and colonization in early human development. Development 2013; 140:2015-26. [PMID: 23571219 PMCID: PMC3631974 DOI: 10.1242/dev.087320] [Citation(s) in RCA: 94] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The thymus is the central site of T-cell development and thus is of fundamental importance to the immune system, but little information exists regarding molecular regulation of thymus development in humans. Here we demonstrate, via spatial and temporal expression analyses, that the genetic mechanisms known to regulate mouse thymus organogenesis are conserved in humans. In addition, we provide molecular evidence that the human thymic epithelium derives solely from the third pharyngeal pouch, as in the mouse, in contrast to previous suggestions. Finally, we define the timing of onset of hematopoietic cell colonization and epithelial cell differentiation in the human thymic primordium, showing, unexpectedly, that the first colonizing hematopoietic cells are CD45(+)CD34(int/-). Collectively, our data provide essential information for translation of principles established in the mouse to the human, and are of particular relevance to development of improved strategies for enhancing immune reconstitution in patients.
Collapse
Affiliation(s)
- Alison M Farley
- MRC Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, CRM Building, 5 Little France Drive, Edinburgh
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
60
|
Sivakamasundari V, Kraus P, Jie S, Lufkin T. Pax1(EGFP): new wildtype and mutant EGFP mouse lines for molecular and fate mapping studies. Genesis 2013; 51:420-9. [PMID: 23377878 DOI: 10.1002/dvg.22379] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2012] [Revised: 01/21/2013] [Accepted: 01/22/2013] [Indexed: 11/07/2022]
Abstract
The Paired box gene 1 (Pax1) transcription factor plays essential roles in the development of axial skeleton, scapula, pelvic girdle, and thymus. Delineating its pleiotropic and molecular roles in the various tissues requires the ability to track and isolate the Pax1-expressing cells for downstream high-throughput experiments such as microarray and RNA-sequencing. With these applications in mind, we have generated two new mouse lines-a Pax1 wildtype (WT) mouse line that co-expresses enhanced green fluorescent protein (EGFP) with functional Pax1, and a Pax1 knockout mouse line which expresses EGFP under the control of Pax1 promoter, using the internal ribosome entry site (IRES) and 2A-peptide multi-cistron concatenating strategies. These mouse lines facilitate the isolation and enrichment of Pax1-specific cells from Pax1-positive and Pax1-null embryos using fluorescence activated cell sorting (FACS). They can be also be used in parallel to investigate the stage- and tissue-specific molecular functions of Pax1.
Collapse
Affiliation(s)
- V Sivakamasundari
- Stem Cell and Developmental Biology, Genome Institute of Singapore, Singapore
| | | | | | | |
Collapse
|
61
|
Ma D, Wei Y, Liu F. Regulatory mechanisms of thymus and T cell development. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2013; 39:91-102. [PMID: 22227346 DOI: 10.1016/j.dci.2011.12.013] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2011] [Revised: 12/22/2011] [Accepted: 12/22/2011] [Indexed: 05/31/2023]
Abstract
The thymus is a central hematopoietic organ which produces mature T lymphocytes with diverse antigen specificity. During development, the thymus primordium is derived from the third pharyngeal endodermal pouch, and then differentiates into cortical and medullary thymic epithelial cells (TECs). TECs represent the primary functional cell type that forms the unique thymic epithelial microenvironment which is essential for intrathymic T-cell development, including positive selection, negative selection and emigration out of the thymus. Our understanding of thymopoiesis has been greatly advanced by using several important animal models. This review will describe progress on the molecular mechanisms involved in thymus and T cell development with particular focus on the signaling and transcription factors involved in this process in mouse and zebrafish.
Collapse
Affiliation(s)
- Dongyuan Ma
- State Key Laboratory of Biomembrane and Membrane Biotechnology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | | | | |
Collapse
|
62
|
Grigorieva IV, Thakker RV. Transcription factors in parathyroid development: lessons from hypoparathyroid disorders. Ann N Y Acad Sci 2012; 1237:24-38. [PMID: 22082362 DOI: 10.1111/j.1749-6632.2011.06221.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Parathyroid developmental anomalies, which result in hypoparathyroidism, are common and may occur in one in 4,000 live births. Parathyroids, in man, develop from the endodermal cells of the third and fourth pharyngeal pouches, whereas, in the mouse they develop solely from the endoderm of the third pharyngeal pouches. In addition, neural crest cells that arise from the embryonic mid- and hindbrain also contribute to parathyroid gland development. The molecular signaling pathways that are involved in determining the differentiation of the pharyngeal pouch endoderm into parathyroid cells are being elucidated by studies of patients with hypoparathyroidism and appropriate mouse models. These studies have revealed important roles for a number of transcription factors, which include Tbx1, Gata3, Gcm2, Sox3, Aire1 and members of the homeobox (Hox) and paired box (Pax) families.
Collapse
Affiliation(s)
- Irina V Grigorieva
- Academic Endocrine Unit, Nuffield Department of Clinical Medicine, Oxford Centre for Diabetes, Endocrinology, and Metabolism, Churchill Hospital, University of Oxford, Headington, Oxford, United Kingdom
| | | |
Collapse
|
63
|
Nowell CS, Bredenkamp N, Tetélin S, Jin X, Tischner C, Vaidya H, Sheridan JM, Stenhouse FH, Heussen R, Smith AJH, Blackburn CC. Foxn1 regulates lineage progression in cortical and medullary thymic epithelial cells but is dispensable for medullary sublineage divergence. PLoS Genet 2011; 7:e1002348. [PMID: 22072979 PMCID: PMC3207875 DOI: 10.1371/journal.pgen.1002348] [Citation(s) in RCA: 112] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2011] [Accepted: 08/30/2011] [Indexed: 01/12/2023] Open
Abstract
The forkhead transcription factor Foxn1 is indispensable for thymus development, but the mechanisms by which it mediates thymic epithelial cell (TEC) development are poorly understood. To examine the cellular and molecular basis of Foxn1 function, we generated a novel and revertible hypomorphic allele of Foxn1. By varying levels of its expression, we identified a number of features of the Foxn1 system. Here we show that Foxn1 is a powerful regulator of TEC differentiation that is required at multiple intermediate stages of TE lineage development in the fetal and adult thymus. We find no evidence for a role for Foxn1 in TEC fate-choice. Rather, we show it is required for stable entry into both the cortical and medullary TEC differentiation programmes and subsequently is needed at increasing dosage for progression through successive differentiation states in both cortical and medullary TEC. We further demonstrate regulation by Foxn1 of a suite of genes with diverse roles in thymus development and/or function, suggesting it acts as a master regulator of the core thymic epithelial programme rather than regulating a particular aspect of TEC biology. Overall, our data establish a genetics-based model of cellular hierarchies in the TE lineage and provide mechanistic insight relating titration of a single transcription factor to control of lineage progression. Our novel revertible hypomorph system may be similarly applied to analyzing other regulators of development. The thymus is the specialized organ responsible for generating T cells, which are required to regulate and effect immune responses. The unique functions of the thymus are mediated by a diverse array of specialized epithelial cells found only within this organ. These specialized, functionally mature thymic epithelial cells are generated from immature epithelial progenitor cells present in the fetal and adult thymus through a highly regulated process, termed differentiation, that is tightly controlled by specific genes. Foxn1, a protein that is expressed in thymic epithelial cells, is a transcription factor—a protein that regulates how other genes are expressed. Here, we have investigated the role of Foxn1 in generating mature thymic epithelial cells from immature progenitors. We find that Foxn1 is required throughout this process, from the onset of differentiation in progenitor thymic epithelial cells in the developing fetus to the final differentiation steps through which thymic epithelial cells mature to acquire their full functionality. We further find that Foxn1 controls the expression of a variety of genes with different functions in thymic epithelial cells. Overall, our study defines the role of Foxn1 in thymus development at the cellular level and provides insight into how it mediates these functions.
Collapse
Affiliation(s)
- Craig S. Nowell
- MRC Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Nicholas Bredenkamp
- MRC Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Stéphanie Tetélin
- MRC Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Xin Jin
- MRC Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Christin Tischner
- MRC Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Harsh Vaidya
- MRC Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Julie M. Sheridan
- MRC Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Frances Hogg Stenhouse
- MRC Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Raphaela Heussen
- MRC Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Andrew J. H. Smith
- MRC Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - C. Clare Blackburn
- MRC Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
- * E-mail:
| |
Collapse
|
64
|
Gordon J, Manley NR. Mechanisms of thymus organogenesis and morphogenesis. Development 2011; 138:3865-78. [PMID: 21862553 DOI: 10.1242/dev.059998] [Citation(s) in RCA: 176] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The thymus is the primary organ responsible for generating functional T cells in vertebrates. Although T cell differentiation within the thymus has been an area of intense investigation, the study of thymus organogenesis has made slower progress. The past decade, however, has seen a renewed interest in thymus organogenesis, with the aim of understanding how the thymus develops to form a microenvironment that supports T cell maturation and regeneration. This has prompted modern revisits to classical experiments and has driven additional genetic approaches in mice. These studies are making significant progress in identifying the molecular and cellular mechanisms that control specification, early organogenesis and morphogenesis of the thymus.
Collapse
Affiliation(s)
- Julie Gordon
- Department of Genetics, University of Georgia, Athens, Georgia 30602, USA
| | | |
Collapse
|
65
|
Thompson JA, Ziman M. Pax genes during neural development and their potential role in neuroregeneration. Prog Neurobiol 2011; 95:334-51. [DOI: 10.1016/j.pneurobio.2011.08.012] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2011] [Accepted: 08/30/2011] [Indexed: 12/18/2022]
|
66
|
Kamitani-Kawamoto A, Hamada M, Moriguchi T, Miyai M, Saji F, Hatamura I, Nishikawa K, Takayanagi H, Hitoshi S, Ikenaka K, Hosoya T, Hotta Y, Takahashi S, Kataoka K. MafB interacts with Gcm2 and regulates parathyroid hormone expression and parathyroid development. J Bone Miner Res 2011; 26:2463-72. [PMID: 21713993 DOI: 10.1002/jbmr.458] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Serum calcium and phosphate homeostasis is critically regulated by parathyroid hormone (PTH) secreted by the parathyroid glands. Parathyroid glands develop from the bilateral parathyroid-thymus common primordia. In mice, the expression of transcription factor Glial cell missing 2 (Gcm2) begins in the dorsal/anterior part of the primordium on embryonic day 9.5 (E9.5), specifying the parathyroid domain. The parathyroid primordium then separates from the thymus primordium and migrates to its adult location beside the thyroid gland by E15.5. Genetic ablation of gcm2 results in parathyroid agenesis in mice, indicating that Gcm2 is essential for early parathyroid organogenesis. However, the regulation of parathyroid development at later stages is not well understood. Here we show that transcriptional activator v-maf musculoaponeurotic fibrosarcoma oncogene homologue B (MafB) is developmentally expressed in parathyroid cells after E11.5. MafB expression was lost in the parathyroid primordium of gcm2 null mice. The parathyroid glands of mafB(+/-) mice were mislocalized between the thymus and thyroid. In mafB(-/-) mice, the parathyroid did not separate from the thymus. Furthermore, in mafB(-/-) mice, PTH expression and secretion were impaired; expression levels of renal cyp27b1, one of the target genes of PTH, was decreased; and bone mineralization was reduced. We also demonstrate that although Gcm2 alone does not stimulate the PTH gene promoter, it associates with MafB to synergistically activate PTH expression. Taken together, our results suggest that MafB regulates later steps of parathyroid development, that is, separation from the thymus and migration toward the thyroid. MafB also regulates the expression of PTH in cooperation with Gcm2.
Collapse
Affiliation(s)
- Akiyo Kamitani-Kawamoto
- Laboratory of Molecular and Developmental Biology, Graduate School of Biological Science, Nara Institute of Science and Technology, Ikoma, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
67
|
Li B, Li J, Devlin BH, Markert ML. Thymic microenvironment reconstitution after postnatal human thymus transplantation. Clin Immunol 2011; 140:244-59. [PMID: 21565561 PMCID: PMC3159734 DOI: 10.1016/j.clim.2011.04.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2010] [Revised: 03/25/2011] [Accepted: 04/08/2011] [Indexed: 01/13/2023]
Abstract
A functional thymus develops after cultured thymus tissue is transplanted into subjects with complete DiGeorge anomaly. To gain insight into how the process occurs, 7 post-transplantation thymus biopsy tissues were evaluated. In 5 of 7 biopsies, the thymus appeared to be predominantly cortex with thymocytes expressing cortical markers. Unexpectedly, the epithelium expressed both cortical [cortical dendritic reticulum antigen 2 (CDR2)] and medullary [cytokeratin (CK) 14] markers. Early medullary development was suggested by epithelial cell adhesion molecule (EpCAM) reactivity in small areas of biopsies. Two other biopsies had distinct mature cortex and medulla with normal restriction of CK14 to the medulla and subcapsular cortex, and of CDR2 to cortex. These data are consistent with a model in which thymic epithelium contains CK14+ "progenitor epithelial cells". After transplantation these cells proliferate as CK14+CDR2+ thymic epithelial cells that are associated with cortical thymocytes. Later these cells differentiate into distinct cortical and medullary epithelia.
Collapse
Affiliation(s)
- Bin Li
- Department of Pediatrics, Duke University Medical Center
| | - Jie Li
- Department of Pediatrics, Duke University Medical Center
| | | | - M. Louise Markert
- Department of Pediatrics, Duke University Medical Center
- Department of Immunology, Duke University Medical Center
| |
Collapse
|
68
|
Chao TK, Ke FY, Liao YP, Wang HC, Yu CP, Lai HC. Triage of cervical cytological diagnoses of atypical squamous cells by DNA methylation of paired boxed gene 1 (PAX1). Diagn Cytopathol 2011; 41:41-6. [PMID: 21710649 DOI: 10.1002/dc.21758] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2011] [Accepted: 05/11/2011] [Indexed: 11/06/2022]
Abstract
Detection of cervical high-grade squamous intraepithelial lesions (HSIL) in patients with equivocal cytological abnormalities, such as atypical squamous cells (ASC) of undetermined significance (ASCUS) or inability to exclude high-grade squamous intraepithelial lesions (ASC-H) is still a challenge. This study tested the efficacy of PAX1 methylation analysis in the triage of cervical ASCUS and ASC-H and compared its performance with Hybrid Capture 2 (HC2) HPV test. A hospital-based case-control study was conducted. Cervical scrapings from patients with ASCUS or ASC-H were used for the quantitative methylation analysis of PAX1 methylation by MethyLight and HPV testing by HC2. Patients with ASC-H or ASCUS with repeated abnormal smears underwent colposcopic biopsy and subsequent therapies. Diagnoses were made by histopathology at a follow-up of 2 years. The efficacies of detecting high-grade lesions were compared. Fifty-eight cervical scrapings with cytological diagnosis of ASCUS (n = 41) and ASC-H (n = 17) were analyzed. One of the 41 (2.4%) ASCUS patients and seven of 17 (41.2%) ASC-H patients were confirmed to have HSIL. After dichotomy of the PMR, PAX1 methylation rates were significantly higher in ASC developing HSIL compared with those developing reactive atypia (87.5% vs. 12.5%, P < 0.001). Testing PAX1 methylation in cervical swabs of patients with ASC confers better sensitivity (87.5% vs. 62.5%) and specificity (98.0% vs. 86.0%) than HC2 HPV testing. We show for the first time that PAX1 hypermethylation analysis may be a better choice than HC2 in the triage of ASCUS and ASC-H.
Collapse
Affiliation(s)
- Tai-Kuang Chao
- Department of Pathology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, Republic of China
| | | | | | | | | | | |
Collapse
|
69
|
Gillis JA, Fritzenwanker JH, Lowe CJ. A stem-deuterostome origin of the vertebrate pharyngeal transcriptional network. Proc Biol Sci 2011; 279:237-46. [PMID: 21676974 DOI: 10.1098/rspb.2011.0599] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Hemichordate worms possess ciliated gills on their trunk, and the homology of these structures with the pharyngeal gill slits of chordates has long been a topic of debate in the fields of evolutionary biology and comparative anatomy. Here, we show conservation of transcription factor expression between the developing pharyngeal gill pores of the hemichordate Saccoglossus kowalevskii and the pharyngeal gill slit precursors (i.e. pharyngeal endodermal outpockets) of vertebrates. Transcription factors that are expressed in the pharyngeal endoderm, ectoderm and mesenchyme of vertebrates are expressed exclusively in the pharyngeal endoderm of S. kowalevskii. The pharyngeal arches and tongue bars of S. kowalevskii lack Tbx1-expressing mesoderm, and are supported solely by an acellular collagenous endoskeleton and by compartments of the trunk coelom. Our findings suggest that hemichordate and vertebrate gills are homologous as simple endodermal outpockets from the foregut, and that much vertebrate pharyngeal complexity arose coincident with the incorporation of cranial paraxial mesoderm and neural crest-derived mesenchyme within pharyngeal arches along the chordate and vertebrate stems, respectively.
Collapse
Affiliation(s)
- J Andrew Gillis
- Department of Organismal Biology and Anatomy, University of Chicago, 1027 East 57th Street, Chicago, IL 60637, USA.
| | | | | |
Collapse
|
70
|
Shh signalling restricts the expression of Gcm2 and controls the position of the developing parathyroids. Dev Biol 2011; 353:194-205. [DOI: 10.1016/j.ydbio.2011.02.012] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2010] [Revised: 02/12/2011] [Accepted: 02/14/2011] [Indexed: 11/24/2022]
|
71
|
Green MD, Chen A, Nostro MC, d'Souza SL, Schaniel C, Lemischka IR, Gouon-Evans V, Keller G, Snoeck HW. Generation of anterior foregut endoderm from human embryonic and induced pluripotent stem cells. Nat Biotechnol 2011; 29:267-72. [PMID: 21358635 DOI: 10.1038/nbt.1788] [Citation(s) in RCA: 271] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2010] [Accepted: 01/25/2011] [Indexed: 01/08/2023]
Abstract
Directed differentiation of human embryonic stem (hES) cells and human induced pluripotent stem (hiPS) cells captures in vivo developmental pathways for specifying lineages in vitro, thus avoiding perturbation of the genome with exogenous genetic material. Thus far, derivation of endodermal lineages has focused predominantly on hepatocytes, pancreatic endocrine cells and intestinal cells. The ability to differentiate pluripotent cells into anterior foregut endoderm (AFE) derivatives would expand their utility for cell therapy and basic research to tissues important for immune function, such as the thymus; for metabolism, such as thyroid and parathyroid; and for respiratory function, such as trachea and lung. We find that dual inhibition of transforming growth factor (TGF)-β and bone morphogenic protein (BMP) signaling after specification of definitive endoderm from pluripotent cells results in a highly enriched AFE population that is competent to be patterned along dorsoventral and anteroposterior axes. These findings provide an approach for the generation of AFE derivatives.
Collapse
Affiliation(s)
- Michael D Green
- Department of Gene and Cell Medicine and Black Family Stem Cell Institute, Mount Sinai School of Medicine, New York, New York, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
72
|
Okubo T, Kawamura A, Takahashi J, Yagi H, Morishima M, Matsuoka R, Takada S. Ripply3, a Tbx1 repressor, is required for development of the pharyngeal apparatus and its derivatives in mice. Development 2011; 138:339-48. [PMID: 21177346 DOI: 10.1242/dev.054056] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The pharyngeal apparatus is a transient structure that gives rise to the thymus and the parathyroid glands and also contributes to the development of arteries and the cardiac outflow tract. A typical developmental disorder of the pharyngeal apparatus is the 22q11 deletion syndrome (22q11DS), for which Tbx1 is responsible. Here, we show that Ripply3 can modulate Tbx1 activity and plays a role in the development of the pharyngeal apparatus. Ripply3 expression is observed in the pharyngeal ectoderm and endoderm and overlaps with strong expression of Tbx1 in the caudal pharyngeal endoderm. Ripply3 suppresses transcriptional activation by Tbx1 in luciferase assays in vitro. Ripply3-deficient mice exhibit abnormal development of pharyngeal derivatives, including ectopic formation of the thymus and the parathyroid gland, as well as cardiovascular malformation. Corresponding with these defects, Ripply3-deficient embryos show hypotrophy of the caudal pharyngeal apparatus. Ripply3 represses Tbx1-induced expression of Pax9 in luciferase assays in vitro, and Ripply3-deficient embryos exhibit upregulated Pax9 expression. Together, our results show that Ripply3 plays a role in pharyngeal development, probably by regulating Tbx1 activity.
Collapse
Affiliation(s)
- Tadashi Okubo
- Okazaki Institute for Integrative Bioscience, National Institutes of Natural Sciences, Okazaki, Aichi 444-8787, Japan
| | | | | | | | | | | | | |
Collapse
|
73
|
Testing for methylated PCDH10 or WT1 is superior to the HPV test in detecting severe neoplasms (CIN3 or greater) in the triage of ASC-US smear results. Am J Obstet Gynecol 2011; 204:21.e1-7. [PMID: 20833385 DOI: 10.1016/j.ajog.2010.07.036] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2010] [Revised: 05/22/2010] [Accepted: 07/21/2010] [Indexed: 01/08/2023]
Abstract
OBJECTIVE Management of equivocal Papanicolaou smear result remains to be challenging even with the aid of human papillomavirus test. Recently, 3 novel methylation-silenced genes, PAX1, WT1, and PCDH10, have been found to be specifically associated with cervical cancer. We compared the performances of methylation test of these genes with human papillomavirus tests in triage of equivocal Papanicolaou smear result. STUDY DESIGN Two hundred twenty-two women with Papanicolaou smear results of atypical cells of undetermined significance nested to a multicenter, nation-wide cohort (the T1899 cohort) were studied. Status of cervical neoplasm was diagnosed with colposcopic biopsy. Status of gene methylation was determined by methylation-specific polymerase chain reaction. High-risk human papillomavirus DNA was detected by polymerase chain reaction-reverse line blot hybridization and Hybrid Capture 2. RESULTS Cervical intraepithelial neoplasm 1, cervical intraepithelial neoplasm 2, cervical intraepithelial neoplasm 3, carcinoma in situ, carcinoma, and normal cervix were diagnosed in 58, 17, 14, 10, 1, and 120 women, respectively. Methylation of PCDH10, WT1, and PAX1 was highly associated with the severity of cervical neoplasm (P < 10⁻⁹, < 10⁻⁷, and < 10⁻⁵, respectively). In comparison with a negative test result, the odds ratio (95% confidence intervals) for cervical intraepithelial neoplasm 3 or more severe neoplasms for women tested positive for methylation of these 3 genes were 26.4 (9.0-77.3), 18.1 (6.9-47.2), and 10.3 (4.1-25.9), respectively; whereas those positive for human papillomavirus polymerase chain reaction and Hybrid Capture 2 were 10.5 (3.5-31.9) and 5.6 (2.3-21.4). In triage for atypical cells of undetermined significance, each methylation test had less colposcopy referral and false-positive rates, but higher false-negative rate than the human papillomavirus tests. With a combination test of PCDH10 or WT1 methylation, a comparable false-negative rate (P = .62) but much less false-positive rate (P = .002) and colposcopy referral rate (P < 10⁻⁶) were achieved. CONCLUSION In triage of atypical cells of undetermined significance Papanicolaou smear results, methylation test of WT1 and PCDH10 is superior to human papillomavirus test in this multicenter cohort. Comparing to current human papillomavirus triage, the new test has only one third of false positivity and half of colposcopy referral, with no compromise of the sensitivity in diagnosis of cervical intraepithelial neoplasm 3 or more severe neoplasms.
Collapse
|
74
|
Huang TH, Lai HC, Liu HW, Lin CJ, Wang KH, Ding DC, Chu TY. Quantitative analysis of methylation status of the PAX1 gene for detection of cervical cancer. Int J Gynecol Cancer 2010; 20:513-9. [PMID: 20442585 DOI: 10.1111/igc.0b013e3181c7fe6e] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
OBJECTIVE Although aided by high-risk human papillomavirus (HPV) DNA test, early detection of cervical cancer is still a challenge. Hypermethylation of the paired boxed gene 1 (PAX1) was recently reported as a characteristic of cervical cancer. This study designed a quantitative measure of PAX1 methylation and compared its efficacy to the currently available Hybrid Capture 2 (HC2) HPV test in detection of cervical cancer. METHODS Using real-time quantitative methylation-specific polymerase chain reaction, we measured the percentage of PAX1 methylation in cervical scrapings obtained from a hospital-based cohort of women with cervical neoplasia of different severities and compared the efficacy of diagnosis of cervical cancer to that of the HC2 HPV test. RESULTS From 73 cervical scrapings, with diagnoses of normal (n = 17), cervical intraepithelial neoplasm 1 (CIN1; n = 10), CIN2 (n = 18), CIN3 (n = 14), and invasive cancer (n = 14), the percentage of PAX1 methylation was determined. The percent of methylated reference of invasive cancer (mean [SE], 56.7 [7.1]) was significantly higher than CIN3 (6.5 [2.3]) and the other milder lesions (1.0 [0.3]; P < 0.0001). At a cutoff percent of methylated reference value of 4.5, PAX1 methylation was found in 100% of invasive cancer tissue as compared with 0% of normal tissue, 10% of CIN1, 11% of CIN2, and 43% of CIN3 (P < 0.0001). As a comparison, the HC2 HPV test result was positive in 5.9% of normal tissue, 70% of CIN1, 55.6% of CIN2, 71.4% of CIN3, and 100% of invasive cancer. In addition to cancer tissue, methylation of PAX1 was also found in normal tissue adjacent to the cancer lesion (9/11, 82%) but much less in the remote normal tissues (2/5, 40%), indicating a field methylation. CONCLUSIONS In this hospital-based study, quantitative measurement of PAX1 hypermethylation in cervical scrapings is highly sensitive and is more specific than HC2 in detection of cervical cancer.
Collapse
Affiliation(s)
- Tien-Hung Huang
- Department of Research, Center for Cervical Cancer Prevention, Buddhist Tzu Chi General Hospital, Hualien, Taiwan, Republic of China
| | | | | | | | | | | | | |
Collapse
|
75
|
Differentiation of induced pluripotent stem cells to thymic epithelial cells by phenotype. Immunol Cell Biol 2010; 89:314-21. [PMID: 20680027 DOI: 10.1038/icb.2010.96] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Thymic epithelial cells (TECs) are present in both cortical and medullary thymic areas, and have crucial roles in functional T-cell development. In this study, we studied the differentiation of induced pluripotent stem cells (iPSCs) to TEC. When iPSC were cultured for 4 days in collagen IV-coated dishes in the presence of both activin A and lithium chloride (LiCl), the cells differentiated to definitive endoderm through mesendoderm. Further treatment with Fgf8 followed by Fgf7, Fgf10 and BMP4 differentiated iPSC to thymic epithelial progenitor cells (TEPCs) by phenotype. Gene expression of Hoxa3, Pax1 and Pax9 was observed and cell surface proteins EpCAM1 and MTS24 were detected at day 14 of iPSC differentiation. TEPCs differentiated to medullary TECs (mTECs) by phenotype following the addition of receptor activator nuclear factor B ligand with LiCl. Thus, we successfully induced efficient differentiation from mouse iPSC to TEPCs and mTEC by phenotype using chemically defined conditions.
Collapse
|
76
|
EphB-ephrin-B2 interactions are required for thymus migration during organogenesis. Proc Natl Acad Sci U S A 2010; 107:13414-9. [PMID: 20616004 DOI: 10.1073/pnas.1003747107] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Thymus organogenesis requires coordinated interactions of multiple cell types, including neural crest (NC) cells, to orchestrate the formation, separation, and subsequent migration of the developing thymus from the third pharyngeal pouch to the thoracic cavity. The molecular mechanisms driving these processes are unclear; however, NC-derived mesenchyme has been shown to play an important role. Here, we show that, in the absence of ephrin-B2 expression on thymic NC-derived mesenchyme, the thymus remains in the cervical area instead of migrating into the thoracic cavity. Analysis of individual NC-derived thymic mesenchymal cells shows that, in the absence of ephrin-B2, their motility is impaired as a result of defective EphB receptor signaling. This implies a NC-derived cell-specific role of EphB-ephrin-B2 interactions in the collective migration of the thymic rudiment during organogenesis.
Collapse
|
77
|
Holland LZ, Short S. Alternative splicing in development and function of chordate endocrine systems: a focus on Pax genes. Integr Comp Biol 2010; 50:22-34. [PMID: 21558185 DOI: 10.1093/icb/icq048] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Genome sequencing has facilitated an understanding of gene networks but has also shown that they are only a small part of the answer to the question of how genes translate into a functional organism. Much of the answer lies in epigenetics-heritable traits not directly encoded by the genome. One such phenomenon is alternative splicing, which affects over 75% of protein coding genes and greatly amplifies the number of proteins. Although it was postulated that alternative splicing and gene duplication are inversely proportional and, therefore, have similar effects on the size of the proteome, for ancient duplications such as occurred in the Pax family of transcription factors, that is not necessarily so. The importance of alternative splicing in development and physiology is only just coming to light. However, several techniques for studying isoform functions both in vitro and in vivo have been recently developed. As examples of what is known and what is yet to be discovered, this review focuses on the evolution and roles of the Pax family of transcription factors in development and on alternative splicing of endocrine genes and the factors that regulate them.
Collapse
Affiliation(s)
- Linda Z Holland
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA 92093-0202, USA.
| | | |
Collapse
|
78
|
Gene expression profile of the third pharyngeal pouch reveals role of mesenchymal MafB in embryonic thymus development. Blood 2009; 113:2976-87. [PMID: 19164599 DOI: 10.1182/blood-2008-06-164921] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The thymus provides a microenvironment that induces the differentiation of T-progenitor cells into functional T cells and that establishes a diverse yet self-tolerant T-cell repertoire. However, the mechanisms that lead to the development of the thymus are incompletely understood. We report herein the results of screening for genes that are expressed in the third pharyngeal pouch, which contains thymic primordium. Polymerase chain reaction (PCR)-based cDNA subtraction screening for genes expressed in microdissected tissues of the third pharyngeal pouch rather than the second pharyngeal arch yielded one transcription factor, MafB, which was predominantly expressed in CD45(-)IA(-)PDGFRalpha(+) mesenchymal cells and was detectable even in the third pharyngeal pouch of FoxN1-deficient nude mice. Interestingly, the number of CD45(+) cells that initially accumulated in the embryonic thymus was significantly decreased in MafB-deficient mice. Alterations of gene expression in the embryonic thymi of MafB-deficient mice included the reduced expression of Wnt3 and BMP4 in mesenchymal cells and of CCL21 and CCL25 in epithelial cells. These results suggest that MafB expressed in third pharyngeal pouch mesenchymal cells critically regulates lymphocyte accumulation in the embryonic thymus.
Collapse
|
79
|
Trede NS, Ota T, Kawasaki H, Paw BH, Katz T, Demarest B, Hutchinson S, Zhou Y, Hersey C, Zapata A, Amemiya CT, Zon LI. Zebrafish mutants with disrupted early T-cell and thymus development identified in early pressure screen. Dev Dyn 2009; 237:2575-84. [PMID: 18729230 DOI: 10.1002/dvdy.21683] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Generation of mature T lymphocytes requires an intact hematopoietic stem cell compartment and functional thymic epithelium. We used the zebrafish (Danio rerio) to isolate mutations that affect the earliest steps in T lymphopoiesis and thymic organogenesis. Here we describe the results of a genetic screen in which gynogenetic diploid offspring from heterozygous females were analyzed by whole-mount in situ hybridization for the expression of rag-1. To assess immediately if a global defect in hematopoiesis resulted in the mutant phenotype, alpha-embryonic globin expression was simultaneously assayed for multilineage defects. In this report, we present the results obtained with this strategy and show representative mutant phenotypes affecting early steps in T-cell development and/or thymic epithelial cell development. We discuss the advantage of this strategy and the general usefulness of the zebrafish as a model system for vertebrate lymphopoiesis and thymic organogenesis.
Collapse
Affiliation(s)
- Nikolaus S Trede
- Children's Hospital Boston, Harvard Medical School, Boston, Massachusetts, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
80
|
Leposavić G, Pilipović I, Radojević K, Pešić V, Perišić M, Kosec D. Catecholamines as immunomodulators: A role for adrenoceptor-mediated mechanisms in fine tuning of T-cell development. Auton Neurosci 2008; 144:1-12. [DOI: 10.1016/j.autneu.2008.09.003] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2008] [Accepted: 09/16/2008] [Indexed: 01/28/2023]
|
81
|
Abstract
The epithelial architecture of the thymus fosters growth, differentiation, and T cell receptor repertoire selection of large numbers of immature T cells that continuously feed the mature peripheral T cell pool. Failure to build or to maintain a proper thymus structure can lead to defects ranging from immunodeficiency to autoimmunity. There has been long-standing interest in unraveling the cellular and molecular basis of thymus organogenesis. Earlier studies gave important morphological clues on thymus development. More recent cell biological and genetic approaches yielded new and conclusive insights regarding the germ layer origin of the epithelium and the composition of the medulla as a mosaic of clonally derived islets. The existence of epithelial progenitors common for cortex and medulla with the capacity for forming functional thymus after birth has been uncovered. In addition to the thymus in the chest, mice can have a cervical thymus that is small, but functional, and produces T cells only after birth. It will be important to elucidate the pathways from putative thymus stem cells to mature thymus epithelial cells, and the properties and regulation of these pathways from ontogeny to thymus involution.
Collapse
|
82
|
Takahashi K, Ishida M, Hirokawa K, Takahashi H. Expression of the semaphorinsSema 3DandSema 3Fin the developing parathyroid and thymus. Dev Dyn 2008; 237:1699-708. [DOI: 10.1002/dvdy.21556] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
|
83
|
Dooley J, Erickson M, Larochelle WJ, Gillard GO, Farr AG. FGFR2IIIb signaling regulates thymic epithelial differentiation. Dev Dyn 2008; 236:3459-71. [PMID: 17969154 DOI: 10.1002/dvdy.21364] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Heterogeneous epithelial populations comprising the thymic environment influence early and late stages of T-cell development. The processes that regulate the differentiation of thymic epithelium and that are responsible for this heterogeneity are not well understood, although mesenchymal/epithelial interactions are clearly involved. Here, we show that targeted expression by thymocytes of an fibroblast growth factor receptor-2IIIb (FGFR2IIIb) ligand, FGF10, profoundly alters the differentiation and function of thymic epithelium (TE). Reconstitution of irradiated lckFGF10 mice with normal bone marrow restores normal thymic organization and function, while wild-type mice reconstituted with lckFGF10 bone marrow recapitulates some of the thymic alterations seen in lckFGF10 mice. We also demonstrate that interference with FGFR2IIIb signaling in the thymus with a soluble FGFR2IIIb dominant-negative fusion protein leads to precocious reductions in thymic size and cellularity that resemble age-related thymic involution. These findings indicate that TE compartments are dynamically maintained and that FGF signals are involved in this process.
Collapse
Affiliation(s)
- James Dooley
- Department of Biological Structure, University of Washington, Seattle, Washington 98195-7420, USA
| | | | | | | | | |
Collapse
|
84
|
Abstract
Alphabeta T cells pass through a series of lymphoid tissue stromal microenvironments to acquire self tolerance and functional competence. In the thymus, positive selection of the developing T-cell receptor repertoire occurs in the cortex, whereas events in the medulla purge the system of self reactivity. T cells that survive are exported to secondary lymphoid organs where they direct first primary and then memory immune responses. This Review focuses on the microenvironments that nurture T-cell development rather than on T cells themselves. We summarize current knowledge on the formation of thymic epithelial-cell microenvironments, and highlight similarities between the environments that produce T cells and those that select and maintain them during immune responses.
Collapse
|
85
|
Seach N, Layton D, Lim J, Chidgey A, Boyd R. Thymic generation and regeneration: a new paradigm for establishing clinical tolerance of stem cell-based therapies. Curr Opin Biotechnol 2007; 18:441-7. [PMID: 17702564 DOI: 10.1016/j.copbio.2007.07.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2007] [Accepted: 07/06/2007] [Indexed: 01/28/2023]
Abstract
Tolerance to tissue-engineering products is a major obstacle hindering the clinical application of this rapidly advancing technology. Manipulation of central tolerance, by establishing thymus chimerism of both donor and host-derived haemopoietic cells (haemopoietic stem cell transplant--HSCT), should purge any T cells reactive to potential donor organ or tissue transplant. A functional thymus, however, is required to induce chimerism and repopulate the peripheral T cell pool, but age-related thymic atrophy and damage caused by ablative conditioning regimes significantly reduce thymic function and increase incident of infection-dependent morbidity and mortality. Thus rejuvenation of the thymus alongside HSCT may potentiate the use of this strategy in the clinic. In addition, the use of thymic epithelial progenitor cell technology may allow growth of ex vivo thymic tissue for use in clinical situations of immunodeficiency as well as in establishing tolerance to tissue/organ products derived from the same source.
Collapse
Affiliation(s)
- Natalie Seach
- Monash Immunology and Stem Cell Laboratories, STRIP1, Building 75, Monash University, Clayton 3800, Victoria, Australia.
| | | | | | | | | |
Collapse
|
86
|
Gong KQ, Yallowitz AR, Sun H, Dressler GR, Wellik DM. A Hox-Eya-Pax complex regulates early kidney developmental gene expression. Mol Cell Biol 2007; 27:7661-8. [PMID: 17785448 PMCID: PMC2169072 DOI: 10.1128/mcb.00465-07] [Citation(s) in RCA: 106] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
During embryonic development, the anterior-posterior body axis is specified in part by the combinatorial activities of Hox genes. Given the poor DNA binding specificity of Hox proteins, their interaction with cofactors to regulate target genes is critical. However, few regulatory partners or downstream target genes have been identified. Herein, we demonstrate that Hox11 paralogous proteins form a complex with Pax2 and Eya1 to directly activate expression of Six2 and Gdnf in the metanephric mesenchyme. We have identified the binding site within the Six2 enhancer necessary for Hox11-Eya1-Pax2-mediated activation and demonstrate that this site is essential for Six2 expression in vivo. Furthermore, genetic interactions between Hox11 and Eya1 are consistent with their participation in the same pathway. Thus, anterior-posterior-patterning Hox proteins interact with Pax2 and Eya1, factors important for nephrogenic mesoderm specification, to directly regulate the activation of downstream target genes during early kidney development.
Collapse
Affiliation(s)
- Ke-Qin Gong
- Division of Molecular Medicine and Genetics, Department of Internal Medicine, University of Michigan Medical Center, 109 Zina Pitcher, 3045 BSRB, Ann Arbor, MI 48109-2200, USA
| | | | | | | | | |
Collapse
|
87
|
Suzuki M, Katagiri N, Ueda M, Tanaka S. Functional analysis of Nkx2.1 and Pax9 for calcitonin gene transcription. Gen Comp Endocrinol 2007; 152:259-66. [PMID: 17412341 DOI: 10.1016/j.ygcen.2007.02.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2006] [Revised: 02/15/2007] [Accepted: 02/17/2007] [Indexed: 10/23/2022]
Abstract
Nkx2.1 (TTF-1), a homeodomain-containing transcription factor essential for specific gene expression in thyroid follicular cells, exists also in the thyroidal C cells that secrete calcitonin (CT). In this report, we examined the effect of Nkx2.1 on the CT gene transcription. Luciferase reporter assay using the 2kbp promoter sequence of rat CT/CGRP gene revealed that Nkx2.1 induced a significant increase in the promoter transcription. Furthermore, we detected Pax1 and/or Pax9 gene expression in mammalian medullary thyroid carcinoma cell lines, rat rMTC and human TT cells, and in mammalian thyroid glands by RT-PCR. The Pax9 mRNA, expressed in the TT cells and rat thyroid, was then isolated by cDNA cloning. Sequence analysis showed that both rat and human Pax9 proteins contained characteristic domains: i.e. the paired domain and octapeptide motif. Alternative transcripts encoding Pax9 isoforms were not identified in the rat thyroid or TT cells. Dual luciferase assay indicated that Pax9 did not increase transcription from the CT/CGRP promoter. Pax9 also showed no cooperative effects when it was co-transfected with Nkx2.1. The results suggest that CT gene expression could be directly activated by Nkx2.1, whereas Pax9 is not involved in transcription from the 2kbp CT promoter.
Collapse
Affiliation(s)
- Masakazu Suzuki
- Department of Biology, Faculty of Science, Shizuoka University, Ohya 836, Shizuoka City, Shizuoka 422-8529, Japan.
| | | | | | | |
Collapse
|
88
|
Assarsson E, Chambers BJ, Högstrand K, Berntman E, Lundmark C, Fedorova L, Imreh S, Grandien A, Cardell S, Rozell B, Ljunggren HG. Severe defect in thymic development in an insertional mutant mouse model. THE JOURNAL OF IMMUNOLOGY 2007; 178:5018-27. [PMID: 17404284 DOI: 10.4049/jimmunol.178.8.5018] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Transgenic mice were generated expressing NK1.1, an NK cell-associated receptor, under control of the human CD2 promoter. Unexpectedly, one of the founder lines, Tg66, showed a marked defect in thymic development characterized by disorganized architecture and small size. Mapping of the transgene insertion by fluorescence in situ hybridization revealed integration in chromosome 2, band G. Already from postnatal day 3, the thymic architecture was disturbed with a preferential loss of cortical thymic epithelial cells, a feature that became more pronounced over time. Compared with wild-type mice, total thymic cell numbers decreased dramatically between 10 and 20 days of age. Thymocytes isolated from adult Tg66 mice were predominantly immature double-negative cells, indicating a block in thymic development at an early stage of differentiation. Consequently, Tg66 mice had reduced numbers of peripheral CD4(+) and CD8(+) T cells. Bone marrow from Tg66 mice readily reconstituted thymi of irradiated wild-type as well as RAG-deficient mice. This indicates that the primary defect in Tg66 mice resided in nonhemopoietic stromal cells of the thymus. The phenotype is observed in mice heterozygous for the insertion and does not resemble any known mutations affecting thymic development. Preliminary studies in mice homozygous for transgene insertion reveal a more accelerated and pronounced phenotype suggesting a semidominant effect. The Tg66 mice may serve as a useful model to identify genes regulating thymic epithelial cell differentiation, thymic development, and function.
Collapse
MESH Headings
- Animals
- Antigens, Ly
- Antigens, Surface/genetics
- CD4-Positive T-Lymphocytes/physiology
- CD8-Positive T-Lymphocytes/physiology
- Epithelial Cells/cytology
- Keratin-8/analysis
- Lectins, C-Type/genetics
- Mice
- Mice, Inbred C57BL
- Mice, Transgenic
- Mutagenesis, Insertional
- NK Cell Lectin-Like Receptor Subfamily B
- Paired Box Transcription Factors/analysis
- Phenotype
- Receptors, Antigen, T-Cell, alpha-beta/analysis
- Receptors, Antigen, T-Cell, gamma-delta/analysis
- Thymus Gland/abnormalities
- Thymus Gland/pathology
Collapse
Affiliation(s)
- Erika Assarsson
- Center for Infectious Medicine, Department of Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
89
|
Abstract
In the avian embryo, the endoderm, which forms a simple flat-sheet structure after gastrulation, is regionally specified in a gradual manner along the antero-posterior and dorso-ventral axes, and eventually differentiates into specific organs with defined morphologies and gene expression profiles. In our study, we carried out transplantation experiments using early chick embryos to elucidate the timing of fate establishment in the endoderm. We showed that at stage 5, posteriorly grafted presumptive foregut endoderm expressed CdxA, a posterior endoderm marker, but not cSox2, an anterior endoderm marker. Conversely, anteriorly grafted presumptive mid-hindgut endoderm expressed cSox2 but not CdxA. At stage 8, posteriorly grafted presumptive foregut endoderm also expressed CdxA and not cSox2, but anteriorly grafted presumptive mid-hindgut endoderm showed no changes in its posterior-specific gene expression pattern. At stage 10, both posteriorly grafted foregut endoderm and anteriorly grafted mid-hindgut endoderm maintain their original gene expression patterns. These results suggest that the regional specification of the endoderm occurs between stages 8 and 10 in the foregut, and between stages 5 and 8 in the mid-hindgut.
Collapse
Affiliation(s)
- Wataru Kimura
- Department of Biological Science, Tokyo Metropolitan University, 1-1 Minamiohsawa, Hachioji, Tokyo 192-0397, Japan
| | | | | |
Collapse
|
90
|
Liu Z, Yu S, Manley NR. Gcm2 is required for the differentiation and survival of parathyroid precursor cells in the parathyroid/thymus primordia. Dev Biol 2007; 305:333-46. [PMID: 17382312 PMCID: PMC1931567 DOI: 10.1016/j.ydbio.2007.02.014] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2006] [Revised: 02/13/2007] [Accepted: 02/13/2007] [Indexed: 12/27/2022]
Abstract
The parathyroid glands develop with the thymus from bilateral common primordia that develop from the 3rd pharyngeal pouch endoderm in mouse embryos at about E11, each of which separates into one parathyroid gland and one thymus lobe by E13.5. Gcm2, a mouse ortholog of the Drosophila Glial Cells Missing gene, is expressed in the parathyroid-specific domains in the 3rd pouches from E9.5. The null mutation of Gcm2 causes aparathyroidism in the fetal and adult mouse and has been proposed to be a master regulator for parathyroid development. In order to study how Gcm2 functions in parathyroid development, we investigated the mechanism that causes the loss of parathyroids in Gcm2 null mutants. Analysis of the 3rd pouch-derived primordium in Gcm2-/- mutants showed the parathyroid-specific domain was present before E12.5 but underwent programmed cell death between E12 and 12.5. RNA and protein localization studies for parathyroid hormone (Pth) in wild-type embryos showed that the presumptive parathyroid domain in the parathyroid/thymus primordia started to transcribe Pth mRNA and produce PTH protein from E11.5 before the separation of parathyroid and thymus domains. However in Gcm2-/- mutants, the parathyroid-specific domain in the common primordium did not express Pth and could not maintain the expression of two other parathyroid marker genes, CasR and CCL21, although expression of these two genes was initiated. Marker gene analysis placed Gcm2 downstream of the known transcription and signaling pathways for parathyroid/thymus organogenesis. These results suggest that Gcm2 is not required for pouch patterning or to establish the parathyroid domain, but is required for differentiation and subsequent survival of parathyroid cells.
Collapse
Affiliation(s)
| | | | - Nancy R. Manley
- 1 Author for correspondence: , phone 706-542-5861, fax 706-583-0691
| |
Collapse
|
91
|
Abstract
The thymus provides the essential microenvironment for T-cell development and maturation. Thymic epithelial cells (TECs), which are composed of thymic cortical epithelial cells (cTECs) and thymic medullary epithelial cells (mTECs), have been well documented to be critical for these tightly regulated processes. It has long been controversial whether the common progenitor cells of TECs could give rise to both cTECs and mTECs. Great progress has been made to characterize the common TEC progenitor cells in recent years. We herein discuss the sole origin paradigm with regard to TEC differentiation as well as these progenitor cells in thymus regeneration.
Collapse
Affiliation(s)
- Lianjun Zhang
- Transplantation Biology Research Division, State Key Laboratory of Biomembrane and Membrane Biotechnology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100080, China
| | | | | |
Collapse
|
92
|
Lang D, Powell SK, Plummer RS, Young KP, Ruggeri BA. PAX genes: Roles in development, pathophysiology, and cancer. Biochem Pharmacol 2007; 73:1-14. [PMID: 16904651 DOI: 10.1016/j.bcp.2006.06.024] [Citation(s) in RCA: 208] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2006] [Revised: 06/12/2006] [Accepted: 06/12/2006] [Indexed: 11/20/2022]
Abstract
PAX proteins function as transcription factors and play an essential role in organogenesis during embryonic development in regulating cell proliferation and self-renewal, resistance to apoptosis, migration of embryonic precursor cells, and the coordination of specific differentiation programs. Recent studies have also discovered a role for PAX proteins in specific stem cell or progenitor cell populations, including melanocytes, muscle, and B-cells. The normal functions of the PAX proteins, including apoptosis resistance and repression of terminal differentiation, may be subverted during the progression of a number of specific malignancies. This is supported by the fact that expression of PAX proteins is dysregulated in several different types of tumors, although the precise roles for PAX proteins in cancer are not clearly understood. An emerging hypothesis is that PAX proteins play an essential role in maintaining tissue specific stem cells by inhibiting terminal differentiation and apoptosis and that these functional characteristics may facilitate the development and progression of specific cancers. In this review, we provide a general background to the PAX protein family and focus on specific cells and tissues and the role PAX proteins play within these tissues in terms of development, mature tissue maintenance, and expression in tumors. Understanding the normal developmental pathways regulated by PAX proteins may shed light on potentially parallel pathways shared in tumors, and ultimately result in defining new molecular targets and signaling pathways for the development of novel anti-cancer therapies.
Collapse
Affiliation(s)
- Deborah Lang
- University of Chicago, Department of Medicine, Section of Dermatology, 5841 S. Maryland Avenue, Chicago, IL 60637, United States.
| | | | | | | | | |
Collapse
|
93
|
Abstract
T-cell development occurs principally in the thymus. Here, immature progenitor cells are guided through the differentiation and selection steps required to generate a complex T-cell repertoire that is both self-tolerant and has propensity to bind self major histocompatibility complex. These processes depend on an array of functionally distinct epithelial cell types within the thymic stroma, which have a common developmental origin in the pharyngeal endoderm. Here, we describe the structural and phenotypic attributes of the thymic stroma, and review current cellular and molecular understanding of thymus organogenesis.
Collapse
Affiliation(s)
- Craig S Nowell
- Institute for Stem Cell Research, University of Edinburgh, UK
| | | | | |
Collapse
|
94
|
Lewis SL, Tam PPL. Definitive endoderm of the mouse embryo: formation, cell fates, and morphogenetic function. Dev Dyn 2006; 235:2315-29. [PMID: 16752393 DOI: 10.1002/dvdy.20846] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The endoderm is one of the primary germ layers but, in comparison to ectoderm and mesoderm, has received less attention. The definitive endoderm forms during gastrulation and replaces the extraembryonic visceral endoderm. It participates in the complex morphogenesis of the gut tube and contributes to the associated visceral organs. This review highlights the role of the definitive endoderm as a source of patterning cues for the morphogenesis of other germ-layer tissues, such as the anterior neurectoderm and the pharyngeal region, and also emphasizes the intricate patterning that the endoderm itself undergoes enabling the acquisition of regionalized cell fates.
Collapse
Affiliation(s)
- Samara L Lewis
- Embryology Unit, Children's Medical Research Institute, University of Sydney, Sydney, NSW, Australia
| | | |
Collapse
|
95
|
Abstract
The development of the parathyroid glands involves complex embryonic processes of cell-specific differentiation and migration of the glands from their sites of origin in the pharynx and pharyngeal pouches to their final positions along the ventral midline of the pharyngeal and upper thoracic region. The recognition of several distinct genetic forms of isolated and syndromic hypoparathyroidism led us to review the recent findings on the molecular mechanisms of the development of the parathyroid glands. Although far from being understood, a special emphasis was given to the possible role of tubulin chaperone E (TBCE), which was implicated in the pathogenesis of the hypopathyroidism, retardation and dysmorphism (HRD) syndrome. The novel finding that TBCE plays a critical role in the formation of the parathyroid opens a novel domain of research, not anticipated previously, into the complex process of parathyroid development.
Collapse
Affiliation(s)
- Ruti Parvari
- Department of Developmental Genetics and Virology, Faculty of Health Sciences and National Institute for Biotechnology, Ben Gurion University of the Negev, Beer Sheva, Israel.
| | | | | |
Collapse
|
96
|
Hoffman BG, Williams KL, Tien AH, Lu V, de Algara TR, Ting JPY, Helgason CD. Identification of novel genes and transcription factors involved in spleen, thymus and immunological development and function. Genes Immun 2006; 7:101-12. [PMID: 16355110 DOI: 10.1038/sj.gene.6364270] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
We constructed and analyzed six serial analysis of gene expression (SAGE) libraries to identify genes with previously uncharacterized roles in spleen or thymus development. A total of 625 070 tags were sequenced from the three spleen (embryonic day (E)15.5, E16.5 and adult) and three thymus (E15.5, E18.5 and adult) libraries. These tags corresponded to 83 182 tag types, which mapped unambiguously to 36 133 different genes. Genes over-represented in these libraries, compared to 115 mouse SAGE libraries (www.mouseatlas.org), included genes of known and unknown immunological or developmental relevance. The expression profiles of 11 genes with unknown roles in spleen and thymus development were validated using reverse transcription-qPCR. We further characterized the expression of one of these candidates, RIKEN cDNA 9230105E10 that encodes a murine homolog of Trim5alpha, in numerous adult tissues and immune cell types. In addition, we demonstrate that transcript levels are upregulated in response to TLR stimulation of plasmacytoid dendritic cells and macrophages. This work provides the first evidence of regulated and cell type-specific expression of this gene. In addition, these observations suggest that the SAGE libraries provide an important resource for further investigations into the molecular mechanisms regulating spleen and thymus organogenesis, as well as the development of immunological competence.
Collapse
|
97
|
Stottmann RW, Berrong M, Matta K, Choi M, Klingensmith J. The BMP antagonist Noggin promotes cranial and spinal neurulation by distinct mechanisms. Dev Biol 2006; 295:647-63. [PMID: 16712836 PMCID: PMC3001110 DOI: 10.1016/j.ydbio.2006.03.051] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2005] [Revised: 03/23/2006] [Accepted: 03/31/2006] [Indexed: 10/24/2022]
Abstract
Here we characterize the consequences of elevated bone morphogenetic protein (BMP) signaling on neural tube morphogenesis by analyzing mice lacking the BMP antagonist, Noggin. Noggin is expressed dorsally in the closing neural folds and ventrally in the notochord and somites. All Noggin-/- pups are born with lumbar spina bifida; depending on genetic background, they may also have exencephaly. The exencephaly is due to a primary failure of neurulation, resulting from a lack of mid/hindbrain dorsolateral hinge point (DLHP) formation. Thus, as previously shown for Shh signaling at spinal levels, BMP activity may inhibit cranial DLHP morphogenesis. However, the increased BMP signaling observed in the Noggin-/- dorsal neural tube is not sufficient to cause exencephaly; it appears to also depend on the action of a genetic modifier, which may act to increase dorsal Shh signaling. The spinal neural tube defect results from a different mechanism: increased BMP signaling in the mesoderm between the limb buds leads to abnormal somite differentiation and axial skeletal malformation. The resulting lack of mechanical support for the neural tube causes spina bifida. We show that this defect is due to elevated BMP4 signaling. Thus, Noggin is required for mammalian neurulation in two contexts, dependent on position along the rostrocaudal axis.
Collapse
|
98
|
Zou D, Silvius D, Davenport J, Grifone R, Maire P, Xu PX. Patterning of the third pharyngeal pouch into thymus/parathyroid by Six and Eya1. Dev Biol 2006; 293:499-512. [PMID: 16530750 PMCID: PMC3882147 DOI: 10.1016/j.ydbio.2005.12.015] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2005] [Revised: 11/17/2005] [Accepted: 12/06/2005] [Indexed: 12/18/2022]
Abstract
Previous studies have suggested a role of the homeodomain Six family proteins in patterning the developing vertebrate head that involves appropriate segmentation of three tissue layers, the endoderm, the paraxial mesoderm and the neural crest cells; however, the developmental programs and mechanisms by which the Six genes act in the pharyngeal endoderm remain largely unknown. Here, we examined their roles in pharyngeal pouch development. Six1-/- mice lack thymus and parathyroid and analysis of Six1-/- third pouch endoderm demonstrated that the patterning of the third pouch into thymus/parathyroid primordia is initiated. However, the endodermal cells of the thymus/parathyroid rudiments fail to maintain the expression of the parathyroid-specific gene Gcm2 and the thymus-specific gene Foxn1 and subsequently undergo abnormal apoptosis, leading to a complete disappearance of organ primordia by E12.5. This thus defines the thymus/parathyroid defects present in the Six1 mutant. Analyses of the thymus/parathyroid development in Six1-/-;Six4-/- double mutant show that both Six1 and Six4 act synergistically to control morphogenetic movements of early thymus/parathyroid tissues, and the threshold of Six1/Six4 appears to be crucial for the regulation of the organ primordia-specific gene expression. Previous studies in flies and mice suggested that Eya and Six genes may function downstream of Pax genes. Our data clearly show that Eya1 and Six1 expression in the pouches does not require Pax1/Pax9 function, suggesting that they may function independently from Pax1/Pax9. In contrast, Pax1 expression in all pharyngeal pouches requires both Eya1 and Six1 function. Moreover, we show that the expression of Tbx1, Fgf8 and Wnt5b in the pouch endoderm was normal in Six1-/- embryos and slightly reduced in Six1-/-;Six4-/- double mutant, but was largely reduced in Eya1-/- embryos. These results indicate that Eya1 appears to be upstream of very early events in the initiation of thymus/parathyroid organogenesis, while Six genes appear to act in an early differentiation step during thymus/parathyroid morphogenesis. Together, these analyses establish an essential role for Eya1 and Six genes in patterning the third pouch into organ-specific primordia.
Collapse
Affiliation(s)
- Dan Zou
- McLaughlin Research Institute for Biomedical Sciences, Great Falls, MT 59405, USA
| | - Derek Silvius
- McLaughlin Research Institute for Biomedical Sciences, Great Falls, MT 59405, USA
| | - Julie Davenport
- McLaughlin Research Institute for Biomedical Sciences, Great Falls, MT 59405, USA
| | - Raphaelle Grifone
- Institut Cochin-INSERM 567, CNRS UMR 8104, Université Paris V, 24 Rue du Faubourg Saint Jacques, 75014 Paris, France
| | - Pascal Maire
- Institut Cochin-INSERM 567, CNRS UMR 8104, Université Paris V, 24 Rue du Faubourg Saint Jacques, 75014 Paris, France
| | - Pin-Xian Xu
- McLaughlin Research Institute for Biomedical Sciences, Great Falls, MT 59405, USA
- Corresponding author. Fax: +1 406 454 6019. (P.-X. Xu)
| |
Collapse
|
99
|
Joosten PHLJ, van Zoelen EJJ, Murre C. Pax1/E2a double-mutant mice develop non-lethal neural tube defects that resemble human malformations. Transgenic Res 2006; 14:983-7. [PMID: 16315099 DOI: 10.1007/s11248-005-2540-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2005] [Accepted: 08/26/2005] [Indexed: 11/26/2022]
Abstract
Many mouse models exist for neural tube defects (NTDs), but only few of them are relevant for human patients that are born alive with spina bifida aperta. NTDs in humans show a complex inheritance, which most likely result from the involvement of a variety of predisposing genetic and environmental factors. Hints toward the identity of predisposing genetic factors for human NTDs could come from mouse studies on the development of the neural tube and spinal cord, as well as from studies on associated features of this type of diseases. Among such features is the observation that pregnancies affected by a neural tube defect frequently show changes in thymus morphology, and in both neonatal and maternal T-cell repertoire. The genes for E2a and Pax1 have both been implicated in not only paraxial mesodermal development, but also in that of the immune system. Moreover, Pax1 mutant mice have been shown to display NTDs in digenic mouse models. In the present study we have investigated the phenotype of E2a null mutant mice that are also heterozygous for the so-called undulated mutation in Pax1. Here we report that such double-mutant mice develop a non-lethal NTD that strongly resembles the classic human NTD: spina bifida aperta, associated with defects of the axial skeleton, immune system and urinary tract.
Collapse
Affiliation(s)
- Paulus H L J Joosten
- Department of Cell Biology, Faculty of Science, Radboud University Nijmegen, The Netherlands.
| | | | | |
Collapse
|
100
|
Holländer G, Gill J, Zuklys S, Iwanami N, Liu C, Takahama Y. Cellular and molecular events during early thymus development. Immunol Rev 2006; 209:28-46. [PMID: 16448532 DOI: 10.1111/j.0105-2896.2006.00357.x] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The thymic stromal compartment consists of several cell types that collectively enable the attraction, survival, expansion, migration, and differentiation of T-cell precursors. The thymic epithelial cells constitute the most abundant cell type of the thymic microenvironment and can be differentiated into morphologically, phenotypically, and functionally separate subpopulations of the postnatal thymus. All thymic epithelial cells are derived from the endodermal lining of the third pharyngeal pouch. Very soon after the formation of a thymus primordium and prior to its vascularization, thymic epithelial cells orchestrate the first steps of intrathymic T-cell development, including the attraction of lymphoid precursor cells to the thymic microenvironment. The correct segmentation of pharyngeal epithelial cells and their subsequent crosstalk with cells in the pharyngeal arches are critical prerequisites for the formation of a thymus anlage. Mutations in several transcription factors and their target genes have been informative to detail some of the complex mechanisms that control the development of the thymus anlage. This review highlights recent findings related to the genetic control of early thymus organogenesis and provides insight into the molecular basis by which lymphocyte precursors are attracted to the thymus.
Collapse
Affiliation(s)
- Georg Holländer
- Pediatric Immunology, The Center for Biomedicine, Department of Clinical-Biological Sciences, University of Basel, and The University Children's Hospital of Basel, Basel, Switzerland.
| | | | | | | | | | | |
Collapse
|