51
|
Abstract
The germ cell lineage in the mouse is not predetermined but is established during gastrulation, in response to signalling molecules acting on a subset of epiblast cells that move through the primitive streak together with extra-embryonic mesoderm precursors. After migration to the site of the future gonads, germ cell sex determination is achieved, with germ cell phenotype in male and female embryos diverging. Evidence suggests that all germ cells spontaneously take the female pathway, entering prophase of the first meiotic division five or six days after the birth of the germ cell lineage, with the exception of those located in the embryonic testis, which exit the cell cycle in response to some inhibitory signal and remain in Go until after birth, when spermatogenesis begins. In culture, germ cells respond to certain growth factors by proliferating indefinitely. These immortalized embryonic germ (EG) cell lines are chromosomally stable and pluripotent, closely resembling the embryonic stem (ES) cell lines derived from blastocyst-stage embryos. Human EG and ES cell lines have recently been made, raising the hope that their differentiation could be directed to specific cell types, of value in the clinical treatment of degenerative diseases.
Collapse
Affiliation(s)
- A McLaren
- Wellcome/CRC Institute, University of Cambridge, UK.
| |
Collapse
|
52
|
Chuma S, Nakatsuji N. Autonomous transition into meiosis of mouse fetal germ cells in vitro and its inhibition by gp130-mediated signaling. Dev Biol 2001; 229:468-79. [PMID: 11203703 DOI: 10.1006/dbio.2000.9989] [Citation(s) in RCA: 152] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Mouse primordial germ cells (PGCs) arrive at the urogenital ridge (UGR) at around 10.5 days postcoitum (dpc). They proliferate until around 13.5 dpc, then enter into meiosis in the female or become mitotically arrested in the male gonads. In this study, meiotic transition of mouse PGCs was examined in vitro. Female PGCs obtained from UGRs or genital ridges at 10.5-11.5 dpc began to express meiosis-specific genes, Scp3 and Dmc1, after dissociation and cultivation on feeder cells for several days. Meiotic transition into the leptotene stage was confirmed by the formation of axial cores. Male PGCs at 10.5-11.5 dpc and migratory PGCs obtained from mesenteries at 10.5 dpc also expressed Scp3 and formed axial cores after several days of culture, supporting the hypothesis that PGCs are capable of entering meiosis before arriving at the UGR. gp130-mediated signaling, known to promote survival/growth of PGCs and also to inhibit the differentiation of embryonic stem cells, suppressed the expression of Scp3 in PGCs and inhibited the following formation of axial cores in vitro. This novel activity of gp130-mediated signaling may provide some clues for the understanding of pluripotency of mammalian germ-line cells and/or the sex differentiation of fetal germ cells.
Collapse
Affiliation(s)
- S Chuma
- Mammalian Development Laboratory, National Institute of Genetics, Mishima, Japan
| | | |
Collapse
|
53
|
Abstract
In this study we show that mouse primordial germ cells and fetal germ cells at certain stages of differentiation express E-cadherin and alpha and beta catenins. Moreover, we demonstrate that the formation of germ cell aggregates that rapidly occurs when monodispersed germ cell populations are released from embryonic gonads in culture is E-cadherin mediated, developmentally regulated, and dependent on the sex of the germ cells. Immunoblotting analyses indicate that the lower ability to form aggregates of primordial germ cells in comparison to fetal germ cells is not due to gross changes in E-cadherin expression, altered association with beta catenin, or changes in beta catenin phosphorylation. Investigating possible functions of E-cadherin-mediated adhesion in primordial germ cell development, we found that E-cadherin-mediated adhesion may stimulate the motility of primordial germ cells. Moreover, treatment of primordial germ cells cultured on STO cell monolayers with an anti-E-cadherin antibody caused a significant decrease in their number and markedly reduced their ability to form colonies in vitro. The same in vitro treatment of explanted undifferentiated gonadal ridges cultured for 4 days results in decreased numbers and altered localization of the germ cell inside the gonads. Taken together these results suggest that E-cadherin plays an important role in primordial germ cell migration and homing and may act as a modulator of primordial germ cell development.
Collapse
Affiliation(s)
- A Di Carlo
- Department of Public Health and Cell Biology, University of Rome "Tor Vergata,", Rome, 00133, Italy
| | | |
Collapse
|
54
|
Lee CK, Weaks RL, Johnson GA, Bazer FW, Piedrahita JA. Effects of protease inhibitors and antioxidants on In vitro survival of porcine primordial germ cells. Biol Reprod 2000; 63:887-97. [PMID: 10952936 DOI: 10.1095/biolreprod63.3.887] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
One of the problems associated with in vitro culture of primordial germ cells (PGCs) is the large loss of cells during the initial period of culture. This study characterized the initial loss and determined the effectiveness of two classes of apoptosis inhibitors, protease inhibitors, and antioxidants on the ability of porcine PGCs to survive in culture. Results from electron microscopic analysis and in situ DNA fragmentation assay indicated that porcine PGCs rapidly undergo apoptosis when placed in culture. Additionally, alpha(2)-macroglobulin, a protease inhibitor and cytokine carrier, and N:-acetylcysteine, an antioxidant, increased the survival of PGCs in vitro. While other protease inhibitors tested did not affect survival of PGCs, all antioxidants tested improved survival of PGCs (P: < 0.05). Further results indicated that the beneficial effect of the antioxidants was critical only during the initial period of culture. Finally, it was determined that in short-term culture, in the absence of feeder layers, antioxidants could partially replace the effect(s) of growth factors and reduce apoptosis. Collectively, these results indicate that the addition of alpha(2)-macroglobulin and antioxidants can increase the number of PGCs in vitro by suppressing apoptosis.
Collapse
Affiliation(s)
- C K Lee
- Department of Animal Science, Department of Veterinary Anatomy and Public Health, and Center for Animal Biotechnology and Genomics, Texas A&M University, College Station, Texas 77843-4458, USA
| | | | | | | | | |
Collapse
|
55
|
Abstract
Embryonic germ (EG) cell lines established from primordial germ cells (PGCs) are undifferentiated and pluripotent stem cells. To date, EG cells with proven germ-line transmission have been completely established only in the mouse with embryonic stem (ES) cells. We isolated PGCs from 5.5-day-old (stage 28) chicken embryonic gonads and established a putative chicken EG cell line with EG culture medium supplemented with stem cell factor (SCF), leukemia inhibitory factor (LIF), basic fibroblast growth factor (bFGF), interleukin-11 (IL-11), and insulin-like growth factor-I (IGF-I). These cells grew continuously for ten passages (4 months) on a feeder layer of mitotically active chicken embryonic fibroblasts. After several passages, these cells were characterized by screening with the periodic acid-Schiff reaction, anti-SSEA-1 antibody, and a proliferation assay. The chicken EG cells maintained characteristics of gonadal PGCs and undifferentiated stem cells. When cultured in suspension, the chicken EG cells successfully formed an embryoid body and differentiated into a variety of cell types. The chicken EG cells were injected into stage X blastodermal layer and produced chimeric chickens with various differentiated tissues derived from the EG cells. Chicken EG cells will be useful for the production of transgenic chickens and for studies of germ cell differentiation and genomic imprinting.
Collapse
Affiliation(s)
- T S Park
- School of Agricultural Biotechnology, Seoul National University, Suwon, Korea
| | | |
Collapse
|
56
|
Abstract
Leukemia-inhibitory factor (LIF) is a pleiotropic cytokine expressed by multiple tissue types. The LIF receptor shares a common gp130 receptor subunit with the IL-6 cytokine superfamily. LIF signaling is mediated mainly by JAK-STAT (janus-kinase-signal transducer and activator of transcription) pathways and is abrogated by the SOCS (suppressor-of cytokine signaling) and PIAS (protein inhibitors of activated STAT) proteins. In addition to classic hematopoietic and neuronal actions, LIF plays a critical role in several endocrine functions including the utero-placental unit, the hypothalamo-pituitary-adrenal axis, bone cell metabolism, energy homeostasis, and hormonally responsive tumors. This paper reviews recent advances in our understanding of molecular mechanisms regulating LIF expression and action and also provides a systemic overview of LIF-mediated endocrine regulation. Local and systemic LIF serve to integrate multiple developmental and functional cell signals, culminating in maintaining appropriate hormonal and metabolic homeostasis. LIF thus functions as a critical molecular interface between the neuroimmune and endocrine systems.
Collapse
Affiliation(s)
- C J Auernhammer
- Academic Affairs, Cedars-Sinai Research Institute, University of California Los Angeles School of Medicine, 90048, USA
| | | |
Collapse
|
57
|
Piquet-Pellorce C, Dorval-Coiffec I, Pham MD, Jégou B. Leukemia inhibitory factor expression and regulation within the testis. Endocrinology 2000; 141:1136-41. [PMID: 10698190 DOI: 10.1210/endo.141.3.7399] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Leukemia inhibitory factor (LIF) is a pleiotropic cytokine known to control the proliferation and survival of stem cells including primordial germ cells and gonocytes. This led us to study the origin and regulation of testicular LIF. The LIF transcript was detected in the rat testis by RT-PCR from 13.5 days postcoitum until adulthood. LIF expression was investigated further in vitro in seven different highly purified testicular cell populations using RT-PCR and bioassays combined with neutralization experiments. LIF was found to be produced by peritubular cells and, to a much lesser extent, by the other testicular somatic cell types. No LIF was detected in meiotic and postmeiotic germ cell-conditioned medium, and only low levels of LIF were detected in spermatogonia-conditioned medium. Large amounts of bioactive LIF were measured in testicular lymph. While LIF production was greatly enhanced in presence of serum, lipopolysaccharide, and TNFalpha further increased this production in peritubular and Sertoli cells, and human CG enhanced Leydig cell LIF production. In conclusion, peritubular cells are the principal source of testicular LIF, probably accounting for its high concentration in the lymph. Given the proliferative effect of LIF on immature germ cells, we suggest that peritubular LIF plays an important role in the regulation of testicular function.
Collapse
Affiliation(s)
- C Piquet-Pellorce
- INSERM U.435, Groupe d'Etude de la Reproduction Mâle, Université de Rennes I, France.
| | | | | | | |
Collapse
|
58
|
Voyle RB, Rathjen PD. Regulated expression of alternate transcripts from the mouse oncostatin M gene: implications for interleukin-6 family cytokines. Cytokine 2000; 12:134-41. [PMID: 10671298 DOI: 10.1006/cyto.1999.0541] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Oncostatin M (OSM) is a member of the IL-6 family of polyfunctional cytokines. The characterized murine OSM transcript consists of three exons and encodes a secreted protein. Investigations of mOSM expression using the ribonuclease protection assay demonstrated novel sites of expression in undifferentiated but not differentiated pluripotent cells, and revealed the existence of alternatively spliced mOSM transcripts. cDNAs representing a novel mOSM transcript (mOSM 13) containing exon 1 spliced directly to exon 3 were isolated from bone marrow using Rapid Amplification of cDNA Ends (RACE) PCR and RT-PCR approaches. Expression of the mOSM 13 transcript was regulated in a tissue-specific manner and independently of mOSM transcript production, suggesting that its production is biologically significant. Splicing of exon 1 directly to exon 3 disrupts the OSM open reading frame of mOSM 13. Initiation of translation at sites within exon 3 of mOSM 13 would yield N-terminally truncated OSM proteins that are localized within the cell. The omission of exon 2 by alternate splicing and the production of intracellular proteins with alternate biological activities are conserved among several IL-6 family cytokines and are one manifestation of a more general phenomenon; the production of alternate cytokine transcripts encoding intracellular and extracellular proteins.
Collapse
Affiliation(s)
- R B Voyle
- Department of Biochemistry, University of Adelaide, Adelaide, SA, 5005, Australia
| | | |
Collapse
|
59
|
Stéphan J, Melaine N, Ezan E, Hakovirta H, Maddocks S, Toppari J, Garnier D, Wdzieczak-Bakala J, Jégou B. Source, catabolism and role of the tetrapeptide N-acetyl-ser-asp-lys-Pro within the testis. J Cell Sci 2000; 113 ( Pt 1):113-21. [PMID: 10591630 DOI: 10.1242/jcs.113.1.113] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The tetrapeptide N-Acetyl-Seryl-Aspartyl-Lysyl-Proline (AcSDKP) is a natural regulator of hematopoietic stem cell proliferation. The present study was aimed at investigating the presence and the role of AcSDKP in rat testis. Specific immunoreactivity was always observed in the interstitial tissue at all stages of testicular development and in elongated spermatids at 45 days of age and in adults. In accordance with the interstitial labeling, high AcSDKP levels were detected in Leydig cell and testicular macrophage culture media and cell extracts, as well as in the testicular interstitial fluid (TIF). Much lower concentrations were found in peritubular cells and Sertoli cells cultures, whereas very low concentrations were present in cultured spermatocytes and spermatids. In contrast to the slight degradation rate of AcSDKP observed in the spermatocyte and spermatid culture media, no catabolism of the peptide was seen in testicular somatic cell culture medium. Furthermore, the degradation rate of AcSDKP was much lower in TIF than in peripheral blood plasma. Despite the very strong evidence indicating that Leydig cells and testicular macrophages produce AcSDKP, the selective destruction of these cells did not result in any change in AcSDKP levels in TIF or in plasma. This suggests a compensatory mechanism ensuring constant levels of the peptide in TIF when interstitial cells are absent. Finally, in vitro, in the presence of AcSDKP, significantly more [(3)H]thymidine incorporation was found in A spermatogonia. In conclusion, this study establishes the presence of very high concentrations of AcSDKP in rat testis and demonstrates its Leydig cell and testicular macrophage origin. The presence of AcSDKP in the TIF and its stimulatory effect on thymidine incorporation in spermatogonia very strongly suggest its implication in the paracrine control of spermatogenesis.
Collapse
Affiliation(s)
- J Stéphan
- Groupe d'Etude de la Reproduction chez le Mâle (GERM), INSERM U-435, Université de Rennes I, Campus de Beaulieu, Bretagne, France
| | | | | | | | | | | | | | | | | |
Collapse
|
60
|
Durcova-Hills G, Tokunaga T, Kurosaka S, Yamaguchi M, Takahashi S, Imai H. Immunomagnetic Isolation of Primordial Germ Cells and the Establishment of Embryonic Germ Cell Lines in the Mouse. ACTA ACUST UNITED AC 1999; 1:217-24. [PMID: 16218822 DOI: 10.1089/15204559950019852] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The stage-specific embryonic antigen 1 (SSEA-1) is a cell marker of primordial germ cells (PGCs). In the present study, it is shown that isolation and purification of PGCs from 8.5-11.5 days post coitum (dpc) embryos can be achieved by a immunomagnetic cell sorting method using SSEA-1 antibody-conjugated magnetic beads, and then the sorted PGCs can be used for long-term culture under strict culture conditions to derive embryonic germ (EG) cell lines. Five independent EG cell lines with male karyotypes have been established. They show both a strong alkaline phosphatase activity and expression of the SSEA-1 antigen, and are karyotypically stable with a modal number of chromosomes in more than 80% of the cells. One of the EG cell lines from 8.5-dpc embryos produced chimeras after injections of the cells into 8-cell host embryos. These procedures could provide a useful and simple method for isolation of undifferentiated cells from a heterogeneous cell population and for establishment of embryo-derived stem cell lines.
Collapse
Affiliation(s)
- G Durcova-Hills
- Laboratory of Reproductive Biotechnology, National Institute of Animal Industry, Tsukuba Japan
| | | | | | | | | | | |
Collapse
|
61
|
Lane MA, Chen AC, Roman SD, Derguini F, Gudas LJ. Removal of LIF (leukemia inhibitory factor) results in increased vitamin A (retinol) metabolism to 4-oxoretinol in embryonic stem cells. Proc Natl Acad Sci U S A 1999; 96:13524-9. [PMID: 10557354 PMCID: PMC23981 DOI: 10.1073/pnas.96.23.13524] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Retinoids, vitamin A (retinol) and its metabolic derivatives, are required for normal vertebrate development. In murine embryonic stem (ES) cells, which remain undifferentiated when cultured in the presence of LIF (leukemia inhibitory factor), little metabolism of exogenously added retinol takes place. After LIF removal, ES cells metabolize exogenously added retinol to 4-hydroxyretinol and 4-oxoretinol and concomitantly differentiate. The conversion of retinol to 4-oxoretinol is a high-capacity reaction because most of the exogenous retinol is metabolized rapidly, even when cells are exposed to physiological ( approximately 1 microM) concentrations of retinol in the medium. No retinoic acid or 4-oxoRA synthesis from retinol was detected in ES cells cultured with or without LIF. The cytochrome P450 enzyme CYP26 (retinoic acid hydroxylase) is responsible for the metabolism of retinol to 4-oxoretinol, and CYP26 mRNA is greatly induced (>15-fold) after LIF removal. Concomitant with the expression of CYP26, differentiating ES cells grown in the absence of LIF activate the expression of the differentiation marker gene FGF-5 whereas the expression of the stem cell marker gene FGF-4 decreases. The strong correlation between the production of polar metabolites of retinol and the differentiation of ES cells upon removal of LIF suggests that one important action of LIF in these cells is to prevent retinol metabolism to biologically active, polar metabolites such as 4-oxoretinol.
Collapse
Affiliation(s)
- M A Lane
- Department of Pharmacology, Weill Medical College of Cornell University, 1300 York Avenue, New York, NY 10021, USA
| | | | | | | | | |
Collapse
|
62
|
Takagi M, Nakamura T, Sawada T, Kaneko A, Nozaki-Ukai M, Nakahata T, Yokota T, Heike T. Chimeric cytokine receptor can transduce expansion signals in interleukin 6 receptor alpha (IL-6Ralpha)-, IL-11Ralpha-, and gp130-low to -negative primitive hematopoietic progenitors. Mol Biol Cell 1999; 10:3633-42. [PMID: 10564261 PMCID: PMC25652 DOI: 10.1091/mbc.10.11.3633] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
We generated transgenic mice expressing chimeric receptors, which comprise extracellular domains of the human granulocyte-macrophage colony-stimulating factor (hGM-CSF) receptor and transmembrane and cytoplasmic domains of the mouse leukemia inhibitory factor receptor. In suspension cultures of lineage-negative (Lin(-)), 5-fluorouracil-resistant bone marrow cells of the transgenic mice, a combination of hGM-CSF and stem cell factor (SCF) induced exponential expansions of mixed colony-forming unit. The combination of hGM-CSF and SCF was effective on enriched, Lin(-)Sca-1(+)c-kit(+) progenitors and increased either mixed colony-forming unit or cobblestone area-forming cells. In case of stimulation with hGM-CSF and SCF, interleukin-6 (IL-6) and SCF, or IL-11 and SCF, the most efficient expansion was achieved with hGM-CSF and SCF. When Lin(-)Sca-1(+)c-kit(+)CD34(-) further enriched progenitors were clone sorted and individually incubated in the presence of SCF, hGM-CSF stimulated a larger number of cells than did IL-6, IL-6 and soluble IL-6 receptor (IL-6R), or IL-11. These data suggest the presence of IL-6Ralpha-, IL-11Ralpha-, and gp130-low to -negative primitive hematopoietic progenitors. Such primitive progenitors are equipped with signal transduction molecules and can expand when these chimeric receptors are genetically introduced into the cells and stimulated with hGM-CSF in the presence of SCF.
Collapse
Affiliation(s)
- M Takagi
- Department of Stem Cell Regulation, Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
| | | | | | | | | | | | | | | |
Collapse
|
63
|
Abstract
Although the study of germ cell death is arguably still in its infancy as a field, several recent breakthroughs have provided the fodder for a story, replete with episodes of apparent mass cellular suicide if not murder, that will undoubtedly serve as a research base for many laboratories over the next several years. Death is known to strike the male and female germlines with roughly equal intensity, but the innate feature of male germ cells being self-renewing while those of the female are not places the death of oocytes in a completely different light. Indeed, the functional life span of the female gonads is defined in most species, including humans, by the size and rate of depletion of the precious endowment of oocytes enclosed within follicles in the ovaries at birth. This continuous loss of oocytes throughout life, referred to by many as the female biological clock, appears to be driven by a genetic program of cell death that is composed of players and pathways conserved from worms to humans. It is on this genetic pathway, and the role of its constituent molecules in regulating female germ cell fate, that this review will focus. Emphasis will be placed on those studies using genetic-null or transgenic models to explore the functional requirement of proteins, such as Bcl-2 family members, Apaf-1, and caspases in vertebrates to CED-9, CED-4, and CED-3 in Caenorhabditis elegans, in oocyte survival and death. Furthermore, hypotheses regarding the potential impact of translating what is now known of the oocyte death pathway into new approaches for the clinical diagnosis and management of female infertility and the menopause will be offered as a means to stimulate further research in this new and exciting field.
Collapse
Affiliation(s)
- Y Morita
- Vincent Center for Reproductive Biology, Department of Obstetrics and Gynecology, Massachusetts General Hospital/Harvard Medical School, Boston, Massachusetts 02114, USA
| | | |
Collapse
|
64
|
Piedrahita JA, Dunne P, Lee CK, Moore K, Rucker E, Vazquez JC. Use of Embryonic and Somatic Cells for Production of Transgenic Domestic Animals. ACTA ACUST UNITED AC 1999; 1:73-87. [PMID: 16218833 DOI: 10.1089/15204559950019960] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
In contrast to the highly developed genetic modification systems available for manipulating the mouse genome, at this time only simple gain of function modifications can be undertaken in domestic species. Clearly, the greatest barrier to gene targeting in domestic species has been the unavailability of cell lines that can be modified in vitro and still be used to generate a living organism. In the mouse, the embryonic stem (ES) cells and embryonic germ (EG) cells have fulfilled that role. While the nuclear transfer procedures have solved this problem in sheep and cattle, in swine ES and EG cells are still needed. In addition, targeting in domestic species is affected by the need to develop targeting constructs containing isogenic DNA regions. As a result, it is necessary to isolate the gene of interest, sequence required regions, and develop isogenic targeting constructs by technologies such as long-range PCR. On the positive side, enrichment protocols developed in the mouse can be applied to domestic species, thus facilitating the identification of correctly modified cell lines. Hence, progress in mammalian cloning, the development of EG cell lines, and advances in gene targeting presently allows the introduction of precise genetic modifications into the domestic animal genome.
Collapse
Affiliation(s)
- J A Piedrahita
- Department of Veterinary Anatomy and Public Health, Department of Animal Sciences, and Center for Animal Biotechnology and Comparative Genomics, Texas A&M University, College Station, Texas
| | | | | | | | | | | |
Collapse
|
65
|
Juneja SC, Barr KJ, Enders GC, Kidder GM. Defects in the germ line and gonads of mice lacking connexin43. Biol Reprod 1999; 60:1263-70. [PMID: 10208994 DOI: 10.1095/biolreprod60.5.1263] [Citation(s) in RCA: 200] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
The connexins are a family of at least 15 proteins that form the intercellular membrane channels of gap junctions. Numerous connexins, including connexin43 (Cx43), have been implicated in reproductive processes by virtue of their expression in adult gonads. In the present study, we examined the gonads of fetal and neonatal mice homozygous for a null mutation in the Gja1 gene encoding Cx43 to determine whether the absence of this connexin has any consequences for gonadal development. We found that in both sexes at the time of birth, the gonads of homozygous mutants were unusually small. This appears to be caused, at least in part, by a deficiency of germ cells. The germ cell deficiency was traced back as far as Day 11.5 of gestation, implying that it arises during early stages of germ line development. We also used an organ culture technique to examine postnatal folliculogenesis in the mutant ovaries, an approach necessitated by the fact that Gja1 null mutant offspring die soon after birth because of a heart abnormality. The results demonstrated that folliculogenesis can proceed to the primary (unilaminar) follicle stage in the absence of Cx43 but that subsequent development is impaired. In neonatal ovaries of normal mice, Cx43 could be detected in the somatic cells as early as Day 1, when primordial follicles begin to appear, supporting the conclusion that this connexin is required for the earliest stages of folliculogenesis. These results imply that gap junctional coupling mediated by Cx43 channels plays indispensable roles in both germ line development and postnatal folliculogenesis.
Collapse
Affiliation(s)
- S C Juneja
- Department of Physiology, The University of Manitoba, Winnipeg, Manitoba, Canada R3E 3J7
| | | | | | | |
Collapse
|
66
|
Kallen KJ, Grötzinger J, Lelièvre E, Vollmer P, Aasland D, Renné C, Müllberg J, Myer zum Büschenfelde KH, Gascan H, Rose-John S. Receptor recognition sites of cytokines are organized as exchangeable modules. Transfer of the leukemia inhibitory factor receptor-binding site from ciliary neurotrophic factor to interleukin-6. J Biol Chem 1999; 274:11859-67. [PMID: 10207005 DOI: 10.1074/jbc.274.17.11859] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Interleukin-6 (IL-6) and ciliary neurotrophic factor (CNTF) are "4-helical bundle" cytokines of the IL-6 type family of neuropoietic and hematopoietic cytokines. IL-6 signals by induction of a gp130 homodimer (e.g. IL-6), whereas CNTF and leukemia inhibitory factor (LIF) signal via a heterodimer of gp130 and LIF receptor (LIFR). Despite binding to the same receptor component (gp130) and a similar protein structure, IL-6 and CNTF share only 6% sequence identity. Using molecular modeling we defined a putative LIFR binding epitope on CNTF that consists of three distinct regions (C-terminal A-helix/N-terminal AB loop, BC loop, C-terminal CD-loop/N-terminal D-helix). A corresponding gp130-binding site on IL-6 was exchanged with this epitope. The resulting IL-6/CNTF chimera lost the capacity to signal via gp130 on cells without LIFR, but acquired the ability to signal via the gp130/LIFR heterodimer and STAT3 on responsive cells. Besides identifying a specific LIFR binding epitope on CNTF, our results suggest that receptor recognition sites of cytokines are organized as modules that are exchangeable even between cytokines with limited sequence homology.
Collapse
Affiliation(s)
- K J Kallen
- I. Medizinische Klinik, Abteilung Pathophysiologie, Johannes Gutenberg Universität Mainz, Obere Zahlbacher Str. 63, 55101 Mainz, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
67
|
Rathjen J, Lake JA, Bettess MD, Washington JM, Chapman G, Rathjen PD. Formation of a primitive ectoderm like cell population, EPL cells, from ES cells in response to biologically derived factors. J Cell Sci 1999; 112 ( Pt 5):601-12. [PMID: 9973595 DOI: 10.1242/jcs.112.5.601] [Citation(s) in RCA: 236] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The primitive ectoderm of the mouse embryo arises from the inner cell mass between 4.75 and 5.25 days post coitum, around the time of implantation. Positioned at a pivotal time in development, just prior to formation of the three germ layers of the embryo proper, the primitive ectoderm responds directly to the signals generated during gastrulation. We have identified a conditioned medium, MEDII, which caused the homogeneous conversion of ES cells to a morphologically distinct cell population, termed early primitive ectoderm-like (EPL) cells. EPL cells expressed the pluripotent cell markers Oct4, SSEA1 and alkaline phosphatase. However, the formation of EPL cells was accompanied by alterations in Fgf5, Gbx2 and Rex1 expression, a loss in chimaera forming ability, changes in factor responsiveness and modified differentiation capabilities, all consistent with the identification of EPL cells as equivalent to the primitive ectoderm population of the 5.5 to 6.0 days post coitum embryo. EPL cell formation could be reversed in the presence of LIF and withdrawal of MEDII, which suggested that EPL cell formation was not a terminal differentiation event but reflected the ability of pluripotent cells to adopt distinct cell states in response to specific factors. Partial purification of MEDII revealed the presence of two separable biological activities, both of which were required for the induction and maintenance of EPL cells. We show here the first demonstration of uniform differentiation of ES cells in response to biological factors. The formation of primitive ectoderm, both in vivo and in vitro, appears to be an obligatory step in the differentiation of the inner cell mass or ES cells into cell lineages of the embryonic germ layers. EPL cells potentially represent a model for the development of lineage specific differentiation protocols and analysis of gastrulation at a molecular level. An understanding of the active components of MEDII may provide a route for the identification of factors which induce primitive ectoderm formation in vivo.
Collapse
Affiliation(s)
- J Rathjen
- Department of Biochemistry, University of Adelaide, North Terrace, Adelaide 5005, South Australia
| | | | | | | | | | | |
Collapse
|
68
|
Nicola NA, Hilton DJ. General classes and functions of four-helix bundle cytokines. ADVANCES IN PROTEIN CHEMISTRY 1999; 52:1-65. [PMID: 9917917 DOI: 10.1016/s0065-3233(08)60432-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- N A Nicola
- Walter and Eliza Hall Institute of Medical Research, Royal Melbourne Hospital, Victoria, Australia
| | | |
Collapse
|
69
|
Affiliation(s)
- C Wylie
- Department of Pediatrics, Developmental Genetics Center, University of Minnesota School of Medicine, Minneapolis 55455, USA
| |
Collapse
|
70
|
Green ML, Chung TE, Reed KL, Modric T, Badinga L, Yang J, Simmen FA, Simmen RC. Paracrine inducers of uterine endometrial spermidine/spermine N1-acetyltransferase gene expression during early pregnancy in the pig. Biol Reprod 1998; 59:1251-8. [PMID: 9780334 DOI: 10.1095/biolreprod59.5.1251] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
The endogenous factors that underlie the transient induction of the gene encoding spermidine/spermine N1-acetyltransferase (SSAT), the rate-limiting enzyme in cellular polyamine catabolism, in pig uterine endometrium during periimplantation are not known. The present study examined a number of peptide growth factors and regulatory molecules that are present within the uterine environment at early pregnancy, coincident with maximal SSAT gene expression, for their ability to manifest endogenous SSAT gene-inducing activity. Basal SSAT expression in luminal epithelial cells was higher (p < 0. 01) than that for glandular epithelial (GE) or stromal (ST) cells. Recombinant human insulin-like growth factor-I (IGF-I; 50 ng/ml) had no effect on steady-state SSAT mRNA levels, but it increased mitogenesis in all three cell types. In contrast, IGF-I caused a marked induction (p < 0.01) of SSAT mRNA levels in the human endometrial carcinoma cell line Hec-1-A. Uterine explants incubated with interleukin-6, transforming growth factor alpha, epidermal growth factor (each at 1, 10, and 100 ng/ml), retinoic acid and retinol (each at 0.01, 0.1, and 1 microM), and estradiol-17beta (10 nM) had SSAT mRNA levels similar to controls. By contrast, leukemia inhibitory factor (LIF; at 10 and 100 ng/ml) caused a modest, but significant (p < 0.05), increase in SSAT mRNA levels over those of untreated explants. This effect of LIF, however, did not approach the level of induction observed in GE or ST cells after addition of medium conditioned by Day 12 or 17 porcine conceptuses and in endometrial explants supplemented with medium conditioned by Day 21 porcine conceptuses or a continuous cell line (Jag-1) derived from Day 14 porcine trophoblast. We suggest that transient induction of endometrial SSAT gene expression at implantation is mediated by the functional interactions of specific conceptus-derived regulatory factors, distinct from estrogen, with endometrial-derived factor(s) such as LIF. These complex interactions are probably requisite for the transient, yet dramatic, induction of SSAT gene expression and may be critical for successful implantation.
Collapse
Affiliation(s)
- M L Green
- Department of Animal Science, University of Florida, Gainesville, Florida 32611, USA
| | | | | | | | | | | | | | | |
Collapse
|
71
|
Hara T, Tamura K, de Miguel MP, Mukouyama Y, Kim HJ, Kogo H, Donovan PJ, Miyajima A. Distinct roles of oncostatin M and leukemia inhibitory factor in the development of primordial germ cells and sertoli cells in mice. Dev Biol 1998; 201:144-53. [PMID: 9740655 DOI: 10.1006/dbio.1998.8990] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Leukemia inhibitory factor (LIF) stimulates the growth of primordial germ cells (PGCs) in mouse embryo. However, as neither mice lacking LIF nor mice lacking the LIF receptor show defects in PGC growth, an alternate cytokine for PGC growth has been postulated. We investigated the role of mouse oncostatin M (mOSM), which is structurally and functionally related to LIF, in germ cell development. While LIF enhanced the survival of migratory as well as postmigratory PGCs, mOSM acted only on the postmigratory PGCs. Consistent with its biological activity, mOSM was found to be expressed in developing gonads. In the male, Sertoli cells in neonatal testis express mOSM; however, its expression is downregulated in adult testes. Moreover, mOSM enhanced the proliferation of Sertoli cells derived from neonatal testes in vitro more than human OSM or LIF. In contrast, postnatal ovaries do not express mOSM. These results indicate that mOSM is a stage- and sex-specific autocrine growth factor for Sertoli cells.
Collapse
Affiliation(s)
- T Hara
- Institute of Molecular and Cellular Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-0032, Japan
| | | | | | | | | | | | | | | |
Collapse
|
72
|
Beck AR, Miller IJ, Anderson P, Streuli M. RNA-binding protein TIAR is essential for primordial germ cell development. Proc Natl Acad Sci U S A 1998; 95:2331-6. [PMID: 9482885 PMCID: PMC19335 DOI: 10.1073/pnas.95.5.2331] [Citation(s) in RCA: 135] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Primordial germ cells (PGCs) give rise to both eggs and sperm via complex maturational processes that require both cell migration and proliferation. However, little is known about the genes controlling gamete formation during the early stages of PGC development. Although several mutations are known to severely reduce the number of PGCs reaching and populating the genital ridges, the molecular identity of only two of these genes is known: the c-kit receptor protein tyrosine kinase and the c-kit ligand (the steel factor). Herein, we report that mutant mice lacking TIAR, an RNA recognition motif/ribonucleoprotein-type RNA-binding protein highly expressed in PGCs, fail to develop spermatogonia or oogonia. This developmental defect is a consequence of reduced survival of PGCs that migrate to the genital ridge around embryonic day 11.5 (E11.5). The numbers of PGCs populating the genital ridge in TIAR-deficient embryos are severely reduced compared to wild-type embryos by E11.5 and in the mutants PGCs are completely absent at E13.5. Furthermore, TIAR-deficient embryonic stem cells do not proliferate in the absence of exogenous leukemia inhibitory factor in an in vitro methylcellulose culture assay, supporting a role for TIAR in regulating cell proliferation. Because the development of PGCs relies on the action of several growth factors, these results are consistent with a role for TIAR in the expression of a survival factor or survival factor receptor that is essential for PGC development. TIAR-deficient mice thus provide a model system to study molecular mechanisms of PGC development and possibly the basis for some forms of idiopathic infertility.
Collapse
Affiliation(s)
- A R Beck
- Division of Tumor Immunology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | | | | | | |
Collapse
|
73
|
Abstract
A large number of primordial germ cells (PGCs), as well as spermatogonia, undergo programmed cell death or apoptosis in the physiological context. In this process, environmental, cytoplasmic and nuclear factors are involved. Bcl-2 and its related molecules are known as general regulators of cell death, and some are important for survival of PGCs and spermatogonia. Steel factor, a ligand for c-Kit, also supports growth and survival of these cells. In addition, bone morphogenetic protein (BMP)8B and Desert Hedgehog (Dhh), which are secreted proteins, and a nuclear factor, c-Myc, play a role in spermatocyte survival. This suggests that germ cell survival or death at each stage of differentiation is precisely controlled by specific signalling pathways which consist of a number of molecules.
Collapse
Affiliation(s)
- Y Matsui
- Department of Cell Biology, Tohoku University, Japan
| |
Collapse
|
74
|
Rajpert-De Meyts E, Jørgensen N, Brøndum-Nielsen K, Müller J, Skakkebaek NE. Developmental arrest of germ cells in the pathogenesis of germ cell neoplasia. APMIS 1998; 106:198-204; discussion 204-6. [PMID: 9524579 DOI: 10.1111/j.1699-0463.1998.tb01336.x] [Citation(s) in RCA: 121] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Clinical observations and epidemiological evidence suggest that important aetiopathological events that cause neoplastic transformation of the male germ cell may occur in fetal life or early infancy. The incidence of germ cell neoplasia is high in individuals with various disorders of gonadal development and sexual differentiation, such as gonadal dysgenesis or androgen insensitivity syndrome. Increased risk has also been noted in individuals with trisomy 21, idiopathic infertility and low birth weight. Infertility is sometimes associated with small aberrations of sex chromosomes (e.g. low frequency mosaicism XY/XO) which can also be found in patients with testicular cancer. The variety of conditions that predispose to testicular neoplasia and the rise in its incidence in many countries speaks for the influence of environmental factors which may affect genetically predisposed individuals. We hypothesise that if the development of the testis is disturbed or delayed, primordial germ cells or gonocytes undergo maturation delay or differentiation arrest which may render them susceptible to neoplastic transformation. Morphologically homogenous premalignant carcinoma in situ (CIS) cells have the potential to differentiate into a variety of histological forms of overt testicular tumours. Analysis of cell surface antigens expressed by CIS cells found in the vicinity of pure and mixed tumours demonstrates that CIS cells are phenotypically heterogeneous. Comparison of the phenotypes of CIS cells, primordial germ cells, human embryonal carcinoma cells and closely related primate embryonal stem cells reveals various similarities but also differences. We speculate that phenotypical heterogeneity of CIS cells may be associated with their potential to give rise to different tumour types, and may be related to the developmental stage of the early germ cell which has undergone malignant transformation.
Collapse
Affiliation(s)
- E Rajpert-De Meyts
- Department of Growth and Reproduction, Copenhagen University and Rigshospitalet, Denmark
| | | | | | | | | |
Collapse
|
75
|
Abstract
This review focuses on known genes whose expression may be perturbed by teratogens during early embryogenesis (preorganogenesis). Teratogens may disrupt embryogenesis by modifying positional information. Genes controlling positional information include those specifying the primary body axes: anterior-posterior, dorsal-ventral, or left-right. These genes often encode transcription factors, whose regulation or activation can stimulate aberrant tissue differentiation and morphogenesis. Alternatively, teratogens may directly affect cell differentiation, proliferation, or apoptosis. Hydrophilic signalling molecules such as growth factors and hydrophobic molecules such as retinoids regulate these processes. The signalling pathways activated often induce the coordinate regulation of tissue specific gene expression. In addition to modifying individual signalling pathways, teratogens can synergize with or antagonize the effects of other teratogens through inappropriate interactions between signal transduction pathways. Since teratogens may often directly or indirectly perturb the expression of known or as yet undescribed developmentally critical genes, this review also provides a short description of techniques to identify genes whose expression is altered by teratogens.
Collapse
Affiliation(s)
- M B Rogers
- Department of Biology, University of South Florida, Tampa 33620-5150, USA.
| | | | | |
Collapse
|
76
|
Branisteanu I, Pijnenborg R, Spiessens C, Van der Auwera I, Keith JC, Van Assche FA. Detection of immunoreactive interleukin-11 in human follicular fluid: correlations with ovarian steroid, insulin-like growth factor I levels, and follicular maturity. Fertil Steril 1997; 67:1054-8. [PMID: 9176443 DOI: 10.1016/s0015-0282(97)81438-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
OBJECTIVE To prove the presence of interleukin-11 (IL-11) in the follicular fluid (FF), to determine its source and the correlation between IL-11 and fertilization outcome, follicular size, number of follicles per patient, steroids, and insulin-like growth factor-1 (IGF-I) levels. DESIGN Interleukin-11 levels were measured in FFs, aspirated during oocyte pickup for IVF. SETTING Academic hospital and research environment. PATIENT(S) Follicular fluid and serum were obtained with informed consent from 44 patients undergoing IVF-ET. Granulosa cells were isolated from 17 patients. MAIN OUTCOME MEASURE(S) We hypothesized that IL-11 might play a role in follicular development, as do other related cytokines present in FF. Interleukin-11 was measured with ELISA. RESULT(S) Interleukin-11 was absent in the serum but present in FF and in conditioned medium from granulosa cells. Atretic follicles had higher concentrations of IL-11. No correlation was found between IL-11 and fertilization outcome, follicular size, steroid, IGF-I, and total protein concentrations. CONCLUSION(S) We conclude that IL-11 is present in FF. The role of IL-11 in follicular development should be the object of further investigations.
Collapse
Affiliation(s)
- I Branisteanu
- Department of Obstetrics and Gynecology, University Hospital Gasthuisberg, Catholic University, Leuven, Belgium
| | | | | | | | | | | |
Collapse
|
77
|
Affiliation(s)
- M Buehr
- Centre for Genome Research, University of Edinburgh, United Kingdom
| |
Collapse
|
78
|
Autissier P, Liautard J, Brochier J, Gaillard JP. Activation of the gp130 signaling pathway by monoclonal antibodies directed against the gp130 molecule. Eur J Immunol 1997; 27:794-7. [PMID: 9079824 DOI: 10.1002/eji.1830270331] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Six cytokines of the interleukin (IL)-6 family involved in various inflammatory or tumoral diseases share the same gp130 signal transducer chain. We made a panel of anti-gp130 monoclonal antibodies (mAb) to study the structure and function of the gp130 molecule. These mAb recognized different epitopes of the gp130 that we called A to J. Most of the mAb were found to be inhibitors and we studied whether some of them could also induce gp130 activation. When used alone, none of them was able to initiate the proliferation of IL-6-dependent cell lines. However, some particular associations of the mAb were able to induce a proliferative response. mAb B1 could activate the lines in association with F1 or with I2 but not with I1, which in ELISA was similar to I2. In contrast mAb B2, which in ELISA appeared to be very similar to B1, was able to activate the cells in association with I1 but not with F1 or I2. Two other mAb belonging to specificities A and C were found to be activators either in association with I1 only, or with I1 or B2, respectively. These associations of mAb appeared to be nearly as potent activators as IL-6 itself. Although we still have no precise idea of the mechanisms involved, they are interesting tools to study the molecular interactions leading to gp130 activation and, from a practical point of view, valuable growth factors of hematopoietic stem cells.
Collapse
|