51
|
Regulation of Notch Signaling by an Evolutionary Conserved DEAD Box RNA Helicase, Maheshvara in Drosophila melanogaster. Genetics 2015; 201:1071-85. [PMID: 26400611 DOI: 10.1534/genetics.115.181214] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Accepted: 09/09/2015] [Indexed: 02/01/2023] Open
Abstract
Notch signaling is an evolutionary conserved process that influences cell fate determination, cell proliferation, and cell death in a context-dependent manner. Notch signaling is fine-tuned at multiple levels and misregulation of Notch has been implicated in a variety of human diseases. We have characterized maheshvara (mahe), a novel gene in Drosophila melanogaster that encodes a putative DEAD box protein that is highly conserved across taxa and belongs to the largest group of RNA helicase. A dynamic pattern of mahe expression along with the maternal accumulation of its transcripts is seen during early stages of embryogenesis. In addition, a strong expression is also seen in the developing nervous system. Ectopic expression of mahe in a wide range of tissues during development results in a variety of defects, many of which resemble a typical Notch loss-of-function phenotype. We illustrate that ectopic expression of mahe in the wing imaginal discs leads to loss of Notch targets, Cut and Wingless. Interestingly, Notch protein levels are also lowered, whereas no obvious change is seen in the levels of Notch transcripts. In addition, mahe overexpression can significantly rescue ectopic Notch-mediated proliferation of eye tissue. Further, we illustrate that mahe genetically interacts with Notch and its cytoplasmic regulator deltex in trans-heterozygous combination. Coexpression of Deltex and Mahe at the dorso-ventral boundary results in a wing-nicking phenotype and a more pronounced loss of Notch target Cut. Taken together we report identification of a novel evolutionary conserved RNA helicase mahe, which plays a vital role in regulation of Notch signaling.
Collapse
|
52
|
Ho DM, Pallavi SK, Artavanis-Tsakonas S. The Notch-mediated hyperplasia circuitry in Drosophila reveals a Src-JNK signaling axis. eLife 2015. [PMID: 26222204 PMCID: PMC4517436 DOI: 10.7554/elife.05996] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Notch signaling controls a wide range of cell fate decisions during development and disease via synergistic interactions with other signaling pathways. Here, through a genome-wide genetic screen in Drosophila, we uncover a highly complex Notch-dependent genetic circuitry that profoundly affects proliferation and consequently hyperplasia. We report a novel synergistic relationship between Notch and either of the non-receptor tyrosine kinases Src42A and Src64B to promote hyperplasia and tissue disorganization, which results in cell cycle perturbation, JAK/STAT signal activation, and differential regulation of Notch targets. Significantly, the JNK pathway is responsible for the majority of the phenotypes and transcriptional changes downstream of Notch-Src synergy. We previously reported that Notch-Mef2 also activates JNK, indicating that there are commonalities within the Notch-dependent proliferation circuitry; however, the current data indicate that Notch-Src accesses JNK in a significantly different fashion than Notch-Mef2. DOI:http://dx.doi.org/10.7554/eLife.05996.001 The cells within animals are organized into tissues and organs that perform particular roles. To develop and maintain these structures, the ability of individual cells to divide and grow is strictly controlled by the activities of many proteins, including one called Notch. This protein is found in all multicellular organisms and allows cells to communicate with each other. Mutations in the gene that encodes Notch can cause cells to divide excessively and lead to cancer and other diseases. Notch regulates the growth and division of cells by interacting with many other proteins. For example, Mef2 works with Notch to activate a communication system called the JNK pathway. This pathway is involved in controlling cell division, cell death, and cell movement. However, it is thought that Notch may also interact with other proteins that have not yet been identified. Now, Ho et al. have conducted a genome-wide screen in fruit flies to find proteins that interact with Notch. The experiments used flies that develop abnormally large eyes because they have an over-active Notch protein. Ho et al. identified hundreds of fruit fly genes that could increase or decrease the size of the flies' eyes in the presence of Notch activity. Many of these genes are known to be involved in development, cell division, or in controlling the activity of other genes. Ho et al. found that two of these genes encode similar proteins called Src42A and Src64B, which are similar to the Src proteins that are involved in many types of human cancers. The experiments show that both proteins interact with Notch to promote uncontrolled cell division and lead to tissues in the flies becoming more disorganized. The JNK pathway is also activated by Notch working with Src42A or Src64B, but in a different manner to how it is activated by Mef2 and Notch, and with different consequences for cells. This study provides new insights into how genes work together in order to influence cell division and other events in development. Also, it suggests that Notch activity may regulate the growth of cancers linked with defects in the Src proteins. DOI:http://dx.doi.org/10.7554/eLife.05996.002
Collapse
Affiliation(s)
- Diana M Ho
- Department of Cell Biology, Harvard Medical School, Boston, United States
| | - S K Pallavi
- Department of Cell Biology, Harvard Medical School, Boston, United States
| | | |
Collapse
|
53
|
Doggett K, Turkel N, Willoughby LF, Ellul J, Murray MJ, Richardson HE, Brumby AM. BTB-Zinc Finger Oncogenes Are Required for Ras and Notch-Driven Tumorigenesis in Drosophila. PLoS One 2015. [PMID: 26207831 PMCID: PMC4514741 DOI: 10.1371/journal.pone.0132987] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
During tumorigenesis, pathways that promote the epithelial-to-mesenchymal transition (EMT) can both facilitate metastasis and endow tumor cells with cancer stem cell properties. To gain a greater understanding of how these properties are interlinked in cancers we used Drosophila epithelial tumor models, which are driven by orthologues of human oncogenes (activated alleles of Ras and Notch) in cooperation with the loss of the cell polarity regulator, scribbled (scrib). Within these tumors, both invasive, mesenchymal-like cell morphology and continual tumor overgrowth, are dependent upon Jun N-terminal kinase (JNK) activity. To identify JNK-dependent changes within the tumors we used a comparative microarray analysis to define a JNK gene signature common to both Ras and Notch-driven tumors. Amongst the JNK-dependent changes was a significant enrichment for BTB-Zinc Finger (ZF) domain genes, including chronologically inappropriate morphogenesis (chinmo). chinmo was upregulated by JNK within the tumors, and overexpression of chinmo with either RasV12 or Nintra was sufficient to promote JNK-independent epithelial tumor formation in the eye/antennal disc, and, in cooperation with RasV12, promote tumor formation in the adult midgut epithelium. Chinmo primes cells for oncogene-mediated transformation through blocking differentiation in the eye disc, and promoting an escargot-expressing stem or enteroblast cell state in the adult midgut. BTB-ZF genes are also required for Ras and Notch-driven overgrowth of scrib mutant tissue, since, although loss of chinmo alone did not significantly impede tumor development, when loss of chinmo was combined with loss of a functionally related BTB-ZF gene, abrupt, tumor overgrowth was significantly reduced. abrupt is not a JNK-induced gene, however, Abrupt is present in JNK-positive tumor cells, consistent with a JNK-associated oncogenic role. As some mammalian BTB-ZF proteins are also highly oncogenic, our work suggests that EMT-promoting signals in human cancers could similarly utilize networks of these proteins to promote cancer stem cell states.
Collapse
Affiliation(s)
- Karen Doggett
- Cell Cycle and Development Laboratory, Research Division, Peter MacCallum Cancer Centre, 7 St Andrew’s Place, East Melbourne, Melbourne, Victoria, Australia
- * E-mail:
| | - Nezaket Turkel
- Cell Cycle and Development Laboratory, Research Division, Peter MacCallum Cancer Centre, 7 St Andrew’s Place, East Melbourne, Melbourne, Victoria, Australia
| | - Lee F. Willoughby
- Cell Cycle and Development Laboratory, Research Division, Peter MacCallum Cancer Centre, 7 St Andrew’s Place, East Melbourne, Melbourne, Victoria, Australia
| | - Jason Ellul
- Bioinformatics Core Facility, Research Division, Peter MacCallum Cancer Centre, 7 St Andrew’s Place, East Melbourne, Melbourne, Victoria, Australia
| | - Michael J. Murray
- School of Biosciences, University of Melbourne, 1–100 Grattan Street, Parkville, Melbourne, Victoria, Australia
| | - Helena E. Richardson
- Cell Cycle and Development Laboratory, Research Division, Peter MacCallum Cancer Centre, 7 St Andrew’s Place, East Melbourne, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, Peter MacCallum Cancer Centre, 7 St Andrew’s Place, East Melbourne, Melbourne, Victoria, Australia
- Department of Anatomy and Neuroscience, University of Melbourne, 1–100 Grattan Street, Parkville, Melbourne, Victoria, Australia
- Department of Biochemistry and Molecular Biology, University of Melbourne, 1–100 Grattan Street, Parkville, Melbourne, Victoria, Australia
- School of Molecular Sciences, La Trobe University, Victoria, Australia
| | - Anthony M. Brumby
- Cell Cycle and Development Laboratory, Research Division, Peter MacCallum Cancer Centre, 7 St Andrew’s Place, East Melbourne, Melbourne, Victoria, Australia
- School of Biosciences, University of Melbourne, 1–100 Grattan Street, Parkville, Melbourne, Victoria, Australia
| |
Collapse
|
54
|
Brockmann B, Mastel H, Oswald F, Maier D. Analysis of the interaction between human RITA and Drosophila Suppressor of Hairless. Hereditas 2015; 151:209-19. [PMID: 25588307 DOI: 10.1111/hrd2.00074] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 12/01/2014] [Indexed: 10/24/2022] Open
Abstract
Notch signalling mediates intercellular communication, which is effected by the transcription factor CSL, an acronym for vertebrate CBF1/RBP-J, Drosophila Suppressor of Hairless [Su(H)] and C. elegans Lag1. Nuclear import of CBF1/RBP-J depends on co-activators and co-repressors, whereas the export relies on RITA. RITA is a tubulin and CBF1/RBP-J binding protein acting as a negative regulator of Notch signalling in vertebrates. RITA protein is highly conserved in eumatazoa, but no Drosophila homologue was yet identified. In this work, the activity of human RITA in the fly was addressed. To this end, we generated transgenic flies that allow a tissue specific induction of human RITA, which was demonstrated by Western blotting and in fly tissues. Unexpectedly, overexpression of RITA during fly development had little phenotypic consequences, even when overexpressed simultaneously with either Su(H) or the Notch antagonist Hairless. We demonstrate the in vivo binding of human RITA to Su(H) and to tubulin by co-immune precipitation. Moreover, RITA and tubulin co-localized to some degree in several Drosophila tissues. Overall our data show that human RITA, albeit binding to Drosophila Su(H) and tubulin, cannot influence the Notch signalling pathway in the fly, suggesting that a nuclear export mechanism of Su(H), if existent in Drosophila, does not depend on RITA.
Collapse
Affiliation(s)
- Birgit Brockmann
- Institute of Genetics, University of Hohenheim, Stuttgart, Germany
| | | | | | | |
Collapse
|
55
|
Simón R, Aparicio R, Housden BE, Bray S, Busturia A. Drosophila p53 controls Notch expression and balances apoptosis and proliferation. Apoptosis 2015; 19:1430-43. [PMID: 24858703 DOI: 10.1007/s10495-014-1000-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
A balance between cell proliferation and apoptosis is important for normal development and tissue homeostasis. Under stress conditions, the conserved tumor suppressor and transcription factor Dp53 induces apoptosis to contribute to the maintenance of homeostasis. However, in some cases Dp53-induced apoptosis results in the proliferation of surrounding non-apoptotic cells. To gain insight into the Dp53 function in the control of apoptosis and proliferation, we studied the interaction between the Drosophila Dp53 and Notch genes. We present evidence that simultaneous reduction of Dp53 and Notch function synergistically increases the wing phenotype of Notch heterozygous mutant flies. Further, we found that a Notch cis-regulatory element is responsive to loss and gain of Dp53 function and that over-expression of Dp53 up-regulates Notch mRNA and protein expression. These findings suggest not only that Dp53 and Notch act together to control wing development but also indicate that Dp53 transcriptionally regulates Notch expression. Moreover, using Notch gain and loss of function mutations we examined the relevance of Dp53 and Notch interactions in the process of Dp53-apoptosis induced proliferation. Results show that proliferation induced by Dp53 over-expression is dependent on Notch, thus identifying Notch as a new player in Dp53-induced proliferation. Interestingly, we found that Dp53-induced Notch activation and proliferation occurs even under conditions where apoptosis was inhibited. Our findings highlight the conservation between flies and vertebrates of the Dp53 and Notch cross-talk and suggest that Dp53 has a dual role regulating cell death and proliferation gene networks to control the homeostatic balance between apoptosis and proliferation.
Collapse
Affiliation(s)
- Rocío Simón
- Centro de Biología Molecular "Severo Ochoa", CSIC-UAM, c) Nicolás Cabrera 1, 28049, Madrid, Spain
| | | | | | | | | |
Collapse
|
56
|
Chen W, Cao G, Yuan X, Zhang X, Zhang Q, Zhu Y, Dong Z, Zhang S. Notch-1 knockdown suppresses proliferation, migration and metastasis of salivary adenoid cystic carcinoma cells. J Transl Med 2015; 13:167. [PMID: 25990317 PMCID: PMC4445799 DOI: 10.1186/s12967-015-0520-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Accepted: 05/06/2015] [Indexed: 11/24/2022] Open
Abstract
Background Notch-1 promotes invasion and metastasis of cancer cells but its role in salivary adenoid cystic carcinoma (SACC) remains unelucidated. Here, we sought to investigate the effect of Notch-1 knockdown on the invasion and metastasis of SACC cells. Methods Stable ACC-M cells whose Notch-1 was silenced by lentiviral vectors were established. Cellular proliferation was evaluated by the MTT assays and clonogenic assays, apoptosis by flow cytometry and the migration of ACC-M cells by Transwell assays. Metastasis was evaluated by examining the number of lung nodules in Balb⁄c nu⁄nu nude mice bearing subcutaneous SACC xenografts. Results Our MTT assay revealed that Notch-1 knockdown significantly suppressed the proliferation of ACC-M cells compared with non-infected or scrambled control cells. Clonogenic assays further showed that Notch-1 knockdown significantly suppressed the clonogenic growth of ACC-M cells (p < 0.01 vs. controls). Our flow cytometry demonstrated that Notch-1 knockdown was associated with a significantly higher proportion of late apoptotic and necrotic cells (p < 0.01 vs. controls). Transwell assays revealed that Notch-1 knockdown markedly reduced the migratory capacity of ACC-M cells (p < 0.01 vs. controls) and xenograft studies showed that the number of metastatic nodules in the lung surface was significantly lower in nude mice bearing xenografts with Notch-1 knockdown compared to those bearing control xenografts (p < 0.01 vs. controls). Conclusion Notch-1 knockdown suppresses the growth and migration of SACC cells in vitro and the metastasis of SACC cells in vivo. Notch-1 may be a new candidate target in SACC.
Collapse
Affiliation(s)
- Wei Chen
- Department of Stomatology, Jinling Hospital, School of Medicine, Nanjing University, 305 East Zhongshan Road, 210002, Nanjing, Jiangsu, China.
| | - Gang Cao
- Department of Stomatology, Jinling Hospital, School of Medicine, Nanjing University, 305 East Zhongshan Road, 210002, Nanjing, Jiangsu, China.
| | - Xinran Yuan
- Department of Immunology & Rheumatology, Drum Tower Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu, China.
| | - Xiang Zhang
- Department of Stomatology, Jinling Hospital, School of Medicine, Nanjing University, 305 East Zhongshan Road, 210002, Nanjing, Jiangsu, China.
| | - Qingqing Zhang
- Department of Stomatology, Jinling Hospital, School of Medicine, Nanjing University, 305 East Zhongshan Road, 210002, Nanjing, Jiangsu, China.
| | - Yinglan Zhu
- Department of Stomatology, Jinling Hospital, School of Medicine, Nanjing University, 305 East Zhongshan Road, 210002, Nanjing, Jiangsu, China.
| | - Zhen Dong
- Department of Stomatology, Jinling Hospital, School of Medicine, Nanjing University, 305 East Zhongshan Road, 210002, Nanjing, Jiangsu, China.
| | - Senlin Zhang
- Department of Stomatology, Jinling Hospital, School of Medicine, Nanjing University, 305 East Zhongshan Road, 210002, Nanjing, Jiangsu, China.
| |
Collapse
|
57
|
Spratford CM, Kumar JP. Inhibition of Daughterless by Extramacrochaetae mediates Notch-induced cell proliferation. Development 2015; 142:2058-68. [PMID: 25977368 DOI: 10.1242/dev.121855] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Accepted: 04/16/2015] [Indexed: 12/30/2022]
Abstract
During development, the rate of cell proliferation must be constantly monitored so that an individual tissue achieves its correct size. Mutations in genes that normally promote tissue growth often result in undersized, disorganized and non-functional organs. However, mutations in genes that encode growth inhibitors can trigger the onset of tumorigenesis and cancer. The developing eye of the fruit fly, Drosophila melanogaster, has become a premier model system for studies that are focused on identifying the molecular mechanisms that underpin growth control. Here, we examine the mechanism by which the Notch pathway, a major contributor to growth, promotes cell proliferation in the developing eye. Current models propose that the Notch pathway directly influences cell proliferation by regulating growth-promoting genes such as four-jointed, cyclin D1 and E2f1. Here, we show that, in addition to these mechanisms, some Notch signaling is devoted to blocking the growth-suppressing activity of the bHLH DNA-binding protein Daughterless (Da). We demonstrate that Notch signaling activates the expression of extramacrochaetae (emc), which encodes a helix-loop-helix (HLH) transcription factor. Emc, in turn, then forms a biochemical complex with Da. As Emc lacks a basic DNA-binding domain, the Emc-Da heterodimer cannot bind to and regulate genomic targets. One effect of Da sequestration is to relieve the repression on growth. Here, we present data supporting our model that Notch-induced cell proliferation in the developing eye is mediated in part by the activity of Emc.
Collapse
Affiliation(s)
- Carrie M Spratford
- Department of Biology, Indiana University, Bloomington, IN 47405, USA Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, CA 90095, USA
| | - Justin P Kumar
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| |
Collapse
|
58
|
Sun Y, Zhang R, Zhou S, Ji Y. Overexpression of Notch1 is associated with the progression of cervical cancer. Oncol Lett 2015; 9:2750-2756. [PMID: 26137140 DOI: 10.3892/ol.2015.3143] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Accepted: 03/25/2015] [Indexed: 01/23/2023] Open
Abstract
Cervical cancer is the third most common malignancy worldwide, accounting for 250,000 mortalities annually. Notch1, an important regulator of cell-fate decisions and differentiation, has been found to be overexpressed in certain types of cancer. However, the role of Notch1 in cervical carcinogenesis remains unclear. In the present study, immunohistochemical staining and western blot analysis revealed that Notch1 expression was significantly higher in cervical cancer tissues than that in normal cervical tissues. Furthermore, statistical analysis revealed that Notch1 expression was significantly associated with tumor differentiation and tumor stage. These findings indicated that Notch1 expression was associated with the progression of cervical cancer. The western blot assay also identified a positive correlation between Notch1 and Ki67 expression in cervical cancer tissues, which suggested that Notch1 expression may be associated with the proliferation of cervical cancer. In order to further evaluate the specific role of Notch1 in cervical cancer progression, its expression in SiHa and C33A cells was knocked down using small interfering RNA. It was revealed that the knockdown of Notch1 in SiHa and C33A cells resulted in significant inhibition of cell proliferation and colony formation in vitro. These results indicated that Notch1 was able to promote cell proliferation in cervical cancer. In conclusion, the results of the present study indicated that Notch1 may function as a promoter in cervical carcinogenesis.
Collapse
Affiliation(s)
- Yan Sun
- Department of Gynaecology and Obstetrics, General Hospital of Zaozhuang Mining Group, Zaozhuang, Shandong 277000, P.R. China
| | - Rui Zhang
- Department of Gynaecology and Obstetrics, General Hospital of Zaozhuang Mining Group, Zaozhuang, Shandong 277000, P.R. China
| | - Shujuan Zhou
- Department of Gynaecology and Obstetrics, General Hospital of Zaozhuang Mining Group, Zaozhuang, Shandong 277000, P.R. China
| | - Yuqiang Ji
- Department of Cardiovascular Medicine, No. 1 Hospital of Xi'an City, Xi'an, Shaanxi 710002, P.R. China
| |
Collapse
|
59
|
Chip physically interacts with Notch and their stoichiometry is critical for Notch function in wing development and cell proliferation in Drosophila. Biochim Biophys Acta Gen Subj 2015; 1850:802-12. [DOI: 10.1016/j.bbagen.2014.12.026] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Revised: 12/15/2014] [Accepted: 12/27/2014] [Indexed: 12/17/2022]
|
60
|
Abstract
The ability to visualize Notch pathway activity in vivo is invaluable for studying the functions and mechanisms of Notch signaling. A variety of tools have been developed to enable monitoring of pathway activity in Drosophila, including endogenous Notch-responsive genes and synthetic transcriptional reporter constructs. Here we summarize some of the different Notch signaling reporters that are available, discuss their relative merits, and describe two methods for visualizing their expression (immunostaining and X-gal staining). These approaches are widely applicable to a range of tissues and stages in Drosophila development.
Collapse
|
61
|
Arya R, Sarkissian T, Tan Y, White K. Neural stem cell progeny regulate stem cell death in a Notch and Hox dependent manner. Cell Death Differ 2015; 22:1378-87. [PMID: 25633198 DOI: 10.1038/cdd.2014.235] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Revised: 12/02/2014] [Accepted: 12/12/2014] [Indexed: 01/05/2023] Open
Abstract
Cell death is a prevalent, well-controlled and fundamental aspect of development, particularly in the nervous system. In Drosophila, specific neural stem cells are eliminated by apoptosis during embryogenesis. In the absence of apoptosis, these stem cells continue to divide, resulting in a dramatically hyperplastic central nervous system and adult lethality. Although core cell death pathways have been well described, the spatial, temporal and cell identity cues that activate the cell death machinery in specific cells are largely unknown. We identified a cis-regulatory region that controls the transcription of the cell death activators reaper, grim and sickle exclusively in neural stem cells. Using a reporter generated from this regulatory region, we found that Notch activity is required for neural stem cell death. Notch regulates the expression of the abdominalA homeobox protein, which provides important spatial cues for death. Importantly, we show that pro-apoptotic Notch signaling is activated by the Delta ligand expressed on the neighboring progeny of the stem cell. Thus we identify a previously undescribed role for progeny in regulating the proper developmental death of their parental stem cells.
Collapse
Affiliation(s)
- R Arya
- CBRC, Massachusetts General Hospital/Harvard Medical School, Boston, MA 02129, USA
| | - T Sarkissian
- CBRC, Massachusetts General Hospital/Harvard Medical School, Boston, MA 02129, USA
| | - Y Tan
- CBRC, Massachusetts General Hospital/Harvard Medical School, Boston, MA 02129, USA
| | - K White
- CBRC, Massachusetts General Hospital/Harvard Medical School, Boston, MA 02129, USA
| |
Collapse
|
62
|
Nagel AC, Preiss A. Mutation of potential MAPK phosphorylation sites in the Notch antagonist Hairless. Hereditas 2014; 151:102-8. [PMID: 25363277 DOI: 10.1111/hrd2.00066] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Accepted: 08/31/2014] [Indexed: 01/05/2023] Open
Abstract
Cellular differentiation during eumetazoan development is based on highly conserved signalling pathways. Two of them, the Notch and the EGFR signalling pathways, are closely intertwined. We have identified two potential target sites of the Mitogen activated kinase (MAPK), the downstream effector kinase of EGFR, within Hairless (H), the major antagonist of Notch signalling in Drosophila. Assuming that phosphorylation of these sites modulates H activity, a direct influence of EGFR signalling on Notch pathway regulation might be possible. This hypothesis was tested by generating a phospho-deficient and a phospho-mimetic H isoform and by assaying for their biological activity. We first addressed the binding of known H interaction partners Su(H), Gro, CtBP and Pros26.4 which was similar between mutant and wild type H. Next we assayed eye, wing and bristle development which are strongly affected by the overexpression of H due to the inhibition of Notch signalling. Overexpression of the mutant constructs resulted in phenotypes similar to wildtype H overexpression, yet with subtle differences in phenotypic severity. However, large variations suggest that the mutated residues may be critical for the overall structure or stability of H. Albeit of minor impact, EGFR may fine tune Notch signalling via MAPK dependent phosphorylation of H.
Collapse
Affiliation(s)
- Anja C Nagel
- Universität Hohenheim, Institut für Genetik (240), Garbenstr. 30, DE-70599, Stuttgart, Germany.
| | | |
Collapse
|
63
|
Ishio A, Sasamura T, Ayukawa T, Kuroda J, Ishikawa HO, Aoyama N, Matsumoto K, Gushiken T, Okajima T, Yamakawa T, Matsuno K. O-fucose monosaccharide of Drosophila Notch has a temperature-sensitive function and cooperates with O-glucose glycan in Notch transport and Notch signaling activation. J Biol Chem 2014; 290:505-19. [PMID: 25378397 DOI: 10.1074/jbc.m114.616847] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Notch (N) is a transmembrane receptor that mediates the cell-cell interactions necessary for many cell fate decisions. N has many epidermal growth factor-like repeats that are O-fucosylated by the protein O-fucosyltransferase 1 (O-Fut1), and the O-fut1 gene is essential for N signaling. However, the role of the monosaccharide O-fucose on N is unclear, because O-Fut1 also appears to have O-fucosyltransferase activity-independent functions, including as an N-specific chaperon. Such an enzymatic activity-independent function could account for the essential role of O-fut1 in N signaling. To evaluate the role of the monosaccharide O-fucose modification in N signaling, here we generated a knock-in mutant of O-fut1 (O-fut1(R245A knock-in)), which expresses a mutant protein that lacks O-fucosyltransferase activity but maintains the N-specific chaperon activity. Using O-fut1(R245A knock-in) and other gene mutations that abolish the O-fucosylation of N, we found that the monosaccharide O-fucose modification of N has a temperature-sensitive function that is essential for N signaling. The O-fucose monosaccharide and O-glucose glycan modification, catalyzed by Rumi, function redundantly in the activation of N signaling. We also showed that the redundant function of these two modifications is responsible for the presence of N at the cell surface. Our findings elucidate how different forms of glycosylation on a protein can influence the protein's functions.
Collapse
Affiliation(s)
- Akira Ishio
- From the Department of Biological Science and Technology, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo, 125-1500, the Department of Biological Sciences, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043
| | - Takeshi Sasamura
- the Department of Biological Sciences, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043
| | - Tomonori Ayukawa
- From the Department of Biological Science and Technology, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo, 125-1500
| | - Junpei Kuroda
- the Department of Biological Sciences, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043
| | - Hiroyuki O Ishikawa
- Genome and Drug Research Center, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, the Graduate School of Science,Chiba University, 1-33 Yayoi, Inage, Chiba, and
| | - Naoki Aoyama
- From the Department of Biological Science and Technology, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo, 125-1500
| | - Kenjiroo Matsumoto
- the Department of Biological Sciences, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043
| | - Takuma Gushiken
- From the Department of Biological Science and Technology, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo, 125-1500, the Department of Biological Sciences, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043
| | - Tetsuya Okajima
- the Department of Biochemistry II, Nagoya University Graduate School of Medicine, Tsurumai, Showa-ku, Nagoya 466-0065, Japan
| | - Tomoko Yamakawa
- the Department of Biological Sciences, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043
| | - Kenji Matsuno
- the Department of Biological Sciences, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043,
| |
Collapse
|
64
|
CD24 regulates stemness and the epithelial to mesenchymal transition through modulation of Notch1 mRNA stability by p38MAPK. Arch Biochem Biophys 2014; 558:120-6. [PMID: 24977325 DOI: 10.1016/j.abb.2014.06.022] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Revised: 06/19/2014] [Accepted: 06/20/2014] [Indexed: 01/07/2023]
Abstract
We report here that CD24 knockdown resulted in decreased expression of Notch1 in MCF-7 cells. CD24-downstream p38MAPK was shown to regulate Notch1 at the level of mRNA stability. We also found that CD24-mediated cell migration, invasion, mammosphere formation, and drug resistance was regulated by its downstream target Notch1. Together, our results indicate that CD24 may regulate the epithelial to mesenchymal transition and stemness through Notch1 signaling in breast cancer cells.
Collapse
|
65
|
Enhancer diversity and the control of a simple pattern of Drosophila CNS midline cell expression. Dev Biol 2014; 392:466-82. [PMID: 24854999 DOI: 10.1016/j.ydbio.2014.05.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Revised: 05/06/2014] [Accepted: 05/13/2014] [Indexed: 01/13/2023]
Abstract
Transcriptional enhancers integrate information derived from transcription factor binding to control gene expression. One key question concerns the extent of trans- and cis-regulatory variation in how co-expressed genes are controlled. The Drosophila CNS midline cells constitute a group of neurons and glia in which expression changes can be readily characterized during specification and differentiation. Using a transgenic approach, we compare the cis-regulation of multiple genes expressed in the Drosophila CNS midline primordium cells, and show that while the expression patterns may appear alike, the target genes are not equivalent in how these common expression patterns are achieved. Some genes utilize a single enhancer that promotes expression in all midline cells, while others utilize multiple enhancers with distinct spatial, temporal, and quantitative contributions. Two regulators, Single-minded and Notch, play key roles in controlling early midline gene expression. While Single-minded is expected to control expression of most, if not all, midline primordium-expressed genes, the role of Notch in directly controlling midline transcription is unknown. Midline primordium expression of the rhomboid gene is dependent on cell signaling by the Notch signaling pathway. Mutational analysis of a rhomboid enhancer reveals at least 5 distinct types of functional cis-control elements, including a binding site for the Notch effector, Suppressor of Hairless. The results suggest a model in which Notch/Suppressor of Hairless levels are insufficient to activate rhomboid expression by itself, but does so in conjunction with additional factors, some of which, including Single-minded, provide midline specificity to Notch activation. Similarly, a midline glial enhancer from the argos gene, which is dependent on EGF/Spitz signaling, is directly regulated by contributions from both Pointed, the EGF transcriptional effector, and Single-minded. In contrast, midline primordium expression of other genes shows a strong dependence on Single-minded and varying combinations of additional transcription factors. Thus, Single-minded directly regulates midline primordium-expressed genes, but in some cases plays a primary role in directing target gene midline expression, and in others provides midline specificity to cell signaling inputs.
Collapse
|
66
|
Zacharioudaki E, Bray SJ. Tools and methods for studying Notch signaling in Drosophila melanogaster. Methods 2014; 68:173-82. [PMID: 24704358 PMCID: PMC4059942 DOI: 10.1016/j.ymeth.2014.03.029] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Revised: 03/23/2014] [Accepted: 03/25/2014] [Indexed: 01/08/2023] Open
Abstract
Notch signaling involves a highly conserved pathway that mediates communication between neighboring cells. Activation of Notch by its ligands, results in the release of the Notch intracellular domain (NICD), which enters the nucleus and regulates transcription. This pathway has been implicated in many developmental decisions and diseases (including cancers) over the past decades. The simplicity of the Notch pathway in Drosophila melanogaster, in combination with the availability of powerful genetics, make this an attractive model for studying fundamental principles of Notch regulation and function. In this article we present some of the established and emerging tools that are available to monitor and manipulate the Notch pathway in Drosophila and discuss their strengths and weaknesses.
Collapse
Affiliation(s)
- Evanthia Zacharioudaki
- Department of Physiology Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK
| | - Sarah J Bray
- Department of Physiology Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK.
| |
Collapse
|
67
|
Kinney MA, Hookway TA, Wang Y, McDevitt TC. Engineering three-dimensional stem cell morphogenesis for the development of tissue models and scalable regenerative therapeutics. Ann Biomed Eng 2014; 42:352-67. [PMID: 24297495 PMCID: PMC3939035 DOI: 10.1007/s10439-013-0953-9] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Accepted: 11/21/2013] [Indexed: 12/11/2022]
Abstract
The physiochemical stem cell microenvironment regulates the delicate balance between self-renewal and differentiation. The three-dimensional assembly of stem cells facilitates cellular interactions that promote morphogenesis, analogous to the multicellular, heterotypic tissue organization that accompanies embryogenesis. Therefore, expansion and differentiation of stem cells as multicellular aggregates provides a controlled platform for studying the biological and engineering principles underlying spatiotemporal morphogenesis and tissue patterning. Moreover, three-dimensional stem cell cultures are amenable to translational screening applications and therapies, which underscores the broad utility of scalable suspension cultures across laboratory and clinical scales. In this review, we discuss stem cell morphogenesis in the context of fundamental biophysical principles, including the three-dimensional modulation of adhesions, mechanics, and molecular transport and highlight the opportunities to employ stem cell spheroids for tissue modeling, bioprocessing, and regenerative therapies.
Collapse
Affiliation(s)
- Melissa A. Kinney
- The Wallace H. Coulter Department of Biomedical Engineering Georgia Institute of Technology/Emory University, Atlanta, GA, USA
| | - Tracy A. Hookway
- The Wallace H. Coulter Department of Biomedical Engineering Georgia Institute of Technology/Emory University, Atlanta, GA, USA
| | - Yun Wang
- The Wallace H. Coulter Department of Biomedical Engineering Georgia Institute of Technology/Emory University, Atlanta, GA, USA
| | - Todd C. McDevitt
- The Wallace H. Coulter Department of Biomedical Engineering Georgia Institute of Technology/Emory University, Atlanta, GA, USA
- The Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA
| |
Collapse
|
68
|
An unexpected link between notch signaling and ROS in restricting the differentiation of hematopoietic progenitors in Drosophila. Genetics 2013; 197:471-83. [PMID: 24318532 DOI: 10.1534/genetics.113.159210] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
A fundamental question in hematopoietic development is how multipotent progenitors achieve precise identities, while the progenitors themselves maintain quiescence. In Drosophila melanogaster larvae, multipotent hematopoietic progenitors support the production of three lineages, exhibit quiescence in response to cues from a niche, and from their differentiated progeny. Infection by parasitic wasps alters the course of hematopoiesis. Here we address the role of Notch (N) signaling in lamellocyte differentiation in response to wasp infection. We show that Notch activity is moderately high and ubiquitous in all cells of the lymph gland lobes, with crystal cells exhibiting the highest levels. Wasp infection reduces Notch activity, which results in fewer crystal cells and more lamellocytes. Robust lamellocyte differentiation is induced even in N mutants. Using RNA interference knockdown of N, Serrate, and neuralized (neur), and twin clone analysis of a N null allele, we show that all three genes inhibit lamellocyte differentiation. However, unlike its cell-autonomous function in crystal cell development, Notch's inhibitory influence on lamellocyte differentiation is not cell autonomous. High levels of reactive oxygen species in the lymph gland lobes, but not in the niche, accompany N(RNAi)-induced lamellocyte differentiation and lobe dispersal. Our results define a novel dual role for Notch signaling in maintaining competence for basal hematopoiesis: while crystal cell development is encouraged, lamellocytic fate remains repressed. Repression of Notch signaling in fly hematopoiesis is important for host defense against natural parasitic wasp infections. These findings can serve as a model to understand how reactive oxygen species and Notch signals are integrated and interpreted in vivo.
Collapse
|
69
|
Moran MT, Tare M, Kango-Singh M, Singh A. Homeotic Gene teashirt (tsh) has a neuroprotective function in amyloid-beta 42 mediated neurodegeneration. PLoS One 2013; 8:e80829. [PMID: 24282556 PMCID: PMC3840013 DOI: 10.1371/journal.pone.0080829] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Accepted: 10/07/2013] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Alzheimer's disease (AD) is a debilitating age related progressive neurodegenerative disorder characterized by the loss of cognition, and eventual death of the affected individual. One of the major causes of AD is the accumulation of Amyloid-beta 42 (Aβ42) polypeptides formed by the improper cleavage of amyloid precursor protein (APP) in the brain. These plaques disrupt normal cellular processes through oxidative stress and aberrant signaling resulting in the loss of synaptic activity and death of the neurons. However, the detailed genetic mechanism(s) responsible for this neurodegeneration still remain elusive. METHODOLOGY/ PRINCIPLE FINDINGS We have generated a transgenic Drosophila eye model where high levels of human Aβ42 is misexpressed in the differentiating photoreceptor neurons of the developing eye, which phenocopy Alzheimer's like neuropathology in the neural retina. We have utilized this model for a gain of function screen using members of various signaling pathways involved in the development of the fly eye to identify downstream targets or modifiers of Aβ42 mediated neurodegeneration. We have identified the homeotic gene teashirt (tsh) as a suppressor of the Aβ42 mediated neurodegenerative phenotype. Targeted misexpression of tsh with Aβ42 in the differentiating retina can significantly rescue neurodegeneration by blocking cell death. We found that Tsh protein is absent/ downregulated in the neural retina at this stage. The structure function analysis revealed that the PLDLS domain of Tsh acts as an inhibitor of the neuroprotective function of tsh in the Drosophila eye model. Lastly, we found that the tsh paralog, tiptop (tio) can also rescue Aβ42 mediated neurodegeneration. CONCLUSIONS/SIGNIFICANCE We have identified tsh and tio as new genetic modifiers of Aβ42 mediated neurodegeneration. Our studies demonstrate a novel neuroprotective function of tsh and its paralog tio in Aβ42 mediated neurodegeneration. The neuroprotective function of tsh is independent of its role in retinal determination.
Collapse
Affiliation(s)
- Michael T. Moran
- Department of Biology, University of Dayton, Dayton, Ohio, United States of America
| | - Meghana Tare
- Department of Biology, University of Dayton, Dayton, Ohio, United States of America
| | - Madhuri Kango-Singh
- Department of Biology, University of Dayton, Dayton, Ohio, United States of America
- Premedical Program, University of Dayton, Dayton, Ohio, United States of America
- Center for Tissue Regeneration and Engineering at Dayton (TREND), University of Dayton, Dayton, Ohio, United States of America
| | - Amit Singh
- Department of Biology, University of Dayton, Dayton, Ohio, United States of America
- Premedical Program, University of Dayton, Dayton, Ohio, United States of America
- Center for Tissue Regeneration and Engineering at Dayton (TREND), University of Dayton, Dayton, Ohio, United States of America
| |
Collapse
|
70
|
Bonini SA, Ferrari-Toninelli G, Montinaro M, Memo M. Notch signalling in adult neurons: a potential target for microtubule stabilization. Ther Adv Neurol Disord 2013; 6:375-85. [PMID: 24228073 DOI: 10.1177/1756285613490051] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Cytoskeletal dysfunction has been proposed during the last decade as one of the main mechanisms involved in the aetiology of several neurodegenerative diseases. Microtubules are basic elements of the cytoskeleton and the dysregulation of microtubule stability has been demonstrated to be causative for axonal transport impairment, synaptic contact degeneration, impaired neuronal function leading finally to neuronal loss. Several pathways are implicated in the microtubule assembly/disassembly process. Emerging evidence is focusing on Notch as a microtubule dynamics regulator. We demonstrated that activation of Notch signalling results in increased microtubule stability and changes in axonal morphology and branching. By contrast, Notch inhibition leads to an increase in cytoskeleton plasticity with intense neurite remodelling. Until now, several microtubule-binding compounds have been tested and the results have provided proof of concept that microtubule-binding agents or compounds with the ability to stabilize microtubules may have therapeutic potential for the treatment of Alzheimer's disease and other neurodegenerative diseases. In this review, based on its key role in cytoskeletal dynamics modulation, we propose Notch as a new potential target for microtubule stabilization.
Collapse
Affiliation(s)
- Sara Anna Bonini
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | | | | | | |
Collapse
|
71
|
Stan SD, Singh SV, Whitcomb DC, Brand RE. Phenethyl isothiocyanate inhibits proliferation and induces apoptosis in pancreatic cancer cells in vitro and in a MIAPaca2 xenograft animal model. Nutr Cancer 2013; 66:747-55. [PMID: 24195616 PMCID: PMC4008639 DOI: 10.1080/01635581.2013.795979] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Pancreatic cancer is often diagnosed at an advanced stage and it has a poor prognosis that points to an increased need to develop effective chemoprevention strategies for this disease. We examined the ability of phenethyl isothiocyanate (PEITC), a naturally occurring isothiocyanate found in cruciferous vegetables, to inhibit the growth of pancreatic cancer cells in vitro and in a MIAPaca2 xenograft animal model. Exposure to PEITC inhibited pancreatic cancer cell growth in a dose-dependent manner, with an IC50 of approximately 7 μmol/L. PEITC treatment induced G2/M phase cell cycle arrest, downregulated the antiapoptotic proteins Bcl-2 and Bcl-XL, upregulated the proapoptotic protein Bak, and suppressed Notch 1 and 2 levels. In addition, treatment with PEITC induced cleavage of poly-(ADP-ribose) polymerase and led to increased cytoplasmic histone-associated DNA fragmentation and subdiploid (apoptotic) fraction in pancreatic cancer cells. Oral administration of PEITC suppressed the growth of pancreatic cancer cells in a MIAPaca2 xenograft animal model. Our data show that PEITC exerts its inhibitory effect on pancreatic cancer cells through several mechanisms, including G2/M phase cell cycle arrest and induction of apoptosis, and supports further investigation of PEITC as a chemopreventive agent for pancreatic cancer.
Collapse
Affiliation(s)
- Silvia D. Stan
- Department of Nutrition Science, Purdue University, West Lafayette, Indiana
| | - Shivendra V. Singh
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - David C. Whitcomb
- Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Randall E. Brand
- Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| |
Collapse
|
72
|
Wong JJL, Li S, Lim EKH, Wang Y, Wang C, Zhang H, Kirilly D, Wu C, Liou YC, Wang H, Yu F. A Cullin1-based SCF E3 ubiquitin ligase targets the InR/PI3K/TOR pathway to regulate neuronal pruning. PLoS Biol 2013; 11:e1001657. [PMID: 24068890 PMCID: PMC3775723 DOI: 10.1371/journal.pbio.1001657] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Accepted: 08/08/2013] [Indexed: 11/19/2022] Open
Abstract
Pruning that selectively eliminates unnecessary axons/dendrites is crucial for sculpting the nervous system during development. During Drosophila metamorphosis, dendrite arborization neurons, ddaCs, selectively prune their larval dendrites in response to the steroid hormone ecdysone, whereas mushroom body γ neurons specifically eliminate their axon branches within dorsal and medial lobes. However, it is unknown which E3 ligase directs these two modes of pruning. Here, we identified a conserved SCF E3 ubiquitin ligase that plays a critical role in pruning of both ddaC dendrites and mushroom body γ axons. The SCF E3 ligase consists of four core components Cullin1/Roc1a/SkpA/Slimb and promotes ddaC dendrite pruning downstream of EcR-B1 and Sox14, but independently of Mical. Moreover, we demonstrate that the Cullin1-based E3 ligase facilitates ddaC dendrite pruning primarily through inactivation of the InR/PI3K/TOR pathway. We show that the F-box protein Slimb forms a complex with Akt, an activator of the InR/PI3K/TOR pathway, and promotes Akt ubiquitination. Activation of the InR/PI3K/TOR pathway is sufficient to inhibit ddaC dendrite pruning. Thus, our findings provide a novel link between the E3 ligase and the InR/PI3K/TOR pathway during dendrite pruning.
Collapse
Affiliation(s)
- Jack Jing Lin Wong
- Temasek Life Sciences Laboratory and Department of Biological Sciences, National University of Singapore, Singapore
- Graduate School for Integrated Sciences and Engineering, Centre for Life Sciences, National University of Singapore (NUS), Singapore
| | - Song Li
- Graduate School for Integrated Sciences and Engineering, Centre for Life Sciences, National University of Singapore (NUS), Singapore
- Neuroscience and Behavioral Disorder Program, Duke–NUS Graduate Medical School Singapore, Singapore
| | - Edwin Kok Hao Lim
- Temasek Life Sciences Laboratory and Department of Biological Sciences, National University of Singapore, Singapore
| | - Yan Wang
- Temasek Life Sciences Laboratory and Department of Biological Sciences, National University of Singapore, Singapore
| | - Cheng Wang
- Neuroscience and Behavioral Disorder Program, Duke–NUS Graduate Medical School Singapore, Singapore
| | - Heng Zhang
- Temasek Life Sciences Laboratory and Department of Biological Sciences, National University of Singapore, Singapore
| | - Daniel Kirilly
- Temasek Life Sciences Laboratory and Department of Biological Sciences, National University of Singapore, Singapore
| | - Chunlai Wu
- Neuroscience Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, Louisiana, United States of America
| | - Yih-Cherng Liou
- Temasek Life Sciences Laboratory and Department of Biological Sciences, National University of Singapore, Singapore
- Graduate School for Integrated Sciences and Engineering, Centre for Life Sciences, National University of Singapore (NUS), Singapore
| | - Hongyan Wang
- Graduate School for Integrated Sciences and Engineering, Centre for Life Sciences, National University of Singapore (NUS), Singapore
- Neuroscience and Behavioral Disorder Program, Duke–NUS Graduate Medical School Singapore, Singapore
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Fengwei Yu
- Temasek Life Sciences Laboratory and Department of Biological Sciences, National University of Singapore, Singapore
- Graduate School for Integrated Sciences and Engineering, Centre for Life Sciences, National University of Singapore (NUS), Singapore
- Neuroscience and Behavioral Disorder Program, Duke–NUS Graduate Medical School Singapore, Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- * E-mail:
| |
Collapse
|
73
|
Das S, Chen QB, Saucier JD, Drescher B, Zong Y, Morgan S, Forstall J, Meriwether A, Toranzo R, Leal SM. The Drosophila T-box transcription factor Midline functions within the Notch-Delta signaling pathway to specify sensory organ precursor cell fates and regulates cell survival within the eye imaginal disc. Mech Dev 2013; 130:577-601. [PMID: 23962751 DOI: 10.1016/j.mod.2013.08.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Revised: 07/30/2013] [Accepted: 08/03/2013] [Indexed: 12/20/2022]
Abstract
We report that the T-box transcription factor Midline (Mid), an evolutionary conserved homolog of the vertebrate Tbx20 protein, functions within the Notch-Delta signaling pathway essential for specifying the fates of sensory organ precursor (SOP) cells. These findings complement an established history of research showing that Mid regulates the cell-fate specification of diverse cell types within the developing heart, epidermis and central nervous system. Tbx20 has been detected in unique neuronal and epithelial cells of embryonic eye tissues in both mice and humans. However, the mechanisms by which either Mid or Tbx20 function to regulate cell-fate specification or other critical aspects of eye development including cell survival have not yet been elucidated. We have also gathered preliminary evidence suggesting that Mid may play an indirect, but vital role in selecting SOP cells within the third-instar larval eye disc by regulating the expression of the proneural gene atonal. During subsequent pupal stages, Mid specifies SOP cell fates as a member of the Notch-Delta signaling hierarchy and is essential for maintaining cell viability by inhibiting apoptotic pathways. We present several new hypotheses that seek to understand the role of Mid in regulating developmental processes downstream of the Notch receptor that are critical for specifying unique cell fates, patterning the adult eye and maintaining cellular homeostasis during eye disc morphogenesis.
Collapse
Affiliation(s)
- Sudeshna Das
- The Department of Biological Sciences, University of Southern Mississippi, United States
| | | | | | | | | | | | | | | | | | | |
Collapse
|
74
|
Chen W, Zhang H, Wang J, Cao G, Dong Z, Su H, Zhou X, Zhang S. Lentiviral-mediated gene silencing of Notch-4 inhibits in vitro proliferation and perineural invasion of ACC-M cells. Oncol Rep 2013; 29:1797-804. [PMID: 23450325 DOI: 10.3892/or.2013.2317] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2012] [Accepted: 01/08/2013] [Indexed: 11/06/2022] Open
Abstract
Salivary adenoid cystic carcinoma (SACC) is a common type of salivary gland cancer. The poor long-term prognosis for patients with SACC is mainly due to local recurrence, perineural invasion (PNI) and distant metastasis. Notch signaling plays a critical role in determining cell fate such as proliferation, differentiation and apoptosis. Accumulating evidence indicates that aberrant Notch-4 expression has a tumor-promoting function in SACC. In the present study, we used lentiviral-mediated RNA interference (RNAi) targeted against Notch-4 to determine the effects of decreased levels of this protein in the human highly metastatic adenoid cystic carcinoma cell line ACC-M. Furthermore, the proliferative capability as well as the PNI potential of the treated cells were observed in vitro. Our studies demonstrated that RNAi directed against Notch-4 markedly decreased Notch-4 gene expression, resulting in the inhibition of cell proliferation, and G0/G1 to S phase arrest in ACC-M cells. Knockdown of Notch-4 also resulted in a decrease in the in vitro PNI activity in ACC-M cells. To conclude, RNAi targeting against Notch-4 induces the suppression of cell growth and inhibition of PNI in vitro in ACC-M cells. Notch-4 may play an important role in regulating proliferation and PNI activity of SACC.
Collapse
Affiliation(s)
- Wei Chen
- Department of Stomatology, Nanjing Jinling Hospital, Nanjing University, School of Medicine, Nanjing, Jiangsu, PR China
| | | | | | | | | | | | | | | |
Collapse
|
75
|
Marcinkevicius E, Zallen JA. Regulation of cytoskeletal organization and junctional remodeling by the atypical cadherin Fat. Development 2013; 140:433-43. [PMID: 23250217 DOI: 10.1242/dev.083949] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The atypical cadherin Fat is a conserved regulator of planar cell polarity, but the mechanisms by which Fat controls cell shape and tissue structure are not well understood. Here, we show that Fat is required for the planar polarized organization of actin denticle precursors, adherens junction proteins and microtubules in the epidermis of the late Drosophila embryo. In wild-type embryos, spatially regulated cell-shape changes and rearrangements organize cells into highly aligned columns. Junctional remodeling is suppressed at dorsal and ventral cell boundaries, where adherens junction proteins accumulate. By contrast, adherens junction proteins fail to accumulate to the wild-type extent and all cell boundaries are equally engaged in junctional remodeling in fat mutants. The effects of loss of Fat on cell shape and junctional localization, but not its role in denticle organization, are recapitulated by mutations in Expanded, an upstream regulator of the conserved Hippo pathway, and mutations in Hippo and Warts, two kinases in the Hippo kinase cascade. However, the cell shape and planar polarity defects in fat mutants are not suppressed by removing the transcriptional co-activator Yorkie, suggesting that these roles of Fat are independent of Yorkie-mediated transcription. The effects of Fat on cell shape, junctional remodeling and microtubule localization are recapitulated by expression of activated Notch. These results demonstrate that cell shape, junctional localization and cytoskeletal planar polarity in the Drosophila embryo are regulated by a common signal provided by the atypical cadherin Fat and suggest that Fat influences tissue organization through its role in polarized junctional remodeling.
Collapse
Affiliation(s)
- Emily Marcinkevicius
- Howard Hughes Medical Institute and Developmental Biology Program, Sloan-Kettering Institute, 1275 York Avenue, New York, NY 10065, USA
| | | |
Collapse
|
76
|
Abstract
The outcome of the Notch pathway on proliferation depends on cellular context, being growth promotion in some, including several cancers, and growth inhibition in others. Such disparate outcomes are evident in Drosophila wing discs, where Notch overactivation causes hyperplasia despite having localized inhibitory effects on proliferation. To understand the underlying mechanisms, we have used genomic strategies to identify the Notch-CSL target genes directly activated during wing disc hyperplasia. Among them were genes involved in both autonomous and non-autonomous regulation of proliferation, growth and cell death, providing molecular explanations for many characteristics of Notch induced wing disc hyperplasia previously reported. The Notch targets exhibit different response patterns, which are shaped by both positive and negative feed-forward regulation between the Notch targets themselves. We propose, therefore, that both the characteristics of the direct Notch targets and their cross-regulatory relationships are important in coordinating the pattern of hyperplasia. This genome-wide approach characterizes the repertoire of Notch targets in proliferative growth. Extensive functional categorizations offer significant new insights into regulatory circuits that govern Notch-mediated hyperplasia.
Collapse
|
77
|
Nfonsam LE, Cano C, Mudge J, Schilkey FD, Curtiss J. Analysis of the transcriptomes downstream of Eyeless and the Hedgehog, Decapentaplegic and Notch signaling pathways in Drosophila melanogaster. PLoS One 2012; 7:e44583. [PMID: 22952997 PMCID: PMC3432130 DOI: 10.1371/journal.pone.0044583] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2011] [Accepted: 08/09/2012] [Indexed: 01/22/2023] Open
Abstract
Tissue-specific transcription factors are thought to cooperate with signaling pathways to promote patterned tissue specification, in part by co-regulating transcription. The Drosophila melanogaster Pax6 homolog Eyeless forms a complex, incompletely understood regulatory network with the Hedgehog, Decapentaplegic and Notch signaling pathways to control eye-specific gene expression. We report a combinatorial approach, including mRNAseq and microarray analyses, to identify targets co-regulated by Eyeless and Hedgehog, Decapentaplegic or Notch. Multiple analyses suggest that the transcriptomes resulting from co-misexpression of Eyeless+signaling factors provide a more complete picture of eye development compared to previous efforts involving Eyeless alone: (1) Principal components analysis and two-way hierarchical clustering revealed that the Eyeless+signaling factor transcriptomes are closer to the eye control transcriptome than when Eyeless is misexpressed alone; (2) more genes are upregulated at least three-fold in response to Eyeless+signaling factors compared to Eyeless alone; (3) based on gene ontology analysis, the genes upregulated in response to Eyeless+signaling factors had a greater diversity of functions compared to Eyeless alone. Through a secondary screen that utilized RNA interference, we show that the predicted gene CG4721 has a role in eye development. CG4721 encodes a neprilysin family metalloprotease that is highly up-regulated in response to Eyeless+Notch, confirming the validity of our approach. Given the similarity between D. melanogaster and vertebrate eye development, the large number of novel genes identified as potential targets of Ey+signaling factors will provide novel insights to our understanding of eye development in D. melanogaster and humans.
Collapse
Affiliation(s)
- Landry E. Nfonsam
- Department of Biology, New Mexico State University, Las Cruces, New Mexico, United States of America
| | - Carlos Cano
- Department of Biology, New Mexico State University, Las Cruces, New Mexico, United States of America
| | - Joann Mudge
- National Center for Genome Resources, Santa Fe, New Mexico, United States of America
| | - Faye D. Schilkey
- National Center for Genome Resources, Santa Fe, New Mexico, United States of America
| | - Jennifer Curtiss
- Department of Biology, New Mexico State University, Las Cruces, New Mexico, United States of America
| |
Collapse
|
78
|
Seifert JRK, Lehmann R. Drosophila primordial germ cell migration requires epithelial remodeling of the endoderm. Development 2012; 139:2101-6. [PMID: 22619387 DOI: 10.1242/dev.078949] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Trans-epithelial migration describes the ability of migrating cells to cross epithelial tissues and occurs during development, infection, inflammation, immune surveillance, wound healing and cancer metastasis. Here we investigate Drosophila primordial germ cells (PGCs), which migrate through the endodermal epithelium. Through live imaging and genetic experimentation we demonstrate that PGCs take advantage of endodermal tissue remodeling to gain access to the gonadal mesoderm and are unable to migrate through intact epithelial tissues. These results are in contrast to the behavior of leukocytes, which actively loosen epithelial junctions to migrate, and raise the possibility that in other contexts in which migrating cells appear to breach tissue barriers, they are actually exploiting existing tissue permeability. Therefore, the use of active invasive programs is not the sole mechanism to infiltrate tissues.
Collapse
Affiliation(s)
- Jessica R K Seifert
- HHMI and Kimmel Center for Biology and Medicine at the Skirball Institute, Department of Cell Biology, New York University School of Medicine, New York, NY 10016, USA
| | | |
Collapse
|
79
|
Aegerter-Wilmsen T, Heimlicher MB, Smith AC, de Reuille PB, Smith RS, Aegerter CM, Basler K. Integrating force-sensing and signaling pathways in a model for the regulation of wing imaginal disc size. Development 2012; 139:3221-31. [PMID: 22833127 DOI: 10.1242/dev.082800] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The regulation of organ size constitutes a major unsolved question in developmental biology. The wing imaginal disc of Drosophila serves as a widely used model system to study this question. Several mechanisms have been proposed to have an impact on final size, but they are either contradicted by experimental data or they cannot explain a number of key experimental observations and may thus be missing crucial elements. We have modeled a regulatory network that integrates the experimentally confirmed molecular interactions underlying other available models. Furthermore, the network includes hypothetical interactions between mechanical forces and specific growth regulators, leading to a size regulation mechanism that conceptually combines elements of existing models, and can be understood in terms of a compression gradient model. According to this model, compression increases in the center of the disc during growth. Growth stops once compression levels in the disc center reach a certain threshold and the compression gradient drops below a certain level in the rest of the disc. Our model can account for growth termination as well as for the paradoxical observation that growth occurs uniformly in the presence of a growth factor gradient and non-uniformly in the presence of a uniform growth factor distribution. Furthermore, it can account for other experimental observations that argue either in favor or against other models. The model also makes specific predictions about the distribution of cell shape and size in the developing disc, which we were able to confirm experimentally.
Collapse
|
80
|
Graves HK, Woodfield SE, Yang CC, Halder G, Bergmann A. Notch signaling activates Yorkie non-cell autonomously in Drosophila. PLoS One 2012; 7:e37615. [PMID: 22679484 PMCID: PMC3367968 DOI: 10.1371/journal.pone.0037615] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2012] [Accepted: 04/22/2012] [Indexed: 11/30/2022] Open
Abstract
In Drosophila imaginal epithelia, cells mutant for the endocytic neoplastic tumor suppressor gene vps25 stimulate nearby untransformed cells to express Drosophila Inhibitor-of-Apoptosis-Protein-1 (DIAP-1), conferring resistance to apoptosis non-cell autonomously. Here, we show that the non-cell autonomous induction of DIAP-1 is mediated by Yorkie, the conserved downstream effector of Hippo signaling. The non-cell autonomous induction of Yorkie is due to Notch signaling from vps25 mutant cells. Moreover, activated Notch in normal cells is sufficient to induce non-cell autonomous Yorkie activity in wing imaginal discs. Our data identify a novel mechanism by which Notch promotes cell survival non-cell autonomously and by which neoplastic tumor cells generate a supportive microenvironment for tumor growth.
Collapse
Affiliation(s)
- Hillary K. Graves
- Department of Biochemistry and Molecular Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Sarah E. Woodfield
- Department of Biochemistry and Molecular Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
- Graduate Program in Developmental Biology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Chih-Chao Yang
- Department of Biochemistry and Molecular Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
- Program in Genes and Development, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Georg Halder
- Department of Biochemistry and Molecular Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
- Graduate Program in Developmental Biology, Baylor College of Medicine, Houston, Texas, United States of America
- Program in Genes and Development, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Andreas Bergmann
- Department of Biochemistry and Molecular Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
- Graduate Program in Developmental Biology, Baylor College of Medicine, Houston, Texas, United States of America
- Program in Genes and Development, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
- * E-mail:
| |
Collapse
|
81
|
San Juan BP, Andrade-Zapata I, Baonza A. The bHLH factors Dpn and members of the E(spl) complex mediate the function of Notch signalling regulating cell proliferation during wing disc development. Biol Open 2012; 1:667-76. [PMID: 23213460 PMCID: PMC3507296 DOI: 10.1242/bio.20121172] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The Notch signalling pathway plays an essential role in the intricate control of cell proliferation and pattern formation in many organs during animal development. In addition, mutations in most members of this pathway are well characterized and frequently lead to tumour formation. The Drosophila imaginal wing discs have provided a suitable model system for the genetic and molecular analysis of the different pathway functions. During disc development, Notch signalling at the presumptive wing margin is necessary for the restricted activation of genes required for pattern formation control and disc proliferation. Interestingly, in different cellular contexts within the wing disc, Notch can either promote cell proliferation or can block the G1-S transition by negatively regulating the expression of dmyc and bantam micro RNA. The target genes of Notch signalling that are required for these functions have not been identified. Here, we show that the Hes vertebrate homolog, deadpan (dpn), and the Enhancer-of-split complex (E(spl)C) genes act redundantly and cooperatively to mediate the Notch signalling function regulating cell proliferation during wing disc development.
Collapse
Affiliation(s)
- Beatriz P San Juan
- Centro de Biología Molecular Severo Ochoa (CSIC/UAM) C/Nicolás Cabrera 1 , 28049 Madrid , Spain
| | | | | |
Collapse
|
82
|
Pallavi SK, Ho DM, Hicks C, Miele L, Artavanis-Tsakonas S. Notch and Mef2 synergize to promote proliferation and metastasis through JNK signal activation in Drosophila. EMBO J 2012; 31:2895-907. [PMID: 22580825 PMCID: PMC3395089 DOI: 10.1038/emboj.2012.129] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2011] [Accepted: 04/02/2012] [Indexed: 12/31/2022] Open
Abstract
Genetic analyses in Drosophila revealed a synergy between Notch and the pleiotropic transcription factor Mef2 (myocyte enhancer factor 2), which profoundly influences proliferation and metastasis. We show that these hyperproliferative and invasive Drosophila phenotypes are attributed to upregulation of eiger, a member of the tumour necrosis factor superfamily of ligands, and the consequent activation of Jun N-terminal kinase signalling, which in turn triggers the expression of the invasive marker MMP1. Expression studies in human breast tumour samples demonstrate correlation between Notch and Mef2 paralogues and support the notion that Notch-MEF2 synergy may be significant for modulating human mammary oncogenesis.
Collapse
Affiliation(s)
- S K Pallavi
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | | | | | | | | |
Collapse
|
83
|
Abstract
The compound eye of the fruit fly, Drosophila melanogaster, has for decades been used extensively to study a number of critical developmental processes including tissue development, pattern formation, cell fate specification, and planar cell polarity. To a lesser degree it has been used to examine the cell cycle and tissue proliferation. Discovering the mechanisms that balance tissue growth and cell death in developing epithelia has traditionally been the realm of those using the wing disc. However, over the last decade a series of observations has demonstrated that the eye is a suitable and maybe even preferable tissue for studying tissue growth. This review will focus on how growth of the retina is controlled by the genes and pathways that govern the specification of tissue fate, the division of the epithelium into dorsal-ventral compartments, the initiation, and progression of the morphogenetic furrow and the second mitotic wave.
Collapse
Affiliation(s)
- Justin P Kumar
- Department of Biology, Indiana University, Bloomington, USA.
| |
Collapse
|
84
|
Wheeler SR, Pearson JC, Crews ST. Time-lapse imaging reveals stereotypical patterns of Drosophila midline glial migration. Dev Biol 2012; 361:232-44. [PMID: 22061481 PMCID: PMC3246554 DOI: 10.1016/j.ydbio.2011.10.024] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2011] [Revised: 09/16/2011] [Accepted: 10/08/2011] [Indexed: 11/17/2022]
Abstract
The Drosophila CNS midline glia (MG) are multifunctional cells that ensheath and provide trophic support to commissural axons, and direct embryonic development by employing a variety of signaling molecules. These glia consist of two functionally distinct populations: the anterior MG (AMG) and posterior MG (PMG). Only the AMG ensheath axon commissures, whereas the function of the non-ensheathing PMG is unknown. The Drosophila MG have proven to be an excellent system for studying glial proliferation, cell fate, apoptosis, and axon-glial interactions. However, insight into how AMG migrate and acquire their specific positions within the axon-glial scaffold has been lacking. In this paper, we use time-lapse imaging, single-cell analysis, and embryo staining to comprehensively describe the proliferation, migration, and apoptosis of the Drosophila MG. We identified 3 groups of MG that differed in the trajectories of their initial inward migration: AMG that migrate inward and to the anterior before undergoing apoptosis, AMG that migrate inward and to the posterior to ensheath commissural axons, and PMG that migrate inward and to the anterior to contact the commissural axons before undergoing apoptosis. In a second phase of their migration, the surviving AMG stereotypically migrated posteriorly to specific positions surrounding the commissures, and their final position was correlated with their location prior to migration. Most noteworthy are AMG that migrated between the commissures from a ventral to a dorsal position. Single-cell analysis indicated that individual AMG possessed wide-ranging and elaborate membrane extensions that partially ensheathed both commissures. These results provide a strong foundation for future genetic experiments to identify mutants affecting MG development, particularly in guidance cues that may direct migration. Drosophila MG are homologous in structure and function to the glial-like cells that populate the vertebrate CNS floorplate, and study of Drosophila MG will provide useful insights into floorplate development and function.
Collapse
Affiliation(s)
- Scott R. Wheeler
- Department of Biochemistry and Biophysics, Program in Molecular Biology and Biotechnology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3280
| | - Joseph C. Pearson
- Department of Biochemistry and Biophysics, Program in Molecular Biology and Biotechnology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3280
| | - Stephen T. Crews
- Department of Biochemistry and Biophysics, Program in Molecular Biology and Biotechnology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3280
| |
Collapse
|
85
|
Yamakawa T, Yamada K, Sasamura T, Nakazawa N, Kanai M, Suzuki E, Fortini ME, Matsuno K. Deficient Notch signaling associated with neurogenic pecanex is compensated for by the unfolded protein response in Drosophila. Development 2011; 139:558-67. [PMID: 22190636 DOI: 10.1242/dev.073858] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The Notch (N) signaling machinery is evolutionarily conserved and regulates a broad spectrum of cell-specification events, through local cell-cell communication. pecanex (pcx) encodes a multi-pass transmembrane protein of unknown function, widely found from Drosophila to humans. The zygotic and maternal loss of pcx in Drosophila causes a neurogenic phenotype (hyperplasia of the embryonic nervous system), suggesting that pcx might be involved in N signaling. Here, we established that Pcx is a component of the N-signaling pathway. Pcx was required upstream of the membrane-tethered and the nuclear forms of activated N, probably in N signal-receiving cells, suggesting that pcx is required prior to or during the activation of N. pcx overexpression revealed that Pcx resides in the endoplasmic reticulum (ER). Disruption of pcx function resulted in enlargement of the ER that was not attributable to the reduced N signaling activity. In addition, hyper-induction of the unfolded protein response (UPR) by the expression of activated Xbp1 or dominant-negative Heat shock protein cognate 3 suppressed the neurogenic phenotype and ER enlargement caused by the absence of pcx. A similar suppression of these phenotypes was induced by overexpression of O-fucosyltransferase 1, an N-specific chaperone. Taking these results together, we speculate that the reduction in N signaling in embryos lacking pcx function might be attributable to defective ER functions, which are compensated for by upregulation of the UPR and possibly by enhancement of N folding. Our results indicate that the ER plays a previously unrecognized role in N signaling and that this ER function depends on pcx activity.
Collapse
Affiliation(s)
- Tomoko Yamakawa
- Department of Biological Science and Technology, Tokyo University of Science, Noda, Chiba, 278-8510 Japan
| | | | | | | | | | | | | | | |
Collapse
|
86
|
Singh A, Tare M, Puli OR, Kango-Singh M. A glimpse into dorso-ventral patterning of the Drosophila eye. Dev Dyn 2011; 241:69-84. [PMID: 22034010 DOI: 10.1002/dvdy.22764] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/06/2011] [Indexed: 12/15/2022] Open
Abstract
During organogenesis in all multi-cellular organisms, axial patterning is required to transform a single layer organ primordium into a three-dimensional organ. The Drosophila eye model serves as an excellent model to study axial patterning. Dorso-ventral (DV) axis determination is the first lineage restriction event during axial patterning of the Drosophila eye. The early Drosophila eye primordium has a default ventral fate, and the dorsal eye fate is established by onset of dorsal selector gene pannier (pnr) expression in a group of cells on the dorsal eye margin. The boundary between dorsal and ventral compartments called the equator is the site for Notch (N) activation, which triggers cell proliferation and differentiation. This review will focus on (1) chronology of events during DV axis determination; (2) how early division of eye into dorsal and ventral compartments contributes towards the growth and patterning of the fly retina, and (3) functions of DV patterning genes.
Collapse
Affiliation(s)
- Amit Singh
- Department of Biology, University of Dayton, Dayton, Ohio 45469, USA.
| | | | | | | |
Collapse
|
87
|
Nagel AC, Preiss A. Fine tuning of Notch signaling by differential co-repressor recruitment during eye development of Drosophila. Hereditas 2011; 148:77-84. [PMID: 21756252 DOI: 10.1111/j.1601-5223.2011.02221.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Notch signaling is fundamental to the regulation of cellular differentiation, cell growth and cell death in mammals as well as in invertebrates like Drosophila. Upon activation, the Notch receptor is cleaved and the intracellular part ICN assembles an activator complex around Suppressor of Hairless [Su(H)] that activates Notch target genes. Hairless (H) is the major antagonist of the Notch signaling pathway in Drosophila. In the absence of Notch signal, H binds to Su(H) and recruits two general co-repressors, Groucho (Gro) and C-terminal Binding Protein (CtBP); this repression complex downregulates Notch target genes. Previously we have shown that Gro and CtBP are recruited simultaneously to H and that they act in concert during wing and embryonic development. However, Gro and CtBP are utilized context-dependently by other transcription factors. Hence differential co-repressor recruitment by the Su(H)-H repressor complex is likewise conceivable. Here, we investigated the requirement for the co-repressors Gro and CtBP in H mediated Notch repression during several phases of eye development. Whereas both co-repressors appear likewise important during the specification of photoreceptor cells, we find differential requirement for the regulation of proliferation and cell death, respectively. During the early proliferative phase, H preferentially recruits Gro to inhibit Notch mediated growth of the eye disc. Elimination of superfluous interommatidial pigment cells, which depends on a late Notch signal, is antagonized by H and predominantly CtBP. In summary, differential recruitment of the co-repressors Gro and CtBP by H in a context-dependent manner ensures fine tuning of Notch signaling activity during eye development.
Collapse
Affiliation(s)
- Anja C Nagel
- Institut für Genetik, Universität Hohenheim, Stuttgart, Germany.
| | | |
Collapse
|
88
|
Grigorian M, Mandal L, Hakimi M, Ortiz I, Hartenstein V. The convergence of Notch and MAPK signaling specifies the blood progenitor fate in the Drosophila mesoderm. Dev Biol 2011; 353:105-18. [PMID: 21382367 PMCID: PMC3312814 DOI: 10.1016/j.ydbio.2011.02.024] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2010] [Revised: 02/26/2011] [Accepted: 02/26/2011] [Indexed: 11/25/2022]
Abstract
Blood progenitors arise from a pool of pluripotential cells ("hemangioblasts") within the Drosophila embryonic mesoderm. The fact that the cardiogenic mesoderm consists of only a small number of highly stereotypically patterned cells that can be queried individually regarding their gene expression in normal and mutant embryos is one of the significant advantages that Drosophila offers to dissect the mechanism specifying the fate of these cells. We show in this paper that the expression of the Notch ligand Delta (Dl) reveals segmentally reiterated mesodermal clusters ("cardiogenic clusters") that constitute the cardiogenic mesoderm. These clusters give rise to cardioblasts, blood progenitors and nephrocytes. Cardioblasts emerging from the cardiogenic clusters accumulate high levels of Dl, which is required to prevent more cells from adopting the cardioblast fate. In embryos lacking Dl function, all cells of the cardiogenic clusters become cardioblasts, and blood progenitors are lacking. Concomitant activation of the Mitogen Activated Protein Kinase (MAPK) pathway by Epidermal Growth Factor Receptor (EGFR) and Fibroblast Growth Factor Receptor (FGFR) is required for the specification and maintenance of the cardiogenic mesoderm; in addition, the spatially restricted localization of some of the FGFR ligands may be instrumental in controlling the spatial restriction of the Dl ligand to presumptive cardioblasts.
Collapse
Affiliation(s)
- Melina Grigorian
- Department of Molecular Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA 90095, USA.
| | | | | | | | | |
Collapse
|
89
|
Wang YH, Huang ML. Organogenesis and tumorigenesis: insight from the JAK/STAT pathway in the Drosophila eye. Dev Dyn 2011; 239:2522-33. [PMID: 20737505 PMCID: PMC2972639 DOI: 10.1002/dvdy.22394] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The Janus kinase (JAK) signal transducer and activator of transcription (STAT) pathway is one of the main signaling pathways in eukaryotic cells. This pathway is used during diverse growth and developmental processes in multiple tissues to control cell proliferation, differentiation, survival, and apoptosis. In addition to its role during development, the JAK/STAT pathway has also been implicated in tumorigenesis. Drosophila melanogaster is a powerful genetic tool, and its eyes have been used extensively as a platform to study signaling pathways. Many reports have demonstrated that the JAK/STAT pathway plays pleiotropic roles in Drosophila eye development. Its functions and activation are decided by its interplay with other signal pathways and the epigenetic status. In this review, we focus on the functions and regulation of the JAK/STAT pathway during eye development and provide some insights into the study of this pathway in tumorigenesis. Developmental Dynamics 239:2522–2533, 2010. © 2010 Wiley-Liss, Inc.
Collapse
Affiliation(s)
- Ying-Hsuan Wang
- Department of Life Science and Institute of Molecular Biology, National Chung-Cheng University, Chia-Yi, Taiwan
| | | |
Collapse
|
90
|
Chun CZ, Remadevi I, Schupp MO, Samant GV, Pramanik K, Wilkinson GA, Ramchandran R. Fli+ etsrp+ hemato-vascular progenitor cells proliferate at the lateral plate mesoderm during vasculogenesis in zebrafish. PLoS One 2011; 6:e14732. [PMID: 21364913 PMCID: PMC3045372 DOI: 10.1371/journal.pone.0014732] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2010] [Accepted: 01/29/2011] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Vasculogenesis, the de novo formation of blood vessels from precursor cells is critical for a developing embryo. However, the signals and events that dictate the formation of primary axial vessels remain poorly understood. METHODOLOGY/PRINCIPAL FINDINGS In this study, we use ets-related protein-1 (etsrp), which is essential for vascular development, to analyze the early stages of vasculogenesis in zebrafish. We found etsrp(+) cells of the head, trunk and tail follow distinct developmental sequences. Using a combination of genetic, molecular and chemical approaches, we demonstrate that fli(+)etsrp(+) hemato-vascular progenitors (FEVPs) are proliferating at the lateral plate mesoderm (LPM). The Shh-VEGF-Notch-Hey2 signaling pathway controls the proliferation process, and experimental modulation of single components of this pathway alters etsrp(+) cell numbers at the LPM. CONCLUSIONS/SIGNIFICANCE This study for the first time defines factors controlling proliferation, and cell numbers of pre-migratory FEVPs in zebrafish.
Collapse
Affiliation(s)
- Chang Zoon Chun
- Department of Pediatrics, CRI Developmental Vascular Biology Program, Translational and Biomedical Research Center, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
- * E-mail: (CZC); (RR)
| | - Indu Remadevi
- Department of Pediatrics, CRI Developmental Vascular Biology Program, Translational and Biomedical Research Center, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
| | - Marcus-Oliver Schupp
- Department of Pediatrics, CRI Developmental Vascular Biology Program, Translational and Biomedical Research Center, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
| | - Ganesh Vinayak Samant
- Department of Pediatrics, CRI Developmental Vascular Biology Program, Translational and Biomedical Research Center, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
| | - Kallal Pramanik
- Department of Pediatrics, CRI Developmental Vascular Biology Program, Translational and Biomedical Research Center, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
| | - George Albert Wilkinson
- Department of Pediatrics, CRI Developmental Vascular Biology Program, Translational and Biomedical Research Center, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
| | - Ramani Ramchandran
- Department of Pediatrics, CRI Developmental Vascular Biology Program, Translational and Biomedical Research Center, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
- * E-mail: (CZC); (RR)
| |
Collapse
|
91
|
Okegbe TC, DiNardo S. The endoderm specifies the mesodermal niche for the germline in Drosophila via Delta-Notch signaling. Development 2011; 138:1259-67. [PMID: 21350008 DOI: 10.1242/dev.056994] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Interactions between niche cells and stem cells are vital for proper control over stem cell self-renewal and differentiation. However, there are few tissues where the initial establishment of a niche has been studied. The Drosophila testis houses two stem cell populations, which each lie adjacent to somatic niche cells. Although these niche cells sustain spermatogenesis throughout life, it is not understood how their fate is established. Here, we show that Notch signaling is necessary to specify niche cell fate in the developing gonad. Surprisingly, our results indicate that adjacent endoderm is the source of the Notch-activating ligand Delta. We also find that niche cell specification occurs earlier than anticipated, well before the expression of extant markers for niche cell fate. This work further suggests that endoderm plays a dual role in germline development. The endoderm assists both in delivering germ cells to the somatic gonadal mesoderm, and in specifying the niche where these cells will subsequently develop as stem cells. Because in mammals primordial germ cells also track through endoderm on their way to the genital ridge, our work raises the possibility that conserved mechanisms are employed to regulate germline niche formation.
Collapse
Affiliation(s)
- Tishina C Okegbe
- Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | |
Collapse
|
92
|
Hu YY, Zheng MH, Cheng G, Li L, Liang L, Gao F, Wei YN, Fu LA, Han H. Notch signaling contributes to the maintenance of both normal neural stem cells and patient-derived glioma stem cells. BMC Cancer 2011; 11:82. [PMID: 21342503 PMCID: PMC3052197 DOI: 10.1186/1471-2407-11-82] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2010] [Accepted: 02/22/2011] [Indexed: 12/30/2022] Open
Abstract
Background Cancer stem cells (CSCs) play an important role in the development and recurrence of malignant tumors including glioma. Notch signaling, an evolutionarily conserved pathway mediating direct cell-cell interaction, has been shown to regulate neural stem cells (NSCs) and glioma stem cells (GSCs) in normal neurogenesis and pathological carcinogenesis, respectively. However, how Notch signaling regulates the proliferation and differentiation of GSCs has not been well elucidated. Methods We isolated and cultivate human GSCs from glioma patient specimens. Then on parallel comparison with NSCs, we inhibited Notch signaling using γ-secretase inhibitors (GSI) and assessed the potential functions of Notch signaling in human GSCs. Results Similar to the GSI-treated NSCs, the number of the primary and secondary tumor spheres from GSI-treated GSCs decreased significantly, suggesting that the proliferation and self-renewal ability of GSI-treated GSCs were attenuated. GSI-treated GSCs showed increased differentiation into mature neural cell types in differentiation medium, similar to GSI-treated NSCs. Next, we found that GSI-treated tumor spheres were composed of more intermediate progenitors instead of CSCs, compared with the controls. Interestingly, although inhibition of Notch signaling decreased the ratio of proliferating NSCs in long term culture, we found that the ratio of G2+M phase-GSCs were almost undisturbed on GSI treatment within 72 h. Conclusions These data indicate that like NSCs, Notch signaling maintains the patient-derived GSCs by promoting their self-renewal and inhibiting their differentiation, and support that Notch signal inhibitor GSI might be a prosperous candidate of the treatment targeting CSCs for gliomas, however, with GSI-resistance at the early stage of GSCs cell cycle.
Collapse
Affiliation(s)
- Yi-Yang Hu
- State Key Laboratory of Cancer Biology, Department of Medical Genetics and Developmental Biology, Fourth Military Medical University, Chang-Le Xi Street #17, Xi'an 710032, PR China
| | | | | | | | | | | | | | | | | |
Collapse
|
93
|
Olguín P, Glavic A, Mlodzik M. Intertissue mechanical stress affects Frizzled-mediated planar cell polarity in the Drosophila notum epidermis. Curr Biol 2011; 21:236-42. [PMID: 21276726 DOI: 10.1016/j.cub.2011.01.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2010] [Revised: 11/09/2010] [Accepted: 12/31/2010] [Indexed: 10/18/2022]
Abstract
Frizzled/planar cell polarity (Fz/PCP) signaling controls the orientation of sensory bristles and cellular hairs (trichomes) along the anteroposterior axis of the Drosophila thorax (notum). A subset of the trichome-producing notum cells differentiate as "tendon cells," serving as attachment sites for the indirect flight muscles (IFMs) to the exoskeleton. Through the analysis of chascon (chas), a gene identified by its ability to disrupt Fz/PCP signaling under overexpression conditions, and jitterbug (jbug)/filamin, we show that maintenance of anteroposterior planar polarization requires the notum epithelia to balance mechanical stress generated by the attachment of the IFMs. chas is expressed in notum tendon cells, and its loss of function disturbs cellular orientation at and near the regions where IFMs attach to the epidermis. This effect is independent of the Fz/PCP and fat/dachsous systems. The chas phenotype arises during normal shortening of the IFMs and is suppressed by genetic ablation of the IFMs. chas acts through jbug/filamin and cooperates with MyosinII to modulate the mechanoresponse of notum tendon cells. These observations support the notion that the ability of epithelia to respond to mechanical stress generated by one or more interactions with other tissues during development and organogenesis influences the maintenance of its shape and PCP features.
Collapse
Affiliation(s)
- Patricio Olguín
- Department of Developmental and Regenerative Biology, Mount Sinai School of Medicine, One Gustave L. Levy Place, New York, NY 10029, USA
| | | | | |
Collapse
|
94
|
Orihara-Ono M, Toriya M, Nakao K, Okano H. Downregulation of Notch mediates the seamless transition of individual Drosophila neuroepithelial progenitors into optic medullar neuroblasts during prolonged G1. Dev Biol 2011; 351:163-75. [PMID: 21215740 DOI: 10.1016/j.ydbio.2010.12.044] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2010] [Revised: 12/29/2010] [Accepted: 12/30/2010] [Indexed: 11/17/2022]
Abstract
The first step in the development of the Drosophila optic medullar primordia is the expansion of symmetrically dividing neuroepithelial cells (NEs); this step is then followed by the appearance of asymmetrically dividing neuroblasts (NBs). However, the mechanisms responsible for the change from NEs to NBs remain unclear. Here, we performed detailed analyses demonstrating that individual NEs are converted into NBs. We also showed that this transition occurs during an elongated G1 phase. During this G1 phase, the morphological features and gene expressions of each columnar NE changed dynamically. Once the NE-to-NB transition was completed, the former NE changed its cell-cycling behavior, commencing asymmetric division. We also found that Notch signaling pathway was activated just before the transition and was rapidly downregulated. Furthermore, the clonal loss of the Notch wild copy in the NE region near the medial edge caused the ectopic accumulation of Delta, leading to the precocious onset of transition. Taken together, these findings indicate that the activation of Notch signaling during a finite window coordinates the proper timing of the NE-to-NB transition.
Collapse
Affiliation(s)
- Minako Orihara-Ono
- Department of Physiology, Faculty of Medicine, Keio University, Tokyo, Zip 160-8582, Japan
| | | | | | | |
Collapse
|
95
|
A novel interaction between hedgehog and Notch promotes proliferation at the anterior-posterior organizer of the Drosophila wing. Genetics 2010; 187:485-99. [PMID: 21098717 DOI: 10.1534/genetics.110.125138] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Notch has multiple roles in the development of the Drosophila melanogaster wing imaginal disc. It helps specify the dorsal-ventral compartment border, and it is needed for the wing margin, veins, and sensory organs. Here we present evidence for a new role: stimulating growth in response to Hedgehog. We show that Notch signaling is activated in the cells of the anterior-posterior organizer that produce the region between wing veins 3 and 4, and we describe strong genetic interactions between the gene that encodes the Hedgehog pathway activator Smoothened and the Notch pathway genes Notch, presenilin, and Suppressor of Hairless and the Enhancer of split complex. This work thus reveals a novel collaboration by the Hedgehog and Notch pathways that regulates proliferation in the 3-4 intervein region independently of Decapentaplegic.
Collapse
|
96
|
O'Keefe DD, Edgar BA, Saucedo LJ. EndoGI modulates Notch signaling and axon guidance in Drosophila. Mech Dev 2010; 128:59-70. [PMID: 21055464 DOI: 10.1016/j.mod.2010.10.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2010] [Revised: 10/22/2010] [Accepted: 10/28/2010] [Indexed: 11/29/2022]
Abstract
Signaling through the Notch receptor has dramatically different effects depending on cell type and developmental timing. While a myriad of biological systems affected by Notch have been described, the molecular mechanisms by which a generic Notch signal is translated into a cell-type-specific output are less clear. Canonically, the Notch intracellular domain (NICD) translocates into the nucleus upon ligand binding to transcriptionally regulate target genes. In order to generate specificity, therefore, additional factors must exist that modulate NICD activity. Here we describe a novel regulator of the Notch pathway, Endonuclease GI (EndoGI). EndoGI localizes to the nucleus of most cells and activates Notch signaling when overexpressed. In the absence of endoGI, mutant animals are viable, but uncoordinated as motor neurons fail to innervate their appropriate muscle targets. Our data is therefore consistent with EndoGI functioning as a positive regulator of the Notch signaling pathway, playing a critical role during axon guidance of motor neurons.
Collapse
Affiliation(s)
- David D O'Keefe
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, 1100 Fairview Av., N. Seattle, WA 98109, USA
| | | | | |
Collapse
|
97
|
Yasugi T, Sugie A, Umetsu D, Tabata T. Coordinated sequential action of EGFR and Notch signaling pathways regulates proneural wave progression in the Drosophila optic lobe. Development 2010; 137:3193-203. [PMID: 20724446 DOI: 10.1242/dev.048058] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
During neurogenesis in the medulla of the Drosophila optic lobe, neuroepithelial cells are programmed to differentiate into neuroblasts at the medial edge of the developing optic lobe. The wave of differentiation progresses synchronously in a row of cells from medial to the lateral regions of the optic lobe, sweeping across the entire neuroepithelial sheet; it is preceded by the transient expression of the proneural gene lethal of scute [l(1)sc] and is thus called the proneural wave. We found that the epidermal growth factor receptor (EGFR) signaling pathway promotes proneural wave progression. EGFR signaling is activated in neuroepithelial cells and induces l(1)sc expression. EGFR activation is regulated by transient expression of Rhomboid (Rho), which is required for the maturation of the EGF ligand Spitz. Rho expression is also regulated by the EGFR signal. The transient and spatially restricted expression of Rho generates sequential activation of EGFR signaling and assures the directional progression of the differentiation wave. This study also provides new insights into the role of Notch signaling. Expression of the Notch ligand Delta is induced by EGFR, and Notch signaling prolongs the proneural state. Notch signaling activity is downregulated by its own feedback mechanism that permits cells at proneural states to subsequently develop into neuroblasts. Thus, coordinated sequential action of the EGFR and Notch signaling pathways causes the proneural wave to progress and induce neuroblast formation in a precisely ordered manner.
Collapse
Affiliation(s)
- Tetsuo Yasugi
- Institute of Molecular and Cellular Biosciences, University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | | | | | | |
Collapse
|
98
|
Vachias C, Couderc JL, Grammont M. A two-step Notch-dependant mechanism controls the selection of the polar cell pair in Drosophila oogenesis. Development 2010; 137:2703-11. [PMID: 20630949 DOI: 10.1242/dev.052183] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Organisers control the patterning and growth of many tissues and organs. Correctly regulating the size of these organisers is crucial for proper differentiation to occur. Organiser activity in the epithelium of the Drosophila ovarian follicle resides in a pair of cells called polar cells. It is known that these two cells are selected from a cluster of equivalent cells. However, the mechanisms responsible for this selection are still unclear. Here, we present evidence that the selection of the two cells is not random but, by contrast, depends on an atypical two-step Notch-dependent mechanism. We show that this sequential process begins when one cell becomes refractory to Notch activation and is selected as the initial polar cell. This cell then produces a Delta signal that induces a high level of Notch activation in one other cell within the cluster. This Notch activity prevents elimination by apoptosis, allowing its selection as the second polar cell. Therefore, the mechanism used to select precisely two cells from among an equivalence group involves an inductive Delta signal that originates from one cell, itself unable to respond to Notch activation, and results in one other cell being selected to adopt the same fate. Given its properties, this two-step Notch-dependent mechanism represents a novel aspect of Notch action.
Collapse
Affiliation(s)
- Caroline Vachias
- CNRS 6247, Clermont University, UFR Médecine, Clermont-Ferrand F-63001, France
| | | | | |
Collapse
|
99
|
|
100
|
Leong GR, Goulding KR, Amin N, Richardson HE, Brumby AM. Scribble mutants promote aPKC and JNK-dependent epithelial neoplasia independently of Crumbs. BMC Biol 2009; 7:62. [PMID: 19778415 PMCID: PMC2760524 DOI: 10.1186/1741-7007-7-62] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2009] [Accepted: 09/24/2009] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Metastatic neoplasias are characterized by excessive cell proliferation and disruptions to apico-basal cell polarity and tissue architecture. Understanding how alterations in cell polarity can impact upon tumour development is, therefore, a central issue in cancer biology. The Drosophila gene scribble (scrib) encodes a PDZ-domain scaffolding protein that regulates cell polarity and acts as a tumour suppressor in flies. Increasing evidence also implicates the loss of human Scrib in cancer. In this report, we investigate how loss of Scrib promotes epithelial tumourigenesis in Drosophila, both alone and in cooperation with oncogenic mutations. RESULTS We find that genetically distinct atypical protein kinase C (aPKC)-dependent and Jun N-terminal kinase (JNK)-dependent alterations in scrib mutants drive epithelial tumourigenesis. First, we show that over-expression of the apical cell polarity determinants Crumbs (Crb) or aPKC induces similar cell morphology defects and over-proliferation phenotypes as scrib loss-of-function. However, the morphological and proliferative defects in scrib mutants are independent of Crb function, and instead can be rescued by a dominant negative (kinase dead) aPKC transgene. Secondly, we demonstrate that loss of Scrib promotes oncogene-mediated transformation through both aPKC and JNK-dependent pathways. JNK normally promotes apoptosis of scrib mutant cells. However, in cooperation with oncogenic activated Ras or Notch signalling, JNK becomes an essential driver of tumour overgrowth and invasion. aPKC-dependent signalling in scrib mutants cooperates with JNK to significantly enhance oncogene-mediated tumour overgrowth. CONCLUSION These results demonstrate distinct aPKC and JNK-dependent pathways through which loss of Scrib promotes tumourigenesis in Drosophila. This is likely to have a direct relevance to the way in which human Scrib can similarly restrain an oncogene-mediated transformation and, more generally, on how the outcome of oncogenic signalling can be profoundly perturbed by defects in apico-basal epithelial cell polarity.
Collapse
|