51
|
Zhou Q, Cadrin M, Herrmann H, Chen CH, Chalkley RJ, Burlingame AL, Omary MB. Keratin 20 serine 13 phosphorylation is a stress and intestinal goblet cell marker. J Biol Chem 2006; 281:16453-61. [PMID: 16608857 DOI: 10.1074/jbc.m512284200] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Keratin polypeptide 20 (K20) is an intermediate filament protein with preferential expression in epithelia of the stomach, intestine, uterus, and bladder and in Merkel cells of the skin. K20 expression is used as a marker to distinguish metastatic tumor origin, but nothing is known regarding its regulation and function. We studied K20 phosphorylation as a first step toward understanding its physiologic role. K20 phosphorylation occurs preferentially on serine, with a high stoichiometry as compared with keratin polypeptides 18 and 19. Mass spectrometry analysis predicted that either K20 Ser(13) or Ser(14) was a likely phosphorylation site, and Ser(13) was confirmed as the phospho-moiety using mutation and transfection analysis and generation of an anti-K20-phospho-Ser(13) antibody. K20 Ser(13) phosphorylation increases after protein kinase C activation, and Ser(13)-to-Ala mutation interferes with keratin filament reorganization in transfected cells. In physiological contexts, K20 degradation and associated Ser(13) hyperphosphorylation occur during apoptosis, and chemically induced mouse colitis also promotes Ser(13) phosphorylation. Among mouse small intestinal enterocytes, K20 Ser(13) is preferentially phosphorylated in goblet cells and undergoes dramatic hyperphosphorylation after starvation and mucin secretion. Therefore, K20 Ser(13) is a highly dynamic protein kinase C-related phosphorylation site that is induced during apoptosis and tissue injury. K20 Ser(13) phosphorylation also serves as a unique marker of small intestinal goblet cells.
Collapse
Affiliation(s)
- Qin Zhou
- Department of Medicine, Veterans Affairs Palo Alto Health Care System, 3801 Miranda Avenue, Palo Alto, CA 94304, USA.
| | | | | | | | | | | | | |
Collapse
|
52
|
Hernández-Quintero M, Kuri-Harcuch W, González Robles A, Castro-Muñozledo F. Interleukin-6 promotes human epidermal keratinocyte proliferation and keratin cytoskeleton reorganization in culture. Cell Tissue Res 2006; 325:77-90. [PMID: 16550359 DOI: 10.1007/s00441-006-0173-9] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2005] [Accepted: 01/19/2006] [Indexed: 11/30/2022]
Abstract
We have studied the effects of interleukin-6 (IL-6) on human epidermal keratinocytes by using serum-free culture conditions that allow the serial transfer, differentiation, and formation of well-organized multilayered epithelia. IL-6 at 2.5 ng/ml or higher concentrations promoted keratinocyte proliferation, with an ED(50) of about 15 ng/ml and a maximum effect at 50 ng/ml. IL-6 was 10-fold less potent than epidermal growth factor (EGF) or transforming growth factor-alpha (TGF-alpha) and supported keratinocyte growth for up to eight cumulative cell generations. IL-6-treated keratinocytes formed highly stratified colonies with a narrower proliferative/migratory rim than those keratinocytes stimulated with EGF or TGF-alpha; confluent epithelial sheets treated with IL-6 also underwent an increase in the number of cell layers. We also examined the effect of IL-6 on the keratin cytoskeleton. Immunostaining with anti-K16 monoclonal antibodies showed that the keratin network was aggregated and reorganized around cell nucleus and that this was not attributable to changes in keratin levels. This is the first report concerning the induction of the reorganization of keratin intermediate filaments by IL-6 in human epidermal keratinocytes.
Collapse
Affiliation(s)
- Miriam Hernández-Quintero
- Department of Cell Biology, Centro de Investigación y de Estudios Avanzados del IPN, Apdo. Postal 14-740, México 07000, Mexico
| | | | | | | |
Collapse
|
53
|
Beil M, Eckel S, Fleischer F, Schmidt H, Schmidt V, Walther P. Fitting of random tessellation models to keratin filament networks. J Theor Biol 2005; 241:62-72. [PMID: 16380137 DOI: 10.1016/j.jtbi.2005.11.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2005] [Revised: 10/18/2005] [Accepted: 11/07/2005] [Indexed: 01/28/2023]
Abstract
The role of specific structural patterns in keratin filament networks for regulating biophysical properties of epithelial cells is poorly understood. This is at least partially due to a lack of methods for the analysis of filament network morphology. We have previously developed a statistical approach to the analysis of keratin filament networks imaged by scanning electron microscopy. The segmentation of images in this study resulted in graph structures, i.e. tessellations, whose structural characteristics are now further investigated by iteratively fitting geometrical statistical models. An optimal model as well as corresponding optimal parameters are detected from a given set of possible random tessellation models, i.e. Poisson-Line tessellations (PLT), Poisson-Voronoi tessellations (PVT) and Poisson-Delaunay tessellations (PDT). Using this method, we investigated the remodeling of keratin filament networks in pancreatic cancer cells in response to transforming growth factor alpha (TGFalpha), which is involved in pancreatic cancer progression. The results indicate that the fitting of random tessellation models represents a suitable method for the description of complex filament networks.
Collapse
Affiliation(s)
- Michael Beil
- Department of Internal Medicine I, University Hospital Ulm, D-89070 Ulm, Germany
| | | | | | | | | | | |
Collapse
|
54
|
Beil M, Braxmeier H, Fleischer F, Schmidt V, Walther P. Quantitative analysis of keratin filament networks in scanning electron microscopy images of cancer cells. J Microsc 2005; 220:84-95. [PMID: 16313488 DOI: 10.1111/j.1365-2818.2005.01505.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The keratin filament network is an important part of the cytoskeleton. It is involved in the regulation of shape and viscoelasticity of epithelial cells. The morphology of keratin networks depends on post-translational modifications of keratin monomers. In-vitro studies indicated that network characteristics, such as filament crosslink density, determines the biophysical properties of the filament network. This report presents a quantitative method for the morphological analysis of keratin filament networks. Visualization of filaments was based on prefixation extraction of epithelial cells and scanning electron microscopy (SEM). SEM images were processed by a skeletonization algorithm to obtain a graph structure that represents individual filaments as well as their connections. This method was applied to investigate the effects of transforming growth factor alpha (TGFalpha) on the morphology of keratin networks in pancreatic cancer cells. TGFalpha contributes to pancreatic cancer progression and activates signalling pathways phosphorylating keratin monomers. Using this new method, a significant alteration to the keratin network morphology could be detected in response to TGFalpha.
Collapse
Affiliation(s)
- M Beil
- Department of Internal Medicine I, University Hospital Ullm, D-89070, Ulm, Germany
| | | | | | | | | |
Collapse
|
55
|
Dreissigacker U, Mueller MS, Unger M, Siegert P, Genze F, Gierschik P, Giehl K. Oncogenic K-Ras down-regulates Rac1 and RhoA activity and enhances migration and invasion of pancreatic carcinoma cells through activation of p38. Cell Signal 2005; 18:1156-68. [PMID: 16257181 DOI: 10.1016/j.cellsig.2005.09.004] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2005] [Accepted: 09/09/2005] [Indexed: 12/11/2022]
Abstract
Activating mutations in the K-ras gene are genetic alterations frequently found in human carcinomas, particularly in pancreatic adenocarcinomas. Mutation of the K-ras gene is thought to be an early and important event in pancreatic tumor initiation, but the precise role of the mutant K-Ras proteins in neoplastic progression is still unknown. In the present study, we have characterized the influence of oncogenic K-Ras on the phenotype and on the signal transduction of epitheloid PANC-1 pancreatic carcinoma cells by generating PANC-1 cell clones, which stably express EGFP(enhanced green fluorescent protein)-K-Ras (V12). EGFP-K-Ras (V12)-expressing cells exhibited a more fibroblastoid cellular phenotype with irregular cell shape and disorganized cytokeratin filaments. Moreover, these cells showed a marked enhancement of their migratory and invasive properties. Stable expression of EGFP-K-Ras (V12) down-regulated the activity of Rac1 and RhoA, resulting in reduced subcortical actin filaments and stress fibers, which might contribute to the epithelial dedifferentiation. Characterization of the activity of mitogen-activated protein kinases revealed that EGFP-K-Ras (V12) enhanced the activity of p38, but did not affect the activities of the Raf/MEK/ERK cascade and JNK. While inhibition of either MEK or JNK activity had no effect on EGFP-K-Ras (V12)-induced migration, inhibition of p38 activity markedly reduced EGFP-K-Ras (V12)-induced migration. Collectively, the results suggest that oncogenic K-Ras enhances the malignant phenotype and identify the mitogen-activated protein kinase p38 as a target to inhibit oncogenic K-Ras-induced pancreatic tumor cell migration.
Collapse
Affiliation(s)
- Ute Dreissigacker
- Department of Pharmacology and Toxicology, University of Ulm, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | | | | | | | | | | | | |
Collapse
|
56
|
Gires O, Andratschke M, Schmitt B, Mack B, Schaffrik M. Cytokeratin 8 associates with the external leaflet of plasma membranes in tumour cells. Biochem Biophys Res Commun 2005; 328:1154-62. [PMID: 15707998 DOI: 10.1016/j.bbrc.2005.01.074] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2005] [Indexed: 10/25/2022]
Abstract
We reported the identification of tumour-associated antigens from head and neck carcinomas, including cytokeratin 8 (CK8). These antigens were isolated based on the humoral immune response they elicit in vivo using the antibody-mediated identification of antigens technology. Unlike healthy squamous epithelium, tumour cells displayed CK8 at the plasma membrane. However, the actual presence of CK8 at the plasma membrane is still a matter of debate. Here, we have analyzed the expression of CK8 in detail using confocal laser scanning microscopy and circumstantiated its localization at the plasma membrane of carcinoma cells. Healthy human tissues were devoid of CK8 at the membrane, with the exception of hepatocytes. Moreover, membrane-associated CK8 molecules experienced a re-distribution throughout mitosis, which was associated with phosphorylation at serine 73. Phosphorylated CK8 redistributed into dense speckles and relocated to the plasma membrane upon cytokinesis. Thus, CK8 possesses genuine extracellular epitopes on tumour cells, which may represent valuable targets for therapy.
Collapse
Affiliation(s)
- Olivier Gires
- Department of Otorhinolaryngology, Head and Neck Surgery, Grosshadern Medical Center, Ludwig-Maximilians-University of Munich, Marchioninistr. 15, 81377 Munich, Germany.
| | | | | | | | | |
Collapse
|
57
|
Wöll S, Windoffer R, Leube RE. Dissection of keratin dynamics: different contributions of the actin and microtubule systems. Eur J Cell Biol 2005; 84:311-28. [PMID: 15819410 DOI: 10.1016/j.ejcb.2004.12.004] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
It has only recently been recognized that intermediate filaments (IFs) and their assembly intermediates are highly motile cytoskeletal components with cell-type- and isotype-specific characteristics. To elucidate the cell-type-independent contribution of actin filaments and microtubules to these motile properties, fluorescent epithelial IF keratin polypeptides were introduced into non-epithelial, adrenal cortex-derived SW13 cells. Time-lapse fluorescence microscopy of stably transfected SW13 cell lines synthesizing fluorescent human keratin 8 and 18 chimeras HK8-CFP and HK18-YFP revealed extended filament networks that are entirely composed of transgene products and exhibit the same dynamic features as keratin systems in epithelial cells. Detailed analyses identified two distinct types of keratin motility: (I) Slow (approximately 0.23 microm/min), inward-directed, continuous transport of keratin filament precursor particles from the plasma membrane towards the cell interior, which is most pronounced in lamellipodia. (II) Fast (approximately 17 microm/min), bidirectional and intermittent transport of keratin particles in axonal-type cell processes. Disruption of actin filaments inhibited type I motility while type II motility remained. Conversely, microtubule disruption inhibited transport mode II while mode I continued. Combining the two treatments resulted in a complete block of keratin motility. We therefore conclude that keratin motility relies both on intact actin filaments and microtubules and is not dependent on epithelium-specific cellular factors.
Collapse
Affiliation(s)
- Stefan Wöll
- Department of Anatomy, Johannes Gutenberg University Mainz, Becherweg 13, D-55128 Mainz, Germany
| | | | | |
Collapse
|
58
|
Windoffer R, Wöll S, Strnad P, Leube RE. Identification of novel principles of keratin filament network turnover in living cells. Mol Biol Cell 2004; 15:2436-48. [PMID: 15004233 PMCID: PMC404035 DOI: 10.1091/mbc.e03-09-0707] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
It is generally assumed that turnover of the keratin filament system occurs by exchange of subunits along its entire length throughout the cytoplasm. We now present evidence that a circumscribed submembranous compartment is actually the main site for network replenishment. This conclusion is based on the following observations in living cells synthesizing fluorescent keratin polypeptides: 1) Small keratin granules originate in close proximity to the plasma membrane and move toward the cell center in a continuous motion while elongating into flexible rod-like fragments that fuse with each other and integrate into the peripheral KF network. 2) Recurrence of fluorescence after photobleaching is first seen in the cell periphery where keratin filaments are born that translocate subsequently as part of the network toward the cell center. 3) Partial keratin network reformation after orthovanadate-induced disruption is restricted to a distinct peripheral zone in which either keratin granules or keratin filaments are transiently formed. These findings extend earlier investigations of mitotic cells in which de novo keratin network formation was shown to originate from the cell cortex. Taken together, our results demonstrate that the keratin filament system is not homogeneous but is organized into temporally and spatially distinct subdomains. Furthermore, the cortical localization of the regulatory cues for keratin filament turnover provides an ideal way to adjust the epithelial cytoskeleton to dynamic cellular processes.
Collapse
Affiliation(s)
- Reinhard Windoffer
- Department of Anatomy, Johannes Gutenberg University, 55128 Mainz, Germany
| | | | | | | |
Collapse
|
59
|
Hofer MD, Menke A, Genze F, Gierschik P, Giehl K. Expression of MTA1 promotes motility and invasiveness of PANC-1 pancreatic carcinoma cells. Br J Cancer 2004; 90:455-62. [PMID: 14735193 PMCID: PMC2409548 DOI: 10.1038/sj.bjc.6601535] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2003] [Revised: 10/03/2003] [Accepted: 11/05/2003] [Indexed: 01/24/2023] Open
Abstract
The human metastasis-associated protein 1 (MTA1) is a constituent of the nucleosome-remodelling and -deacetylation complex. Its expression has been correlated with the invasion and metastasis of epithelial neoplasms. To address the functional consequences of MTA1 expression in pancreatic carcinoma cells, we have established PANC-1 pancreatic carcinoma cells that stably express MTA1 as an enhanced green fluorescent fusion protein (EGFP-MTA1). Here, we demonstrate that heterologous expression of EGFP-MTA1 markedly enhanced the cellular motility and the invasive penetration of epithelial barriers by the cells. Expression of EGFP-MTA1 had no effect on substrate-independent growth, but reduced substrate-dependent cell proliferation. In addition, the organisation of the cytokeratin filament system and the localisation of the actin cytoskeleton-associated protein IQGAP1 were distinctly altered in EGFP-MTA1-expressing cells. These results indicate that enhanced expression of MTA1 promotes the acquisition of an invasive, metastatic phenotype, and thus enhances the malignancy of pancreatic adenocarcinoma cells by modulation of the cytoskeleton.
Collapse
Affiliation(s)
- M D Hofer
- Department of Pharmacology and Toxicology, University of Ulm, 89069 Ulm, Germany
| | - A Menke
- Department of Internal Medicine, University of Ulm, 89069 Ulm, Germany
| | - F Genze
- Department of Pharmacology and Toxicology, University of Ulm, 89069 Ulm, Germany
| | - P Gierschik
- Department of Pharmacology and Toxicology, University of Ulm, 89069 Ulm, Germany
| | - K Giehl
- Department of Pharmacology and Toxicology, University of Ulm, 89069 Ulm, Germany
| |
Collapse
|
60
|
Windoffer R, Leube RE. Imaging of keratin dynamics during the cell cycle and in response to phosphatase inhibition. Methods Cell Biol 2004; 78:321-52. [PMID: 15646624 DOI: 10.1016/s0091-679x(04)78012-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Reinhard Windoffer
- Department of Anatomy, Johannes Gutenberg-University, 55128 Mainz, Germany
| | | |
Collapse
|
61
|
Marceau N, Gilbert S, Loranger A. Uncovering the Roles of Intermediate Filaments in Apoptosis. Methods Cell Biol 2004; 78:95-129. [PMID: 15646617 DOI: 10.1016/s0091-679x(04)78005-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Normand Marceau
- Centre de recherche en cancérologie et Département de médecine, Université Laval, G1R 2J6 QC, Canada
| | | | | |
Collapse
|
62
|
Werner NS, Windoffer R, Strnad P, Grund C, Leube RE, Magin TM. Epidermolysis bullosa simplex-type mutations alter the dynamics of the keratin cytoskeleton and reveal a contribution of actin to the transport of keratin subunits. Mol Biol Cell 2003; 15:990-1002. [PMID: 14668478 PMCID: PMC363056 DOI: 10.1091/mbc.e03-09-0687] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Dominant keratin mutations cause epidermolysis bullosa simplex by transforming keratin (K) filaments into aggregates. As a first step toward understanding the properties of mutant keratins in vivo, we stably transfected epithelial cells with an enhanced yellow fluorescent protein-tagged K14R125C mutant. K14R125C became localized as aggregates in the cell periphery and incorporated into perinuclear keratin filaments. Unexpectedly, keratin aggregates were in dynamic equilibrium with soluble subunits at a half-life time of <15 min, whereas filaments were extremely static. Therefore, this dominant-negative mutation acts by altering cytoskeletal dynamics and solubility. Unlike previously postulated, the dominance of mutations is limited and strictly depends on the ratio of mutant to wild-type protein. In support, K14R125C-specific RNA interference experiments resulted in a rapid disintegration of aggregates and restored normal filaments. Most importantly, live cell inhibitor studies revealed that the granules are transported from the cell periphery inwards in an actin-, but not microtubule-based manner. The peripheral granule zone may define a region in which keratin precursors are incorporated into existing filaments. Collectively, our data have uncovered the transient nature of keratin aggregates in cells and offer a rationale for the treatment of epidermolysis bullosa simplex by using short interfering RNAs.
Collapse
Affiliation(s)
- Nicola Susann Werner
- Institut fuer Physiologische Chemie, Abteilung fuer Zellbiochemie, Universitaetsklinikum Bonn, 53115 Bonn, Germany
| | | | | | | | | | | |
Collapse
|
63
|
Strnad P, Windoffer R, Leube RE. Light-induced resistance of the keratin network to the filament-disrupting tyrosine phosphatase inhibitor orthovanadate. J Invest Dermatol 2003; 120:198-203. [PMID: 12542522 DOI: 10.1046/j.1523-1747.2003.12038.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Epidermal keratinocytes respond to low-dose light irradiation by inducing signaling cascades that lead to long-term effects on gene transcription thereby protecting cells against damage. In contrast, little is known about immediate light-induced alterations of structural proteins. We have made the intriguing observation that light produces fundamental changes in the properties of the keratin filament system of cultured epidermoid A-431 cells. A short light exposure (1-10 min) causes the keratin cytoskeleton to become immediately resistant to the tyrosine phosphatase inhibitor orthovanadate, which otherwise disrupts the keratin filament network completely in just a few minutes. This protective effect is inducible throughout the entire visible spectrum and is elicited by normal room light (<200 Lux). Exposure of cells to monochromatic light of various wavelengths is therefore equally effective. In addition, the acquisition of orthovanadate resistance has been directly monitored in living cells; a partially disrupted keratin cytoskeleton recovers to a completely filamentous network in half an hour. Finally, the protective light effect is largely reversed in 2 h and can be mimicked by preincubation with the p38 kinase inhibitor SB203580. In contrast, the mitogen-activated protein kinase inhibitor PD98059 and epidermal growth factor inhibit orthovanadate action to a lesser extent. Taken together, these observations suggest a stabilizing function of light on the keratin filament network; this may be of relevance to the treatment of skin diseases with reduced keratin stability.
Collapse
Affiliation(s)
- Pavel Strnad
- Department of Anatomy, Johannes Gutenberg-University, Mainz, Germany
| | | | | |
Collapse
|