51
|
Chen Y, Chen Y, Yin W, Han H, Miller H, Li J, Herrada AA, Kubo M, Sui Z, Gong Q, Liu C. The regulation of DOCK family proteins on T and B cells. J Leukoc Biol 2020; 109:383-394. [PMID: 32542827 DOI: 10.1002/jlb.1mr0520-221rr] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 05/15/2020] [Accepted: 05/16/2020] [Indexed: 01/01/2023] Open
Abstract
The dedicator of cytokinesis (DOCK) family proteins consist of 11 members, each of which contains 2 domains, DOCK homology region (DHR)-1 and DHR-2, and as guanine nucleotide exchange factors, they mediate activation of small GTPases. Both DOCK2 and DOCK8 deficiencies in humans can cause severe combined immunodeficiency, but they have different characteristics. DOCK8 defect mainly causes high IgE, allergic disease, refractory skin virus infection, and increased incidence of malignant tumor, whereas DOCK2 defect mainly causes early-onset, invasive infection with less atopy and increased IgE. However, the underlying molecular mechanisms causing the disease remain unclear. This paper discusses the role of DOCK family proteins in regulating B and T cells, including development, survival, migration, activation, immune tolerance, and immune functions. Moreover, related signal pathways or molecule mechanisms are also described in this review. A greater understanding of DOCK family proteins and their regulation of lymphocyte functions may facilitate the development of new therapeutics for immunodeficient patients and improve their prognosis.
Collapse
Affiliation(s)
- Yuanyuan Chen
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yan Chen
- The Second Department of Pediatrics, Affiliated Hospital of Zunyi, Zunyi, Guizhou, China
| | - Wei Yin
- Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hong Han
- Department of Hematology of Liyuan Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Heather Miller
- The Laboratory of Intracellular Parasites, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Jianrong Li
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Andres A Herrada
- Lymphatic and Inflammation Research Laboratory, Facultad de Ciencias de la Salud, Instituto de Ciencias Biomedicas, Universidad Autonoma de Chile, Talca, Chile
| | - Masato Kubo
- Laboratory for Cytokine Regulation, Center for Integrative Medical Science (IMS), RIKEN Yokohama Institute, Yokohama, Kanagawa, Japan
| | - Zhiwei Sui
- Division of Medical and Biological Measurement, National Institute of Metrology, Beijing, China
| | - Quan Gong
- Department of immunology, School of Medicine, Yangtze University, Jingzhou, China.,Clinical Molecular Immunology Center, School of Medicine, Yangtze University, Jingzhou, China
| | - Chaohong Liu
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
52
|
Hillestad B, Makvandi-Nejad S, Krasnov A, Moghadam HK. Identification of genetic loci associated with higher resistance to pancreas disease (PD) in Atlantic salmon (Salmo salar L.). BMC Genomics 2020; 21:388. [PMID: 32493246 PMCID: PMC7268189 DOI: 10.1186/s12864-020-06788-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Accepted: 05/20/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Pancreas disease (PD) is a contagious disease caused by salmonid alphavirus (SAV) with significant economic and welfare impacts on salmon farming. Previous work has shown that higher resistance against PD has underlying additive genetic components and can potentially be improved through selective breeding. To better understand the genetic basis of PD resistance in Atlantic salmon, we challenged 4506 smolts from 296 families of the SalmoBreed strain. Fish were challenged through intraperitoneal injection with the most virulent form of the virus found in Norway (i.e., SAV3). Mortalities were recorded, and more than 900 fish were further genotyped on a 55 K SNP array. RESULTS The estimated heritability for PD resistance was 0.41 ± 0.017. The genetic markers on two chromosomes, ssa03 and ssa07, showed significant associations with higher disease resistance. Collectively, markers on these two QTL regions explained about 60% of the additive genetic variance. We also sequenced and compared the cardiac transcriptomics of moribund fish and animals that survived the challenge with a focus on candidate genes within the chromosomal segments harbouring QTL. Approximately 200 genes, within the QTL regions, were found to be differentially expressed. Of particular interest, we identified various components of immunoglobulin-heavy-chain locus B (IGH-B) on ssa03 and immunoglobulin-light-chain on ssa07 with markedly higher levels of transcription in the resistant animals. These genes are closely linked to the most strongly QTL associated SNPs, making them likely candidates for further investigation. CONCLUSIONS The findings presented here provide supporting evidence that breeding is an efficient tool for increasing PD resistance in Atlantic salmon populations. The estimated heritability is one of the largest reported for any disease resistance in this species, where the majority of the genetic variation is explained by two major QTL. The transcriptomic analysis has revealed the activation of essential components of the innate and the adaptive immune responses following infection with SAV3. Furthermore, the complementation of the genomic with the transcriptomic data has highlighted the possible critical role of the immunoglobulin loci in combating PD virus.
Collapse
Affiliation(s)
| | | | - Aleksei Krasnov
- Division of Aquaculture, Norwegian Institute of Fisheries and Aquaculture (Nofima), P.O. Box 6122, Muninbakken 9-13, Breivika, Langnes, N-9291, Tromsø, Norway
| | - Hooman K Moghadam
- Benchmark Genetics Norway AS, Sandviksboder 3A, N-5035, Bergen, Norway.
| |
Collapse
|
53
|
Kunimura K, Uruno T, Fukui Y. DOCK family proteins: key players in immune surveillance mechanisms. Int Immunol 2020; 32:5-15. [PMID: 31630188 PMCID: PMC6949370 DOI: 10.1093/intimm/dxz067] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 10/16/2019] [Indexed: 12/11/2022] Open
Abstract
Dedicator of cytokinesis (DOCK) proteins constitute a family of evolutionarily conserved guanine nucleotide exchange factors (GEFs) for the Rho family of GTPases. Although DOCK family proteins do not contain the Dbl homology domain typically found in other GEFs, they mediate the GTP–GDP exchange reaction through the DOCK homology region-2 (DHR-2) domain. In mammals, this family consists of 11 members, each of which has unique functions depending on the expression pattern and the substrate specificity. For example, DOCK2 is a Rac activator critical for migration and activation of leukocytes, whereas DOCK8 is a Cdc42-specific GEF that regulates interstitial migration of dendritic cells. Identification of DOCK2 and DOCK8 as causative genes for severe combined immunodeficiency syndromes in humans has highlighted their roles in immune surveillance. In addition, the recent discovery of a naturally occurring DOCK2-inhibitory metabolite has uncovered an unexpected mechanism of tissue-specific immune evasion. On the other hand, GEF-independent functions have been shown for DOCK8 in antigen-induced IL-31 production in helper T cells. This review summarizes multifaced functions of DOCK family proteins in the immune system.
Collapse
Affiliation(s)
- Kazufumi Kunimura
- Division of Immunogenetics, Department of Immunobiology and Neuroscience, Medical Institute of Bioregulation, Kyushu University, Maidashi, Higashi-ku, Fukuoka, Japan
| | - Takehito Uruno
- Division of Immunogenetics, Department of Immunobiology and Neuroscience, Medical Institute of Bioregulation, Kyushu University, Maidashi, Higashi-ku, Fukuoka, Japan.,Research Center for Advanced Immunology, Kyushu University, Maidashi, Higashi-ku, Fukuoka, Japan
| | - Yoshinori Fukui
- Division of Immunogenetics, Department of Immunobiology and Neuroscience, Medical Institute of Bioregulation, Kyushu University, Maidashi, Higashi-ku, Fukuoka, Japan.,Research Center for Advanced Immunology, Kyushu University, Maidashi, Higashi-ku, Fukuoka, Japan
| |
Collapse
|
54
|
Pleiotropic Roles of Calmodulin in the Regulation of KRas and Rac1 GTPases: Functional Diversity in Health and Disease. Int J Mol Sci 2020; 21:ijms21103680. [PMID: 32456244 PMCID: PMC7279331 DOI: 10.3390/ijms21103680] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 05/18/2020] [Accepted: 05/21/2020] [Indexed: 12/21/2022] Open
Abstract
Calmodulin is a ubiquitous signalling protein that controls many biological processes due to its capacity to interact and/or regulate a large number of cellular proteins and pathways, mostly in a Ca2+-dependent manner. This complex interactome of calmodulin can have pleiotropic molecular consequences, which over the years has made it often difficult to clearly define the contribution of calmodulin in the signal output of specific pathways and overall biological response. Most relevant for this review, the ability of calmodulin to influence the spatiotemporal signalling of several small GTPases, in particular KRas and Rac1, can modulate fundamental biological outcomes such as proliferation and migration. First, direct interaction of calmodulin with these GTPases can alter their subcellular localization and activation state, induce post-translational modifications as well as their ability to interact with effectors. Second, through interaction with a set of calmodulin binding proteins (CaMBPs), calmodulin can control the capacity of several guanine nucleotide exchange factors (GEFs) to promote the switch of inactive KRas and Rac1 to an active conformation. Moreover, Rac1 is also an effector of KRas and both proteins are interconnected as highlighted by the requirement for Rac1 activation in KRas-driven tumourigenesis. In this review, we attempt to summarize the multiple layers how calmodulin can regulate KRas and Rac1 GTPases in a variety of cellular events, with biological consequences and potential for therapeutic opportunities in disease settings, such as cancer.
Collapse
|
55
|
Wang L, Zhang Y, Zhu G, Ma Y, Zuo H, Tian X. miR-16 exhibits protective function in LPS-treated cardiomyocytes by targeting DOCK2 to repress cell apoptosis and exert anti-inflammatory effect. Cell Biol Int 2020; 44:1760-1768. [PMID: 32369253 DOI: 10.1002/cbin.11371] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 04/23/2020] [Accepted: 05/03/2020] [Indexed: 12/12/2022]
Abstract
This study aims to investigate the effects of microRNA (miR)-16/dedicator of cytokinesis 2 (DOCK2) on myocarditis. The differences in the expression of genes in acute myocarditis were filtered out across Gene Expression Omnibus (GEO) database. Myocarditis cell model was established by lipopolysaccharide (LPS) stimulation in cardiomyocytes. The association between miR-16 and DOCK2 was predicted by bioinformatics software and confirmed by dual-luciferase assay. Polymerase chain reaction and western blot analysis were employed to assess the expression levels of miR-16 and DOCK2 under different conditions. Cells viability, apoptosis, and inflammatory reaction were evaluated by Cell Counting Kit-8, flow cytometry, and enzyme-linked immunosorbent assays. miR-16, as an upstream regulator of DOCK2, exhibited lower expression in LPS-induced myocarditis model. More importantly, we revealed that a marked augmentation of miR-16 promoted the growth of LPS-stimulated cardiomyocytes, and attenuated cell apoptosis and inflammatory response. However, an increasing expression of DOCK2 inhibited the remission of LPS-induced myocardial injury caused by miR-16 mimic. Herein, our results highlighted that upregulation of miR-16 resulted in the protective effects on LPS-induced myocardial injury by reducing DOCK2 expression, affording a pair of novel target molecules for ameliorating the symptoms of myocarditis.
Collapse
Affiliation(s)
- Lei Wang
- Department of Cardiology, Tengzhou Central People's Hospital Affiliated to Jining Medical College, Tengzhou, Shandong, China
| | - Yangyang Zhang
- Department of Cardiology, Tengzhou Central People's Hospital Affiliated to Jining Medical College, Tengzhou, Shandong, China
| | - Guangfu Zhu
- Intervention Room, Department of Cardiology, Tengzhou Central People's Hospital Affiliated to Jining Medical College, Tengzhou, Shandong, China
| | - Yuncong Ma
- Department of Cardiology, Tengzhou Central People's Hospital Affiliated to Jining Medical College, Tengzhou, Shandong, China
| | - Huan Zuo
- Department of Neurology, Tengzhou Traditional Chinese Medicine Hospital, Tengzhou, Shandong, China
| | - Xia Tian
- Intervention Room, Department of Cardiology, Tengzhou Central People's Hospital Affiliated to Jining Medical College, Tengzhou, Shandong, China
| |
Collapse
|
56
|
Humphries BA, Wang Z, Yang C. MicroRNA Regulation of the Small Rho GTPase Regulators-Complexities and Opportunities in Targeting Cancer Metastasis. Cancers (Basel) 2020; 12:E1092. [PMID: 32353968 PMCID: PMC7281527 DOI: 10.3390/cancers12051092] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 04/24/2020] [Accepted: 04/25/2020] [Indexed: 02/07/2023] Open
Abstract
The small Rho GTPases regulate important cellular processes that affect cancer metastasis, such as cell survival and proliferation, actin dynamics, adhesion, migration, invasion and transcriptional activation. The Rho GTPases function as molecular switches cycling between an active GTP-bound and inactive guanosine diphosphate (GDP)-bound conformation. It is known that Rho GTPase activities are mainly regulated by guanine nucleotide exchange factors (RhoGEFs), GTPase-activating proteins (RhoGAPs), GDP dissociation inhibitors (RhoGDIs) and guanine nucleotide exchange modifiers (GEMs). These Rho GTPase regulators are often dysregulated in cancer; however, the underlying mechanisms are not well understood. MicroRNAs (miRNAs), a large family of small non-coding RNAs that negatively regulate protein-coding gene expression, have been shown to play important roles in cancer metastasis. Recent studies showed that miRNAs are capable of directly targeting RhoGAPs, RhoGEFs, and RhoGDIs, and regulate the activities of Rho GTPases. This not only provides new evidence for the critical role of miRNA dysregulation in cancer metastasis, it also reveals novel mechanisms for Rho GTPase regulation. This review summarizes recent exciting findings showing that miRNAs play important roles in regulating Rho GTPase regulators (RhoGEFs, RhoGAPs, RhoGDIs), thus affecting Rho GTPase activities and cancer metastasis. The potential opportunities and challenges for targeting miRNAs and Rho GTPase regulators in treating cancer metastasis are also discussed. A comprehensive list of the currently validated miRNA-targeting of small Rho GTPase regulators is presented as a reference resource.
Collapse
Affiliation(s)
- Brock A. Humphries
- Center for Molecular Imaging, Department of Radiology, University of Michigan, 109 Zina Pitcher Place, Ann Arbor, MI 48109, USA
| | - Zhishan Wang
- Department of Toxicology and Cancer Biology, College of Medicine, University of Kentucky, 1095 V A Drive, Lexington, KY 40536, USA;
| | - Chengfeng Yang
- Department of Toxicology and Cancer Biology, College of Medicine, University of Kentucky, 1095 V A Drive, Lexington, KY 40536, USA;
| |
Collapse
|
57
|
Fan M, Wang J, Wang S, Li T, Pan H, Liu H, Xu H, Zhernakova DV, O'Brien SJ, Feng Z, Chang L, Dai E, Lu J, Xi H, Yu Y, Zhang J, Wang B, Zeng Z. New Gene Variants Associated with the Risk of Chronic HBV Infection. Virol Sin 2020; 35:378-387. [PMID: 32297155 DOI: 10.1007/s12250-020-00200-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 01/16/2020] [Indexed: 12/16/2022] Open
Abstract
Some patients with chronic hepatitis B virus (HBV) infection failed to clear HBV, even persistently continue to produce antibodies to HBV. Here we performed a two stage genome wide association study in a cohort of Chinese patients designed to discover single nucleotide variants that associate with HBV infection and clearance of HBV. The first stage involved genome wide exome sequencing of 101 cases (HBsAg plus anti-HBs positive) compared with 102 control patients (anti-HBs positive, HBsAg negative). Over 80% of individual sequences displayed 20 × sequence coverage. Adapters, uncertain bases > 10% or low-quality base calls (> 50%) were filtered and compared to the human reference genome hg19. In the second stage, 579 chronic HBV infected cases and 439 HBV clearance controls were sequenced with selected genes from the first stage. Although there were no significant associated gene variants in the first stage, two significant gene associations were discovered when the two stages were assessed in a combined analysis. One association showed rs506121-"T" allele [within the dedicator of cytokinesis 8 (DOCK8) gene] was higher in chronic HBV infection group than that in clearance group (P = 0.002, OR = 0.77, 95% CI [0.65, 0.91]). The second association involved rs2071676-A allele within the Carbonic anhydrase (CA9) gene that was significantly elevated in chronic HBV infection group compared to the clearance group (P = 0.0003, OR = 1.35, 95% CI [1.15, 1.58]). Upon replication these gene associations would suggest the influence of DOCK8 and CA9 as potential risk genetic factors in the persistence of HBV infection.
Collapse
Affiliation(s)
- Mengjie Fan
- Department of Infectious Diseases, Peking University First Hospital, Beijing, 100034, China
| | - Jing Wang
- Department of Medical Genetics and Development Biology, School of Medical Basic, Capital Medical University, Beijing, 100069, China.,Center for Genetics, National Research Institute for Family Planning, Beijing, 100081, China
| | - Sa Wang
- Department of Infectious Diseases, Peking University First Hospital, Beijing, 100034, China
| | - Tengyan Li
- Center for Genetics, National Research Institute for Family Planning, Beijing, 100081, China
| | - Hong Pan
- Center for Genetics, National Research Institute for Family Planning, Beijing, 100081, China
| | - Hankui Liu
- BGI-Shenzhen, Shenzhen, 518083, China.,BGI Genomics, BGI-Shenzhen, Shenzhen, 518083, China
| | - Huifang Xu
- BGI-Shenzhen, Shenzhen, 518083, China.,BGI Genomics, BGI-Shenzhen, Shenzhen, 518083, China
| | - Daria V Zhernakova
- Laboratory of Genomic Diversity, Center for Computer Technologies, ITMO University, St. Petersburg, Russia, 197101
| | - Stephen J O'Brien
- Laboratory of Genomic Diversity, Center for Computer Technologies, ITMO University, St. Petersburg, Russia, 197101.,Guy Harvey Oceanographic Center, Halmos College of Natural Sciences and Oceanography, Nova Southeastern University, Ft Lauderdale, FL, 33004, USA
| | - Zhenru Feng
- Department of Laboratory Medicine, Peking University First Hospital, Beijing, 100034, China
| | - Le Chang
- Department of Laboratory Medicine, Peking University First Hospital, Beijing, 100034, China
| | - Erhei Dai
- The Fifth Hospital of Shijiazhuang, Shijiazhuang, 050024, China
| | - Jianhua Lu
- The Fifth Hospital of Shijiazhuang, Shijiazhuang, 050024, China
| | - Hongli Xi
- Department of Infectious Diseases, Peking University First Hospital, Beijing, 100034, China
| | - Yanyan Yu
- Department of Infectious Diseases, Peking University First Hospital, Beijing, 100034, China
| | - Jianguo Zhang
- BGI-Shenzhen, Shenzhen, 518083, China. .,BGI Genomics, BGI-Shenzhen, Shenzhen, 518083, China.
| | - Binbin Wang
- Center for Genetics, National Research Institute for Family Planning, Beijing, 100081, China.
| | - Zheng Zeng
- Department of Infectious Diseases, Peking University First Hospital, Beijing, 100034, China.
| |
Collapse
|
58
|
Rho GTPase Regulators and Effectors in Autism Spectrum Disorders: Animal Models and Insights for Therapeutics. Cells 2020; 9:cells9040835. [PMID: 32244264 PMCID: PMC7226772 DOI: 10.3390/cells9040835] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 03/22/2020] [Accepted: 03/26/2020] [Indexed: 12/18/2022] Open
Abstract
The Rho family GTPases are small G proteins that act as molecular switches shuttling between active and inactive forms. Rho GTPases are regulated by two classes of regulatory proteins, guanine nucleotide exchange factors (GEFs) and GTPase-activating proteins (GAPs). Rho GTPases transduce the upstream signals to downstream effectors, thus regulating diverse cellular processes, such as growth, migration, adhesion, and differentiation. In particular, Rho GTPases play essential roles in regulating neuronal morphology and function. Recent evidence suggests that dysfunction of Rho GTPase signaling contributes substantially to the pathogenesis of autism spectrum disorder (ASD). It has been found that 20 genes encoding Rho GTPase regulators and effectors are listed as ASD risk genes by Simons foundation autism research initiative (SFARI). This review summarizes the clinical evidence, protein structure, and protein expression pattern of these 20 genes. Moreover, ASD-related behavioral phenotypes in animal models of these genes are reviewed, and the therapeutic approaches that show successful treatment effects in these animal models are discussed.
Collapse
|
59
|
Lai Y, Zhao A, Tan M, Yang M, Lin Y, Li S, Song J, Zheng H, Zhu Z, Liu D, Liu C, Li L, Yang G. DOCK5 regulates energy balance and hepatic insulin sensitivity by targeting mTORC1 signaling. EMBO Rep 2020; 21:e49473. [PMID: 31885214 PMCID: PMC7001503 DOI: 10.15252/embr.201949473] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 11/14/2019] [Accepted: 11/29/2019] [Indexed: 12/25/2022] Open
Abstract
The dedicator of cytokinesis 5 (DOCK5) is associated with obesity. However, the mechanism by which DOCK5 contributes to obesity remains completely unknown. Here, we show that hepatic DOCK5 expression significantly decreases at a state of insulin resistance (IR). Deletion of DOCK5 in mice reduces energy expenditure, promotes obesity, augments IR, dysregulates glucose metabolism, and activates the mTOR (Raptor)/S6K1 pathway under a high-fat diet (HFD). The overexpression of DOCK5 in hepatocytes inhibits gluconeogenic gene expression and increases the level of insulin receptor (InsR) and Akt phosphorylation. DOCK5 overexpression also inhibits mTOR/S6K1 phosphorylation and decreases the level of raptor protein expression. The opposite effects were observed in DOCK5-deficient hepatocytes. Importantly, in liver-specific Raptor knockout mice and associated hepatocytes, the effects of an adeno-associated virus (AAV8)- or adenovirus-mediated DOCK5 knockdown on glucose metabolism and insulin signaling are largely eliminated. Additionally, DOCK5-Raptor interaction is indispensable for the DOCK5-mediated regulation of hepatic glucose production (HGP). Therefore, DOCK5 acts as a regulator of Raptor to control hepatic insulin activity and glucose homeostasis.
Collapse
Affiliation(s)
- Yerui Lai
- Department of EndocrinologyThe Second Affiliated HospitalChongqing Medical UniversityChongqingChina
| | - Anjiang Zhao
- The Key Laboratory of Laboratory Medical Diagnostics in the Ministry of Education and Department of Clinical BiochemistryCollege of Laboratory MedicineChongqing Medical UniversityChongqingChina
| | - Minghong Tan
- Department of EndocrinologyThe Second Affiliated HospitalChongqing Medical UniversityChongqingChina
| | - Mengliu Yang
- Department of EndocrinologyThe Second Affiliated HospitalChongqing Medical UniversityChongqingChina
- School of Biomedical SciencesThe University of QueenslandBrisbaneQldAustralia
| | - Yao Lin
- The Key Laboratory of Laboratory Medical Diagnostics in the Ministry of Education and Department of Clinical BiochemistryCollege of Laboratory MedicineChongqing Medical UniversityChongqingChina
| | - Shengbing Li
- Department of EndocrinologyThe Second Affiliated HospitalChongqing Medical UniversityChongqingChina
| | - Jinlin Song
- Chongqing Key Laboratory for oral Diseases and Biomedical ScienceCollege of StomatologyChongqing Medical UniversityChongqingChina
| | - Hongting Zheng
- Department of EndocrinologyXinqiao HospitalThird Military Medical UniversityChongqingChina
| | - Zhiming Zhu
- Department of Hypertension and EndocrinologyDaping HospitalChongqing Institute of HypertensionThird Military Medical UniversityChongqingChina
| | - Dongfang Liu
- Department of EndocrinologyThe Second Affiliated HospitalChongqing Medical UniversityChongqingChina
| | - Chaohong Liu
- Department of Pathogen BiologySchool of Basic MedicineHuazhong University of Science and TechnologyWuhanChina
| | - Ling Li
- Department of EndocrinologyThe Second Affiliated HospitalChongqing Medical UniversityChongqingChina
| | - Gangyi Yang
- Department of EndocrinologyThe Second Affiliated HospitalChongqing Medical UniversityChongqingChina
| |
Collapse
|
60
|
Guan X, Guan X, Dong C, Jiao Z. Rho GTPases and related signaling complexes in cell migration and invasion. Exp Cell Res 2020; 388:111824. [PMID: 31926148 DOI: 10.1016/j.yexcr.2020.111824] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Revised: 01/07/2020] [Accepted: 01/08/2020] [Indexed: 12/16/2022]
Abstract
Cell migration and invasion play an important role in the development of cancer. Cell migration is associated with several specific actin filament-based structures, including lamellipodia, filopodia, invadopodia and blebs, and with cell-cell adhesion, cell-extracellular matrix adhesion. Migration occurs via different modes, human epithelial cancer cells mainly migrate collectively, while in vivo imaging studies in laboratory animals have found that most cells migrate as single cells. Rho GTPases play an important role in the process of cell migration, and several Rho GTPase-related signaling complexes are also involved. However, the exact mechanism by which these signaling complexes act remains unclear. This paper reviews how Rho GTPases and related signaling complexes interact with other proteins, how their expression is regulated, how tumor microenvironment-related factors play a role in invasion and metastasis, and the mechanism of these complex signaling networks in cell migration and invasion.
Collapse
Affiliation(s)
- Xiaoying Guan
- Pathology Department, Lanzhou University Second Hospital, Lanzhou, 730030, Gansu, China
| | - Xiaoli Guan
- General Medicine Department, Lanzhou University Second Hospital, Lanzhou, 730030, Gansu, China
| | - Chi Dong
- Pathology Department, Lanzhou University Second Hospital, Lanzhou, 730030, Gansu, China
| | - Zuoyi Jiao
- The First Department of General Surgery, Lanzhou University Second Hospital, Lanzhou, 730030, Gansu, China.
| |
Collapse
|
61
|
O'Loughlin T, Kendrick-Jones J, Buss F. Approaches to Identify and Characterise MYO6-Cargo Interactions. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1239:355-380. [PMID: 32451866 DOI: 10.1007/978-3-030-38062-5_15] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Given the prevalence and importance of the actin cytoskeleton and the host of associated myosin motors, it comes as no surprise to find that they are linked to a plethora of cellular functions and pathologies. Although our understanding of the biophysical properties of myosin motors has been aided by the high levels of conservation in their motor domains and the extensive work on myosin in skeletal muscle contraction, our understanding of how the nonmuscle myosins participate in such a wide variety of cellular processes is less clear. It is now well established that the highly variable myosin tails are responsible for targeting these myosins to distinct cellular sites for specific functions, and although a number of adaptor proteins have been identified, our current understanding of the cellular processes involved is rather limited. Furthermore, as more adaptor proteins, cargoes and complexes are identified, the importance of elucidating the regulatory mechanisms involved is essential. Ca2+, and now phosphorylation and ubiquitination, are emerging as important regulators of cargo binding, and it is likely that other post-translational modifications are also involved. In the case of myosin VI (MYO6), a number of immediate binding partners have been identified using traditional approaches such as yeast two-hybrid screens and affinity-based pull-downs. However, these methods have only been successful in identifying the cargo adaptors, but not the cargoes themselves, which may often comprise multi-protein complexes. Furthermore, motor-adaptor-cargo interactions are dynamic by nature and often weak, transient and highly regulated and therefore difficult to capture using traditional affinity-based methods. In this chapter we will discuss the various approaches including functional proteomics that have been used to uncover and characterise novel MYO6-associated proteins and complexes and how this work contributes to a fuller understanding of the targeting and function(s) of this unique myosin motor.
Collapse
Affiliation(s)
- Thomas O'Loughlin
- Cambridge Institute for Medical Research, University of Cambridge, The Keith Peters Building, Cambridge, UK
| | | | - Folma Buss
- Cambridge Institute for Medical Research, University of Cambridge, The Keith Peters Building, Cambridge, UK.
| |
Collapse
|
62
|
Villanueva JCMM, Chan KW, Ong RC, Andaya AG, Lau YL, van Zelm MC, Kanegane H. Hyper IgE Syndrome Associated With Warts: A First Case of Dedicator of Cytokinesis 8 Deficiency in the Philippines. Front Pediatr 2020; 8:604725. [PMID: 33251169 PMCID: PMC7673426 DOI: 10.3389/fped.2020.604725] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 10/09/2020] [Indexed: 11/13/2022] Open
Abstract
Hyper IgE syndrome (HIES) encompasses a group of primary immunodeficiency diseases (PIDs) that is characterized by severe atopy, and recurrent infections and markedly elevated serum IgE levels. The majority of HIES cases suffer from autosomal dominant mutations in the signal transducer and activator of transcription 3 gene. A minority of cases display autosomal recessive inheritance, and one form is caused by mutations in the dedicator of cytokinesis 8 (DOCK8) gene. Here we describe the first recognized and diagnosed case of DOCK8 deficiency in the Philippines. A 14 year-old-girl was referred due to recalcitrant atopic dermatitis, recurrent sinopulmonary infections, with widespread warts on the face, trunk and extremities. She had no coarse facial features or retained primary teeth, whereas she presented with widespread viral skin infections and multiple allergic diseases. Laboratory examinations revealed elevations in eosinophil count and serum IgE. The level of T-cell receptor excision circles was undetectable. The patient was suspected to have HIES with a probable DOCK8 deficiency. Genetic analysis disclosed a large genomic deletion involving exons 2-4 in the DOCK8 gene. A combination of recalcitrant atopic dermatitis, asthma, food allergies, with viral skin infections should increase the physician's consideration of a PID. Patients with HIES accompanied by warts and T-cell deficiency can be strongly suspected to have DOCK8 deficiency.
Collapse
Affiliation(s)
- Jose Carlo Miguel M Villanueva
- Section of Allergy and Clinical Immunology, Department of Pediatrics, University of Santo Tomas Hospital, Manila, Philippines
| | - Koon-Wing Chan
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Remedios C Ong
- Section of Allergy and Clinical Immunology, Department of Pediatrics, University of Santo Tomas Hospital, Manila, Philippines
| | - Agnes G Andaya
- Section of Allergy and Clinical Immunology, Department of Pediatrics, University of Santo Tomas Hospital, Manila, Philippines
| | - Yu-Lung Lau
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Menno C van Zelm
- Department of Immunology and Pathology, Monash University and Alfred Hospital, Melbourne, VIC, Australia
| | - Hirokazu Kanegane
- Department of Child Health and Development, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| |
Collapse
|
63
|
Bagci H, Sriskandarajah N, Robert A, Boulais J, Elkholi IE, Tran V, Lin ZY, Thibault MP, Dubé N, Faubert D, Hipfner DR, Gingras AC, Côté JF. Mapping the proximity interaction network of the Rho-family GTPases reveals signalling pathways and regulatory mechanisms. Nat Cell Biol 2019; 22:120-134. [DOI: 10.1038/s41556-019-0438-7] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 11/19/2019] [Indexed: 12/17/2022]
|
64
|
Janssen E, Geha RS. Primary immunodeficiencies caused by mutations in actin regulatory proteins. Immunol Rev 2019; 287:121-134. [PMID: 30565251 DOI: 10.1111/imr.12716] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 08/31/2018] [Indexed: 12/31/2022]
Abstract
The identification of patients with monogenic gene defects have illuminated the function of different proteins in the immune system, including proteins that regulate the actin cytoskeleton. Many of these actin regulatory proteins are exclusively expressed in leukocytes and regulate the formation and branching of actin filaments. Their absence or abnormal function leads to defects in immune cell shape, cellular projections, migration, and signaling. Through the study of patients' mutations and generation of mouse models that recapitulate the patients' phenotypes, our laboratory and others have gained a better understanding of the role these proteins play in cell biology and the underlying pathogenesis of immunodeficiencies and immune dysregulatory syndromes.
Collapse
Affiliation(s)
- Erin Janssen
- Division of Immunology, Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Raif S Geha
- Division of Immunology, Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
65
|
de Jonge JJ, Batters C, O'Loughlin T, Arden SD, Buss F. The MYO6 interactome: selective motor-cargo complexes for diverse cellular processes. FEBS Lett 2019; 593:1494-1507. [PMID: 31206648 DOI: 10.1002/1873-3468.13486] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 06/07/2019] [Accepted: 06/10/2019] [Indexed: 12/16/2022]
Abstract
Myosins of class VI (MYO6) are unique actin-based motor proteins that move cargo towards the minus ends of actin filaments. As the sole myosin with this directionality, it is critically important in a number of biological processes. Indeed, loss or overexpression of MYO6 in humans is linked to a variety of pathologies including deafness, cardiomyopathy, neurodegenerative diseases as well as cancer. This myosin interacts with a wide variety of direct binding partners such as for example the selective autophagy receptors optineurin, TAX1BP1 and NDP52 and also Dab2, GIPC, TOM1 and LMTK2, which mediate distinct functions of different MYO6 isoforms along the endocytic pathway. Functional proteomics has recently been used to identify the wider MYO6 interactome including several large functionally distinct multi-protein complexes, which highlight the importance of this myosin in regulating the actin and septin cytoskeleton. Interestingly, adaptor-binding not only triggers cargo attachment, but also controls the inactive folded conformation and dimerisation of MYO6. Thus, the C-terminal tail domain mediates cargo recognition and binding, but is also crucial for modulating motor activity and regulating cytoskeletal track dynamics.
Collapse
Affiliation(s)
| | | | - Thomas O'Loughlin
- Cambridge Institute for Medical Research, University of Cambridge, UK
| | - Susan D Arden
- Cambridge Institute for Medical Research, University of Cambridge, UK
| | - Folma Buss
- Cambridge Institute for Medical Research, University of Cambridge, UK
| |
Collapse
|
66
|
Wiltrout K, Ferrer A, van de Laar I, Namekata K, Harada T, Klee EW, Zimmerman MT, Cousin MA, Kempainen JL, Babovic-Vuksanovic D, van Slegtenhorst MA, Aarts-Tesselaar CD, Schnur RE, Andrews M, Shinawi M. Variants in DOCK3 cause developmental delay and hypotonia. Eur J Hum Genet 2019; 27:1225-1234. [PMID: 30976111 DOI: 10.1038/s41431-019-0397-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 03/13/2019] [Accepted: 03/26/2019] [Indexed: 01/05/2023] Open
Abstract
The DOCK3 gene encodes the Dedicator of cytokinesis 3 (DOCK3) protein, which belongs to the family of guanine nucleotide exchange factors and is expressed almost exclusively in the brain and spinal cord. We used whole exome sequencing (WES) to investigate the molecular cause of developmental delay and hypotonia in three unrelated probands. WES identified truncating and splice site variants in Patient 1 and compound heterozygous and homozygous missense variants in Patients 2 and 3, respectively. We studied the effect of the three missense variants in vitro by using site-directed mutagenesis and pull-down assay and show that the induction of Rac1 activation was significantly lower in DOCK3 mutant cells compared with wild type human DOCK3 (P < 0.05). We generated a protein model to further examine the effect of the two missense variants within or adjacent to the DHR-2 domain in DOCK3 and this model supports pathogenicity. Our results support a loss of function mechanism but the data on the patients with missense variants should be cautiously interpreted because of the variability of the phenotypes and limited number of cases. Prior studies have described DOCK3 bi-allelic loss of function variants in two families with ataxia, hypotonia, and developmental delay. Here, we report on three patients with DOCK3-related developmental delay, wide-based or uncoordinated gait, and hypotonia, further supporting DOCK3's role in a neurodevelopmental syndrome and expanding the spectrum of phenotypic and genotypic variability.
Collapse
Affiliation(s)
- Kimberly Wiltrout
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
| | - Alejandro Ferrer
- Center for Individualized Medicine, Mayo Clinic, Rochester, MN, USA
| | - Ingrid van de Laar
- Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Kazuhiko Namekata
- Visual Research Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Takayuki Harada
- Visual Research Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Eric W Klee
- Center for Individualized Medicine, Mayo Clinic, Rochester, MN, USA
| | - Michael T Zimmerman
- Genomics Sciences & Precision Medicine Center, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Margot A Cousin
- Center for Individualized Medicine, Mayo Clinic, Rochester, MN, USA
| | | | | | | | | | | | - Marisa Andrews
- Division of Genetics and Genomic Medicine, Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA
| | - Marwan Shinawi
- Division of Genetics and Genomic Medicine, Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
67
|
Tangye SG, Bucciol G, Casas‐Martin J, Pillay B, Ma CS, Moens L, Meyts I. Human inborn errors of the actin cytoskeleton affecting immunity: way beyond WAS and WIP. Immunol Cell Biol 2019; 97:389-402. [DOI: 10.1111/imcb.12243] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 02/09/2019] [Indexed: 01/02/2023]
Affiliation(s)
- Stuart G Tangye
- Immunology Division Garvan Institute of Medical Research Sydney NSW Australia
- Faculty of Medicine St Vincent's Clinical School UNSW Sydney Sydney NSW Australia
| | - Giorgia Bucciol
- Laboratory for Inborn Errors of Immunity Department of Microbiology and Immunology KU Leuven Leuven Belgium
- Department of Pediatrics University Hospitals Leuven Leuven Belgium
| | - Jose Casas‐Martin
- Laboratory for Inborn Errors of Immunity Department of Microbiology and Immunology KU Leuven Leuven Belgium
| | - Bethany Pillay
- Immunology Division Garvan Institute of Medical Research Sydney NSW Australia
- Faculty of Medicine St Vincent's Clinical School UNSW Sydney Sydney NSW Australia
| | - Cindy S Ma
- Immunology Division Garvan Institute of Medical Research Sydney NSW Australia
- Faculty of Medicine St Vincent's Clinical School UNSW Sydney Sydney NSW Australia
| | - Leen Moens
- Laboratory for Inborn Errors of Immunity Department of Microbiology and Immunology KU Leuven Leuven Belgium
| | - Isabelle Meyts
- Laboratory for Inborn Errors of Immunity Department of Microbiology and Immunology KU Leuven Leuven Belgium
- Department of Pediatrics University Hospitals Leuven Leuven Belgium
| |
Collapse
|
68
|
Kukimoto-Niino M, Tsuda K, Ihara K, Mishima-Tsumagari C, Honda K, Ohsawa N, Shirouzu M. Structural Basis for the Dual Substrate Specificity of DOCK7 Guanine Nucleotide Exchange Factor. Structure 2019; 27:741-748.e3. [PMID: 30853411 DOI: 10.1016/j.str.2019.02.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 12/18/2018] [Accepted: 02/04/2019] [Indexed: 11/15/2022]
Abstract
The Dedicator Of CytoKinesis (DOCK) family of atypical guanine nucleotide exchange factors activates the Rho family GTPases Rac and/or Cdc42 through DOCK homology region 2 (DHR-2). Previous structural analyses of the DHR-2 domains of DOCK2 and DOCK9 have shown that they preferentially bind Rac1 and Cdc42, respectively; however, the molecular mechanism by which DHR-2 distinguishes between these GTPases is unclear. Here we report the crystal structure of the Cdc42-bound form of the DOCK7 DHR-2 domain showing dual specificity for Rac1 and Cdc42. The structure revealed increased substrate tolerance of DOCK7 at the interfaces with switch 1 and residue 56 of Cdc42. Furthermore, molecular dynamics simulations showed a closed-to-open conformational change in the DOCK7 DHR-2 domain between the Cdc42- and Rac1-bound states by lobe B displacement. Our results suggest that lobe B acts as a sensor for identifying different switch 1 conformations and explain how DOCK7 recognizes both Rac1 and Cdc42.
Collapse
Affiliation(s)
- Mutsuko Kukimoto-Niino
- Laboratory for Protein Functional and Structural Biology, RIKEN Center for Biosystems Dynamics Research, Yokohama, Kanagawa 230-0045, Japan; Division of Structural and Synthetic Biology, RIKEN Center for Life Science Technologies, Yokohama, Kanagawa 230-0045, Japan.
| | - Kengo Tsuda
- Laboratory for Protein Functional and Structural Biology, RIKEN Center for Biosystems Dynamics Research, Yokohama, Kanagawa 230-0045, Japan; Division of Structural and Synthetic Biology, RIKEN Center for Life Science Technologies, Yokohama, Kanagawa 230-0045, Japan
| | - Kentaro Ihara
- Laboratory for Protein Functional and Structural Biology, RIKEN Center for Biosystems Dynamics Research, Yokohama, Kanagawa 230-0045, Japan; Division of Structural and Synthetic Biology, RIKEN Center for Life Science Technologies, Yokohama, Kanagawa 230-0045, Japan
| | - Chiemi Mishima-Tsumagari
- Laboratory for Protein Functional and Structural Biology, RIKEN Center for Biosystems Dynamics Research, Yokohama, Kanagawa 230-0045, Japan; Division of Structural and Synthetic Biology, RIKEN Center for Life Science Technologies, Yokohama, Kanagawa 230-0045, Japan
| | - Keiko Honda
- Division of Structural and Synthetic Biology, RIKEN Center for Life Science Technologies, Yokohama, Kanagawa 230-0045, Japan
| | - Noboru Ohsawa
- Division of Structural and Synthetic Biology, RIKEN Center for Life Science Technologies, Yokohama, Kanagawa 230-0045, Japan
| | - Mikako Shirouzu
- Laboratory for Protein Functional and Structural Biology, RIKEN Center for Biosystems Dynamics Research, Yokohama, Kanagawa 230-0045, Japan; Division of Structural and Synthetic Biology, RIKEN Center for Life Science Technologies, Yokohama, Kanagawa 230-0045, Japan.
| |
Collapse
|
69
|
Singh K, Lee ME, Entezari M, Jung CH, Kim Y, Park Y, Fioretti JD, Huh WK, Park HO, Kang PJ. Genome-Wide Studies of Rho5-Interacting Proteins That Are Involved in Oxidant-Induced Cell Death in Budding Yeast. G3 (BETHESDA, MD.) 2019; 9:921-931. [PMID: 30670610 PMCID: PMC6404601 DOI: 10.1534/g3.118.200887] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 01/18/2019] [Indexed: 12/28/2022]
Abstract
Rho GTPases play critical roles in cell proliferation and cell death in many species. As in animal cells, cells of the budding yeast Saccharomyces cerevisiae undergo regulated cell death under various physiological conditions and upon exposure to external stress. The Rho5 GTPase is necessary for oxidant-induced cell death, and cells expressing a constitutively active GTP-locked Rho5 are hypersensitive to oxidants. Yet how Rho5 regulates yeast cell death has been poorly understood. To identify genes that are involved in the Rho5-mediated cell death program, we performed two complementary genome-wide screens: one screen for oxidant-resistant deletion mutants and another screen for Rho5-associated proteins. Functional enrichment and interaction network analysis revealed enrichment for genes in pathways related to metabolism, transport, and plasma membrane organization. In particular, we find that ATG21, which is known to be involved in the CVT (Cytoplasm-to-Vacuole Targeting) pathway and mitophagy, is necessary for cell death induced by oxidants. Cells lacking Atg21 exhibit little cell death upon exposure to oxidants even when the GTP-locked Rho5 is expressed. Moreover, Atg21 interacts with Rho5 preferentially in its GTP-bound state, suggesting that Atg21 is a downstream target of Rho5 in oxidant-induced cell death. Given the high degree of conservation of Rho GTPases and autophagy from yeast to human, this study may provide insight into regulated cell death in eukaryotes in general.
Collapse
Affiliation(s)
- Komudi Singh
- Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210
| | - Mid Eum Lee
- Molecular Cellular Developmental Biology Program, The Ohio State University, Columbus, OH 43210
| | - Maryam Entezari
- Department of Biological Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Chan-Hun Jung
- Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210
| | - Yeonsoo Kim
- Department of Biological Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Youngmin Park
- Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210
| | - Jack D Fioretti
- Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210
| | - Won-Ki Huh
- Department of Biological Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Hay-Oak Park
- Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210
- Molecular Cellular Developmental Biology Program, The Ohio State University, Columbus, OH 43210
| | - Pil Jung Kang
- Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210
| |
Collapse
|
70
|
Westbrook JA, Wood SL, Cairns DA, McMahon K, Gahlaut R, Thygesen H, Shires M, Roberts S, Marshall H, Oliva MR, Dunning MJ, Hanby AM, Selby PJ, Speirs V, Mavria G, Coleman RE, Brown JE. Identification and validation of DOCK4 as a potential biomarker for risk of bone metastasis development in patients with early breast cancer. J Pathol 2019; 247:381-391. [PMID: 30426503 PMCID: PMC6618075 DOI: 10.1002/path.5197] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2018] [Revised: 10/04/2018] [Accepted: 10/30/2018] [Indexed: 12/12/2022]
Abstract
Skeletal metastasis occurs in around 75% of advanced breast cancers, with the disease incurable once cancer cells disseminate to bone, but there remains an unmet need for biomarkers to identify patients at high risk of bone recurrence. This study aimed to identify such a biomarker and to assess its utility in predicting response to adjuvant zoledronic acid (zoledronate). We used quantitative proteomics (stable isotope labelling by amino acids in cell culture-mass spectrometry; SILAC-MS) to compare protein expression in a bone-homing variant (BM1) of the human breast cancer cell line MDA-MB-231 with parental non-bone-homing cells to identify novel biomarkers for risk of subsequent bone metastasis in early breast cancer. SILAC-MS showed that dedicator of cytokinesis protein 4 (DOCK4) was upregulated in bone-homing BM1 cells, confirmed by western blotting. BM1 cells also had enhanced invasive ability compared with parental cells, which could be reduced by DOCK4-shRNA. In a training tissue microarray (TMA) comprising 345 patients with early breast cancer, immunohistochemistry followed by Cox regression revealed that high DOCK4 expression correlated with histological grade (p = 0.004) but not oestrogen receptor status (p = 0.19) or lymph node involvement (p = 0.15). A clinical validation TMA used tissue samples and the clinical database from the large AZURE adjuvant study (n = 689). Adjusted Cox regression analyses showed that high DOCK4 expression in the control arm (no zoledronate) was significantly prognostic for first recurrence in bone (HR 2.13, 95%CI 1.06-4.30, p = 0.034). No corresponding association was found in patients who received zoledronate (HR 0.812, 95%CI 0.176-3.76, p = 0.790), suggesting that treatment with zoledronate may counteract the higher risk for bone relapse from high DOCK4-expressing tumours. High DOCK4 expression was not associated with metastasis to non-skeletal sites when these were assessed collectively. In conclusion, high DOCK4 in early breast cancer is significantly associated with aggressive disease and with future bone metastasis and is a potentially useful biomarker for subsequent bone metastasis risk. Copyright © 2018 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Jules A Westbrook
- Department of Oncology and Metabolism, Academic Unit of Clinical OncologyUniversity of SheffieldSheffieldUK
- Clinical and Biomedical Proteomics GroupLeeds Institute of Cancer and Pathology, University of LeedsLeedsUK
| | - Steven L Wood
- Department of Oncology and Metabolism, Academic Unit of Clinical OncologyUniversity of SheffieldSheffieldUK
- Clinical and Biomedical Proteomics GroupLeeds Institute of Cancer and Pathology, University of LeedsLeedsUK
| | - David A Cairns
- Clinical and Biomedical Proteomics GroupLeeds Institute of Cancer and Pathology, University of LeedsLeedsUK
- Clinical Trials Research Unit, Leeds Institute of Clinical Trials ResearchUniversity of LeedsLeedsUK
| | - Kathryn McMahon
- Leeds Institute of Cancer and PathologyUniversity of LeedsLeedsUK
| | - Renu Gahlaut
- Leeds Institute of Cancer and PathologyUniversity of LeedsLeedsUK
| | - Helene Thygesen
- Leeds Institute of Cancer and PathologyUniversity of LeedsLeedsUK
| | - Mike Shires
- Leeds Institute of Cancer and PathologyUniversity of LeedsLeedsUK
| | - Stephanie Roberts
- Clinical and Biomedical Proteomics GroupLeeds Institute of Cancer and Pathology, University of LeedsLeedsUK
| | - Helen Marshall
- Clinical Trials Research Unit, Leeds Institute of Clinical Trials ResearchUniversity of LeedsLeedsUK
| | - Maria R Oliva
- Department of Oncology and Metabolism, Academic Unit of Clinical OncologyUniversity of SheffieldSheffieldUK
| | - Mark J Dunning
- Sheffield Institute of Translational NeuroscienceUniversity of SheffieldSheffieldUK
| | - Andrew M Hanby
- Leeds Institute of Cancer and PathologyUniversity of LeedsLeedsUK
| | - Peter J Selby
- Clinical and Biomedical Proteomics GroupLeeds Institute of Cancer and Pathology, University of LeedsLeedsUK
- Leeds Institute of Cancer and PathologyUniversity of LeedsLeedsUK
| | - Valerie Speirs
- Leeds Institute of Cancer and PathologyUniversity of LeedsLeedsUK
- Institute of Medical SciencesUniversity of AberdeenAberdeenUK
| | - Georgia Mavria
- Leeds Institute of Cancer and PathologyUniversity of LeedsLeedsUK
| | - Robert E Coleman
- Department of Oncology and Metabolism, Academic Unit of Clinical OncologyUniversity of SheffieldSheffieldUK
| | - Janet E Brown
- Department of Oncology and Metabolism, Academic Unit of Clinical OncologyUniversity of SheffieldSheffieldUK
- Clinical and Biomedical Proteomics GroupLeeds Institute of Cancer and Pathology, University of LeedsLeedsUK
| |
Collapse
|
71
|
Activated Rho GTPases in Cancer-The Beginning of a New Paradigm. Int J Mol Sci 2018; 19:ijms19123949. [PMID: 30544828 PMCID: PMC6321241 DOI: 10.3390/ijms19123949] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 11/30/2018] [Accepted: 12/05/2018] [Indexed: 12/26/2022] Open
Abstract
Involvement of Rho GTPases in cancer has been a matter of debate since the identification of the first members of this branch of the Ras superfamily of small GTPases. The Rho GTPases were ascribed important roles in the cell, although these were restricted to regulation of cytoskeletal dynamics, cell morphogenesis, and cell locomotion, with initially no clear indications of direct involvement in cancer progression. This paradigm has been challenged by numerous observations that Rho-regulated pathways are often dysregulated in cancers. More recently, identification of point mutants in the Rho GTPases Rac1, RhoA, and Cdc42 in human tumors has finally given rise to a new paradigm, and we can now state with confidence that Rho GTPases serve as oncogenes in several human cancers. This article provides an exposé of current knowledge of the roles of activated Rho GTPases in cancers.
Collapse
|
72
|
Lin Y, Luo Y, Hu F, Wang T, Dong Y, Yang D, He X, Chen X, Wang J, Du J, Zhang X. Overexpression of Short Variant Form of New Kelch Family Protein Leads to Erythroid and Megakaryocyte Dysplasia by Targeting Megakaryocyte-Erythroid Progenitors. DNA Cell Biol 2018; 37:831-838. [PMID: 30124330 DOI: 10.1089/dna.2018.4206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Nd1-S is the nuclear-localizing short variant form of Nd1 (Ivns1abp) encoding a Kelch family transcription factor. While the function of Nd1 has been investigated in the context of metastasis and doxorubicin-induced cardiotoxicity, little is known about its role in hematopoiesis. In this study, we investigated the function of Nd1-S in hematopoiesis by transplanting the Nd1-S-overexpressing murine hematopoietic stem and progenitor cells (HSPCs) into recipient mice (Nd1-S mice). Enforced expression of Nd1-S led to erythroid and megakaryocyte dysplasia, demonstrated by dramatically decreased red blood cells and platelets, and megakaryocytes in the peripheral blood and bone marrow of the Nd1-S mice. Moreover, phenotypic megakaryocyte-erythroid progenitors (MEPs) accumulated in these Nd1-S mice with aberrant morphology and defective colony-forming capability. Furthermore, these phenotypic MEPs showed impaired pathways regulating erythroid differentiation and megakaryocyte development. Therefore, our study provides de novo evidence that overexpression of Nd1-S in HSPCs leads to erythroid and megakaryocyte dysplasia in vivo by targeting MEPs.
Collapse
Affiliation(s)
- Yansi Lin
- 1 Department of Hematology, The Third Affiliated Hospital of Sun Yat-Sen University , Guangzhou, China .,2 Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University , Guangzhou, China
| | - Yuxuan Luo
- 1 Department of Hematology, The Third Affiliated Hospital of Sun Yat-Sen University , Guangzhou, China
| | - Fangxiao Hu
- 2 Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University , Guangzhou, China
| | - Tongjie Wang
- 2 Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University , Guangzhou, China
| | - Yong Dong
- 2 Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University , Guangzhou, China
| | - Dan Yang
- 2 Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University , Guangzhou, China
| | - Xiaodan He
- 2 Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University , Guangzhou, China
| | - Xiaoli Chen
- 2 Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University , Guangzhou, China
| | - Jinyong Wang
- 2 Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University , Guangzhou, China
| | - Juan Du
- 2 Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University , Guangzhou, China
| | - Xiangzhong Zhang
- 1 Department of Hematology, The Third Affiliated Hospital of Sun Yat-Sen University , Guangzhou, China
| |
Collapse
|
73
|
Cunningham RL, Herbert AL, Harty BL, Ackerman SD, Monk KR. Mutations in dock1 disrupt early Schwann cell development. Neural Dev 2018; 13:17. [PMID: 30089513 PMCID: PMC6083577 DOI: 10.1186/s13064-018-0114-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 07/20/2018] [Indexed: 01/29/2023] Open
Abstract
Background In the peripheral nervous system (PNS), specialized glial cells called Schwann cells produce myelin, a lipid-rich insulating sheath that surrounds axons and promotes rapid action potential propagation. During development, Schwann cells must undergo extensive cytoskeletal rearrangements in order to become mature, myelinating Schwann cells. The intracellular mechanisms that drive Schwann cell development, myelination, and accompanying cell shape changes are poorly understood. Methods Through a forward genetic screen in zebrafish, we identified a mutation in the atypical guanine nucleotide exchange factor, dock1, that results in decreased myelination of peripheral axons. Rescue experiments and complementation tests with newly engineered alleles confirmed that mutations in dock1 cause defects in myelination of the PNS. Whole mount in situ hybridization, transmission electron microscopy, and live imaging were used to fully define mutant phenotypes. Results We show that Schwann cells in dock1 mutants can appropriately migrate and are not decreased in number, but exhibit delayed radial sorting and decreased myelination during early stages of development. Conclusions Together, our results demonstrate that mutations in dock1 result in defects in Schwann cell development and myelination. Specifically, loss of dock1 delays radial sorting and myelination of peripheral axons in zebrafish. Electronic supplementary material The online version of this article (10.1186/s13064-018-0114-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Rebecca L Cunningham
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Amy L Herbert
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Breanne L Harty
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, 63110, USA.,Vollum Institute, Oregon Health and Science University, Portland, OR, 97239, USA
| | - Sarah D Ackerman
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, 63110, USA.,Institute of Neuroscience, University of Oregon, Eugene, OR, 97403, USA
| | - Kelly R Monk
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, 63110, USA. .,Vollum Institute, Oregon Health and Science University, Portland, OR, 97239, USA.
| |
Collapse
|
74
|
Polarized Dock Activity Drives Shh-Mediated Axon Guidance. Dev Cell 2018; 46:410-425.e7. [PMID: 30078728 DOI: 10.1016/j.devcel.2018.07.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 05/18/2018] [Accepted: 07/06/2018] [Indexed: 11/23/2022]
Abstract
In the developing spinal cord, Sonic hedgehog (Shh) attracts commissural axons toward the floorplate. How Shh regulates the cytoskeletal remodeling that underlies growth cone turning is unknown. We found that Shh-mediated growth cone turning requires the activity of Docks, which are unconventional GEFs. Knockdown of Dock3 and 4, or their binding partner ELMO1 and 2, abolished commissural axon attraction by Shh in vitro. Dock3/4 and ELMO1/2 were also required for correct commissural axon guidance in vivo. Polarized Dock activity was sufficient to induce axon turning, indicating that Docks are instructive for axon guidance. Mechanistically, we show that Dock and ELMO interact with Boc, the Shh receptor, and that this interaction is reduced upon Shh stimulation. Furthermore, Shh stimulation translocates ELMO to the growth cone periphery and activates Rac1. This identifies Dock/ELMO as an effector complex of non-canonical Shh signaling and demonstrates the instructive role of GEFs in axon guidance.
Collapse
|
75
|
Sakurai T, Uruno T, Sugiura Y, Tatsuguchi T, Yamamura K, Ushijima M, Hattori Y, Kukimoto-Niino M, Mishima-Tsumagari C, Watanabe M, Suematsu M, Fukui Y. Cholesterol sulfate is a DOCK2 inhibitor that mediates tissue-specific immune evasion in the eye. Sci Signal 2018; 11:11/541/eaao4874. [DOI: 10.1126/scisignal.aao4874] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
76
|
Hasan MK, Yu J, Widhopf GF, Rassenti LZ, Chen L, Shen Z, Briggs SP, Neuberg DS, Kipps TJ. Wnt5a induces ROR1 to recruit DOCK2 to activate Rac1/2 in chronic lymphocytic leukemia. Blood 2018; 132:170-178. [PMID: 29678828 PMCID: PMC6043980 DOI: 10.1182/blood-2017-12-819383] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 04/12/2018] [Indexed: 12/11/2022] Open
Abstract
Receptor tyrosine kinase-like orphan receptor 1 (ROR1) is an oncoembryonic protein expressed on chronic lymphocytic leukemia (CLL) that can serve as a receptor for Wnt5a, which can promote leukemia cell migration, proliferation, and survival. We found Wnt5a could induce ROR1 to complex with DOCK2 (dedicator of cytokinesis 2) and induce activation of Rac1/2; these effects could be blocked by cirmtuzumab, a humanized anti-ROR1 monoclonal antibody. We find that silencing DOCK2 specifically impaired the capacity of Wnt5a to induce activation of Rac1/2 or enhance CLL cell proliferation. We generated truncated forms of ROR1 and found the cytoplasmic proline-rich domain (PRD) of ROR1 was required for Wnt5a to induce ROR1 to complex with DOCK2 and activate Rac1/2 in the CLL cell-line MEC1. We introduced single amino acid substitutions of proline (P) to alanine (A) in the ROR1-PRD at potential binding sites for the Src-homology 3 domain of DOCK2. In contrast to wild-type ROR1, or other ROR1 P→A variants, ROR1P808A was unable to recruit DOCK2 in response to Wnt5a. Moreover, unlike MEC1 cells transfected with wild-type ROR1 or ROR1 with P→A substitutions at positions 784, 826, or 841, MEC1 cells transfected to express ROR1P808A did not have a growth advantage over MEC1 cells that do not express ROR1. This study reveals that the recruitment of DOCK2 may be critical for the capacity of Wnt5a to enhance CLL proliferation, which may contribute to the observed increased tendency for disease progression in patients who have CLL cells that express high levels of ROR1.
Collapse
Affiliation(s)
| | | | | | | | | | - Zhouxin Shen
- Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA; and
| | - Steven P Briggs
- Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA; and
| | | | | |
Collapse
|
77
|
Mohan JJ, Narayan P, Padmanabhan RA, Joseph S, Kumar PG, Laloraya M. Silencing of dedicator of cytokinesis (DOCK180) obliterates pregnancy by interfering with decidualization due to blockage of nuclear entry of autoimmune regulator (AIRE). Am J Reprod Immunol 2018; 80:e12844. [PMID: 29516628 DOI: 10.1111/aji.12844] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 02/13/2018] [Indexed: 12/26/2022] Open
Abstract
PROBLEM Dedicator of cytokinesis (DOCK 180) involved in cytoskeletal reorganization is primarily a cytosolic molecule. It is recently shown to be nuclear in HeLa cells but its nuclear function is not known. METHOD OF STUDY The spatiotemporal distribution of DOCK180 in uterus was studied in uterine cytoplasmic and nuclear compartments during the "window of implantation." The functional significance of nuclear DOCK180 was explored by homology modeling, co-immunoprecipitation assays, and mass spectrometric analysis. Dock180's role in early pregnancy was ascertained by Dock 180 silencing and subsequent quantitative real-time PCR and Western blotting analysis. RESULTS Our study shows a nuclear DOCK180 in the uterus during "window of implantation." Estrogen and progesterone mediate expression and nuclear translocation of DOCK180. The nuclear function of DOCK180 is attributed to its ability to import autoimmune regulator (AIRE) into the nucleus. Silencing of Dock180 inhibited AIRE nuclear shuttling which influenced its downstream targets, thereby affecting decidualization with AIRE and HOXA-10 as the major players as well as lack of implantation site formation due to impact on angiogenesis-associated genes. CONCLUSION DOCK180 has an indispensable role in pregnancy establishment as knocking down Dock180 abrogates pregnancy by a consolidated impact on decidualization and angiogenesis by regulating AIRE nuclear entry.
Collapse
Affiliation(s)
- Jasna Jagan Mohan
- Female Reproduction and Metabolic Syndromes Laboratory, Division of Molecular Reproduction, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India
| | - Prashanth Narayan
- Female Reproduction and Metabolic Syndromes Laboratory, Division of Molecular Reproduction, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India
| | - Renjini Ambika Padmanabhan
- Female Reproduction and Metabolic Syndromes Laboratory, Division of Molecular Reproduction, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India
| | - Selin Joseph
- Female Reproduction and Metabolic Syndromes Laboratory, Division of Molecular Reproduction, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India
| | - Pradeep G Kumar
- Female Reproduction and Metabolic Syndromes Laboratory, Division of Molecular Reproduction, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India
| | - Malini Laloraya
- Female Reproduction and Metabolic Syndromes Laboratory, Division of Molecular Reproduction, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India
| |
Collapse
|
78
|
Rho GTPases in Intellectual Disability: From Genetics to Therapeutic Opportunities. Int J Mol Sci 2018; 19:ijms19061821. [PMID: 29925821 PMCID: PMC6032284 DOI: 10.3390/ijms19061821] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 06/14/2018] [Accepted: 06/16/2018] [Indexed: 12/22/2022] Open
Abstract
Rho-class small GTPases are implicated in basic cellular processes at nearly all brain developmental steps, from neurogenesis and migration to axon guidance and synaptic plasticity. GTPases are key signal transducing enzymes that link extracellular cues to the neuronal responses required for the construction of neuronal networks, as well as for synaptic function and plasticity. Rho GTPases are highly regulated by a complex set of activating (GEFs) and inactivating (GAPs) partners, via protein:protein interactions (PPI). Misregulated RhoA, Rac1/Rac3 and cdc42 activity has been linked with intellectual disability (ID) and other neurodevelopmental conditions that comprise ID. All genetic evidences indicate that in these disorders the RhoA pathway is hyperactive while the Rac1 and cdc42 pathways are consistently hypoactive. Adopting cultured neurons for in vitro testing and specific animal models of ID for in vivo examination, the endophenotypes associated with these conditions are emerging and include altered neuronal networking, unbalanced excitation/inhibition and altered synaptic activity and plasticity. As we approach a clearer definition of these phenotype(s) and the role of hyper- and hypo-active GTPases in the construction of neuronal networks, there is an increasing possibility that selective inhibitors and activators might be designed via PPI, or identified by screening, that counteract the misregulation of small GTPases and result in alleviation of the cognitive condition. Here we review all knowledge in support of this possibility.
Collapse
|
79
|
Zhang J, Xu M, Gao H, Guo JC, Guo YL, Zou M, Wu XF. Two protein-coding genes act as a novel clinical signature to predict prognosis in patients with ovarian serous cystadenocarcinoma. Oncol Lett 2018; 15:3669-3675. [PMID: 29456732 PMCID: PMC5795895 DOI: 10.3892/ol.2018.7778] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 10/18/2017] [Indexed: 02/05/2023] Open
Abstract
Ovarian cancer is the seventh most common type of cancer and the eighth most common cause of cancer-associated mortality among women. A number of studies have hypothesized that the expression status of certain genes may be used to predict prognosis in ovarian cancer. In the present study, the RNA expression data from next-generation sequencing and the clinical information of 413 patients from The Cancer Genome Atlas dataset was downloaded to identify the association between gene-expression level and the survival time of the patients with ovarian serous cystadenocarcinoma. A five-gene model was predicted to be significantly associated with patient survival in ovarian serous cystadenocarcinoma by using random survival forests variable hunting algorithm and Cox analysis. A total of two genes, mesencephalic astrocyte-derived neurotrophic factor and dedicator of cytokinesis 11, of the predicted five genes demonstrated positive expression in the ovarian serous cystadenocarcinoma cancer tissues by polymerase chain reaction analysis. Kaplan-Meier and Receiver Operating Characteristic analysis confirmed that the model of the two genes exhibited high sensitivity and specificity to predict the prognostic survival of patients. In conclusion, the expression of the two genes in the two-gene model was associated with the prognostic outcomes of patients with ovarian serous cystadenocarcinoma; the model demonstrated potential as a novel prognostic indicator, which may have important clinical significance.
Collapse
Affiliation(s)
- Jue Zhang
- Department of Gynecology, Maternal and Child Health Hospital of Hubei Province, Wuhan, Hubei 430070, P.R. China
| | - Meng Xu
- Department of Gynecology, Maternal and Child Health Hospital of Hubei Province, Wuhan, Hubei 430070, P.R. China
| | - Han Gao
- Department of Gynecology, Maternal and Child Health Hospital of Hubei Province, Wuhan, Hubei 430070, P.R. China
| | - Jin-Chen Guo
- Shantou University Medical College, Shantou, Guangdong 515041, P.R. China
| | - Yu-Lin Guo
- Department of Gynecology, Maternal and Child Health Hospital of Hubei Province, Wuhan, Hubei 430070, P.R. China
| | - Miao Zou
- Department of Gynecology, Maternal and Child Health Hospital of Hubei Province, Wuhan, Hubei 430070, P.R. China
| | - Xu-Feng Wu
- Department of Gynecology, Maternal and Child Health Hospital of Hubei Province, Wuhan, Hubei 430070, P.R. China
- Correspondence to: Dr Xu-Feng Wu, Department of Gynecology, Maternal and Child Health Hospital of Hubei Province, 745 Wuluo Road, Wuhan, Hubei 430070, P.R. China, E-mail:
| |
Collapse
|
80
|
Ushijima M, Uruno T, Nishikimi A, Sanematsu F, Kamikaseda Y, Kunimura K, Sakata D, Okada T, Fukui Y. The Rac Activator DOCK2 Mediates Plasma Cell Differentiation and IgG Antibody Production. Front Immunol 2018; 9:243. [PMID: 29503648 PMCID: PMC5820292 DOI: 10.3389/fimmu.2018.00243] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 01/29/2018] [Indexed: 12/12/2022] Open
Abstract
A hallmark of humoral immune responses is the production of antibodies. This process involves a complex cascade of molecular and cellular interactions, including recognition of specific antigen by the B cell receptor (BCR), which triggers activation of B cells and differentiation into plasma cells (PCs). Although activation of the small GTPase Rac has been implicated in BCR-mediated antigen recognition, its precise role in humoral immunity and the upstream regulator remain elusive. DOCK2 is a Rac-specific guanine nucleotide exchange factor predominantly expressed in hematopoietic cells. We found that BCR-mediated Rac activation was almost completely lost in DOCK2-deficient B cells, resulting in defects in B cell spreading over the target cell-membrane and sustained growth of BCR microclusters at the interface. When wild-type B cells were stimulated in vitro with anti-IgM F(ab′)2 antibody in the presence of IL-4 and IL-5, they differentiated efficiently into PCs. However, BCR-mediated PC differentiation was severely impaired in the case of DOCK2-deficient B cells. Similar results were obtained in vivo when DOCK2-deficient B cells expressing a defined BCR specificity were adoptively transferred into mice and challenged with the cognate antigen. In addition, by generating the conditional knockout mice, we found that DOCK2 expression in B-cell lineage is required to mount antigen-specific IgG antibody. These results highlight important role of the DOCK2–Rac axis in PC differentiation and IgG antibody responses.
Collapse
Affiliation(s)
- Miho Ushijima
- Division of Immunogenetics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Takehito Uruno
- Division of Immunogenetics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan.,Research Center for Advanced Immunology, Kyushu University, Fukuoka, Japan
| | - Akihiko Nishikimi
- Department of Biosciences, School of Science, Kitasato University, Sagamihara, Japan
| | - Fumiyuki Sanematsu
- Department of Pharmacology, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Yasuhisa Kamikaseda
- Division of Immunogenetics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Kazufumi Kunimura
- Division of Immunogenetics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Daiji Sakata
- Division of Immunogenetics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan.,Research Center for Advanced Immunology, Kyushu University, Fukuoka, Japan
| | - Takaharu Okada
- Laboratory for Tissue Dynamics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Yoshinori Fukui
- Division of Immunogenetics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan.,Research Center for Advanced Immunology, Kyushu University, Fukuoka, Japan
| |
Collapse
|
81
|
Szatmári T, Mundt F, Kumar-Singh A, Möbus L, Ötvös R, Hjerpe A, Dobra K. Molecular targets and signaling pathways regulated by nuclear translocation of syndecan-1. BMC Cell Biol 2017; 18:34. [PMID: 29216821 PMCID: PMC5721467 DOI: 10.1186/s12860-017-0150-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 11/14/2017] [Indexed: 12/15/2022] Open
Abstract
Background The cell-surface heparan sulfate proteoglycan syndecan-1 is important for tumor cell proliferation, migration, and cell cycle regulation in a broad spectrum of malignancies. Syndecan-1, however, also translocates to the cell nucleus, where it might regulate various molecular functions. Results We used a fibrosarcoma model to dissect the functions of syndecan-1 related to the nucleus and separate them from functions related to the cell-surface. Nuclear translocation of syndecan-1 hampered the proliferation of fibrosarcoma cells compared to the mutant lacking nuclear localization signal. The growth inhibitory effect of nuclear syndecan-1 was accompanied by significant accumulation of cells in the G0/G1 phase, which indicated a possible G1/S phase arrest. We implemented multiple, unsupervised global transcriptome and proteome profiling approaches and combined them with functional assays to disclose the molecular mechanisms that governed nuclear translocation and its related functions. We identified genes and pathways related to the nuclear compartment with network enrichment analysis of the transcriptome and proteome. The TGF-β pathway was activated by nuclear syndecan-1, and three genes were significantly altered with the deletion of nuclear localization signal: EGR-1 (early growth response 1), NEK11 (never-in-mitosis gene a-related kinase 11), and DOCK8 (dedicator of cytokinesis 8). These candidate genes were coupled to growth and cell-cycle regulation. Nuclear translocation of syndecan-1 influenced the activity of several other transcription factors, including E2F, NFκβ, and OCT-1. The transcripts and proteins affected by syndecan-1 showed a striking overlap in their corresponding biological processes. These processes were dominated by protein phosphorylation and post-translation modifications, indicative of alterations in intracellular signaling. In addition, we identified molecules involved in the known functions of syndecan-1, including extracellular matrix organization and transmembrane transport. Conclusion Collectively, abrogation of nuclear translocation of syndecan-1 resulted in a set of changes clustering in distinct patterns, which highlighted the functional importance of nuclear syndecan-1 in hampering cell proliferation and the cell cycle. This study emphasizes the importance of the localization of syndecan-1 when considering its effects on tumor cell fate. Electronic supplementary material The online version of this article (10.1186/s12860-017-0150-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Tünde Szatmári
- Department of Laboratory Medicine, Division of Pathology, Karolinska Institutet, SE-14186, Stockholm, Sweden.
| | - Filip Mundt
- Division of Clinical Pathology/Cytology, Karolinska University Laboratory, Karolinska University Hospital, SE-14186, Stockholm, Sweden
| | - Ashish Kumar-Singh
- Department of Laboratory Medicine, Division of Pathology, Karolinska Institutet, SE-14186, Stockholm, Sweden
| | - Lena Möbus
- Department of Laboratory Medicine, Division of Pathology, Karolinska Institutet, SE-14186, Stockholm, Sweden
| | - Rita Ötvös
- Department of Laboratory Medicine, Division of Pathology, Karolinska Institutet, SE-14186, Stockholm, Sweden
| | - Anders Hjerpe
- Department of Laboratory Medicine, Division of Pathology, Karolinska Institutet, SE-14186, Stockholm, Sweden.,Division of Clinical Pathology/Cytology, Karolinska University Laboratory, Karolinska University Hospital, SE-14186, Stockholm, Sweden
| | - Katalin Dobra
- Department of Laboratory Medicine, Division of Pathology, Karolinska Institutet, SE-14186, Stockholm, Sweden.,Division of Clinical Pathology/Cytology, Karolinska University Laboratory, Karolinska University Hospital, SE-14186, Stockholm, Sweden
| |
Collapse
|
82
|
Biggs CM, Keles S, Chatila TA. DOCK8 deficiency: Insights into pathophysiology, clinical features and management. Clin Immunol 2017. [PMID: 28625885 DOI: 10.1016/j.clim.2017.06.003] [Citation(s) in RCA: 106] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Dedicator of cytokinesis 8 (DOCK8) deficiency is a combined immunodeficiency that exemplifies the broad clinical features of primary immunodeficiencies (PIDs), extending beyond recurrent infections to include atopy, autoimmunity and cancer. It is caused by loss of function mutations in DOCK8, encoding a guanine nucleotide exchange factor highly expressed in lymphocytes that regulates the actin cytoskeleton. Additional roles of DOCK8 have also emerged, including regulating MyD88-dependent Toll-like receptor signaling and the activation of the transcription factor STAT3. DOCK8 deficiency impairs immune cell migration, function and survival, and it impacts both innate and adaptive immune responses. Clinically, DOCK8 deficiency is characterized by allergic inflammation as well as susceptibility towards infections, autoimmunity and malignancy. This review details the pathophysiology, clinical features and management of DOCK8 deficiency. It also surveys the recently discovered combined immunodeficiency due to DOCK2 deficiency, highlighting in the process the emerging spectrum of PIDs resulting from DOCK protein family abnormalities.
Collapse
Affiliation(s)
- Catherine M Biggs
- Division of Immunology, Boston Children's Hospital, Department of Pediatrics, Harvard Medical School, Boston, MA, USA; Department of Pediatrics, British Columbia Children's Hospital, University of British Columbia, Vancouver, BC, Canada
| | - Sevgi Keles
- Division of Pediatric Allergy and Immunology, Meram Medical Faculty, Necmettin Erbakan University, Konya, Turkey
| | - Talal A Chatila
- Division of Immunology, Boston Children's Hospital, Department of Pediatrics, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
83
|
Hernández-Vásquez MN, Adame-García SR, Hamoud N, Chidiac R, Reyes-Cruz G, Gratton JP, Côté JF, Vázquez-Prado J. Cell adhesion controlled by adhesion G protein-coupled receptor GPR124/ADGRA2 is mediated by a protein complex comprising intersectins and Elmo-Dock. J Biol Chem 2017; 292:12178-12191. [PMID: 28600358 DOI: 10.1074/jbc.m117.780304] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 05/30/2017] [Indexed: 11/06/2022] Open
Abstract
Developmental angiogenesis and the maintenance of the blood-brain barrier involve endothelial cell adhesion, which is linked to cytoskeletal dynamics. GPR124 (also known as TEM5/ADGRA2) is an adhesion G protein-coupled receptor family member that plays a pivotal role in brain angiogenesis and in ensuring a tight blood-brain barrier. However, the signaling properties of GPR124 remain poorly defined. Here, we show that ectopic expression of GPR124 promotes cell adhesion, additive to extracellular matrix-dependent effect, coupled with filopodia and lamellipodia formation and an enrichment of a pool of the G protein-coupled receptor at actin-rich cellular protrusions containing VASP, a filopodial marker. Accordingly, GPR124-expressing cells also displayed increased activation of both Rac and Cdc42 GTPases. Mechanistically, we uncover novel direct interactions between endogenous GPR124 and the Rho guanine nucleotide exchange factors Elmo/Dock and intersectin (ITSN). Small fragments of either Elmo or ITSN1 that bind GPR124 blocked GPR124-induced cell adhesion. In addition, Gβγ interacts with the C-terminal tail of GPR124 and promotes the formation of a GPR124-Elmo complex. Furthermore, GPR124 also promotes the activation of the Elmo-Dock complex, as measured by Elmo phosphorylation on a conserved C-terminal tyrosine residue. Interestingly, Elmo and ITSN1 also interact with each other independently of their GPR124-recognition regions. Moreover, endogenous phospho-Elmo and ITSN1 co-localize with GPR124 at lamellipodia of adhering endothelial cells, where GPR124 expression contributes to polarity acquisition during wound healing. Collectively, our results indicate that GPR124 promotes cell adhesion via Elmo-Dock and ITSN. This constitutes a previously unrecognized complex formed of atypical and conventional Rho guanine nucleotide exchange factors for Rac and Cdc42 that is putatively involved in GPR124-dependent angiogenic responses.
Collapse
Affiliation(s)
- Magda Nohemí Hernández-Vásquez
- Department of Pharmacology, Center for Research and Advanced Studies of the National Polytechnic Institute (CINVESTAV-IPN), Mexico City 14740, Mexico
| | - Sendi Rafael Adame-García
- Department of Cell Biology, Center for Research and Advanced Studies of the National Polytechnic Institute (CINVESTAV-IPN), Mexico City 14740, Mexico
| | - Noumeira Hamoud
- Institut de Recherches Cliniques de Montréal, Université de Montréal, Montreal, Quebec H3T 1J4, Canada
| | - Rony Chidiac
- Department of Pharmacology, Faculty of Medicine, Université de Montréal, Montreal, Quebec H3T 1J4, Canada
| | - Guadalupe Reyes-Cruz
- Department of Cell Biology, Center for Research and Advanced Studies of the National Polytechnic Institute (CINVESTAV-IPN), Mexico City 14740, Mexico
| | - Jean Philippe Gratton
- Department of Pharmacology, Faculty of Medicine, Université de Montréal, Montreal, Quebec H3T 1J4, Canada
| | - Jean-François Côté
- Institut de Recherches Cliniques de Montréal, Université de Montréal, Montreal, Quebec H3T 1J4, Canada
| | - José Vázquez-Prado
- Department of Pharmacology, Center for Research and Advanced Studies of the National Polytechnic Institute (CINVESTAV-IPN), Mexico City 14740, Mexico.
| |
Collapse
|
84
|
Morishita K, Anh Suong DN, Yoshida H, Yamaguchi M. The Drosophila DOCK family protein Sponge is required for development of the air sac primordium. Exp Cell Res 2017; 354:95-102. [PMID: 28341448 DOI: 10.1016/j.yexcr.2017.03.044] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2016] [Revised: 03/18/2017] [Accepted: 03/20/2017] [Indexed: 12/14/2022]
Abstract
Dedicator of cytokinesis (DOCK) family genes are known as DOCK1-DOCK11 in mammals. DOCK family proteins mainly regulate actin filament polymerization and/or depolymerization and are GEF proteins, which contribute to cellular signaling events by activating small G proteins. Sponge (Spg) is a Drosophila counterpart to mammalian DOCK3/DOCK4, and plays a role in embryonic central nervous system development, R7 photoreceptor cell differentiation, and adult thorax development. In order to conduct further functional analyses on Spg in vivo, we examined its localization in third instar larval wing imaginal discs. Immunostaining with purified anti-Spg IgG revealed that Spg mainly localized in the air sac primordium (ASP) in wing imaginal discs. Spg is therefore predicted to play an important role in the ASP. The specific knockdown of Spg by the breathless-GAL4 driver in tracheal cells induced lethality accompanied with a defect in ASP development and the induction of apoptosis. The monitoring of ERK signaling activity in wing imaginal discs by immunostaining with anti-diphospho-ERK IgG revealed reductions in the ERK signal cascade in Spg knockdown clones. Furthermore, the overexpression of D-raf suppressed defects in survival and the proliferation of cells in the ASP induced by the knockdown of Spg. Collectively, these results indicate that Spg plays a critical role in ASP development and tracheal cell viability that is mediated by the ERK signaling pathway.
Collapse
Affiliation(s)
- Kazushge Morishita
- Department of Applied Biology, The Center for Advanced Insect Research, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| | - Dang Ngoc Anh Suong
- Department of Applied Biology, The Center for Advanced Insect Research, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| | - Hideki Yoshida
- Department of Applied Biology, The Center for Advanced Insect Research, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| | - Masamitsu Yamaguchi
- Department of Applied Biology, The Center for Advanced Insect Research, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan.
| |
Collapse
|
85
|
Dimitrova D, Freeman AF. Current Status of Dedicator of Cytokinesis-Associated Immunodeficiency: DOCK8 and DOCK2. Dermatol Clin 2017; 35:11-19. [PMID: 27890234 DOI: 10.1016/j.det.2016.07.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
DOCK8 deficiency is an autosomal recessive combined immunodeficiency disease associated with elevated IgE, atopy, recurrent sinopulmonary and cutaneous viral infections, and malignancy. The DOCK8 protein is critical for cytoskeletal organization, and deficiency impairs dendritic cell transmigration, T-cell survival, and NK cell cytotoxicity. Early hematopoietic stem cell transplantation is gaining prominence as a definitive treatment given the potential for severe complications and mortality in this disease. Recently, DOCK2 deficiency has been identified in several patients with early-onset invasive bacterial and viral infections.
Collapse
Affiliation(s)
- Dimana Dimitrova
- Experimental Transplantation and Immunology Branch, National Cancer Institute, National Institutes of Health, 10 Center Drive, Bethesda, MD 20892, USA
| | - Alexandra F Freeman
- Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 10 Center Drive, Bethesda, MD 20892, USA.
| |
Collapse
|
86
|
Obeidat M, Nie Y, Chen V, Shannon CP, Andiappan AK, Lee B, Rotzschke O, Castaldi PJ, Hersh CP, Fishbane N, Ng RT, McManus B, Miller BE, Rennard S, Paré PD, Sin DD. Network-based analysis reveals novel gene signatures in peripheral blood of patients with chronic obstructive pulmonary disease. Respir Res 2017; 18:72. [PMID: 28438154 PMCID: PMC5404332 DOI: 10.1186/s12931-017-0558-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2016] [Accepted: 04/20/2017] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND Chronic obstructive pulmonary disease (COPD) is currently the third leading cause of death and there is a huge unmet clinical need to identify disease biomarkers in peripheral blood. Compared to gene level differential expression approaches to identify gene signatures, network analyses provide a biologically intuitive approach which leverages the co-expression patterns in the transcriptome to identify modules of co-expressed genes. METHODS A weighted gene co-expression network analysis (WGCNA) was applied to peripheral blood transcriptome from 238 COPD subjects to discover co-expressed gene modules. We then determined the relationship between these modules and forced expiratory volume in 1 s (FEV1). In a second, independent cohort of 381 subjects, we determined the preservation of these modules and their relationship with FEV1. For those modules that were significantly related to FEV1, we determined the biological processes as well as the blood cell-specific gene expression that were over-represented using additional external datasets. RESULTS Using WGCNA, we identified 17 modules of co-expressed genes in the discovery cohort. Three of these modules were significantly correlated with FEV1 (FDR < 0.1). In the replication cohort, these modules were highly preserved and their FEV1 associations were reproducible (P < 0.05). Two of the three modules were negatively related to FEV1 and were enriched in IL8 and IL10 pathways and correlated with neutrophil-specific gene expression. The positively related module, on the other hand, was enriched in DNA transcription and translation and was strongly correlated to CD4+, CD8+ T cell-specific gene expression. CONCLUSIONS Network based approaches are promising tools to identify potential biomarkers for COPD. TRIAL REGISTRATION The ECLIPSE study was funded by GlaxoSmithKline, under ClinicalTrials.gov identifier NCT00292552 and GSK No. SCO104960.
Collapse
Affiliation(s)
- Ma'en Obeidat
- The University of British Columbia Centre for Heart Lung Innovation, St Paul's Hospital, 1081 Burrard Street, Vancouver, BC, V6Z 1Y6, Canada.
| | - Yunlong Nie
- The University of British Columbia Centre for Heart Lung Innovation, St Paul's Hospital, 1081 Burrard Street, Vancouver, BC, V6Z 1Y6, Canada
| | - Virginia Chen
- Prevention of Organ Failure (PROOF) Centre of Excellence, Vancouver, BC, Canada
| | - Casey P Shannon
- Prevention of Organ Failure (PROOF) Centre of Excellence, Vancouver, BC, Canada
| | | | - Bernett Lee
- Singapore Immunology Network, 8A Biomedical Grove, Singapore, Singapore
| | - Olaf Rotzschke
- Singapore Immunology Network, 8A Biomedical Grove, Singapore, Singapore
| | - Peter J Castaldi
- Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, USA
- Division of General Internal Medicine and Primary Care, Brigham and Women's Hospital and Harvard Medical School, Boston, USA
| | - Craig P Hersh
- Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, USA
- Pulmonary and Critical Care Division, Brigham and Women's Hospital and Harvard Medical School, Boston, USA
| | - Nick Fishbane
- The University of British Columbia Centre for Heart Lung Innovation, St Paul's Hospital, 1081 Burrard Street, Vancouver, BC, V6Z 1Y6, Canada
| | - Raymond T Ng
- Prevention of Organ Failure (PROOF) Centre of Excellence, Vancouver, BC, Canada
| | - Bruce McManus
- The University of British Columbia Centre for Heart Lung Innovation, St Paul's Hospital, 1081 Burrard Street, Vancouver, BC, V6Z 1Y6, Canada
- Prevention of Organ Failure (PROOF) Centre of Excellence, Vancouver, BC, Canada
| | | | - Stephen Rennard
- Division of Pulmonary and Critical Care Medicine, University of Nebraska Medical Center, Omaha, NE, USA
- Clinical Discovery Unit, Early Clinical Development, AstraZeneca, Cambridge, UK
| | - Peter D Paré
- The University of British Columbia Centre for Heart Lung Innovation, St Paul's Hospital, 1081 Burrard Street, Vancouver, BC, V6Z 1Y6, Canada
- Respiratory Division, Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Don D Sin
- The University of British Columbia Centre for Heart Lung Innovation, St Paul's Hospital, 1081 Burrard Street, Vancouver, BC, V6Z 1Y6, Canada
- Respiratory Division, Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
87
|
Kearney CJ, Randall KL, Oliaro J. DOCK8 regulates signal transduction events to control immunity. Cell Mol Immunol 2017; 14:406-411. [PMID: 28366940 DOI: 10.1038/cmi.2017.9] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 02/05/2017] [Accepted: 02/06/2017] [Indexed: 02/07/2023] Open
Abstract
Genetic mutations in the gene encoding DOCK8 cause an autosomal recessive form of hyper immunoglobulin E syndrome (AR-HIES), referred to as DOCK8 deficiency. DOCK8 deficiency in humans results in the onset of combined immunodeficiency disease (CID), clinically associated with chronic infections with diverse microbial pathogens, and a predisposition to malignancy. It is now becoming clear that DOCK8 regulates the function of diverse immune cell sub-types, particularly lymphocytes, to drive both innate and adaptive immune responses. Early studies demonstrated that DOCK8 is required for lymphocyte survival, migration and immune synapse formation, which translates to poor pathogen control in the absence of DOCK8. However, more recent advances have pointed to a crucial role for DOCK8 in regulating the signal transduction events that control transcriptional activity, cytokine production and functional polarization of immune cells. Here, we summarize recent advances in our understanding of DOCK8 function, paying particular attention to an emerging role as a signaling intermediate to promote immune responses to diverse external stimuli.
Collapse
Affiliation(s)
- Conor J Kearney
- Immune Defence Laboratory, Cancer Immunology Division, The Peter MacCallum Cancer Centre, East Melbourne, Victoria 3002, Australia.,Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria 3052, Australia
| | - Katrina L Randall
- Department of Immunology and Infectious Disease, The John Curtin School of Medical Research, Australian National University, Acton, Australian Capital Territory 2601, Australia.,Australian National University Medical School, Australian National University, Acton, Australian Capital Territory 2605, Australia
| | - Jane Oliaro
- Immune Defence Laboratory, Cancer Immunology Division, The Peter MacCallum Cancer Centre, East Melbourne, Victoria 3002, Australia.,Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria 3052, Australia
| |
Collapse
|
88
|
Guo X, Chen SY. Dedicator of Cytokinesis 2 in Cell Signaling Regulation and Disease Development. J Cell Physiol 2017; 232:1931-1940. [DOI: 10.1002/jcp.25512] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 08/08/2016] [Indexed: 02/01/2023]
Affiliation(s)
- Xia Guo
- Department of Physiology and Pharmacology; University of Georgia; Athens Georgia
| | - Shi-You Chen
- Department of Physiology and Pharmacology; University of Georgia; Athens Georgia
| |
Collapse
|
89
|
Functions of Rho family of small GTPases and Rho-associated coiled-coil kinases in bone cells during differentiation and mineralization. Biochim Biophys Acta Gen Subj 2017; 1861:1009-1023. [PMID: 28188861 DOI: 10.1016/j.bbagen.2017.02.005] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 02/02/2017] [Accepted: 02/06/2017] [Indexed: 12/12/2022]
Abstract
BACKGROUND Members of Rho-associated coiled-coil kinases (ROCKs) are effectors of Rho family of small GTPases. ROCKs have multiple functions that include regulation of cellular contraction and polarity, adhesion, motility, proliferation, apoptosis, differentiation, maturation and remodeling of the extracellular matrix (ECM). SCOPE OF THE REVIEW Here, we focus on the action of RhoA and RhoA effectors, ROCK1 and ROCK2, in cells related to tissue mineralization: mesenchymal stem cells, chondrocytes, preosteoblasts, osteoblasts, osteocytes, lining cells and osteoclasts. MAJOR CONCLUSIONS The activation of the RhoA/ROCK pathway promotes stress fiber formation and reduces chondrocyte and osteogenic differentiations, in contrast to that in mesenchymal stem cells which stimulated the osteogenic and the chondrogenic differentiation. The effects of Rac1 and Cdc42 in promoting chondrocyte hypertrophy and of Rac1, Rac2 and Cdc42 in osteoclast are discussed. In addition, members of the Rho family of GTPases such Rac1, Rac2, Rac3 and Cdc42, acting upstream of ROCK and/or other protein effectors, may compensate the actions of RhoA, affecting directly or indirectly the actions of ROCKs as well as other protein effectors. GENERAL SIGNIFICANCE ROCK activity can trigger cartilage degradation and affect bone formation, therefore these kinases may represent a possible therapeutic target to treat osteoarthritis and osseous diseases. Inhibition of Rho/ROCK activity in chondrocytes prevents cartilage degradation, stimulate mineralization of osteoblasts and facilitate bone formation around implanted metals. Treatment with osteoprotegerin results in a significant decrease in the expression of Rho GTPases, ROCK1 and ROCK2, reducing bone resorption. Inhibition of ROCK signaling increases osteoblast differentiation in a topography-dependent manner.
Collapse
|
90
|
Abstract
Phagocytosis is the cellular internalization and sequestration of particulate matter into a `phagosome, which then matures into a phagolysosome. The phagolysosome then offers a specialized acidic and hydrolytic milieu that ultimately degrades the engulfed particle. In multicellular organisms, phagocytosis and phagosome maturation play two key physiological roles. First, phagocytic cells have an important function in tissue remodeling and homeostasis by eliminating apoptotic bodies, senescent cells and cell fragments. Second, phagocytosis is a critical weapon of the immune system, whereby cells like macrophages and neutrophils hunt and engulf a variety of pathogens and foreign particles. Not surprisingly, pathogens have evolved mechanisms to either block or alter phagocytosis and phagosome maturation, ultimately usurping the cellular machinery for their own survival. Here, we review past and recent discoveries that highlight how phagocytes recognize target particles, key signals that emanate after phagocyte-particle engagement, and how these signals help modulate actin-dependent remodeling of the plasma membrane that culminates in the release of the phagosome. We then explore processes related to early and late stages of phagosome maturation, which requires fusion with endosomes and lysosomes. We end this review by acknowledging that little is known about phagosome fission and even less is known about how phagosomes are resolved after particle digestion.
Collapse
|
91
|
Shiraishi A, Uruno T, Sanematsu F, Ushijima M, Sakata D, Hara T, Fukui Y. DOCK8 Protein Regulates Macrophage Migration through Cdc42 Protein Activation and LRAP35a Protein Interaction. J Biol Chem 2016; 292:2191-2202. [PMID: 28028174 DOI: 10.1074/jbc.m116.736306] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 12/25/2016] [Indexed: 11/06/2022] Open
Abstract
DOCK8 is an atypical guanine nucleotide exchange factor for Cdc42, and its mutations cause combined immunodeficiency in humans. Accumulating evidence indicates that DOCK8 regulates the migration and activation of various subsets of leukocytes, but its regulatory mechanism is poorly understood. We here report that DOCK8-deficient macrophages exhibit a migration defect in a 2D setting. Although DOCK8 deficiency in macrophages did not affect the global Cdc42 activation induced by chemokine stimulation, rescue experiments revealed that the guanine nucleotide exchange factor activity of DOCK8 was required for macrophage migration. We found that DOCK8 associated with LRAP35a, an adaptor molecule that binds to the Cdc42 effector myotonic dystrophy kinase-related Cdc42-binding kinase, and facilitated its activity to phosphorylate myosin II regulatory light chain. When this interaction was disrupted in WT macrophages, they showed a migration defect, as seen in DOCK8-deficient macrophages. These results suggest that, during macrophage migration, DOCK8 links Cdc42 activation to actomyosin dynamics through the association with LRAP35a.
Collapse
Affiliation(s)
- Akira Shiraishi
- From the Division of Immunogenetics, Department of Immunobiology and Neuroscience, Medical Institute of Bioregulation.,Department of Pediatrics, Graduate School of Medical Sciences, and
| | - Takehito Uruno
- From the Division of Immunogenetics, Department of Immunobiology and Neuroscience, Medical Institute of Bioregulation.,Research Center for Advanced Immunology, Kyushu University, Fukuoka 812-8582, Japan and
| | - Fumiyuki Sanematsu
- From the Division of Immunogenetics, Department of Immunobiology and Neuroscience, Medical Institute of Bioregulation.,Research Center for Advanced Immunology, Kyushu University, Fukuoka 812-8582, Japan and
| | - Miho Ushijima
- From the Division of Immunogenetics, Department of Immunobiology and Neuroscience, Medical Institute of Bioregulation
| | - Daiji Sakata
- From the Division of Immunogenetics, Department of Immunobiology and Neuroscience, Medical Institute of Bioregulation
| | - Toshiro Hara
- the Fukuoka Children's Hospital, Fukuoka 813-0017, Japan
| | - Yoshinori Fukui
- From the Division of Immunogenetics, Department of Immunobiology and Neuroscience, Medical Institute of Bioregulation, .,Research Center for Advanced Immunology, Kyushu University, Fukuoka 812-8582, Japan and
| |
Collapse
|
92
|
Zhang Y, He RQ, Dang YW, Zhang XL, Wang X, Huang SN, Huang WT, Jiang MT, Gan XN, Xie Y, Li P, Luo DZ, Chen G, Gan TQ. Comprehensive analysis of the long noncoding RNA HOXA11-AS gene interaction regulatory network in NSCLC cells. Cancer Cell Int 2016; 16:89. [PMID: 27980454 PMCID: PMC5133743 DOI: 10.1186/s12935-016-0366-6] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 11/23/2016] [Indexed: 12/23/2022] Open
Abstract
Background Long noncoding RNAs (lncRNAs) are related to different biological processes in non-small cell lung cancer (NSCLC). However, the possible molecular mechanisms underlying the effects of the long noncoding RNA HOXA11-AS (HOXA11 antisense RNA) in NSCLC are unknown. Methods HOXA11-AS was knocked down in the NSCLC A549 cell line and a high throughput microarray assay was applied to detect changes in the gene profiles of the A549 cells. Bioinformatics analyses (gene ontology (GO), pathway, Kyoto Encyclopedia of Genes and Genomes (KEGG), and network analyses) were performed to investigate the potential pathways and networks of the differentially expressed genes. The molecular signatures database (MSigDB) was used to display the expression profiles of these differentially expressed genes. Furthermore, the relationships between the HOXA11-AS, de-regulated genes and clinical NSCLC parameters were verified by using NSCLC patient information from The Cancer Genome Atlas (TCGA) database. In addition, the relationship between HOXA11-AS expression and clinical diagnostic value was analyzed by receiver operating characteristic (ROC) curve. Results Among the differentially expressed genes, 277 and 80 genes were upregulated and downregulated in NSCLC, respectively (fold change ≥2.0, P < 0.05 and false discovery rate (FDR) < 0.05). According to the degree of the fold change, six upregulated and three downregulated genes were selected for further investigation. Only four genes (RSPO3, ADAMTS8, DMBT1, and DOCK8) were reported to be related with the development or progression of NSCLC based on a PubMed search. Among all possible pathways, three pathways (the PI3K-Akt, TGF-beta and Hippo signaling pathways) were the most likely to be involved in NSCLC development and progression. Furthermore, we found that HOXA11-AS was highly expressed in both lung adenocarcinoma and squamous cell carcinoma based on TCGA database. The ROC curve showed that the area under curve (AUC) of HOXA11-AS was 0.727 (95% CI 0.663–0.790) for lung adenocarcinoma and 0.933 (95% CI 0.906–0.960) for squamous cell carcinoma patients. Additionally, the original data from TCGA verified that ADAMTS8, DMBT1 and DOCK8 were downregulated in both lung adenocarcinoma and squamous cell carcinoma, whereas RSPO3 expression was upregulated in lung adenocarcinoma and downregulated in lung squamous cell carcinoma. For the other five genes (STMN2, SPINK6, TUSC3, LOC100128054, and C8orf22), we found that STMN2, TUSC3 and C8orf22 were upregulated in squamous cell carcinoma and that STMN2 and USC3 were upregulated in lung adenocarcinoma. Furthermore, we compared the correlation between HOXA11-AS and de-regulated genes in NSCLC based on TCGA. The results showed that the HOXA11-AS expression was negatively correlated with DOCK8 in squamous cell carcinoma (r = −0.124, P = 0.048) and lung adenocarcinoma (r = −0.176, P = 0.005). In addition, RSPO3, ADAMTS8 and DOCK8 were related to overall survival and disease-free survival (all P < 0.05) of lung adenocarcinoma patients in TCGA. Conclusions Our results showed that the gene profiles were significantly changed after HOXA11-AS knock-down in NSCLC cells. We speculated that HOXA11-AS may play an important role in NSCLC development and progression by regulating the expression of various pathways and genes, especially DOCK8 and TGF-beta pathway. However, the exact mechanism should be verified by functional experiments.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, No. 6 Shuangyong Road, Guangxi Zhuang Autonomous Region, Nanning, 530021 People's Republic of China
| | - Rong-Quan He
- Department of Medical Oncology, First Affiliated Hospital of Guangxi Medical University, No. 6 Shuangyong Road, Guangxi Zhuang Autonomous Region, Nanning, 530021 People's Republic of China
| | - Yi-Wu Dang
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, No. 6 Shuangyong Road, Guangxi Zhuang Autonomous Region, Nanning, 530021 People's Republic of China
| | - Xiu-Ling Zhang
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, No. 6 Shuangyong Road, Guangxi Zhuang Autonomous Region, Nanning, 530021 People's Republic of China
| | - Xiao Wang
- Department of Orthopedics, China-Japan Union Hospital of Jilin University, 2 Sendai Street, Changchun, 130033 People's Republic of China
| | - Su-Ning Huang
- Department of Radiotherapy, First Affiliated Hospital of Guangxi Medical University, No. 6 Shuangyong Road, Guangxi Zhuang Autonomous Region, Nanning, 530021 People's Republic of China
| | - Wen-Ting Huang
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, No. 6 Shuangyong Road, Guangxi Zhuang Autonomous Region, Nanning, 530021 People's Republic of China
| | - Meng-Tong Jiang
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, No. 6 Shuangyong Road, Guangxi Zhuang Autonomous Region, Nanning, 530021 People's Republic of China
| | - Xiao-Ning Gan
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, No. 6 Shuangyong Road, Guangxi Zhuang Autonomous Region, Nanning, 530021 People's Republic of China
| | - You Xie
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, No. 6 Shuangyong Road, Guangxi Zhuang Autonomous Region, Nanning, 530021 People's Republic of China
| | - Ping Li
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, No. 6 Shuangyong Road, Guangxi Zhuang Autonomous Region, Nanning, 530021 People's Republic of China
| | - Dian-Zhong Luo
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, No. 6 Shuangyong Road, Guangxi Zhuang Autonomous Region, Nanning, 530021 People's Republic of China
| | - Gang Chen
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, No. 6 Shuangyong Road, Guangxi Zhuang Autonomous Region, Nanning, 530021 People's Republic of China
| | - Ting-Qing Gan
- Department of Medical Oncology, First Affiliated Hospital of Guangxi Medical University, No. 6 Shuangyong Road, Guangxi Zhuang Autonomous Region, Nanning, 530021 People's Republic of China
| |
Collapse
|
93
|
Penberthy KK, Ravichandran KS. Apoptotic cell recognition receptors and scavenger receptors. Immunol Rev 2016; 269:44-59. [PMID: 26683144 DOI: 10.1111/imr.12376] [Citation(s) in RCA: 141] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Phosphatidylserine recognition receptors are a highly diverse set of receptors grouped by their ability to recognize the 'eat-me' signal phosphatidylserine on apoptotic cells. Most of the phosphatidylserine recognition receptors dampen inflammation by inducing the production of anti-inflammatory mediators during the phagocytosis of apoptotic corpses. However, many phosphatidylserine receptors are also capable of recognizing other ligands, with some receptors being categorized as scavenger receptors. It is now appreciated that these receptors can elicit different downstream events for particular ligands. Therefore, how phosphatidylserine recognition receptors mediate specific signals during recognition of apoptotic cells versus other ligands, and how this might help regulate the inflammatory state of a tissue is an important question that is not fully understood. Here, we revisit the work on signaling downstream of the phosphatidylserine recognition receptor BAI1, and evaluate how these and other signaling modules mediate signaling downstream from other receptors, including Stabilin-2, MerTK, and αvβ5. We also propose the concept that phosphatidylserine recognition receptors could be viewed as a subset of scavenger receptors that are capable of eliciting anti-inflammatory responses to apoptotic cells.
Collapse
Affiliation(s)
- Kristen K Penberthy
- Department of Microbiology, Immunology, and Cancer Biology, Center for Cell Clearance, University of Virginia, Charlottesville, VA, USA
| | - Kodi S Ravichandran
- Department of Microbiology, Immunology, and Cancer Biology, Center for Cell Clearance, University of Virginia, Charlottesville, VA, USA
| |
Collapse
|
94
|
Valente TS, Baldi F, Sant’Anna AC, Albuquerque LG, Paranhos da Costa MJR. Genome-Wide Association Study between Single Nucleotide Polymorphisms and Flight Speed in Nellore Cattle. PLoS One 2016; 11:e0156956. [PMID: 27300296 PMCID: PMC4907449 DOI: 10.1371/journal.pone.0156956] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 05/23/2016] [Indexed: 12/17/2022] Open
Abstract
Introduction Cattle temperament is an important factor that affects the profitability of beef cattle enterprises, due to its relationship with productivity traits, animal welfare and labor safety. Temperament is a complex phenotype often assessed by measuring a series of behavioral traits, which result from the effects of multiple environmental and genetic factors, and their interactions. The aims of this study were to perform a genome-wide association study and detect genomic regions, potential candidate genes and their biological mechanisms underlying temperament, measured by flight speed (FS) test in Nellore cattle. Materials and Methods The genome-wide association study (GWAS) was performed using a single-step procedure (ssGBLUP) which combined simultaneously all 16,600 phenotypes from genotyped and non-genotyped animals, full pedigree information of 162,645 animals and 1,384 genotyped animals in one step. The animals were genotyped with High Density Bovine SNP BeadChip which contains 777,962 SNP markers. After quality control (QC) a total of 455,374 SNPs remained. Results Heritability estimated for FS was 0.21 ± 0.02. Consecutive SNPs explaining 1% or more of the total additive genetic variance were considered as windows associated with FS. Nine candidate regions located on eight different Bos taurus chromosomes (BTA) (1 at 73 Mb, 2 at 65 Mb, 5 at 22 Mb and 119 Mb, 9 at 98 Mb, 11 at 67 Mb, 15 at 16 Mb, 17 at 63 Kb, and 26 at 47 Mb) were identified. The candidate genes identified in these regions were NCKAP5 (BTA2), PARK2 (BTA9), ANTXR1 (BTA11), GUCY1A2 (BTA15), CPE (BTA17) and DOCK1 (BTA26). Among these genes PARK2, GUCY1A2, CPE and DOCK1 are related to dopaminergic system, memory formation, biosynthesis of peptide hormone and neurotransmitter and brain development, respectively. Conclusions Our findings allowed us to identify nine genomic regions (SNP windows) associated with beef cattle temperament, measured by FS test. Within these windows, six promising candidate genes and their biological functions were identified. These results may contribute to a better comprehension into the genetic control of temperament expression in Nellore cattle.
Collapse
Affiliation(s)
- Tiago Silva Valente
- Universidade Estadual Paulista (Unesp), Faculdade de Ciências Agrárias e Veterinárias, Departamento de Zootecnia, Via de Acesso Professor Paulo Donato Castellane, Jaboticabal, SP 14.884-900, Brazil
| | - Fernando Baldi
- Universidade Estadual Paulista (Unesp), Faculdade de Ciências Agrárias e Veterinárias, Departamento de Zootecnia, Via de Acesso Professor Paulo Donato Castellane, Jaboticabal, SP 14.884-900, Brazil
| | - Aline Cristina Sant’Anna
- Universidade Federal de Juiz de Fora (UFJF), Instituto de Ciências Biológicas, Departamento de Zoologia, Rua José Lourenço Kelmer, Juiz de Fora, MG 36.036-900, Brazil
| | - Lucia Galvão Albuquerque
- Universidade Estadual Paulista (Unesp), Faculdade de Ciências Agrárias e Veterinárias, Departamento de Zootecnia, Via de Acesso Professor Paulo Donato Castellane, Jaboticabal, SP 14.884-900, Brazil
| | - Mateus José Rodrigues Paranhos da Costa
- Universidade Estadual Paulista (Unesp), Faculdade de Ciências Agrárias e Veterinárias, Departamento de Zootecnia, Via de Acesso Professor Paulo Donato Castellane, Jaboticabal, SP 14.884-900, Brazil
- * E-mail:
| |
Collapse
|
95
|
Jiménez-Sánchez A. Coevolution of RAC Small GTPases and their Regulators GEF Proteins. Evol Bioinform Online 2016; 12:121-31. [PMID: 27226705 PMCID: PMC4872645 DOI: 10.4137/ebo.s38031] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Revised: 03/31/2016] [Accepted: 04/03/2016] [Indexed: 01/16/2023] Open
Abstract
RAC proteins are small GTPases involved in important cellular processes in eukaryotes, and their deregulation may contribute to cancer. Activation of RAC proteins is regulated by DOCK and DBL protein families of guanine nucleotide exchange factors (GEFs). Although DOCK and DBL proteins act as GEFs on RAC proteins, DOCK and DBL family members are evolutionarily unrelated. To understand how DBL and DOCK families perform the same function on RAC proteins despite their unrelated primary structure, phylogenetic analyses of the RAC, DBL, and DOCK families were implemented, and interaction patterns that may suggest a coevolutionary process were searched. Interestingly, while RAC and DOCK proteins are very well conserved in humans and among eukaryotes, DBL proteins are highly divergent. Moreover, correlation analyses of the phylogenetic distances of RAC and GEF proteins and covariation analyses between residues in the interacting domains showed significant coevolution rates for both RAC–DOCK and RAC–DBL interactions.
Collapse
Affiliation(s)
- Alejandro Jiménez-Sánchez
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Cambridge, UK.; Previously at Department of Biology, University of York, York, UK
| |
Collapse
|
96
|
Fongang B, Kudlicki A. Comparison between Timelines of Transcriptional Regulation in Mammals, Birds, and Teleost Fish Somitogenesis. PLoS One 2016; 11:e0155802. [PMID: 27192554 PMCID: PMC4871587 DOI: 10.1371/journal.pone.0155802] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 05/04/2016] [Indexed: 12/13/2022] Open
Abstract
Metameric segmentation of the vertebrate body is established during somitogenesis, when a cyclic spatial pattern of gene expression is created within the mesoderm of the developing embryo. The process involves transcriptional regulation of genes associated with the Wnt, Notch, and Fgf signaling pathways, each gene is expressed at a specific time during the somite cycle. Comparative genomics, including analysis of expression timelines may reveal the underlying regulatory modules and their causal relations, explaining the nature and origin of the segmentation mechanism. Using a deconvolution approach, we computationally reconstruct and compare the precise timelines of expression during somitogenesis in chicken and zebrafish. The result constitutes a resource that may be used for inferring possible causal relations between genes and subsequent pathways. While the sets of regulated genes and expression profiles vary between different species, notable similarities exist between the temporal organization of the pathways involved in the somite clock in chick and mouse, with certain aspects (as the phase of expression of Notch genes) conserved also in the zebrafish. The regulated genes have sequence motifs that are conserved in mouse and chicken but not zebrafish. Promoter sequence analysis suggests involvement of several transcription factors that may bind these regulatory elements, including E2F, EGR and PLAG, as well as a possible role of G-quadruplex DNA structure in regulation of the cyclic genes. Our research lays the groundwork for further studies that will probe the evolution of the regulatory mechanism of segmentation across all vertebrates.
Collapse
Affiliation(s)
- Bernard Fongang
- Department of Biochemistry and Molecular Biology, Sealy Center for Molecular Medicine, Institute for Translational Sciences, University of Texas Medical Branch, 301 University Blvd, Galveston, Texas, USA
| | - Andrzej Kudlicki
- Department of Biochemistry and Molecular Biology, Sealy Center for Molecular Medicine, Institute for Translational Sciences, University of Texas Medical Branch, 301 University Blvd, Galveston, Texas, USA
| |
Collapse
|
97
|
Sobczak M, Chumak V, Pomorski P, Wojtera E, Majewski Ł, Nowak J, Yamauchi J, Rędowicz MJ. Interaction of myosin VI and its binding partner DOCK7 plays an important role in NGF-stimulated protrusion formation in PC12 cells. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2016; 1863:1589-600. [PMID: 27018747 DOI: 10.1016/j.bbamcr.2016.03.020] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Revised: 03/05/2016] [Accepted: 03/22/2016] [Indexed: 10/22/2022]
Abstract
DOCK7 (dedicator of cytokinesis 7) is a guanidine nucleotide exchange factor (GEF) for Rac1 GTPase that is involved in neuronal polarity and axon generation as well in Schwann cell differentiation and myelination. Recently, we identified DOCK7 as the binding partner of unconventional myosin VI (MVI) in neuronal-lineage PC12 cells and postulated that this interaction could be important in vivo [Majewski et al. (2012) Biochem Cell Biol., 90:565-574]. Herein, we found that MVI-DOCK7 interaction takes also place in other cell lines and demonstrated that MVI cargo domain via its RRL motif binds to DOCK7 C-terminal M2 and DHR2 domains. In MVI knockdown cells, lower Rac1 activity and a decrease of DOCK7 phosphorylation on Tyr1118 were observed, indicating that MVI could contribute to DOCK7 activity. MVI and DOCK7 co-localization was maintained during NGF-stimulated PC12 cell differentiation and observed also in the outgrowths. Also, during differentiation an increase in phosphorylation of DOCK7 as well as of its downstream effector JNK kinase was detected. Interestingly, overexpression of GFP-tagged MVI cargo domain (GFP-GT) impaired protrusion formation indicating that full length protein is important for this process. Moreover, a transient increase in Rac activity observed at 5min of NGF-stimulated differentiation of PC12 cells (overexpressing either GFP or GFP-MVI) was not detected in cells overexpressing the cargo domain. These data indicate that MVI-DOCK7 interaction could have functional implications in the protrusion outgrowth, and full length MVI seems to be important for delivery and maintenance of DOCK7 along the protrusions, and exerting its GEF activity.
Collapse
Affiliation(s)
- Magdalena Sobczak
- Laboratory of Molecular Basis of Cell Motility, Department of Biochemistry, Nencki Institute of Experimental Biology, 3 Pasteur St., 02-093 Warsaw, Poland
| | - Vira Chumak
- Laboratory of Molecular Basis of Cell Motility, Department of Biochemistry, Nencki Institute of Experimental Biology, 3 Pasteur St., 02-093 Warsaw, Poland; Laboratory of Regulation of Cell Proliferation and Apoptosis, Institute of Cell Biology, National Academy of Sciences of Ukraine, 14-16 Drahomanov St., 79005 Lviv, Ukraine
| | - Paweł Pomorski
- Laboratory of Molecular Basis of Cell Motility, Department of Biochemistry, Nencki Institute of Experimental Biology, 3 Pasteur St., 02-093 Warsaw, Poland
| | - Emilia Wojtera
- Laboratory of Molecular Basis of Cell Motility, Department of Biochemistry, Nencki Institute of Experimental Biology, 3 Pasteur St., 02-093 Warsaw, Poland
| | - Łukasz Majewski
- Laboratory of Molecular Basis of Cell Motility, Department of Biochemistry, Nencki Institute of Experimental Biology, 3 Pasteur St., 02-093 Warsaw, Poland
| | - Jolanta Nowak
- Laboratory of Molecular Basis of Cell Motility, Department of Biochemistry, Nencki Institute of Experimental Biology, 3 Pasteur St., 02-093 Warsaw, Poland
| | - Junji Yamauchi
- Department of Pharmacology, National Research Institute for Child Health and Development, Setagaya, Tokyo, Japan; Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Bunkyo, Tokyo, Japan
| | - Maria Jolanta Rędowicz
- Laboratory of Molecular Basis of Cell Motility, Department of Biochemistry, Nencki Institute of Experimental Biology, 3 Pasteur St., 02-093 Warsaw, Poland.
| |
Collapse
|
98
|
Chidiac R, Zhang Y, Tessier S, Faubert D, Delisle C, Gratton JP. Comparative Phosphoproteomics Analysis of VEGF and Angiopoietin-1 Signaling Reveals ZO-1 as a Critical Regulator of Endothelial Cell Proliferation. Mol Cell Proteomics 2016; 15:1511-25. [PMID: 26846344 DOI: 10.1074/mcp.m115.053298] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Indexed: 12/18/2022] Open
Abstract
VEGF and angiopoietin-1 (Ang-1) are essential factors to promote angiogenesis through regulation of a plethora of signaling events in endothelial cells (ECs). Although pathways activated by VEGF and Ang-1 are being established, the unique signaling nodes conferring specific responses to each factor remain poorly defined. Thus, we conducted a large-scale comparative phosphoproteomic analysis of signaling pathways activated by VEGF and Ang-1 in ECs using mass spectrometry. Analysis of VEGF and Ang-1 networks of regulated phosphoproteins revealed that the junctional proteins ZO-1, ZO-2, JUP and p120-catenin are part of a cluster of proteins phosphorylated following VEGF stimulation that are linked to MAPK1 activation. Down-regulation of these junctional proteins led to MAPK1 activation and accordingly, increased proliferation of ECs stimulated specifically by VEGF, but not by Ang-1. We identified ZO-1 as the central regulator of this effect and showed that modulation of cellular ZO-1 levels is necessary for EC proliferation during vascular development of the mouse postnatal retina. In conclusion, we uncovered ZO-1 as part of a signaling node activated by VEGF, but not Ang-1, that specifically modulates EC proliferation during angiogenesis.
Collapse
Affiliation(s)
- Rony Chidiac
- From the ‡Department of Pharmacology, Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada; §Department of Pathology and Cell Biology, Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada
| | - Ying Zhang
- From the ‡Department of Pharmacology, Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada; §Department of Pathology and Cell Biology, Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada
| | - Sylvain Tessier
- ¶Proteomics discovery platform, Institut de recherches cliniques de Montréal (IRCM), Montreal, Quebec, Canada
| | - Denis Faubert
- ¶Proteomics discovery platform, Institut de recherches cliniques de Montréal (IRCM), Montreal, Quebec, Canada
| | - Chantal Delisle
- From the ‡Department of Pharmacology, Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada
| | - Jean-Philippe Gratton
- From the ‡Department of Pharmacology, Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada;
| |
Collapse
|
99
|
Reduced DOCK4 expression leads to erythroid dysplasia in myelodysplastic syndromes. Proc Natl Acad Sci U S A 2015; 112:E6359-68. [PMID: 26578796 DOI: 10.1073/pnas.1516394112] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Anemia is the predominant clinical manifestation of myelodysplastic syndromes (MDS). Loss or deletion of chromosome 7 is commonly seen in MDS and leads to a poor prognosis. However, the identity of functionally relevant, dysplasia-causing, genes on 7q remains unclear. Dedicator of cytokinesis 4 (DOCK4) is a GTPase exchange factor, and its gene maps to the commonly deleted 7q region. We demonstrate that DOCK4 is underexpressed in MDS bone marrow samples and that the reduced expression is associated with decreased overall survival in patients. We show that depletion of DOCK4 levels leads to erythroid cells with dysplastic morphology both in vivo and in vitro. We established a novel single-cell assay to quantify disrupted F-actin filament network in erythroblasts and demonstrate that reduced expression of DOCK4 leads to disruption of the actin filaments, resulting in erythroid dysplasia that phenocopies the red blood cell (RBC) defects seen in samples from MDS patients. Reexpression of DOCK4 in -7q MDS patient erythroblasts resulted in significant erythropoietic improvements. Mechanisms underlying F-actin disruption revealed that DOCK4 knockdown reduces ras-related C3 botulinum toxin substrate 1 (RAC1) GTPase activation, leading to increased phosphorylation of the actin-stabilizing protein ADDUCIN in MDS samples. These data identify DOCK4 as a putative 7q gene whose reduced expression can lead to erythroid dysplasia.
Collapse
|
100
|
Dock3 Participate in Epileptogenesis Through rac1 Pathway in Animal Models. Mol Neurobiol 2015; 53:2715-25. [PMID: 26319681 DOI: 10.1007/s12035-015-9406-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Accepted: 08/20/2015] [Indexed: 10/23/2022]
Abstract
Epilepsy is one of the most common and severe neurologic diseases. The mechanisms of epilepsy are still not fully understood. Dock3 (dedicator of cytokinesis 3) is one of the new kinds of guanine-nucleotide exchange factors (GEF) and plays an important role in neuronal synaptic plasticity and cytoskeleton rearrangement; the same mechanisms were also found in epilepsy. However, little is known regarding the expression of Dock3 in the epileptic brain and whether Dock3 interventions affect the epileptic process. In this study, we showed that the expression of Dock3 significantly increased in IE patients and a lithium-pilocarpine epilepsy model compared with the controls. Inhibition of Dock3 by Dock3 shRNA impaired the severity of status epilepticus in the acute stage and decreased the spontaneous recurrent seizures times in the chronic stage of lithium-pilocarpine model and decreased the expression of rac1-GTP. Consistent with decreased expression of Dock3, the latent period in a pentylenetetrazole kindling model also increased. Our results demonstrated that the increased expression of Dock3 in the brain is associated with epileptogenesis and specific inhibition of Dock3 may be a potential target in preventing the development of epilepsy in patients.
Collapse
|