51
|
Induced pluripotent stem cell clones reprogrammed via recombinant adeno-associated virus-mediated transduction contain integrated vector sequences. J Virol 2012; 86:4463-7. [PMID: 22301147 DOI: 10.1128/jvi.06302-11] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Fibroblasts can be reprogrammed into induced pluripotent stem cells (iPSC) by ectopic expression of key transcription factors. Current methods for the generation of integration-free iPSC are limited by the low efficiency of iPSC generation and by challenges in reprogramming methodology. Recombinant adeno-associated virus (rAAV) is a potent gene delivery vehicle capable of efficient transduction of transgenic DNA into cells. rAAV stays mainly as an episome in nondividing cells, and the extent of integration is still poorly defined for various replicating cells. In this study, we aimed to induce iPSC from mouse and human fibroblasts by using rAAV vector-mediated transient delivery of reprogramming factors. We succeeded in deriving induced pluripotent stem cells from mouse but not human fibroblasts. Unexpectedly, the rAAV vector-mediated reprogramming led to frequent genomic integration of vector sequences during the reprogramming process, independent of the amount of virus used, and to persistent expression of reprogramming factors in generated iPSC clones. It thus appears that rAAV vectors are not compatible with the derivation of integration-free iPSC.
Collapse
|
52
|
Abstract
The Adeno-associated viruses (AAVs) are not associated with any diseases, and their ability to package non-genomic DNA and to transduce different cell/tissue populations has generated significant interest in understanding their basic biology in efforts to improve their utilization for corrective gene delivery. This includes their capsid structure, cellular tropism and interactions for entry, uncoating, replication, DNA packaging, capsid assembly, and antibody neutralization. The human and nonhuman primate AAVs are clustered into serologically distinct genetic clade and serotype groups, which have distinct cellular/tissue tropisms and transduction efficiencies. These properties are highly dependent upon the AAV capsid amino acid sequence, their capsid structure, and their interactions with host cell factors, including cell surface receptors, co-receptors, signaling molecules, proteins involved in host DNA replication, and host-derived antibodies. This chapter reviews the current structural information on AAV capsids and the capsid viral protein regions playing a role in the cellular interactions conferring an infective phenotype, which are then used to annotate the functional regions of the capsid. Based on the current data, the indication is that the AAVs, like other members of the Parvoviridae and other ssDNA viruses that form a T = 1 capsid, have evolved a multifunctional capsid with conserved core regions as is required for efficient capsid trafficking, capsid assembly, and genome packaging. Disparate surface loop structures confer differential receptor recognition and are involved in antibody recognition. The role of structural regions in capsid uncoating remains to be elucidated.
Collapse
Affiliation(s)
- Mavis Agbandje-McKenna
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, FL, USA.
| | | |
Collapse
|
53
|
Abstract
Adeno-associated virus (AAV) was first discovered as a contaminant of adenovirus stocks in the 1960s. The development of recombinant AAV vectors (rAAV) was facilitated by early studies that generated infectious molecular clones, determined the sequence of the genome, and defined the genetic elements of the virus. The refinement of methods and protocols for the production and application of rAAV vectors has come from years of studies that explored the basic biology of this virus and its interaction with host cells. Interest in improving vector performance has in turn driven studies that have provided tremendous insights into the basic biology of the AAV lifecycle. In this chapter, we review the background on AAV biology and its exploitation for vectors and gene delivery.
Collapse
|
54
|
Hirsch ML, Fagan BM, Dumitru R, Bower JJ, Yadav S, Porteus MH, Pevny LH, Samulski RJ. Viral single-strand DNA induces p53-dependent apoptosis in human embryonic stem cells. PLoS One 2011; 6:e27520. [PMID: 22114676 PMCID: PMC3219675 DOI: 10.1371/journal.pone.0027520] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2011] [Accepted: 10/18/2011] [Indexed: 11/19/2022] Open
Abstract
Human embryonic stem cells (hESCs) are primed for rapid apoptosis following mild forms of genotoxic stress. A natural form of such cellular stress occurs in response to recombinant adeno-associated virus (rAAV) single-strand DNA genomes, which exploit the host DNA damage response for replication and genome persistence. Herein, we discovered a unique DNA damage response induced by rAAV transduction specific to pluripotent hESCs. Within hours following rAAV transduction, host DNA damage signaling was elicited as measured by increased gamma-H2AX, ser15-p53 phosphorylation, and subsequent p53-dependent transcriptional activation. Nucleotide incorporation assays demonstrated that rAAV transduced cells accumulated in early S-phase followed by the induction of apoptosis. This lethal signaling sequalae required p53 in a manner independent of transcriptional induction of Puma, Bax and Bcl-2 and was not evident in cells differentiated towards a neural lineage. Consistent with a lethal DNA damage response induced upon rAAV transduction of hESCs, empty AAV protein capsids demonstrated no toxicity. In contrast, DNA microinjections demonstrated that the minimal AAV origin of replication and, in particular, a 40 nucleotide G-rich tetrad repeat sequence, was sufficient for hESC apoptosis. Our data support a model in which rAAV transduction of hESCs induces a p53-dependent lethal response that is elicited by a telomeric sequence within the AAV origin of replication.
Collapse
Affiliation(s)
- Matthew L. Hirsch
- Gene Therapy Center, University of North Carolina, Chapel Hill, North Carolina, United States of America
- * E-mail: (MLH); (RJS)
| | - B. Matthew Fagan
- Human Embryonic Stem Cell Core Facility, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Raluca Dumitru
- Department of Cell and Developmental Biology, Neuroscience Center, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Jacquelyn J. Bower
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Swati Yadav
- Gene Therapy Center, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Matthew H. Porteus
- Department of Pediatrics-Cancer Biology, Stanford University, Palo Alto, California, United States of America
| | - Larysa H. Pevny
- Department of Genetics, University of North Carolina, Chapel Hill, North Carolina, United States of America
- Department of Cell and Developmental Biology, Neuroscience Center, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - R. Jude Samulski
- Gene Therapy Center, University of North Carolina, Chapel Hill, North Carolina, United States of America
- Department of Pharmacology, University of North Carolina, Chapel Hill, North Carolina, United States of America
- * E-mail: (MLH); (RJS)
| |
Collapse
|
55
|
Cervelli T, Backovic A, Galli A. Formation of AAV single stranded DNA genome from a circular plasmid in Saccharomyces cerevisiae. PLoS One 2011; 6:e23474. [PMID: 21853137 PMCID: PMC3154452 DOI: 10.1371/journal.pone.0023474] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2011] [Accepted: 07/19/2011] [Indexed: 11/20/2022] Open
Abstract
Adeno-associated virus (AAV)-based vectors are promising tools for targeted transfer in gene therapy studies. Many efforts have been accomplished to improve production and purification methods. We thought to develop a simple eukaryotic system allowing AAV replication which could provide an excellent opportunity for studying AAV biology and, more importantly, for AAV vector production. It has been shown that yeast Saccharomyces cerevisiae is able to replicate and form the capsid of many viruses. We investigated the ability of the yeast Saccharomyces cerevisiae to carry out the replication of a recombinant AAV (rAAV). When a plasmid containing a rAAV genome in which the cap gene was replaced with the S. cerevisiae URA3 gene, was co-transformed in yeast with a plasmid expressing Rep68, a significant number of URA3+ clones were scored (more than 30-fold over controls). Molecular analysis of low molecular weight DNA by Southern blotting revealed that single stranded DNA is formed and that the plasmid is entirely replicated. The ssDNA contains the ITRs, URA3 gene and also vector sequences suggesting the presence of two distinct molecules. Its formation was dependent on Rep68 expression and ITR. These data indicate that DNA is not obtained by the canonical AAV replication pathway.
Collapse
Affiliation(s)
- Tiziana Cervelli
- Laboratorio di Terapia Genica e Molecolare, Istituto di Fisiologia Clinica, CNR, Pisa, Italy
| | - Ana Backovic
- Laboratorio di Biologia Molecolare, Scuola Normale Superiore, Pisa, Italy
| | - Alvaro Galli
- Laboratorio di Terapia Genica e Molecolare, Istituto di Fisiologia Clinica, CNR, Pisa, Italy
- * E-mail:
| |
Collapse
|
56
|
Glauser DL, Fraefel C. Interactions between AAV-2 and HSV-1: implications for hybrid vector design. Future Virol 2011. [DOI: 10.2217/fvl.11.13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Herpes simplex virus type 1 (HSV-1)-based amplicon vectors have a transgene capacity of up to 150 kbp and can efficiently transduce many different cell types in culture and in vivo without causing cytopathic effects. However, these vectors do not support long-term transgene expression. Adeno-associated virus type 2 (AAV-2) has the capacity to integrate its genome into a specific site on human chromosome 19, but AAV-2-derived gene therapy vectors have a transgene capacity of only 4.5 kb. To combine the large transgene capacity of HSV-1 with the potential for site-specific genomic integration and long-term transgene expression of AAV-2, HSV/AAV hybrid vectors have been developed. This review describes the design, applications and limitations of these hybrid vectors. However, as HSV-1 is a full helper virus for AAV-2 replication, the main focus is the analysis of the molecular mechanisms of interaction between the two viruses. The knowledge of these interactions will have direct implications on the design of novel HSV/AAV hybrid vectors.
Collapse
Affiliation(s)
- Daniel L Glauser
- Division of Virology, Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QP, UK
| | - Cornel Fraefel
- Institute of Virology, University of Zurich, Winterthurerstr. 266a, 8057 Zurich, Switzerland
| |
Collapse
|
57
|
Weitzman MD, Lilley CE, Chaurushiya MS. Genomes in conflict: maintaining genome integrity during virus infection. Annu Rev Microbiol 2010; 64:61-81. [PMID: 20690823 DOI: 10.1146/annurev.micro.112408.134016] [Citation(s) in RCA: 144] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The cellular surveillance network for sensing and repairing damaged DNA prevents an array of human diseases, and when compromised it can lead to genomic instability and cancer. The carefully maintained cellular response to DNA damage is challenged during viral infection, when foreign DNA is introduced into the cell. The battle between virus and host generates a genomic conflict. The host attempts to limit viral infection and protect its genome, while the virus deploys tactics to eliminate, evade, or exploit aspects of the cellular defense. Studying this conflict has revealed that the cellular DNA damage response machinery comprises part of the intrinsic cellular defense against viral infection. In this review we examine recent advances in this emerging field. We identify common themes used by viruses in their attempts to commandeer or circumvent the host cell's DNA repair machinery, and highlight potential outcomes of the conflict for both virus and host.
Collapse
Affiliation(s)
- Matthew D Weitzman
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, California 92037, USA.
| | | | | |
Collapse
|
58
|
Abstract
The success of any gene transfer procedure, either through in vivo inoculation of the genetic material or after gene transfer into the patient’s cells ex vivo, strictly depends upon the efficiency of nucleic acid internalization by the target cells. As a matter of fact, making gene transfer more efficient continues to represent the most relevant challenge to the clinical success of gene therapy.
Collapse
Affiliation(s)
- Mauro Giacca
- grid.425196.d0000000417594810International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
| |
Collapse
|
59
|
Differential effects of DNA double-strand break repair pathways on single-strand and self-complementary adeno-associated virus vector genomes. J Virol 2010; 84:8673-82. [PMID: 20538857 DOI: 10.1128/jvi.00641-10] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The linear DNA genomes of recombinant adeno-associated virus (rAAV) gene delivery vectors are acted upon by multiple DNA repair and recombination pathways upon release into the host nucleus, resulting in circularization, concatemer formation, or chromosomal integration. We have compared the fates of single-strand rAAV (ssAAV) and self-complementary AAV (scAAV) genomes in cell lines deficient in each of three signaling factors, ATM, ATR, and DNA-PK(CS), orchestrating major DNA double-strand break (DSB) repair pathways. In cells deficient in ATM, transduction as scored by green fluorescent protein (GFP) expression is increased relative to that in wild-type (wt) cells by 2.6-fold for ssAAV and 6.6-fold for scAAV vectors, arguing against a mechanism related to second-strand synthesis. The augmented transduction is not reflected in Southern blots of nuclear vector DNA, suggesting that interactions with ATM lead to silencing in normal cells. The additional functional genomes in ATM(-/-) cells remain linear, and the number of circularized genomes is not affected by the mutation, consistent with compartmentalization of genomes into different DNA repair pathways. A similar effect is observed in ATR-deficient cells but is specific for ssAAV vector. Conversely, a large decrease in transduction is observed in cells deficient in DNA-PK(CS), which is involved in DSB repair by nonhomologous end joining rather than homologous recombination. The mutations also have differential effects on chromosomal integration of ssAAV versus scAAV vector genomes. Integration of ssAAV was specifically reduced in ATM(-/-) cells, while scAAV integration was more profoundly inhibited in DNA-PK(CS)(-/-) cells. Taken together, the results suggest that productive rAAV genome circularization is mediated primarily by nonhomologous end joining.
Collapse
|
60
|
Gellhaus K, Cornu TI, Heilbronn R, Cathomen T. Fate of Recombinant Adeno-Associated Viral Vector Genomes During DNA Double-Strand Break-Induced Gene Targeting in Human Cells. Hum Gene Ther 2010; 21:543-53. [DOI: 10.1089/hum.2009.167] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Katharina Gellhaus
- Institute of Virology, Charité Medical School, Campus Benjamin Franklin, D-12203 Berlin, Germany
- Present address: Epiontis GmbH, D-12489 Berlin, Germany
| | - Tatjana I. Cornu
- Institute of Virology, Charité Medical School, Campus Benjamin Franklin, D-12203 Berlin, Germany
- Present address: Epiontis GmbH, D-12489 Berlin, Germany
| | - Regine Heilbronn
- Institute of Virology, Charité Medical School, Campus Benjamin Franklin, D-12203 Berlin, Germany
| | - Toni Cathomen
- Institute of Virology, Charité Medical School, Campus Benjamin Franklin, D-12203 Berlin, Germany
- Department of Experimental Hematology, Hannover Medical School, D-30625 Hannover, Germany
| |
Collapse
|
61
|
Adeno-associated virus site-specific integration is mediated by proteins of the nonhomologous end-joining pathway. J Virol 2009; 83:11655-64. [PMID: 19759155 DOI: 10.1128/jvi.01040-09] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Adeno-associated virus type 2 (AAV 2) is the only eukaryotic virus capable of site-specific integration; the target site is at chromosome 19q13.4, a site termed AAVS1. The biology of AAV latency has been extensively studied in cell culture, yet the precise mechanism and the required cellular factors are not known. In this study, we assessed the relative frequencies of stable site-specific integration by characterization of cell clones containing integrated AAV vectors. By this assay, two proteins involved in nonhomologous end joining (NHEJ), DNAPKcs and ligase IV, exhibit differential effects on AAV site-specific integration. DNAPKcs is not required; its presence increases the frequency of junction formation indicative of site-specific integration, but seems to reduce the ratio of site-specific integration to random integration (i.e., the latter is even more enhanced). In contrast, site-specific integration is significantly reduced relative to random integration in cells deficient in ligase IV expression. Furthermore, we show that single-stranded AAV vectors are better substrates for site-specific integration than are self-complementary AAV vectors; the absence of DNAPKcs did not affect the targeted integration of these double-stranded AAV vectors. Together, these data suggest that NHEJ proteins participate in site-specific integration, and indicate a role for the single-stranded form of AAV DNA in targeted integration.
Collapse
|
62
|
Chaurushiya MS, Weitzman MD. Viral manipulation of DNA repair and cell cycle checkpoints. DNA Repair (Amst) 2009; 8:1166-76. [PMID: 19473887 DOI: 10.1016/j.dnarep.2009.04.016] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Recognition and repair of DNA damage is critical for maintaining genomic integrity and suppressing tumorigenesis. In eukaryotic cells, the sensing and repair of DNA damage are coordinated with cell cycle progression and checkpoints, in order to prevent the propagation of damaged DNA. The carefully maintained cellular response to DNA damage is challenged by viruses, which produce a large amount of exogenous DNA during infection. Viruses also express proteins that perturb cellular DNA repair and cell cycle pathways, promoting tumorigenesis in their quest for cellular domination. This review presents an overview of strategies employed by viruses to manipulate DNA damage responses and cell cycle checkpoints as they commandeer the cell to maximize their own viral replication. Studies of viruses have identified key cellular regulators and revealed insights into molecular mechanisms governing DNA repair, cell cycle checkpoints, and transformation.
Collapse
Affiliation(s)
- Mira S Chaurushiya
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | | |
Collapse
|
63
|
Adeno-associated virus replication induces a DNA damage response coordinated by DNA-dependent protein kinase. J Virol 2009; 83:6269-78. [PMID: 19339345 DOI: 10.1128/jvi.00318-09] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The parvovirus adeno-associated virus (AAV) contains a small single-stranded DNA genome with inverted terminal repeats that form hairpin structures. In order to propagate, AAV relies on the cellular replication machinery together with functions supplied by coinfecting helper viruses such as adenovirus (Ad). Here, we examined the host cell response to AAV replication in the context of Ad or Ad helper proteins. We show that AAV and Ad coinfection activates a DNA damage response (DDR) that is distinct from that seen during Ad or AAV infection alone. The DDR was also triggered when AAV replicated in the presence of minimal Ad helper proteins. We detected autophosphorylation of the kinases ataxia telangiectasia mutated (ATM) and DNA-dependent protein kinase catalytic subunit (DNA-PKcs) and signaling to downstream targets SMC1, Chk1, Chk2, H2AX, and XRCC4 and multiple sites on RPA32. The Mre11 complex was not required for activation of the DDR to AAV infection. Additionally, we found that DNA-PKcs was the primary mediator of damage signaling in response to AAV replication. Immunofluorescence revealed that some activated damage proteins were found in a pan-nuclear pattern (phosphorylated ATM, SMC1, and H2AX), while others such as DNA-PK components (DNA-PKcs, Ku70, and Ku86) and RPA32 accumulated at AAV replication centers. Although expression of the large viral Rep proteins contributed to some damage signaling, we observed that the full response required replication of the AAV genome. Our results demonstrate that AAV replication in the presence of Ad helper functions elicits a unique damage response controlled by DNA-PK.
Collapse
|
64
|
Johnson JS, Samulski RJ. Enhancement of adeno-associated virus infection by mobilizing capsids into and out of the nucleolus. J Virol 2009; 83:2632-44. [PMID: 19109385 PMCID: PMC2648275 DOI: 10.1128/jvi.02309-08] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2008] [Accepted: 12/18/2008] [Indexed: 11/20/2022] Open
Abstract
Adeno-associated virus (AAV) serotypes are being tailored for numerous therapeutic applications, but the parameters governing the subcellular fate of even the most highly characterized serotype, AAV2, remain unclear. To understand how cellular conditions control capsid trafficking, we have tracked the subcellular fate of recombinant AAV2 (rAAV2) vectors using confocal immunofluorescence, three-dimensional infection analysis, and subcellular fractionation. Here we report that a population of rAAV2 virions enters the nucleus and accumulates in the nucleolus after infection, whereas empty capsids are excluded from nuclear entry. Remarkably, after subcellular fractionation, virions accumulating in nucleoli were found to retain infectivity in secondary infections. Proteasome inhibitors known to enhance transduction were found to potentiate nucleolar accumulation. In contrast, hydroxyurea, which also increases transduction, mobilized virions into the nucleoplasm, suggesting that two separate pathways influence vector delivery in the nucleus. Using a small interfering RNA (siRNA) approach, we then evaluated whether nucleolar proteins B23/nucleophosmin and nucleolin, previously shown to interact with AAV2 capsids, affect trafficking and transduction efficiency. Similar to effects observed with proteasome inhibition, siRNA-mediated knockdown of nucleophosmin potentiated nucleolar accumulation and increased transduction 5- to 15-fold. Parallel to effects from hydroxyurea, knockdown of nucleolin mobilized capsids to the nucleoplasm and increased transduction 10- to 30-fold. Moreover, affecting both pathways simultaneously using drug and siRNA combinations was synergistic and increased transduction over 50-fold. Taken together, these results support the hypothesis that rAAV2 virions enter the nucleus intact and can be sequestered in the nucleolus in stable form. Mobilization from the nucleolus to nucleoplasmic sites likely permits uncoating and subsequent gene expression or genome degradation. In summary, with these studies we have refined our understanding of AAV2 trafficking dynamics and have identified cellular parameters that mobilize virions in the nucleus and significantly influence AAV infection.
Collapse
Affiliation(s)
- Jarrod S Johnson
- Gene Therapy Center and Department of Pharmacology, The University of North Carolina at Chapel Hill, 7119 Thurston Bowles, CB 7352, Chapel Hill, North Carolina 27599-7352, USA
| | | |
Collapse
|
65
|
Adeno-associated virus vector genomes persist as episomal chromatin in primate muscle. J Virol 2008; 82:7875-85. [PMID: 18524821 DOI: 10.1128/jvi.00649-08] [Citation(s) in RCA: 194] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Recombinant adeno-associated virus (rAAV) vectors are capable of mediating long-term gene expression following administration to skeletal muscle. In rodent muscle, the vector genomes persist in the nucleus in concatemeric episomal forms. Here, we demonstrate with nonhuman primates that rAAV vectors integrate inefficiently into the chromosomes of myocytes and reside predominantly as episomal monomeric and concatemeric circles. The episomal rAAV genomes assimilate into chromatin with a typical nucleosomal pattern. The persistence of the vector genomes and gene expression for years in quiescent tissues suggests that a bona fide chromatin structure is important for episomal maintenance and transgene expression. These findings were obtained from primate muscles transduced with rAAV1 and rAAV8 vectors for up to 22 months after intramuscular delivery of 5 x 10(12) viral genomes/kg. Because of this unique context, our data, which provide important insight into in situ vector biology, are highly relevant from a clinical standpoint.
Collapse
|
66
|
Recombinant adeno-associated viral vectors are deficient in provoking a DNA damage response. J Virol 2008; 82:7379-87. [PMID: 18463154 DOI: 10.1128/jvi.00358-08] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Adeno-associated virus type 2 (AAV2) provokes a DNA damage response that mimics a stalled replication fork. We have previously shown that this response is dependent on ataxia telangiectasia-mutated and Rad3-related kinase and involves recruitment of DNA repair proteins into foci associated with AAV2 DNA. Here, we investigated whether recombinant AAV2 (rAAV2) vectors are able to produce a similar response. Surprisingly, the results show that both single-stranded and double-stranded green fluorescent protein-expressing rAAV2 vectors are defective in producing such a response. We show that the DNA damage signaling initiated by AAV2 was not due to the virus-encoded Rep or viral capsid proteins. UV-inactivated AAV2 induced a response similar to that of untreated AAV2. This type of DNA damage response was not provoked by other DNA molecules, such as single-stranded bacteriophage M13 or plasmid DNAs. Rather, the results indicate that the ability of AAV2 to produce a DNA damage response can be attributed to the presence of cis-acting AAV2 DNA sequences, which are absent in rAAV2 vectors and could function as origins of replication creating stalled replication complexes. This hypothesis was tested by using a single-stranded rAAV2 vector containing the p5 AAV2 sequence that has previously been shown to enhance AAV2 replication. This vector was indeed able to trigger DNA damage signaling. These findings support the conclusion that efficient formation of AAV2 replication complexes is required for this AAV2-induced DNA damage response and provide an explanation for the poor response in rAAV2-infected cells.
Collapse
|