51
|
Si H, Rittenour WR, Xu K, Nicksarlian M, Calvo AM, Harris SD. Morphogenetic and developmental functions of the Aspergillus nidulans homologues of the yeast bud site selection proteins Bud4 and Axl2. Mol Microbiol 2012; 85:252-70. [PMID: 22651396 DOI: 10.1111/j.1365-2958.2012.08108.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The yeast bud site selection system represents a paradigm for understanding how fungal cells regulate the formation of a polarity axis. In Saccharomyces cerevisiae, Bud4 and Axl2 are components of the axial bud site marker. To address the possibility that these proteins regulate cellular morphogenesis in filamentous fungi, we have characterized homologues of Bud4 and Axl2 in Aspergillus nidulans. Our results show that Bud4 is involved in septum formation in both hyphae and developing conidiophores. Whereas Axl2 appears to have no obvious role in hyphal growth, it is required for the regulation of phialide morphogenesis during conidiation. In particular, Axl2 localizes to the phialide-spore junction, where it appears to promote the recruitment of septins. Furthermore, the developmental regulators BrlA and AbaA control the expression of Axl2. Additional studies indicate that Axl2 is also involved in the regulation of sexual development, not only in A. nidulans, but also in the phylogenetically unrelated fungus Fusarium graminearum. Our results suggest that Axl2 plays a key role in phialide morphogenesis and/or function during conidiation in the aspergilli.
Collapse
Affiliation(s)
- Haoyu Si
- Department of Plant Pathology, University of Nebraska, Lincoln, NE 68588-0660, USA
| | | | | | | | | | | |
Collapse
|
52
|
Abstract
Filamentous growth is a nutrient-regulated growth response that occurs in many fungal species. In pathogens, filamentous growth is critical for host-cell attachment, invasion into tissues, and virulence. The budding yeast Saccharomyces cerevisiae undergoes filamentous growth, which provides a genetically tractable system to study the molecular basis of the response. Filamentous growth is regulated by evolutionarily conserved signaling pathways. One of these pathways is a mitogen activated protein kinase (MAPK) pathway. A remarkable feature of the filamentous growth MAPK pathway is that it is composed of factors that also function in other pathways. An intriguing challenge therefore has been to understand how pathways that share components establish and maintain their identity. Other canonical signaling pathways-rat sarcoma/protein kinase A (RAS/PKA), sucrose nonfermentable (SNF), and target of rapamycin (TOR)-also regulate filamentous growth, which raises the question of how signals from multiple pathways become integrated into a coordinated response. Together, these pathways regulate cell differentiation to the filamentous type, which is characterized by changes in cell adhesion, cell polarity, and cell shape. How these changes are accomplished is also discussed. High-throughput genomics approaches have recently uncovered new connections to filamentous growth regulation. These connections suggest that filamentous growth is a more complex and globally regulated behavior than is currently appreciated, which may help to pave the way for future investigations into this eukaryotic cell differentiation behavior.
Collapse
|
53
|
McMurray MA, Stefan CJ, Wemmer M, Odorizzi G, Emr SD, Thorner J. Genetic interactions with mutations affecting septin assembly reveal ESCRT functions in budding yeast cytokinesis. Biol Chem 2012; 392:699-712. [PMID: 21824003 DOI: 10.1515/bc.2011.091] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Membrane trafficking via targeted exocytosis to the Saccharomyces cerevisiae bud neck provides new membrane and membrane-associated factors that are critical for cytokinesis. It remains unknown whether yeast plasma membrane abscission, the final step of cytokinesis, occurs spontaneously following extensive vesicle fusion, as in plant cells, or requires dedicated membrane fission machinery, as in cultured mammalian cells. Components of the endosomal sorting complexes required for transport (ESCRT) pathway, or close relatives thereof, appear to participate in cytokinetic abscission in various cell types, but roles in cell division had not been documented in budding yeast, where ESCRTs were first characterized. By contrast, the septin family of filament-forming cytoskeletal proteins were first identified by their requirement for yeast cell division. We show here that mutations in ESCRT-encoding genes exacerbate the cytokinesis defects of cla4Δ or elm1Δ mutants, in which septin assembly is perturbed at an early stage in cell division, and alleviate phenotypes of cells carrying temperature-sensitive alleles of a septin-encoding gene, CDC10. Elevated chitin synthase II (Chs2) levels coupled with aberrant morphogenesis and chitin deposition in elm1Δ cells carrying ESCRT mutations suggest that ESCRTs normally enhance the efficiency of cell division by promoting timely endocytic turnover of key cytokinetic enzymes.
Collapse
Affiliation(s)
- Michael A McMurray
- Division of Biochemistry and Molecular Biology, Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720-3202, USA
| | | | | | | | | | | |
Collapse
|
54
|
The septin AspB in Aspergillus nidulans forms bars and filaments and plays roles in growth emergence and conidiation. EUKARYOTIC CELL 2012; 11:311-23. [PMID: 22247265 DOI: 10.1128/ec.05164-11] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
In yeast, septins form rings at the mother-bud neck and function as diffusion barriers. In animals, septins form filaments that can colocalize with other cytoskeletal elements. In the filamentous fungus Aspergillus nidulans there are five septin genes, aspA (an ortholog of Saccharomyces cerevisiae CDC11), aspB (an ortholog of S. cerevisiae CDC3), aspC (an ortholog of S. cerevisiae CDC12), aspD (an ortholog of S. cerevisiae CDC10), and aspE (found only in filamentous fungi). The aspB gene was previously reported to be the most highly expressed Aspergillus nidulans septin and to be essential. Using improved gene targeting techniques, we found that deletion of aspB is not lethal but results in delayed septation, increased emergence of germ tubes and branches, and greatly reduced conidiation. We also found that AspB-green fluorescent protein (GFP) localizes as rings and collars at septa, branches, and emerging layers of the conidiophore and as bars and filaments in conidia and hyphae. Bars are found in dormant and isotropically expanding conidia and in subapical nongrowing regions of hyphae and display fast movements. Filaments form as the germ tube emerges, localize to hyphal and branch tips, and display slower movements. All visible AspB-GFP structures are retained in ΔaspD and lost in ΔaspA and ΔaspC strains. Interestingly, in the ΔaspE mutant, AspB-GFP rings, bars, and filaments are visible in early growth, but AspB-GFP rods and filaments disappear after septum formation. AspE orthologs are only found in filamentous fungi, suggesting that this class of septins might be required for stability of septin bars and filaments in highly polar cells.
Collapse
|
55
|
Abstract
Studies of the processes leading to the construction of a bud and its separation from the mother cell in Saccharomyces cerevisiae have provided foundational paradigms for the mechanisms of polarity establishment, cytoskeletal organization, and cytokinesis. Here we review our current understanding of how these morphogenetic events occur and how they are controlled by the cell-cycle-regulatory cyclin-CDK system. In addition, defects in morphogenesis provide signals that feed back on the cyclin-CDK system, and we review what is known regarding regulation of cell-cycle progression in response to such defects, primarily acting through the kinase Swe1p. The bidirectional communication between morphogenesis and the cell cycle is crucial for successful proliferation, and its study has illuminated many elegant and often unexpected regulatory mechanisms. Despite considerable progress, however, many of the most puzzling mysteries in this field remain to be resolved.
Collapse
Affiliation(s)
- Audrey S. Howell
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina 27710
| | - Daniel J. Lew
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina 27710
| |
Collapse
|
56
|
Mitchell L, Lau A, Lambert JP, Zhou H, Fong Y, Couture JF, Figeys D, Baetz K. Regulation of septin dynamics by the Saccharomyces cerevisiae lysine acetyltransferase NuA4. PLoS One 2011; 6:e25336. [PMID: 21984913 PMCID: PMC3184947 DOI: 10.1371/journal.pone.0025336] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2011] [Accepted: 09/01/2011] [Indexed: 01/08/2023] Open
Abstract
In the budding yeast Saccharomyces cerevisiae, the lysine acetyltransferase NuA4 has been linked to a host of cellular processes through the acetylation of histone and non-histone targets. To discover proteins regulated by NuA4-dependent acetylation, we performed genome-wide synthetic dosage lethal screens to identify genes whose overexpression is toxic to non-essential NuA4 deletion mutants. The resulting genetic network identified a novel link between NuA4 and septin proteins, a group of highly conserved GTP-binding proteins that function in cytokinesis. We show that acetyltransferase-deficient NuA4 mutants have defects in septin collar formation resulting in the development of elongated buds through the Swe1-dependent morphogenesis checkpoint. We have discovered multiple sites of acetylation on four of the five yeast mitotic septins, Cdc3, Cdc10, Cdc12 and Shs1, and determined that NuA4 can acetylate three of the four in vitro. In vivo we find that acetylation levels of both Shs1 and Cdc10 are reduced in a catalytically inactive esa1 mutant. Finally, we determine that cells expressing a Shs1 protein with decreased acetylation in vivo have defects in septin localization that are similar to those observed in NuA4 mutants. These findings provide the first evidence that yeast septin proteins are acetylated and that NuA4 impacts septin dynamics.
Collapse
Affiliation(s)
- Leslie Mitchell
- Ottawa Institute of Systems Biology, Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| | - Andrea Lau
- Ottawa Institute of Systems Biology, Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| | - Jean-Philippe Lambert
- Ottawa Institute of Systems Biology, Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| | - Hu Zhou
- Ottawa Institute of Systems Biology, Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| | - Ying Fong
- Ottawa Institute of Systems Biology, Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| | - Jean-François Couture
- Ottawa Institute of Systems Biology, Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| | - Daniel Figeys
- Ottawa Institute of Systems Biology, Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| | - Kristin Baetz
- Ottawa Institute of Systems Biology, Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
57
|
Ho CW, Chen HT, Hwang J. UBC9 autosumoylation negatively regulates sumoylation of septins in Saccharomyces cerevisiae. J Biol Chem 2011; 286:21826-34. [PMID: 21518767 PMCID: PMC3122237 DOI: 10.1074/jbc.m111.234914] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2011] [Revised: 04/20/2011] [Indexed: 11/06/2022] Open
Abstract
Sumoylation regulates a wide range of cellular processes. However, little is known about the regulation of the SUMO machinery. In this study, we demonstrate that two lysine residues (Lys-153 and Lys-157) in the C-terminal region of the yeast E2-conjugating enzyme Ubc9 are the major and minor autosumoylation sites, respectively. Surprisingly, mutation of Lys-157 (ubc9(K157R)) significantly stimulates the level of Ubc9 autosumoylation at Lys-153. The functional role of Ubc9 autosumoylation is exemplified in our findings that cell cycle-dependent sumoylation of cytoskeletal septin proteins is inversely correlated with the Ubc9 autosumoylation level and that mutation of the Ubc9 autosumoylation sites results in aberrant cell morphology. Our study elucidates a regulatory mechanism that utilizes automodification of the E2 enzyme of the sumoylation machinery to control substrate sumoylation.
Collapse
Affiliation(s)
- Chia-Wen Ho
- From the Graduate Institute of Life Sciences, National Defense Medical Center, Taipei 114, Taiwan and
- the Institute of Molecular Biology, Academia Sinica, Taipei 115, Taiwan
| | - Hung-Ta Chen
- the Institute of Molecular Biology, Academia Sinica, Taipei 115, Taiwan
| | - Jaulang Hwang
- From the Graduate Institute of Life Sciences, National Defense Medical Center, Taipei 114, Taiwan and
- the Institute of Molecular Biology, Academia Sinica, Taipei 115, Taiwan
| |
Collapse
|
58
|
Gutiérrez-Escribano P, González-Novo A, Suárez MB, Li CR, Wang Y, de Aldana CRV, Correa-Bordes J. CDK-dependent phosphorylation of Mob2 is essential for hyphal development in Candida albicans. Mol Biol Cell 2011; 22:2458-69. [PMID: 21593210 PMCID: PMC3135472 DOI: 10.1091/mbc.e11-03-0205] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
In yeast, CDKs and the NDR kinase Cbk1 are regulators of polarized growth. It is found that the CDK Cdc28 regulates the function of Cbk1 in response to hypha-inducing conditions by direct phosphorylation of Mob2, a conserved regulatory subunit of Cbk1. Nuclear Dbf2-related (NDR) protein kinases are essential components of regulatory pathways involved in cell morphogenesis, cell cycle control, and viability in eukaryotic cells. For their activity and function, these kinases require interaction with Mob proteins. However, little is known about how the Mob proteins are regulated. In Candida albicans, the cyclin-dependent kinase (CDK) Cdc28 and the NDR kinase Cbk1 are required for hyphal growth. Here we demonstrate that Mob2, the Cbk1 activator, undergoes a Cdc28-dependent differential phosphorylation on hyphal induction. Mutations in the four CDK consensus sites in Mob2 to Ala significantly impaired hyphal development. The mutant cells produced short hyphae with enlarged tips that displayed an illicit activation of cell separation. We also show that Cdc28 phosphorylation of Mob2 is essential for the maintenance of polarisome components at hyphal tips but not at bud tips during yeast growth. Thus we have found a novel signaling pathway by which Cdc28 controls Cbk1 through the regulatory phosphorylation of Mob2, which is crucial for normal hyphal development.
Collapse
|
59
|
Raspelli E, Cassani C, Lucchini G, Fraschini R. Budding yeast Dma1 and Dma2 participate in regulation of Swe1 levels and localization. Mol Biol Cell 2011; 22:2185-97. [PMID: 21562220 PMCID: PMC3128522 DOI: 10.1091/mbc.e11-02-0127] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Timely down-regulation of the evolutionarily conserved protein kinase Swe1 plays an important role in cell cycle control, as Swe1 can block nuclear division through inhibitory phosphorylation of the catalytic subunit of cyclin-dependent kinase. In particular, Swe1 degradation is important for budding yeast cell survival in case of DNA replication stress, whereas it is inhibited by the morphogenesis checkpoint in response to alterations in actin cytoskeleton or septin structure. We show that the lack of the Dma1 and Dma2 ubiquitin ligases, which moderately affects Swe1 localization and degradation during an unperturbed cell cycle with no apparent phenotypic effects, is toxic for cells that are partially defective in Swe1 down-regulation. Moreover, Swe1 is stabilized, restrained at the bud neck, and hyperphosphorylated in dma1Δ dma2Δ cells subjected to DNA replication stress, indicating that the mechanism stabilizing Swe1 under these conditions is different from the one triggered by the morphogenesis checkpoint. Finally, the Dma proteins are required for proper Swe1 ubiquitylation. Taken together, the data highlight a previously unknown role of these proteins in the complex regulation of Swe1 and suggest that they might contribute to control, directly or indirectly, Swe1 ubiquitylation.
Collapse
Affiliation(s)
- Erica Raspelli
- Dipartimento di Biotecnologie e Bioscienze, Università di Milano-Bicocca, 20126 Milano, Italy
| | | | | | | |
Collapse
|
60
|
Guo J, Gong T, Gao XD. Identification of an amphipathic helix important for the formation of ectopic septin spirals and axial budding in yeast axial landmark protein Bud3p. PLoS One 2011; 6:e16744. [PMID: 21408200 PMCID: PMC3050797 DOI: 10.1371/journal.pone.0016744] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2010] [Accepted: 01/12/2011] [Indexed: 12/15/2022] Open
Abstract
Correct positioning of polarity axis in response to internal or external cues is central to cellular morphogenesis and cell fate determination. In the budding yeast Saccharomyces cerevisiae, Bud3p plays a key role in the axial bud-site selection (axial budding) process in which cells assemble the new bud next to the preceding cell division site. Bud3p is thought to act as a component of a spatial landmark. However, it is not clear how Bud3p interacts with other components of the landmark, such as the septins, to control axial budding. Here, we report that overexpression of Bud3p causes the formation of small septin rings (∼1 µm in diameter) and arcs aside from previously reported spiral-like septin structures. Bud3p closely associates with the septins in vivo as Bud3p colocalizes with these aberrant septin structures and forms a complex with two septins, Cdc10p and Cdc11p. The interaction of Bud3p with the septins may involve multiple regions of Bud3p including 1–858, 850–1220, and 1221–1636 a.a. since they all target to the bud neck but exhibit different effects on septin organization when overexpressed. In addition, our study reveals that the axial budding function of Bud3p is mediated by the N-terminal region 1–858. This region shares an amphipathic helix (850–858) crucial for bud neck targeting with the middle portion 850–1103 involved in the formation of ectopic septin spirals and rings. Interestingly, the Dbl-homology domain located in 1–858 is dispensable for axial bud-site selection. Our findings suggest that multiple regions of Bud3p ensure efficient targeting of Bud3p to the bud neck in the assembly of the axial landmark and distinct domains of Bud3p are involved in axial bud-site selection and other cellular processes.
Collapse
Affiliation(s)
- Jia Guo
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Ting Gong
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Xiang-Dong Gao
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
- * E-mail:
| |
Collapse
|
61
|
Gladfelter AS. Guides to the final frontier of the cytoskeleton: septins in filamentous fungi. Curr Opin Microbiol 2010; 13:720-6. [PMID: 20934902 DOI: 10.1016/j.mib.2010.09.012] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2010] [Accepted: 09/15/2010] [Indexed: 01/16/2023]
Abstract
Recent investigations have established core principles by which septins can form non-polar filaments in vitro. How cells then assemble, regulate and use septin polymers is still only beginning to be understood. It is clear that there is plasticity and variability in septin organization across diverse species and cell types. Work in the filamentous fungi has been invaluable in discovering this variation in form and function. In particular filamentous fungi display many forms of higher order septin structures and study of septins in these systems has led to insights into septin assembly, dynamics and regulation. Importantly in many cases work in these alternative systems reveal differences to how septins may be organized, functioning or regulated in Saccharomyces cerevisiae. Here I review the novel aspects of septin biology found in filamentous fungi and raise many open questions about these enigmatic polymers that should guide future study.
Collapse
Affiliation(s)
- Amy S Gladfelter
- Department of Biological Sciences, Dartmouth College, Hanover, NH 03755, United States.
| |
Collapse
|
62
|
Alvarez-Tabarés I, Pérez-Martín J. Septins from the phytopathogenic fungus Ustilago maydis are required for proper morphogenesis but dispensable for virulence. PLoS One 2010; 5:e12933. [PMID: 20885997 PMCID: PMC2946335 DOI: 10.1371/journal.pone.0012933] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2010] [Accepted: 08/31/2010] [Indexed: 01/09/2023] Open
Abstract
Background Septins are a highly conserved family of GTP-binding proteins involved in multiple cellular functions, including cell division and morphogenesis. Studies of septins in fungal cells underpin a clear correlation between septin-based structures and fungal morphology, providing clues to understand the molecular frame behind the varied morphologies found in fungal world. Methodology/Principal Findings Ustilago maydis genome has the ability to encode four septins. Here, using loss-of-function as well as GFP-tagged alleles of these septin genes, we investigated the roles of septins in the morphogenesis of this basidiomycete fungus. We described that septins in U. maydis could assemble into at least three different structures coexisting in the same cell: bud neck collars, band-like structures at the growing tip, and long septin fibers that run from pole to pole near the cell cortex. We also found that in the absence of septins, U. maydis cells lost their elongated shape, became wider at the central region and ended up losing their polarity, pointing to an important role of septins in the morphogenesis of this fungus. These morphological defects were alleviated in the presence of an osmotic stabilizer suggesting that absence of septins affected the proper formation of the cell wall, which was coherent with a higher sensitivity of septin defective cells to drugs that affect cell wall construction as well as exocytosis. As U. maydis is a phytopathogen, we analyzed the role of septins in virulence and found that in spite of the described morphological defects, septin mutants were virulent in corn plants. Conclusions/Significance Our results indicated a major role of septins in morphogenesis in U. maydis. However, in contrast to studies in other fungal pathogens, in which septins were reported to be necessary during the infection process, we found a minor role of septins during corn infection by U. maydis.
Collapse
Affiliation(s)
- Isabel Alvarez-Tabarés
- Departamento de Biotecnología Microbiana, Centro Nacional de Biotecnología CSIC, Madrid, Spain
| | | |
Collapse
|
63
|
Survival defects of Cryptococcus neoformans mutants exposed to human cerebrospinal fluid result in attenuated virulence in an experimental model of meningitis. Infect Immun 2010; 78:4213-25. [PMID: 20696827 DOI: 10.1128/iai.00551-10] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cryptococcus neoformans is a fungal pathogen that encounters various microenvironments during growth in the mammalian host, including intracellular vacuoles, blood, and cerebrospinal fluid (CSF). Because the CSF is isolated by the blood-brain barrier, we hypothesize that CSF presents unique stresses that C. neoformans must overcome to establish an infection. We assayed 1,201 mutants for survival defects in growth media, saline, and human CSF. We assessed CSF-specific mutants for (i) mutant survival in both human bronchoalveolar lavage (BAL) fluid and fetal bovine serum (FBS), (ii) survival in macrophages, and (iii) virulence using both Caenorhabditis elegans and rabbit models of cryptococcosis. Thirteen mutants exhibited significant survival defects unique to CSF. The mutations of three of these mutants were recreated in the clinical serotype A strain H99: deletions of the genes for a cation ATPase transporter (ena1Δ), a putative NEDD8 ubiquitin-like protein (rub1Δ), and a phosphatidylinositol 4-kinase (pik1Δ). Mutant survival rates in yeast media, saline, and BAL fluid were similar to those of the wild type; however, survival in FBS was reduced but not to the levels in CSF. These mutant strains also exhibited decreased intracellular survival in macrophages, various degrees of virulence in nematodes, and severe attenuation of survival in a rabbit meningitis model. We analyzed the CSF by mass spectrometry for candidate compounds responsible for the survival defect. Our findings indicate that the genes required for C. neoformans survival in CSF ex vivo are necessary for survival and infection in this unique host environment.
Collapse
|
64
|
Saunders DG, Dagdas YF, Talbot NJ. Spatial uncoupling of mitosis and cytokinesis during appressorium-mediated plant infection by the rice blast fungus Magnaporthe oryzae. THE PLANT CELL 2010; 22:2417-28. [PMID: 20639448 PMCID: PMC2929119 DOI: 10.1105/tpc.110.074492] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2010] [Revised: 06/08/2010] [Accepted: 06/28/2010] [Indexed: 05/07/2023]
Abstract
To infect plants, many pathogenic fungi develop specialized infection structures called appressoria. Here, we report that appressorium development in the rice blast fungus Magnaporthe oryzae involves an unusual cell division, in which nuclear division is spatially uncoupled from the site of cytokinesis and septum formation. The position of the appressorium septum is defined prior to mitosis by formation of a heteromeric septin ring complex, which was visualized by spatial localization of Septin4:green fluorescent protein (GFP) and Septin5:GFP fusion proteins. Mitosis in the fungal germ tube is followed by long-distance nuclear migration and rapid formation of an actomyosin contractile ring in the neck of the developing appressorium, at a position previously marked by the septin complex. By contrast, mutants impaired in appressorium development, such as Deltapmk1 and DeltacpkA regulatory mutants, undergo coupled mitosis and cytokinesis within the germ tube. Perturbation of the spatial control of septation, by conditional mutation of the SEPTATION-ASSOCIATED1 gene of M. oryzae, prevented the fungus from causing rice blast disease. Overexpression of SEP1 did not affect septation during appressorium formation, but instead led to decoupling of nuclear division and cytokinesis in nongerminated conidial cells. When considered together, these results indicate that SEP1 is essential for determining the position and frequency of cell division sites in M. oryzae and demonstrate that differentiation of appressoria requires a cytokinetic event that is distinct from cell divisions within hyphae.
Collapse
Affiliation(s)
| | | | - Nicholas J. Talbot
- School of Biosciences, University of Exeter, Exeter EX4 4QD, United Kingdom
| |
Collapse
|
65
|
Larson JR, Kozubowski L, Tatchell K. Changes in Bni4 localization induced by cell stress in Saccharomyces cerevisiae. J Cell Sci 2010; 123:1050-9. [PMID: 20197406 DOI: 10.1242/jcs.066258] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Septin complexes at the bud neck in Saccharomyces cerevisiae serve as a scaffold for proteins involved in signaling, cell cycle control, and cell wall synthesis. Many of these bind asymmetrically, associating with either the mother- or daughter-side of the neck. Septin structures are inherently apolar so the basis for the asymmetric binding remains unknown. Bni4, a regulatory subunit of yeast protein phosphatase type 1, Glc7, binds to the outside of the septin ring prior to bud formation and remains restricted to the mother-side of the bud neck after bud emergence. Bni4 is responsible for targeting Glc7 to the mother-side of the bud neck for proper deposition of the chitin ring. We show here that Bni4 localizes symmetrically, as two distinct rings on both sides of the bud neck following energy depletion or activation of cell cycle checkpoints. Our data indicate that loss of Bni4 asymmetry can occur via at least two different mechanisms. Furthermore, we show that Bni4 has a Swe1-dependent role in regulating the cell morphogenesis checkpoint in response to hydroxyurea, which suggests that the change in localization of Bni4 following checkpoint activation may help stabilize the cell cycle regulator Swe1 during cell cycle arrest.
Collapse
Affiliation(s)
- Jennifer R Larson
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, Shreveport, LA 71130, USA
| | | | | |
Collapse
|
66
|
Justa-Schuch D, Heilig Y, Richthammer C, Seiler S. Septum formation is regulated by the RHO4-specific exchange factors BUD3 and RGF3 and by the landmark protein BUD4 in Neurospora crassa. Mol Microbiol 2010; 76:220-35. [PMID: 20199606 DOI: 10.1111/j.1365-2958.2010.07093.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Rho GTPases have multiple, yet poorly defined functions during cytokinesis. By screening a Neurospora crassa knock-out collection for Rho guanine nucleotide exchange factor (GEF) mutants that phenocopy rho-4 defects (i.e. lack of septa, slow growth, abnormal branching and cytoplasmic leakage), we identified two strains defective in homologues of Bud3p and Rgf3 of budding and fission yeast respectively. The function of these proteins as RHO4-specific GEFs was determined by in vitro assays. In vivo microscopy suggested that the two GEFs and their target GTPase act as two independent modules during the selection of the septation site and the actual septation process. Furthermore, we determined that the N. crassa homologue of the anillinrelated protein BUD4 is required for septum initiation and that its deficiency leads to typical rho4 defects. Localization of BUD4 as a cortical ring prior to septation initiation was independent of functional BUD3 or RGF3. These data position BUD4 upstream of both RHO4 functions in the septation process and make BUD4 a prime candidate for a cortical marker protein involved in the selection of future septation sites. The persistence of both BUD proteins and of RHO4 at the septal pore suggests additional functions of these proteins at mature septa.
Collapse
Affiliation(s)
- Daniela Justa-Schuch
- Institut für Mikrobiologie und Genetik, Universität Göttingen, Göttingen, Germany
| | | | | | | |
Collapse
|
67
|
Chen S, Liu D, Finley RL, Greenberg ML. Loss of mitochondrial DNA in the yeast cardiolipin synthase crd1 mutant leads to up-regulation of the protein kinase Swe1p that regulates the G2/M transition. J Biol Chem 2010; 285:10397-407. [PMID: 20086012 DOI: 10.1074/jbc.m110.100784] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The anionic phospholipid cardiolipin and its precursor phosphatidylglycerol are synthesized and localized in the mitochondrial inner membrane of eukaryotes. They are required for structural integrity and optimal activities of a large number of mitochondrial proteins and complexes. Previous studies showed that loss of anionic phospholipids leads to cell inviability in the absence of mitochondrial DNA. However, the mechanism linking loss of anionic phospholipids to petite lethality was unclear. To elucidate the mechanism, we constructed a crd1Deltarho degrees mutant, which is viable and mimics phenotypes of pgs1Delta in the petite background. We found that loss of cardiolipin in rho degrees cells leads to elevated expression of Swe1p, a morphogenesis checkpoint protein. Moreover, the retrograde pathway is activated in crd1Deltarho degrees cells, most likely due to the exacerbation of mitochondrial dysfunction. Interestingly, the expression of SWE1 is dependent on retrograde regulation as elevated expression of SWE1 is suppressed by deletion of RTG2 or RTG3. Taken together, these findings indicate that activation of the retrograde pathway leads to up-regulation of SWE1 in crd1Deltarho degrees cells. These results suggest that anionic phospholipids are required for processes that are essential for normal cell division in rho degrees cells.
Collapse
Affiliation(s)
- Shuliang Chen
- Department of Biological Sciences, Wayne State University, Detroit, Michigan 48202, USA
| | | | | | | |
Collapse
|
68
|
Ballou ER, Nichols CB, Miglia KJ, Kozubowski L, Alspaugh JA. Two CDC42 paralogues modulate Cryptococcus neoformans thermotolerance and morphogenesis under host physiological conditions. Mol Microbiol 2009; 75:763-80. [PMID: 20025659 DOI: 10.1111/j.1365-2958.2009.07019.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The precise regulation of morphogenesis is a key mechanism by which cells respond to a variety of stresses, including those encountered by microbial pathogens in the host. The polarity protein Cdc42 regulates cellular morphogenesis throughout eukaryotes, and we explore the role of Cdc42 proteins in the host survival of the human fungal pathogen Cryptococcus neoformans. Uniquely, C. neoformans has two functional Cdc42 paralogues, Cdc42 and Cdc420. Here we investigate the contribution of each paralogue to resistance to host stress. In contrast to non-pathogenic model organisms, C. neoformans Cdc42 proteins are not required for viability under non-stress conditions but are required for resistance to high temperature. The paralogues play differential roles in actin and septin organization and act downstream of C. neoformans Ras1 to regulate its morphogenesis sub-pathway, but not its effects on mating. Cdc42, and not Cdc420, is upregulated in response to temperature stress and is required for virulence in a murine model of cryptococcosis. The C. neoformans Cdc42 proteins likely perform complementary functions with other Rho-like GTPases to control cell polarity, septin organization and hyphal transitions that allow survival in the environment and in the host.
Collapse
Affiliation(s)
- Elizabeth R Ballou
- Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | | | | | | | | |
Collapse
|
69
|
Septins AspA and AspC are important for normal development and limit the emergence of new growth foci in the multicellular fungus Aspergillus nidulans. EUKARYOTIC CELL 2009; 9:155-63. [PMID: 19949047 DOI: 10.1128/ec.00269-09] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Septins are cytoskeletal proteins found in fungi, animals, and microsporidia, where they form multiseptin complexes that act as scaffolds recruiting and organizing other proteins to ensure normal cell division and development. Here we characterize the septins AspA and AspC in the multicellular, filamentous fungus Aspergillus nidulans. Mutants with deletions of aspA, aspC, or both aspA and aspC show early and increased germ tube and branch emergence, abnormal septation, and disorganized conidiophores. Strains in which the native aspA has been replaced with a single copy of aspA-GFP driven by the native septin promoter or in which aspC has been replaced with a single copy of aspC-GFP driven by the native promoter show wild-type phenotypes. AspA-GFP and AspC-GFP show identical localization patterns as discrete spots or bars in dormant and expanding conidia, as rings at forming septa and at the bases of emerging germ tubes and branches, and as punctate spots and filaments in the cytoplasm and at the cell cortex. In conidiophores, AspA-GFP and AspC-GFP localize as diffuse bands or rings at the bases of emerging layers and conidial chains and as discrete spots or bars in newly formed conidia. AspA-GFP forms abnormal structures in DeltaaspC strains while AspC-GFP does not localize in DeltaaspA strains. Our results suggest that AspA and AspC interact with each other and are important for normal development, especially for preventing the inappropriate emergence of germ tubes and branches. This is the first report of a septin limiting the emergence of new growth foci in any organism.
Collapse
|
70
|
Kozubowski L, Heitman J. Septins enforce morphogenetic events during sexual reproduction and contribute to virulence of Cryptococcus neoformans. Mol Microbiol 2009; 75:658-75. [PMID: 19943902 DOI: 10.1111/j.1365-2958.2009.06983.x] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Septins are conserved, cytoskeletal GTPases that contribute to cytokinesis, exocytosis, cell surface organization and vesicle fusion by mechanisms that are poorly understood. Roles of septins in morphogenesis and virulence of a human pathogen and basidiomycetous yeast Cryptococcus neoformans were investigated. In contrast to a well-established paradigm in S. cerevisiae, Cdc3 and Cdc12 septin homologues are dispensable for growth in C. neoformans yeast cells at 24 degrees C but are essential at 37 degrees C. In a bilateral cross between septin mutants, cells fuse but the resulting hyphae exhibit morphological abnormalities, including lack of properly fused specialized clamp cells and failure to produce spores. Interestingly, post-mating hyphae of the septin mutants have a defect in nuclear distribution. Thus, septins are essential for the development of spores, clamp cell fusion and also play a specific role in nuclear dynamics in hyphae. In the post-mating hyphae the septins localize to discrete sites in clamp connections, to the septa and the bases of the initial emerging spores. Strains lacking CDC3 or CDC12 exhibit significantly reduced virulence in a Galleria mellonella model of infection. Thus, C. neoformans septins are vital to morphology of the hyphae and contribute to virulence.
Collapse
Affiliation(s)
- Lukasz Kozubowski
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | | |
Collapse
|
71
|
Cao L, Yu W, Wu Y, Yu L. The evolution, complex structures and function of septin proteins. Cell Mol Life Sci 2009; 66:3309-23. [PMID: 19597764 PMCID: PMC11115805 DOI: 10.1007/s00018-009-0087-2] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2009] [Revised: 06/21/2009] [Accepted: 06/25/2009] [Indexed: 12/14/2022]
Abstract
The septin family is a conserved GTP-binding protein family and was originally discovered through genetic screening for budding yeast mutants. Septins are implicated in many cellular processes in fungi and metazoa. The function of septins usually depends on septin assembling into oligomeric complexes and highly ordered polymers. The expansion of the septin gene number in vertebrates increased the complex diversity of septins. In this review, we first discuss the evolution, structures and assembly of septin proteins in yeast and metazoa. Then, we review the function of septin proteins in cytokinesis, membrane remodeling and compartmentalization.
Collapse
Affiliation(s)
- Lihuan Cao
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University, 200433 Shanghai, People’s Republic of China
| | - Wenbo Yu
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University, 200433 Shanghai, People’s Republic of China
| | - Yanhua Wu
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University, 200433 Shanghai, People’s Republic of China
| | - Long Yu
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University, 200433 Shanghai, People’s Republic of China
| |
Collapse
|
72
|
Abstract
AbstractSeptins are a conserved family of GTP-binding proteins found in living organisms ranging from yeasts to mammals. They are able to polymerize and form hetero-oligomers that assemble into higher-order structures whose detailed molecular architecture has recently been described in different organisms. In Saccharomyces cerevisiae, septins exert numerous functions throughout the cell cycle, serving as scaffolds for many different proteins or as diffusion barriers at the bud neck. In other fungi, septins are required for the proper completion of diverse functions such as polarized growth or pathogenesis. Recent results from several fungi have revealed important differences in septin organization and regulation as compared with S. cerevisiae, especially during Candida albicans hyphal growth and in Ashbya gossypii. Here we focus on these recent findings, their relevance in the biology of these eukaryotes and in consequence the “renaissance” of the study of septin structures in cells showing a different kind of morphological behaviour.
Collapse
|
73
|
Slt2 and Rim101 contribute independently to the correct assembly of the chitin ring at the budding yeast neck in Saccharomyces cerevisiae. EUKARYOTIC CELL 2009; 8:1449-59. [PMID: 19633265 DOI: 10.1128/ec.00153-09] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In Saccharomyces cerevisiae, the simultaneous absence of Slt2 and Rim101 prevents growth in nonosmotically stabilized media (F. Castrejon et al., Eukaryot. Cell 5:507-517, 2006). The double mutant slt2Delta rim101Delta displays altered chitin rings, together with a significant reduction in the overall levels of chitin. Cultures of this mutant lyse upon transfer to nonosmotically stabilized media, mostly through the bud, and such lysis is partially prevented by deletion of the chitinase gene (CTS1). Growth of the slt2Delta rim101Delta double mutant was restored by the overexpression of the GFA1 or CCT7 genes, which code for two biologically unrelated proteins. Further characterization of the mutant and its suppressors indicated that both Slt2 and Rim101 were independently required for the correct assembly of the septum machinery and that their concomitant absence reduced Chs3 accumulation at the neck, leading to lower levels of chitin. GFA1 overexpression, as well as the addition of glucosamine to the growth medium, specifically suppressed the growth defects by activating chitin synthesis at the neck and restoring the normal assembly of the chitin ring. In contrast, overexpression of CCT7, a Cct chaperonin subunit, alleviated the defect in the septum machinery without affecting chitin synthesis. Both suppressors thus act by reducing neck fragility through different mechanisms and allow growth in nonstabilized media. This work reports new roles for Slt2 and Rim101 in septum formation in budding yeast and confirms the homeostatic role of the chitin ring in the maintenance of neck integrity during cell division.
Collapse
|
74
|
The Ccr4-Pop2-NOT mRNA deadenylase contributes to septin organization in Saccharomyces cerevisiae. Genetics 2009; 182:955-66. [PMID: 19487562 DOI: 10.1534/genetics.109.104414] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In yeast, assembly of the septins at the cell cortex is required for a series of key cell cycle events: bud-site selection, the morphogenesis and mitotic exit checkpoints, and cytokinesis. Here we establish that the Ccr4-Pop2-NOT mRNA deadenylase contributes to septin organization. mRNAs encoding regulators of septin assembly (Ccd42, Cdc24, Rga1, Rga2, Bem3, Gin4, Cla4, and Elm1) presented with short poly(A) tails at steady state in wild-type (wt) cells, suggesting their translation could be restricted by deadenylation. Deadenylation of septin regulators was dependent on the major cellular mRNA deadenylase Ccr4-Pop2-NOT, whereas the alternative deadenylase Pan2 played a minor role. Consistent with deadenylation of septin regulators being important for function, deletion of deadenylase subunits CCR4 or POP2, but not PAN2, resulted in septin morphology defects (e.g., ectopic bud-localized septin rings), particularly upon activation of the Cdc28-inhibitory kinase Swe1. Aberrant septin staining was also observed in the deadenylase-dead ccr4-1 mutant, demonstrating the deadenylase activity of Ccr4-Pop2 is required. Moreover, ccr4Delta, pop2Delta, and ccr4-1 mutants showed aberrant cell morphology previously observed in septin assembly mutants and exhibited genetic interactions with mutations that compromise septin assembly (shs1Delta, cla4Delta, elm1Delta, and gin4Delta). Mutations in the Not subunits of Ccr4-Pop2-NOT, which are thought to predominantly function in transcriptional control, also resulted in septin organization defects. Therefore, both mRNA deadenylase and transcriptional functions of Ccr4-Pop2-NOT contribute to septin organization in yeast.
Collapse
|
75
|
Zou J, Friesen H, Larson J, Huang D, Cox M, Tatchell K, Andrews B. Regulation of cell polarity through phosphorylation of Bni4 by Pho85 G1 cyclin-dependent kinases in Saccharomyces cerevisiae. Mol Biol Cell 2009; 20:3239-50. [PMID: 19458192 DOI: 10.1091/mbc.e08-12-1255] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
In the budding yeast Saccharomyces cerevisiae, the G1-specific cyclin-dependent kinases (Cdks) Cln1,2-Cdc28 and Pcl1,2-Pho85 are essential for ensuring that DNA replication and cell division are properly linked to cell polarity and bud morphogenesis. However, the redundancy of Cdks and cyclins means that identification of relevant Cdk substrates remains a significant challenge. We used array-based genetic screens (synthetic genetic array or SGA analysis) to dissect redundant pathways associated with G1 cyclins and identified Bni4 as a substrate of the Pcl1- and Pcl2-Pho85 kinases. BNI4 encodes an adaptor protein that targets several proteins to the bud neck. Deletion of BNI4 results in severe growth defects in the absence of the Cdc28 cyclins Cln1 and Cln2, and overexpression of BNI4 is toxic in yeast cells lacking the Pho85 cyclins Pcl1 and Pcl2. Phosphorylation of Bni4 by Pcl-Pho85 is necessary for its localization to the bud neck, and the bud neck structure can be disrupted by overexpressing BNI4 in pcl1Deltapcl2Delta mutant cells. Our data suggest that misregulated Bni4 may bind in an uncontrolled manner to an essential component that resides at the bud neck, causing catastrophic morphogenesis defects.
Collapse
Affiliation(s)
- Jian Zou
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 3E1, Canada
| | | | | | | | | | | | | |
Collapse
|
76
|
Neurodegeneration mutations in dynactin impair dynein-dependent nuclear migration. Proc Natl Acad Sci U S A 2009; 106:5147-52. [PMID: 19279216 DOI: 10.1073/pnas.0810828106] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Neurodegenerative disease in humans and mice can be caused by mutations affecting the microtubule motor dynein or its biochemical regulator, dynactin, a multiprotein complex required for dynein function (1-4). A single amino acid change, G59S, in the conserved cytoskeletal-associated protein glycine-rich (CAP-Gly) domain of the p150(glued) subunit of dynactin can cause motor neuron degeneration in humans and mice, which resembles ALS (2, 5-8). The molecular mechanism by which G59S impairs the function of dynein is not understood. Also, the relevance of the CAP-Gly domain for dynein motility has not been demonstrated in vivo. Here, we generate a mutant that is analogous to G59S in budding yeast, and show that this mutation produces a highly specific phenotype related to dynein function. The effect of the point mutation is identical to that of complete loss of the CAP-Gly domain. Our results demonstrate that the CAP-Gly domain has a critical role in the initiation and persistence of dynein-dependent movement of the mitotic spindle and nucleus, but it is otherwise dispensable for dynein-based movement. The need for this function appears to be context-dependent, and we speculate that CAP-Gly activity may only be necessary when dynein needs to overcome high force thresholds to produce movement.
Collapse
|
77
|
Of bars and rings: Hof1-dependent cytokinesis in multiseptated hyphae of Ashbya gossypii. Mol Cell Biol 2008; 29:771-83. [PMID: 19029253 DOI: 10.1128/mcb.01150-08] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
We analyzed the development of multiple septa in elongated multinucleated cells (hyphae) of the filamentous ascomycete Ashbya gossypii in which septation is apparently uncoupled from nuclear cycles. A key player for this compartmentalization is the PCH protein Hof1. Hyphae that are lacking this protein form neither actin rings nor septa but still elongate at wild-type speed. Using in vivo fluorescence microscopy, we present for the first time the coordination of cytokinesis and septation in multiseptated and multinucleated cells. Hof1, the type II myosin Myo1, the landmark protein Bud3, and the IQGAP Cyk1 form collars of cortical bars already adjacent to hyphal tips, thereby marking the sites of septation. While hyphae continue to elongate, these proteins gradually form cortical rings. This bar-to-ring transition depends on Hof1 and Cyk1 but not Myo1 and is required for actin ring assembly. The Fes/CIP4 homology (FCH) domain of Hof1 ensures efficient localization of Hof1, whereas ring integrity is conferred by the Src homology 3 (SH3) domain. Up to several hours after site selection, actin ring contraction leads to membrane invagination and subsequent cytokinesis. Simultaneously, a septum forms between the adjacent hyphal compartments, which do not separate. During evolution, A. gossypii lost the homologs of two enzymes essential for cell separation in Saccharomyces cerevisiae.
Collapse
|
78
|
Szkotnicki L, Crutchley JM, Zyla TR, Bardes ESG, Lew DJ. The checkpoint kinase Hsl1p is activated by Elm1p-dependent phosphorylation. Mol Biol Cell 2008; 19:4675-86. [PMID: 18768748 DOI: 10.1091/mbc.e08-06-0663] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Saccharomyces cerevisiae cells growing in the outdoor environment must adapt to sudden changes in temperature and other variables. Many such changes trigger stress responses that delay bud emergence until the cells can adapt. In such circumstances, the morphogenesis checkpoint delays mitosis until a bud has been formed. Mitotic delay is due to the Wee1 family mitotic inhibitor Swe1p, whose degradation is linked to bud emergence by the checkpoint kinase Hsl1p. Hsl1p is concentrated at the mother-bud neck through association with septin filaments, and it was reported that Hsl1p activation involved relief of autoinhibition in response to septin interaction. Here we challenge the previous identification of an autoinhibitory domain and show instead that Hsl1p activation involves the phosphorylation of threonine 273, promoted by the septin-associated kinase Elm1p. We identified elm1 mutants in a screen for defects in Swe1p degradation and show that a phosphomimic T273E mutation in HSL1 bypasses the need for Elm1p in this pathway.
Collapse
Affiliation(s)
- Lee Szkotnicki
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | | | |
Collapse
|
79
|
Wloga D, Strzyzewska-Jówko I, Gaertig J, Jerka-Dziadosz M. Septins stabilize mitochondria in Tetrahymena thermophila. EUKARYOTIC CELL 2008; 7:1373-86. [PMID: 18586950 PMCID: PMC2519767 DOI: 10.1128/ec.00085-08] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2008] [Accepted: 06/18/2008] [Indexed: 01/02/2023]
Abstract
We describe phylogenetic and functional studies of three septins in the free-living ciliate Tetrahymena thermophila. Both deletion and overproduction of septins led to vacuolization of mitochondria, destabilization of the nuclear envelope, and increased autophagy. All three green fluorescent protein-tagged septins localized to mitochondria. Specific septins localized to the outer mitochondrial membrane, to septa formed during mitochondrial scission, or to the mitochondrion-associated endoplasmic reticulum. The only other septins known to localize to mitochondria are human ARTS and murine M-septin, both alternatively spliced forms of Sep4 (S. Larisch, Cell Cycle 3:1021-1023, 2004; S. Takahashi, R. Inatome, H. Yamamura, and S. Yanagi, Genes Cells 8:81-93, 2003). It therefore appears that septins have been recruited to mitochondrial functions independently in at least two eukaryotic lineages and in both cases are involved in apoptotic events.
Collapse
Affiliation(s)
- D Wloga
- Department of Cellular Biology, University of Georgia, Athens, GA 30602-2607, USA
| | | | | | | |
Collapse
|
80
|
Saccharomyces cerevisiae Afr1 protein is a protein phosphatase 1/Glc7-targeting subunit that regulates the septin cytoskeleton during mating. EUKARYOTIC CELL 2008; 7:1246-55. [PMID: 18552279 DOI: 10.1128/ec.00024-08] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Glc7, the type1 serine/threonine phosphatase in the yeast Saccharomyces cerevisiae, is targeted by auxiliary subunits to numerous locations in the cell, where it regulates a range of physiological pathways. We show here that the accumulation of Glc7 at mating projections requires Afr1, a protein required for the formation of normal projections. AFR1-null mutants fail to target Glc7 to projections, and an Afr1 variant specifically defective in binding to Glc7 [Afr1(V546A F548A)] forms aberrant projections. The septin filaments in mating projections of AFR1 mutants initiate normally but then rearrange asymmetrically as the projection develops, suggesting that the Afr1-Glc7 holoenzyme may regulate the maintenance of septin complexes during mating. These results demonstrate a previously unknown role for Afr1 in targeting Glc7 to mating projections and in regulating the septin architecture during mating.
Collapse
|
81
|
Role of nucleotide binding in septin-septin interactions and septin localization in Saccharomyces cerevisiae. Mol Cell Biol 2008; 28:5120-37. [PMID: 18541672 DOI: 10.1128/mcb.00786-08] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Septins are a conserved family of eukaryotic GTP-binding, filament-forming proteins. In Saccharomyces cerevisiae, five septins (Cdc3p, Cdc10p, Cdc11p, Cdc12p, and Shs1p) form a complex and colocalize to the incipient bud site and as a collar of filaments at the neck of budded cells. Septins serve as a scaffold to localize septin-associated proteins involved in diverse processes and as a barrier to diffusion of membrane-associated proteins. Little is known about the role of nucleotide binding in septin function. Here, we show that Cdc3p, Cdc10p, Cdc11p, and Cdc12p all bind GTP and that P-loop and G4 motif mutations affect nucleotide binding and result in temperature-sensitive defects in septin localization and function. Two-hybrid, in vitro, and in vivo analyses show that for all four septins nucleotide binding is important in septin-septin interactions and complex formation. In the absence of complete complexes, septins do not localize to the cortex, suggesting septin localization factors interact only with complete complexes. When both complete and partial complexes are present, septins localize to the cortex but do not form a collar, perhaps because of an inability to form filaments. We find no evidence that nucleotide binding is specifically involved in the interaction of septins with septin-associated proteins.
Collapse
|
82
|
Larson JR, Bharucha JP, Ceaser S, Salamon J, Richardson CJ, Rivera SM, Tatchell K. Protein phosphatase type 1 directs chitin synthesis at the bud neck in Saccharomyces cerevisiae. Mol Biol Cell 2008; 19:3040-51. [PMID: 18480405 DOI: 10.1091/mbc.e08-02-0130] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Yeast chitin synthase III (CSIII) is targeted to the bud neck, where it is thought to be tethered by the septin-associated protein Bni4. Bni4 also associates with the yeast protein phosphatase (PP1) catalytic subunit, Glc7. To identify regions of Bni4 necessary for its targeting functions, we created a collection of 23 deletion mutants throughout the length of Bni4. Among the deletion variants that retain the ability to associate with the bud neck, only those deficient in Glc7 binding fail to target CSIII to the neck. A chimeric protein composed of the septin Cdc10 and the C-terminal Glc7-binding domain of Bni4 complements the defects of a bni4Delta mutant, indicating that the C-terminus of Bni4 is necessary and sufficient to target Glc7 and CSIII to the bud neck. A Cdc10-Glc7 chimera fails to target CSIII to the bud neck but is functional in the presence of the C-terminal Glc7-binding domain of Bni4. The conserved C-terminal PP1-binding domain of mammalian Phactr-1 can functionally substitute for the C-terminus of Bni4. These results suggest that the essential role of Bni4 is to target Glc7 to the neck and activate it toward substrates necessary for CSIII recruitment and synthesis of chitin at the bud neck.
Collapse
Affiliation(s)
- Jennifer R Larson
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, Shreveport, LA 71130, USA
| | | | | | | | | | | | | |
Collapse
|
83
|
Egelhofer TA, Villén J, McCusker D, Gygi SP, Kellogg DR. The septins function in G1 pathways that influence the pattern of cell growth in budding yeast. PLoS One 2008; 3:e2022. [PMID: 18431499 PMCID: PMC2291192 DOI: 10.1371/journal.pone.0002022] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2008] [Accepted: 03/24/2008] [Indexed: 11/21/2022] Open
Abstract
The septins are a conserved family of proteins that have been proposed to carry out diverse functions. In budding yeast, the septins become localized to the site of bud emergence in G1 but have not been thought to carry out important functions at this stage of the cell cycle. We show here that the septins function in redundant mechanisms that are required for formation of the bud neck and for the normal pattern of cell growth early in the cell cycle. The Shs1 septin shows strong genetic interactions with G1 cyclins and is directly phosphorylated by G1 cyclin-dependent kinases, consistent with a role in early cell cycle events. However, Shs1 phosphorylation site mutants do not show genetic interactions with the G1 cyclins or obvious defects early in the cell cycle. Rather, they cause an increased cell size and aberrant cell morphology that are dependent upon inhibitory phosphorylation of Cdk1 at the G2/M transition. Shs1 phosphorylation mutants also show defects in interaction with the Gin4 kinase, which associates with the septins during G2/M and plays a role in regulating inhibitory phosphorylation of Cdk1. Phosphorylation of Shs1 by G1 cyclin-dependent kinases plays a role in events that influence Cdk1 inhibitory phosphorylation.
Collapse
Affiliation(s)
- Thea A. Egelhofer
- Department of Molecular, Cell and Developmental Biology, University of California Santa Cruz, Santa Cruz, California, United States of America
| | - Judit Villén
- Department of Cell Biology, Taplin Biological Mass Spectrometry Facility, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Derek McCusker
- Department of Molecular, Cell and Developmental Biology, University of California Santa Cruz, Santa Cruz, California, United States of America
| | - Steven P. Gygi
- Department of Cell Biology, Taplin Biological Mass Spectrometry Facility, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Douglas R. Kellogg
- Department of Molecular, Cell and Developmental Biology, University of California Santa Cruz, Santa Cruz, California, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
84
|
González-Novo A, Correa-Bordes J, Labrador L, Sánchez M, Vázquez de Aldana CR, Jiménez J. Sep7 is essential to modify septin ring dynamics and inhibit cell separation during Candida albicans hyphal growth. Mol Biol Cell 2008; 19:1509-18. [PMID: 18234840 DOI: 10.1091/mbc.e07-09-0876] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
When Candida albicans yeast cells receive the appropriate stimulus, they switch to hyphal growth, characterized by continuous apical elongation and the inhibition of cell separation. The molecular basis of this inhibition is poorly known, despite its crucial importance for hyphal development. In C. albicans, septins are important for hypha formation and virulence. Here, we used fluorescence recovery after photobleaching analysis to characterize the dynamics of septin rings during yeast and hyphal growth. On hyphal induction, septin rings are converted to a hyphal-specific state, characterized by the presence of a frozen core formed by Sep7/Shs1, Cdc3 and Cdc12, whereas Cdc10 is highly dynamic and oscillates between the ring and the cytoplasm. Conversion of septin rings to the hyphal-specific state inhibits the translocation of Cdc14 phosphatase, which controls cell separation, to the hyphal septum. Modification of septin ring dynamics during hyphal growth is dependent on Sep7 and the hyphal-specific cyclin Hgc1, which partially controls Sep7 phosphorylation status and protein levels. Our results reveal a link between the cell cycle machinery and septin cytoskeleton dynamics, which inhibits cell separation in the filaments and is essential for hyphal morphogenesis.
Collapse
Affiliation(s)
- Alberto González-Novo
- Departmento Microbiología y Genética, Instituto de Microbiología Bioquímica, Universidad de Salamanca/Consejo Superior de Investigaciones Científicas, 37007 Salamanca, Spain
| | | | | | | | | | | |
Collapse
|
85
|
Loewen CJR, Young BP, Tavassoli S, Levine TP. Inheritance of cortical ER in yeast is required for normal septin organization. ACTA ACUST UNITED AC 2007; 179:467-83. [PMID: 17984322 PMCID: PMC2064793 DOI: 10.1083/jcb.200708205] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
How cells monitor the distribution of organelles is largely unknown. In budding yeast, the largest subdomain of the endoplasmic reticulum (ER) is a network of cortical ER (cER) that adheres to the plasma membrane. Delivery of cER from mother cells to buds, which is termed cER inheritance, occurs as an orderly process early in budding. We find that cER inheritance is defective in cells lacking Scs2, a yeast homologue of the integral ER membrane protein VAP (vesicle-associated membrane protein–associated protein) conserved in all eukaryotes. Scs2 and human VAP both target yeast bud tips, suggesting a conserved action of VAP in attaching ER to sites of polarized growth. In addition, the loss of either Scs2 or Ice2 (another protein involved in cER inheritance) perturbs septin assembly at the bud neck. This perturbation leads to a delay in the transition through G2, activating the Saccharomyces wee1 kinase (Swe1) and the morphogenesis checkpoint. Thus, we identify a mechanism involved in sensing the distribution of ER.
Collapse
Affiliation(s)
- Christopher J R Loewen
- Division of Cell Biology, University College London Institute of Ophthalmology, London EC1V 9EL, England, UK
| | | | | | | |
Collapse
|
86
|
Sinha I, Wang YM, Philp R, Li CR, Yap WH, Wang Y. Cyclin-dependent kinases control septin phosphorylation in Candida albicans hyphal development. Dev Cell 2007; 13:421-32. [PMID: 17765684 DOI: 10.1016/j.devcel.2007.06.011] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2007] [Revised: 06/05/2007] [Accepted: 06/26/2007] [Indexed: 12/27/2022]
Abstract
Cyclin-dependent kinases (Cdks) control cytoskeleton polarization in yeast morphogenesis. However, the target and mechanism remain unclear. Here, we show that the Candida albicans Cdk Cdc28, through temporally controlled association with two cyclins Ccn1 and Hgc1, rapidly establishes and persistently maintains phosphorylation of the septin cytoskeleton protein Cdc11 for hyphal development. Upon hyphal induction, Cdc28-Ccn1 binds to septin complexes and phosphorylates Cdc11 on Ser394, a nonconsensus Cdk target. This phosphorylation requires prior phosphorylation on Ser395 by the septin-associated kinase Gin4. Mutating Ser394 or Ser395 blocked Cdc11 phosphorylation on Ser394 and impaired hyphal morphogenesis. Reconstitution experiments using purified Cdc28-Ccn1, Gin4, and septins reproduced phosphorylations on the same residues. Transient septin-Cdc28 associations were also detected prior to bud and mating-projection emergence in S. cerevisiae. Our study uncovers a direct link between the cell-cycle engine and the septin cytoskeleton that may be part of a conserved mechanism underlying polarized morphogenesis.
Collapse
Affiliation(s)
- Indrajit Sinha
- Institute of Molecular and Cell Biology, 61 Biopolis Drive, 138673 Singapore
| | | | | | | | | | | |
Collapse
|
87
|
Abstract
In this issue of Developmental Cell, Sinha et al. describe a posttranscriptional mechanism necessary for hyphal development of the human pathogen, Candida albicans. In this context, the kinase Gin4 phosphorylates the septin Cdc11 in uninduced yeast cells to prime them for fast action by the cyclin-dependent kinase Cdc28/Ccn1 at the time of hyphal induction. Joint phosphorylation of Cdc11 by these two kinases is essential for stable polarization of hyphal growth.
Collapse
Affiliation(s)
- Peter Sudbery
- Department of Molecular Biology and Biotechnology, Sheffield University, Western Bank, Sheffield S10 2TN, United Kingdom.
| |
Collapse
|
88
|
Larsen P, Almasri E, Chen G, Dai Y. A statistical method to incorporate biological knowledge for generating testable novel gene regulatory interactions from microarray experiments. BMC Bioinformatics 2007; 8:317. [PMID: 17727721 PMCID: PMC2082045 DOI: 10.1186/1471-2105-8-317] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2006] [Accepted: 08/29/2007] [Indexed: 11/16/2022] Open
Abstract
Background The incorporation of prior biological knowledge in the analysis of microarray data has become important in the reconstruction of transcription regulatory networks in a cell. Most of the current research has been focused on the integration of multiple sets of microarray data as well as curated databases for a genome scale reconstruction. However, individual researchers are more interested in the extraction of most useful information from the data of their hypothesis-driven microarray experiments. How to compile the prior biological knowledge from literature to facilitate new hypothesis generation from a microarray experiment is the focus of this work. We propose a novel method based on the statistical analysis of reported gene interactions in PubMed literature. Results Using Gene Ontology (GO) Molecular Function annotation for reported gene regulatory interactions in PubMed literature, a statistical analysis method was proposed for the derivation of a likelihood of interaction (LOI) score for a pair of genes. The LOI-score and the Pearson correlation coefficient of gene profiles were utilized to check if a pair of query genes would be in the above specified interaction. The method was validated in the analysis of two gene sets formed from the yeast Saccharomyces cerevisiae cell cycle microarray data. It was found that high percentage of identified interactions shares GO Biological Process annotations (39.5% for a 102 interaction enriched gene set and 23.0% for a larger 999 cyclically expressed gene set). Conclusion This method can uncover novel biologically relevant gene interactions. With stringent confidence levels, small interaction networks can be identified for further establishment of a hypothesis testable by biological experiment. This procedure is computationally inexpensive and can be used as a preprocessing procedure for screening potential biologically relevant gene pairs subject to the analysis with sophisticated statistical methods.
Collapse
Affiliation(s)
- Peter Larsen
- Core Genomics Laboratory at University of Illinois at Chicago, 845 West Taylor Street Chicago, IL 60607, USA
| | - Eyad Almasri
- Department of Bioengineering (MC063), University of Illinois at Chicago, 851 South Morgan Street, Chicago, IL 60607, USA
| | - Guanrao Chen
- Department of Computer Science, University of Illinois at Chicago, 851 South Morgan Street, Chicago, IL 60607, USA
| | - Yang Dai
- Department of Bioengineering (MC063), University of Illinois at Chicago, 851 South Morgan Street, Chicago, IL 60607, USA
| |
Collapse
|
89
|
Gao XD, Sperber LM, Kane SA, Tong Z, Tong AHY, Boone C, Bi E. Sequential and distinct roles of the cadherin domain-containing protein Axl2p in cell polarization in yeast cell cycle. Mol Biol Cell 2007; 18:2542-60. [PMID: 17460121 PMCID: PMC1924817 DOI: 10.1091/mbc.e06-09-0822] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2006] [Revised: 04/10/2007] [Accepted: 04/18/2007] [Indexed: 11/11/2022] Open
Abstract
Polarization of cell growth along a defined axis is essential for the generation of cell and tissue polarity. In the budding yeast Saccharomyces cerevisiae, Axl2p plays an essential role in polarity-axis determination, or more specifically, axial budding in MATa or alpha cells. Axl2p is a type I membrane glycoprotein containing four cadherin-like motifs in its extracellular domain. However, it is not known when and how Axl2p functions together with other components of the axial landmark, such as Bud3p and Bud4p, to direct axial budding. Here, we show that the recruitment of Axl2p to the bud neck after S/G2 phase of the cell cycle depends on Bud3p and Bud4p. This recruitment is mediated via an interaction between Bud4p and the central region of the Axl2p cytoplasmic tail. This region of Axl2p, together with its N-terminal region and its transmembrane domain, is sufficient for axial budding. In addition, our work demonstrates a previously unappreciated role for Axl2p. Axl2p interacts with Cdc42p and other polarity-establishment proteins, and it regulates septin organization in late G1 independently of its role in polarity-axis determination. Together, these results suggest that Axl2p plays sequential and distinct roles in the regulation of cellular morphogenesis in yeast cell cycle.
Collapse
Affiliation(s)
- Xiang-Dong Gao
- *Department of Cell and Developmental Biology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104-6058; and
| | - Lauren M. Sperber
- *Department of Cell and Developmental Biology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104-6058; and
| | - Steven A. Kane
- *Department of Cell and Developmental Biology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104-6058; and
| | - Zongtian Tong
- *Department of Cell and Developmental Biology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104-6058; and
| | - Amy Hin Yan Tong
- Banting and Best Department of Medical Research, University of Toronto, Toronto, Ontario M5S 3E1, Canada
| | - Charles Boone
- Banting and Best Department of Medical Research, University of Toronto, Toronto, Ontario M5S 3E1, Canada
| | - Erfei Bi
- *Department of Cell and Developmental Biology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104-6058; and
| |
Collapse
|
90
|
Li CR, Lee RTH, Wang YM, Zheng XD, Wang Y. Candida albicans hyphal morphogenesis occurs in Sec3p-independent and Sec3p-dependent phases separated by septin ring formation. J Cell Sci 2007; 120:1898-907. [PMID: 17504812 DOI: 10.1242/jcs.002931] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The growing tips of Candida albicans hyphae are sites of polarized exocytosis. Mammalian septins have been implicated in regulating exocytosis and C. albicans septins are known to localize at hyphal tips, although their function here is unknown. Here, we report that C. albicans cells deleted of the exocyst subunit gene SEC3 can grow normal germ tubes, but are unable to maintain tip growth after assembly of the first septin ring, resulting in isotropic expansion of the tip. Deleting either of the septin genes CDC10 or CDC11 caused Sec3p mislocalization and surprisingly, also restored hyphal development in the sec3Δ mutant without rescuing the temperature sensitivity. Co-immunoprecipitation experiments detected association of the septin Cdc3p with the exocyst subunits Sec3p and Sec5p. Our results reveal that C. albicans hyphal development occurs through Sec3p-independent and dependent phases, and provide strong genetic and biochemical evidence for a role of septins in polarized exocytosis.
Collapse
Affiliation(s)
- Chang-Run Li
- Candida albicans Molecular and Cell Biology Laboratory, Institute of Molecular and Cell Biology, 61 Biopolis Drive, 138673, Singapore
| | | | | | | | | |
Collapse
|
91
|
Wang C, St Leger RJ. The MAD1 adhesin of Metarhizium anisopliae links adhesion with blastospore production and virulence to insects, and the MAD2 adhesin enables attachment to plants. EUKARYOTIC CELL 2007; 6:808-16. [PMID: 17337634 PMCID: PMC1899246 DOI: 10.1128/ec.00409-06] [Citation(s) in RCA: 209] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Metarhizium anisopliae is a fungus of considerable metabolic and ecological versatility, being a potent insect pathogen that can also colonize plant roots. The mechanistic details of these interactions are unresolved. We provide evidence that M. anisopliae adheres to insects and plants using two different proteins, MAD1 and MAD2, that are differentially induced in insect hemolymph and plant root exudates, respectively, and produce regional localization of adhesive conidial surfaces. Expression of Mad1 in Saccharomyces cerevisiae allowed this yeast to adhere to insect cuticle. Expression of Mad2 caused yeast cells to adhere to a plant surface. Our study demonstrated that as well as allowing adhesion to insects, MAD1 at the surface of M. anisopliae conidia or blastospores is required to orientate the cytoskeleton and stimulate the expression of genes involved in the cell cycle. Consequently, the disruption of Mad1 in M. anisopliae delayed germination, suppressed blastospore formation, and greatly reduced virulence to caterpillars. The disruption of Mad2 blocked the adhesion of M. anisopliae to plant epidermis but had no effects on fungal differentiation and entomopathogenicity. Thus, regulation, localization, and specificity control the functional distinction between Mad1 and Mad2 and enable M. anisopliae cells to adapt their adhesive properties to different habitats.
Collapse
Affiliation(s)
- Chengshu Wang
- Department of Entomology, 4112 Plant Science Building, University of Maryland, College Park, MD 20742-4454, USA
| | | |
Collapse
|
92
|
Park HO, Bi E. Central roles of small GTPases in the development of cell polarity in yeast and beyond. Microbiol Mol Biol Rev 2007; 71:48-96. [PMID: 17347519 PMCID: PMC1847380 DOI: 10.1128/mmbr.00028-06] [Citation(s) in RCA: 323] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
SUMMARY The establishment of cell polarity is critical for the development of many organisms and for the function of many cell types. A large number of studies of diverse organisms from yeast to humans indicate that the conserved, small-molecular-weight GTPases function as key signaling proteins involved in cell polarization. The budding yeast Saccharomyces cerevisiae is a particularly attractive model because it displays pronounced cell polarity in response to intracellular and extracellular cues. Cells of S. cerevisiae undergo polarized growth during various phases of their life cycle, such as during vegetative growth, mating between haploid cells of opposite mating types, and filamentous growth upon deprivation of nutrition such as nitrogen. Substantial progress has been made in deciphering the molecular basis of cell polarity in budding yeast. In particular, it becomes increasingly clear how small GTPases regulate polarized cytoskeletal organization, cell wall assembly, and exocytosis at the molecular level and how these GTPases are regulated. In this review, we discuss the key signaling pathways that regulate cell polarization during the mitotic cell cycle and during mating.
Collapse
Affiliation(s)
- Hay-Oak Park
- Department of Molecular Genetics, The Ohio State University, 484 West 12th Avenue, Columbus, OH 43210-1292, USA.
| | | |
Collapse
|
93
|
Eluère R, Offner N, Varlet I, Motteux O, Signon L, Picard A, Bailly E, Simon MN. Compartmentalization of the functions and regulation of the mitotic cyclin Clb2 in S. cerevisiae. J Cell Sci 2007; 120:702-11. [PMID: 17264146 DOI: 10.1242/jcs.03380] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Orderly progression through the eukaryotic cell cycle is a complex process involving both regulation of cyclin dependent kinase activity and control of specific substrate-Cdk interactions. In Saccharomyces cerevisiae, the mitotic cyclin Clb2 has a central role in regulating the onset of anaphase and in maintaining the cellular shape of the bud by inhibiting growth polarization induced in G1. However, how Clb2 and the partially redundant cyclin Clb1 confer specificity to Cdk1 in these processes still remains unclear. Here, we show that Clb2 mutants impaired in nuclear import or export are differentially affected for subsets of Clb2 functions while remaining fully functional for others. Our data support a direct role of the cytoplasmic pool of Clb1,2-Cdk1 in terminating cytoskeleton and growth polarization, independently of G1 cyclin transcriptional regulation. By contrast, the nuclear form of the cyclin is required for timely initiation of anaphase. Clb2 localization influences its stage-specific degradation as well. We report that Clb2 trapped in the cytoplasm is stabilized during anaphase but not at the time of mitotic exit. Altogether, our results demonstrate that the subcellular localization of the mitotic cyclin Clb2 is one of the key determinants of its biological function.
Collapse
Affiliation(s)
- Raïssa Eluère
- Genome Instability and Carcinogenesis, CNRS FRE 2931, 31 chemin Joseph Aiguier, 13402 Marseille cedex 20, France
| | | | | | | | | | | | | | | |
Collapse
|
94
|
Smolka MB, Chen SH, Maddox PS, Enserink JM, Albuquerque CP, Wei XX, Desai A, Kolodner RD, Zhou H. An FHA domain-mediated protein interaction network of Rad53 reveals its role in polarized cell growth. ACTA ACUST UNITED AC 2006; 175:743-53. [PMID: 17130285 PMCID: PMC2064674 DOI: 10.1083/jcb.200605081] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The DNA damage checkpoint kinase Rad53 is important for the survival of budding yeast under genotoxic stresses. We performed a biochemical screen to identify proteins with specific affinity for the two Forkhead associated (FHA) domains of Rad53. The N-terminal FHA1 domain was found to coordinate a complex protein interaction network, which includes nuclear proteins involved in DNA damage checkpoints and transcriptional regulation. Unexpectedly, cytosolic proteins involved in cytokinesis, including septins, were also found as FHA1 binding proteins. Consistent with this interaction, a Rad53 mutant defective in its nuclear localization was found to localize to the bud neck. Abnormal morphology was observed in cells overexpressing the FHA1 domain and in rad53Δ cells under DNA replication stress. Further, septin Shs1 appears to have an important role in the response to DNA replication stress. Collectively, the results suggest a novel function of Rad53 in the regulation of polarized cell growth in response to DNA replication stress.
Collapse
Affiliation(s)
- Marcus B Smolka
- Ludwig Institute for Cancer Research, Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
95
|
Court H, Sudbery P. Regulation of Cdc42 GTPase activity in the formation of hyphae in Candida albicans. Mol Biol Cell 2006; 18:265-81. [PMID: 17093060 PMCID: PMC1751335 DOI: 10.1091/mbc.e06-05-0411] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The human fungal pathogen Candida albicans can switch between yeast, pseudohyphal, and hyphal morphologies. To investigate whether the distinctive characteristics of hyphae are due to increased activity of the Cdc42 GTPase, strains lacking negative regulators of Cdc42 were constructed. Unexpectedly, the deletion of the Cdc42 Rho guanine dissociation inhibitor RDI1 resulted in reduced rather than enhanced polarized growth. However, when cells lacking both Cdc42 GTPase-activating proteins, encoded by RGA2 and BEM3, were grown under pseudohyphal-promoting conditions the bud was highly elongated and lacked a constriction at its base, so that its shape resembled a hyphal germ tube. Moreover, a Spitzenkörper was present at the bud tip, a band of disorganized septin was present at bud base, true septin rings formed within the bud, and nuclei migrated out of the mother cell before the first mitosis. These are all characteristic features of a hyphal germ tube. Intriguingly, we observed hyphal-specific phosphorylation of Rga2, suggesting a possible mechanism for Cdc42 activation during normal hyphal development. In contrast, expression of Cdc42(G12V), which is constitutively GTP bound because it lacks GTPase activity, resulted in swollen cells with prominent and stable septin bars. These results suggest the development of hyphal-specific characteristics is promoted by Cdc42-GTP in a process that also requires the intrinsic GTPase activity of Cdc42.
Collapse
Affiliation(s)
- Helen Court
- Department of Molecular Biology and Biotechnology, Sheffield University, Sheffield S10 2TN, United Kingdom
| | - Peter Sudbery
- Department of Molecular Biology and Biotechnology, Sheffield University, Sheffield S10 2TN, United Kingdom
| |
Collapse
|
96
|
Abstract
An extracellular matrix composed of a layered meshwork of beta-glucans, chitin, and mannoproteins encapsulates cells of the yeast Saccharomyces cerevisiae. This organelle determines cellular morphology and plays a critical role in maintaining cell integrity during cell growth and division, under stress conditions, upon cell fusion in mating, and in the durable ascospore cell wall. Here we assess recent progress in understanding the molecular biology and biochemistry of cell wall synthesis and its remodeling in S. cerevisiae. We then review the regulatory dynamics of cell wall assembly, an area where functional genomics offers new insights into the integration of cell wall growth and morphogenesis with a polarized secretory system that is under cell cycle and cell type program controls.
Collapse
Affiliation(s)
- Guillaume Lesage
- Department of Biology, McGill University, Montreal, PQ H3A 1B1, Canada
| | | |
Collapse
|
97
|
Iwase M, Luo J, Nagaraj S, Longtine M, Kim HB, Haarer BK, Caruso C, Tong Z, Pringle JR, Bi E. Role of a Cdc42p effector pathway in recruitment of the yeast septins to the presumptive bud site. Mol Biol Cell 2006; 17:1110-25. [PMID: 16371506 PMCID: PMC1382302 DOI: 10.1091/mbc.e05-08-0793] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2005] [Revised: 12/01/2005] [Accepted: 12/02/2005] [Indexed: 11/11/2022] Open
Abstract
The septins are GTP-binding, filament-forming proteins that are involved in cytokinesis and other processes. In the yeast Saccharomyces cerevisiae, the septins are recruited to the presumptive bud site at the cell cortex, where they form a ring through which the bud emerges. We report here that in wild-type cells, the septins typically become detectable in the vicinity of the bud site several minutes before ring formation, but the ring itself is the first distinct structure that forms. Septin recruitment depends on activated Cdc42p but not on the normal pathway for bud-site selection. Recruitment occurs in the absence of F-actin, but ring formation is delayed. Mutant phenotypes and suppression data suggest that the Cdc42p effectors Gic1p and Gic2p, previously implicated in polarization of the actin cytoskeleton, also function in septin recruitment. Two-hybrid, in vitro protein binding, and coimmunoprecipitation data indicate that this role involves a direct interaction of the Gic proteins with the septin Cdc12p.
Collapse
Affiliation(s)
- Masayuki Iwase
- Department of Cell and Developmental Biology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104-6058, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
98
|
Abstract
Studies in various model systems have identified two protein families that are crucial for shaping cell morphology: the septins and the formins. Both families are conserved in most eukaryotes, but the functions and regulation of individual homologues can vary depending on their precise cellular context. The rich array of cell geometries found in different filamentous fungal species provides a powerful experimental canvas for studying the evolution and regulation of septins and formins. Here, I assimilate what is known about the function of these protein families in filamentous fungi and propose that further studies in these organisms could answer some open mechanistic questions that pertain in general to eukaryotic cells.
Collapse
Affiliation(s)
- Amy S Gladfelter
- Dartmouth College, Department of Biology, Gilman Hall, Hanover, New Hampshire 03755, USA.
| |
Collapse
|
99
|
Slaughter B, Li R. Toward a molecular interpretation of the surface stress theory for yeast morphogenesis. Curr Opin Cell Biol 2005; 18:47-53. [PMID: 16337116 DOI: 10.1016/j.ceb.2005.11.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2005] [Accepted: 11/24/2005] [Indexed: 11/18/2022]
Abstract
The surface stress theory was proposed more than twenty years ago to explain morphogenesis of walled organisms. This theory makes simple assumptions on the force that drives microbial growth and how a cell's response to this force generates shape. This classic formulation may now be explained in more detailed molecular terms due to recent advances in the study of yeast morphogenesis with respect to the mechanism of cell polarization, the fine tuning of polarized growth to allocate necessary components to proper locations, and the local and global responses to turgor that provide control over the location and duration of growth.
Collapse
Affiliation(s)
- Brian Slaughter
- The Stowers Institute for Medical Research, 1000 E. 50th St. Kansas City, Missouri 64110, USA
| | | |
Collapse
|
100
|
Current awareness on yeast. Yeast 2005; 22:1249-56. [PMID: 16320446 DOI: 10.1002/yea.1170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|