51
|
Engler AJ, Wang Y. Editorial: Understanding molecular interactions that underpin vascular mechanobiology. APL Bioeng 2021; 5:030401. [PMID: 34258496 PMCID: PMC8253597 DOI: 10.1063/5.0058611] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 06/15/2021] [Indexed: 02/04/2023] Open
Abstract
Cells are exposed to a variety of mechanical forces in their daily lives, especially endothelial cells that are stretched from vessel distention and are exposed to hemodynamic shear stress from a blood flow. Exposure to excessive forces can induce a disease, but the molecular details on how these cells perceive forces, transduce them into biochemical signals and genetic events, i.e., mechanotransduction, and integrate them into physiological or pathological changes remain unclear. However, seminal studies in endothelial cells over the past several decades have begun to elucidate some of these signals. These studies have been highlighted in APL Bioengineering and elsewhere, describing a complex temporal pattern where forces are sensed immediately by ion channels and force-dependent conformational changes in surface proteins, followed by biochemical cascades, cytoskeletal contraction, and nuclear remodeling that can affect long-term changes in endothelial morphology and fate. Key examples from the endothelial literature that have established these pathways include showing that integrins and Flk-1 or VE-cadherin act as shear stress transducers, activating downstream proteins such as Cbl and Nckβ or Src, respectively. In this Editorial, we summarize a recent literature highlighting these accomplishments, noting the engineering tools and analysis methods used in these discoveries while also highlighting unanswered questions.
Collapse
|
52
|
Bartosch AMW, Mathews R, Mahmoud MM, Cancel LM, Haq ZS, Tarbell JM. Heparan sulfate proteoglycan glypican-1 and PECAM-1 cooperate in shear-induced endothelial nitric oxide production. Sci Rep 2021; 11:11386. [PMID: 34059731 PMCID: PMC8166914 DOI: 10.1038/s41598-021-90941-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 05/19/2021] [Indexed: 12/29/2022] Open
Abstract
This study aimed to clarify the role of glypican-1 and PECAM-1 in shear-induced nitric oxide production in endothelial cells. Atomic force microscopy pulling was used to apply force to glypican-1 and PECAM-1 on the surface of human umbilical vein endothelial cells and nitric oxide was measured using a fluorescent reporter dye. Glypican-1 pulling for 30 min stimulated nitric oxide production while PECAM-1 pulling did not. However, PECAM-1 downstream activation was necessary for the glypican-1 force-induced response. Glypican-1 knockout mice exhibited impaired flow-induced phosphorylation of eNOS without changes to PECAM-1 expression. A cooperation mechanism for the mechanotransduction of fluid shear stress to nitric oxide production was elucidated in which glypican-1 senses flow and phosphorylates PECAM-1 leading to endothelial nitric oxide synthase phosphorylation and nitric oxide production.
Collapse
Affiliation(s)
- Anne Marie W Bartosch
- Department of Biomedical Engineering, The City College of New York, 160 Convent Ave, New York, NY, 10031, USA.,Department of Pathology and Cell Biology, Columbia University, New York, NY, USA.,Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University, New York, NY, USA
| | - Rick Mathews
- Department of Biomedical Engineering, The City College of New York, 160 Convent Ave, New York, NY, 10031, USA.,The Knight Cardiovascular Institute, Oregon Health and Science University, Portland, OR, USA
| | - Marwa M Mahmoud
- Department of Biomedical Engineering, The City College of New York, 160 Convent Ave, New York, NY, 10031, USA
| | - Limary M Cancel
- Department of Biomedical Engineering, The City College of New York, 160 Convent Ave, New York, NY, 10031, USA
| | - Zahin S Haq
- Department of Biomedical Engineering, The City College of New York, 160 Convent Ave, New York, NY, 10031, USA
| | - John M Tarbell
- Department of Biomedical Engineering, The City College of New York, 160 Convent Ave, New York, NY, 10031, USA.
| |
Collapse
|
53
|
Siragusa M, Oliveira Justo AF, Malacarne PF, Strano A, Buch A, Withers B, Peters KG, Fleming I. VE-PTP inhibition elicits eNOS phosphorylation to blunt endothelial dysfunction and hypertension in diabetes. Cardiovasc Res 2021; 117:1546-1556. [PMID: 32653904 DOI: 10.1093/cvr/cvaa213] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 06/18/2020] [Accepted: 07/06/2020] [Indexed: 12/11/2022] Open
Abstract
AIMS Receptor-type vascular endothelial protein tyrosine phosphatase (VE-PTP) dephosphorylates Tie-2 as well as CD31, VE-cadherin, and vascular endothelial growth factor receptor 2 (VEGFR2). The latter form a signal transduction complex that mediates the endothelial cell response to shear stress, including the activation of the endothelial nitric oxide (NO) synthase (eNOS). As VE-PTP expression is increased in diabetes, we investigated the consequences of VE-PTP inhibition (using AKB-9778) on blood pressure in diabetic patients and the role of VE-PTP in the regulation of eNOS activity and vascular reactivity. METHODS AND RESULTS In diabetic patients AKB-9778 significantly lowered systolic and diastolic blood pressure. This could be linked to elevated NO production, as AKB increased NO generation by cultured endothelial cells and elicited the NOS inhibitor-sensitive relaxation of endothelium-intact rings of mouse aorta. At the molecular level, VE-PTP inhibition increased the phosphorylation of eNOS on Tyr81 and Ser1177 (human sequence). The PIEZO1 activator Yoda1, which was used to mimic the response to shear stress, also increased eNOS Tyr81 phosphorylation, an effect that was enhanced by VE-PTP inhibition. Two kinases, i.e. abelson-tyrosine protein kinase (ABL)1 and Src were identified as eNOS Tyr81 kinases as their inhibition and down-regulation significantly reduced the basal and Yoda1-induced tyrosine phosphorylation and activity of eNOS. VE-PTP, on the other hand, formed a complex with eNOS in endothelial cells and directly dephosphorylated eNOS Tyr81 in vitro. Finally, phosphorylation of eNOS on Tyr80 (murine sequence) was found to be reduced in diabetic mice and diabetes-induced endothelial dysfunction (isolated aortic rings) was blunted by VE-PTP inhibition. CONCLUSIONS VE-PTP inhibition enhances eNOS activity to improve endothelial function and decrease blood pressure indirectly, through the activation of Tie-2 and the CD31/VE-cadherin/VEGFR2 complex, and directly by dephosphorylating eNOS Tyr81. VE-PTP inhibition, therefore, represents an attractive novel therapeutic option for diabetes-induced endothelial dysfunction and hypertension.
Collapse
MESH Headings
- Aniline Compounds/therapeutic use
- Animals
- Antihypertensive Agents/therapeutic use
- Blood Pressure/drug effects
- Cells, Cultured
- Diabetes Mellitus/drug therapy
- Diabetes Mellitus/enzymology
- Diabetes Mellitus/genetics
- Diabetes Mellitus/physiopathology
- Disease Models, Animal
- Endothelial Cells/drug effects
- Endothelial Cells/enzymology
- Endothelium, Vascular/drug effects
- Endothelium, Vascular/enzymology
- Endothelium, Vascular/physiopathology
- Enzyme Inhibitors/therapeutic use
- Humans
- Hypertension/drug therapy
- Hypertension/enzymology
- Hypertension/genetics
- Hypertension/physiopathology
- Mice, Inbred C57BL
- Mice, Transgenic
- Nitric Oxide/metabolism
- Nitric Oxide Synthase Type III/genetics
- Nitric Oxide Synthase Type III/metabolism
- Phosphorylation
- Receptor-Like Protein Tyrosine Phosphatases, Class 3/antagonists & inhibitors
- Receptor-Like Protein Tyrosine Phosphatases, Class 3/genetics
- Receptor-Like Protein Tyrosine Phosphatases, Class 3/metabolism
- Signal Transduction
- Sulfonic Acids/therapeutic use
- Treatment Outcome
- United States
- Mice
Collapse
Affiliation(s)
- Mauro Siragusa
- Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe University, Theodor-Stern-Kai 7, D-60590 Frankfurt am Main, Germany
- German Center for Cardiovascular Research (DZHK), Partner site RheinMain, Frankfurt am Main, Germany
| | - Alberto Fernando Oliveira Justo
- Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe University, Theodor-Stern-Kai 7, D-60590 Frankfurt am Main, Germany
| | | | - Anna Strano
- Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe University, Theodor-Stern-Kai 7, D-60590 Frankfurt am Main, Germany
| | - Akshay Buch
- Aerpio Pharmaceuticals, Inc., Cincinnati, OH, USA
| | | | | | - Ingrid Fleming
- Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe University, Theodor-Stern-Kai 7, D-60590 Frankfurt am Main, Germany
- German Center for Cardiovascular Research (DZHK), Partner site RheinMain, Frankfurt am Main, Germany
| |
Collapse
|
54
|
Walther BK, Rajeeva Pandian NK, Gold KA, Kiliç ES, Sama V, Gu J, Gaharwar AK, Guiseppi-Elie A, Cooke JP, Jain A. Mechanotransduction-on-chip: vessel-chip model of endothelial YAP mechanobiology reveals matrix stiffness impedes shear response. LAB ON A CHIP 2021; 21:1738-1751. [PMID: 33949409 PMCID: PMC9761985 DOI: 10.1039/d0lc01283a] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Endothelial mechanobiology is a key consideration in the progression of vascular dysfunction, including atherosclerosis. However mechanistic connections between the clinically associated physical stimuli, vessel stiffness and shear stress, and how they interact to modulate plaque progression remain incompletely characterized. Vessel-chip systems are excellent candidates for modeling vascular mechanobiology as they may be engineered from the ground up, guided by the mechanical parameters present in human arteries and veins, to recapitulate key features of the vasculature. Here, we report extensive validation of a vessel-chip model of endothelial yes-associated protein (YAP) mechanobiology, a protein sensitive to both matrix stiffness and shearing forces and, importantly, implicated in atherosclerotic progression. Our model captures the established endothelial mechanoresponse, with endothelial alignment, elongation, reduction of adhesion molecules, and YAP cytoplasmic retention under high laminar shear. Conversely, we observed disturbed morphology, inflammation, and nuclear partitioning under low, high, and high oscillatory shear. Examining targets of YAP transcriptional co-activation, connective tissue growth factor (CTGF) is strongly downregulated by high laminar shear, whereas it is strongly upregulated by low shear or oscillatory flow. Ankyrin repeat domain 1 (ANKRD1) is only upregulated by high oscillatory shear. Verteporfin inhibition of YAP reduced the expression of CTGF but did not affect ANKRD1. Lastly, substrate stiffness modulated the endothelial shear mechanoresponse. Under high shear, softer substrates showed the lowest nuclear localization of YAP whereas stiffer substrates increased nuclear localization. Low shear strongly increased nuclear localization of YAP across stiffnesses. Together, we have validated a model of endothelial mechanobiology and describe a clinically relevant biological connection between matrix stiffness, shear stress, and endothelial activation via YAP mechanobiology.
Collapse
Affiliation(s)
- Brandon K Walther
- Department of Biomedical Engineering, Texas A&M University, College Station, Texas 77843, USA. and Department of Cardiovascular Sciences, Houston Methodist Institute for Academic Medicine, Houston Methodist Research Institute, 6670 Bertner Ave., Houston, Texas 77030, USA.
| | | | - Karli A Gold
- Department of Biomedical Engineering, Texas A&M University, College Station, Texas 77843, USA.
| | - Ecem S Kiliç
- Department of Biomedical Engineering, Texas A&M University, College Station, Texas 77843, USA.
| | - Vineeth Sama
- Department of Biomedical Engineering, Clemson University, Clemson, South Carolina 29634, USA.
| | - Jianhua Gu
- Department of Cardiovascular Sciences, Houston Methodist Institute for Academic Medicine, Houston Methodist Research Institute, 6670 Bertner Ave., Houston, Texas 77030, USA.
| | - Akhilesh K Gaharwar
- Department of Biomedical Engineering, Texas A&M University, College Station, Texas 77843, USA. and Department of Materials Science, Texas A&M University, College Station, Texas 77843, USA
| | - Anthony Guiseppi-Elie
- Department of Biomedical Engineering, Texas A&M University, College Station, Texas 77843, USA. and Department of Cardiovascular Sciences, Houston Methodist Institute for Academic Medicine, Houston Methodist Research Institute, 6670 Bertner Ave., Houston, Texas 77030, USA. and ABTECH Scientific, Inc., Biotechnology Research Park, 800 East Leigh Street, Richmond, Virginia 23219, USA and Department of Biomedical Engineering, Anderson University, Anderson, South Carolina 29621, USA.
| | - John P Cooke
- Department of Cardiovascular Sciences, Houston Methodist Institute for Academic Medicine, Houston Methodist Research Institute, 6670 Bertner Ave., Houston, Texas 77030, USA.
| | - Abhishek Jain
- Department of Biomedical Engineering, Texas A&M University, College Station, Texas 77843, USA. and Department of Cardiovascular Sciences, Houston Methodist Institute for Academic Medicine, Houston Methodist Research Institute, 6670 Bertner Ave., Houston, Texas 77030, USA. and Department of Medical Physiology, College of Medicine, Texas A&M Health Science Center, Bryan, TX 77807, USA
| |
Collapse
|
55
|
Mechanosensation and Mechanotransduction by Lymphatic Endothelial Cells Act as Important Regulators of Lymphatic Development and Function. Int J Mol Sci 2021; 22:ijms22083955. [PMID: 33921229 PMCID: PMC8070425 DOI: 10.3390/ijms22083955] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 04/02/2021] [Accepted: 04/06/2021] [Indexed: 12/13/2022] Open
Abstract
Our understanding of the function and development of the lymphatic system is expanding rapidly due to the identification of specific molecular markers and the availability of novel genetic approaches. In connection, it has been demonstrated that mechanical forces contribute to the endothelial cell fate commitment and play a critical role in influencing lymphatic endothelial cell shape and alignment by promoting sprouting, development, maturation of the lymphatic network, and coordinating lymphatic valve morphogenesis and the stabilization of lymphatic valves. However, the mechanosignaling and mechanotransduction pathways involved in these processes are poorly understood. Here, we provide an overview of the impact of mechanical forces on lymphatics and summarize the current understanding of the molecular mechanisms involved in the mechanosensation and mechanotransduction by lymphatic endothelial cells. We also discuss how these mechanosensitive pathways affect endothelial cell fate and regulate lymphatic development and function. A better understanding of these mechanisms may provide a deeper insight into the pathophysiology of various diseases associated with impaired lymphatic function, such as lymphedema and may eventually lead to the discovery of novel therapeutic targets for these conditions.
Collapse
|
56
|
The molecular mechanism of mechanotransduction in vascular homeostasis and disease. Clin Sci (Lond) 2021; 134:2399-2418. [PMID: 32936305 DOI: 10.1042/cs20190488] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 08/14/2020] [Accepted: 09/02/2020] [Indexed: 12/12/2022]
Abstract
Blood vessels are constantly exposed to mechanical stimuli such as shear stress due to flow and pulsatile stretch. The extracellular matrix maintains the structural integrity of the vessel wall and coordinates with a dynamic mechanical environment to provide cues to initiate intracellular signaling pathway(s), thereby changing cellular behaviors and functions. However, the precise role of matrix-cell interactions involved in mechanotransduction during vascular homeostasis and disease development remains to be fully determined. In this review, we introduce hemodynamics forces in blood vessels and the initial sensors of mechanical stimuli, including cell-cell junctional molecules, G-protein-coupled receptors (GPCRs), multiple ion channels, and a variety of small GTPases. We then highlight the molecular mechanotransduction events in the vessel wall triggered by laminar shear stress (LSS) and disturbed shear stress (DSS) on vascular endothelial cells (ECs), and cyclic stretch in ECs and vascular smooth muscle cells (SMCs)-both of which activate several key transcription factors. Finally, we provide a recent overview of matrix-cell interactions and mechanotransduction centered on fibronectin in ECs and thrombospondin-1 in SMCs. The results of this review suggest that abnormal mechanical cues or altered responses to mechanical stimuli in EC and SMCs serve as the molecular basis of vascular diseases such as atherosclerosis, hypertension and aortic aneurysms. Collecting evidence and advancing knowledge on the mechanotransduction in the vessel wall can lead to a new direction of therapeutic interventions for vascular diseases.
Collapse
|
57
|
Zink J, Frye M, Frömel T, Carlantoni C, John D, Schreier D, Weigert A, Laban H, Salinas G, Stingl H, Günther L, Popp R, Hu J, Vanhollebeke B, Schmidt H, Acker-Palmer A, Renné T, Fleming I, Benz PM. EVL regulates VEGF receptor-2 internalization and signaling in developmental angiogenesis. EMBO Rep 2021; 22:e48961. [PMID: 33512764 PMCID: PMC7857432 DOI: 10.15252/embr.201948961] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Revised: 12/03/2020] [Accepted: 12/09/2020] [Indexed: 12/11/2022] Open
Abstract
Endothelial tip cells are essential for VEGF‐induced angiogenesis, but underlying mechanisms are elusive. The Ena/VASP protein family, consisting of EVL, VASP, and Mena, plays a pivotal role in axon guidance. Given that axonal growth cones and endothelial tip cells share many common features, from the morphological to the molecular level, we investigated the role of Ena/VASP proteins in angiogenesis. EVL and VASP, but not Mena, are expressed in endothelial cells of the postnatal mouse retina. Global deletion of EVL (but not VASP) compromises the radial sprouting of the vascular plexus in mice. Similarly, endothelial‐specific EVL deletion compromises the radial sprouting of the vascular plexus and reduces the endothelial tip cell density and filopodia formation. Gene sets involved in blood vessel development and angiogenesis are down‐regulated in EVL‐deficient P5‐retinal endothelial cells. Consistently, EVL deletion impairs VEGF‐induced endothelial cell proliferation and sprouting, and reduces the internalization and phosphorylation of VEGF receptor 2 and its downstream signaling via the MAPK/ERK pathway. Together, we show that endothelial EVL regulates sprouting angiogenesis via VEGF receptor‐2 internalization and signaling.
Collapse
Affiliation(s)
- Joana Zink
- Centre for Molecular Medicine, Institute for Vascular Signalling, Goethe University, Frankfurt am Main, Germany.,German Centre of Cardiovascular Research (DZHK), Partner site Rhein-Main, Frankfurt am Main, Germany
| | - Maike Frye
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Timo Frömel
- Centre for Molecular Medicine, Institute for Vascular Signalling, Goethe University, Frankfurt am Main, Germany.,German Centre of Cardiovascular Research (DZHK), Partner site Rhein-Main, Frankfurt am Main, Germany
| | - Claudia Carlantoni
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - David John
- German Centre of Cardiovascular Research (DZHK), Partner site Rhein-Main, Frankfurt am Main, Germany.,Insitute for Cardiovascular Regeneration, Goethe University, Frankfurt am Main, Germany
| | - Danny Schreier
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Andreas Weigert
- Institute of Biochemistry I-Pathobiochemistry, Faculty of Medicine, Goethe-University, Frankfurt am Main, Germany
| | - Hebatullah Laban
- Department of Cardiovascular Physiology, Institute of Physiology and Pathophysiology, Heidelberg University, Heidelberg, Germany
| | - Gabriela Salinas
- NGS-Integrative Genomics Core Unit (NIG), Institute of Human Genetics, University Medical Center Göttingen (UMG), Göttingen, Germany
| | - Heike Stingl
- Centre for Molecular Medicine, Institute for Vascular Signalling, Goethe University, Frankfurt am Main, Germany.,German Centre of Cardiovascular Research (DZHK), Partner site Rhein-Main, Frankfurt am Main, Germany
| | - Lea Günther
- Centre for Molecular Medicine, Institute for Vascular Signalling, Goethe University, Frankfurt am Main, Germany.,German Centre of Cardiovascular Research (DZHK), Partner site Rhein-Main, Frankfurt am Main, Germany
| | - Rüdiger Popp
- Centre for Molecular Medicine, Institute for Vascular Signalling, Goethe University, Frankfurt am Main, Germany.,German Centre of Cardiovascular Research (DZHK), Partner site Rhein-Main, Frankfurt am Main, Germany
| | - Jiong Hu
- Centre for Molecular Medicine, Institute for Vascular Signalling, Goethe University, Frankfurt am Main, Germany.,German Centre of Cardiovascular Research (DZHK), Partner site Rhein-Main, Frankfurt am Main, Germany
| | - Benoit Vanhollebeke
- Laboratory of Neurovascular Signaling, ULB Neuroscience Institute Department of Molecular Biology, University of Brussels, Walloon Excellence in Life Sciences and Biotechnology (WELBIO), Brussels, Belgium
| | - Hannes Schmidt
- Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen, Germany
| | - Amparo Acker-Palmer
- Institute of Cell Biology and Neuroscience and Buchmann Institute for Molecular Life Sciences, Goethe University, Frankfurt am Main, Germany
| | - Thomas Renné
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ingrid Fleming
- Centre for Molecular Medicine, Institute for Vascular Signalling, Goethe University, Frankfurt am Main, Germany.,German Centre of Cardiovascular Research (DZHK), Partner site Rhein-Main, Frankfurt am Main, Germany
| | - Peter M Benz
- Centre for Molecular Medicine, Institute for Vascular Signalling, Goethe University, Frankfurt am Main, Germany.,German Centre of Cardiovascular Research (DZHK), Partner site Rhein-Main, Frankfurt am Main, Germany
| |
Collapse
|
58
|
Titus S, Szymanska KJ, Musul B, Turan V, Taylan E, Garcia-Milian R, Mehta S, Oktay K. Individual-oocyte transcriptomic analysis shows that genotoxic chemotherapy depletes human primordial follicle reserve in vivo by triggering proapoptotic pathways without growth activation. Sci Rep 2021; 11:407. [PMID: 33431979 PMCID: PMC7801500 DOI: 10.1038/s41598-020-79643-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 11/09/2020] [Indexed: 02/06/2023] Open
Abstract
Gonadotoxic chemotherapeutics, such as cyclophosphamide, can cause early menopause and infertility in women. Earlier histological studies showed ovarian reserve depletion via severe DNA damage and apoptosis, but others suggested activation of PI3K/PTEN/Akt pathway and follicle ‘burn-out’ as a cause. Using a human ovarian xenograft model, we performed single-cell RNA-sequencing on laser-captured individual primordial follicle oocytes 12 h after a single cyclophosphamide injection to determine the mechanisms of acute follicle loss after gonadotoxic chemotherapy. RNA-sequencing showed 190 differentially expressed genes between the cyclophosphamide- and vehicle-exposed oocytes. Ingenuity Pathway Analysis predicted a significant decrease in the expression of anti-apoptotic pro-Akt PECAM1 (p = 2.13E-09), IKBKE (p = 0.0001), and ANGPT1 (p = 0.003), and reduced activation of PI3K/PTEN/Akt after cyclophosphamide. The qRT-PCR and immunostaining confirmed that in primordial follicle oocytes, cyclophosphamide did not change the expressions of Akt (p = 0.9), rpS6 (p = 0.3), Foxo3a (p = 0.12) and anti-apoptotic Bcl2 (p = 0.17), nor affect their phosphorylation status. There was significantly increased DNA damage by γH2AX (p = 0.0002) and apoptosis by active-caspase-3 (p = 0.0001) staining in the primordial follicles and no change in the growing follicles 12 h after chemotherapy. These data support that the mechanism of acute follicle loss by cyclophosphamide is via apoptosis, rather than growth activation of primordial follicle oocytes in the human ovary.
Collapse
Affiliation(s)
- S Titus
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale University School of Medicine, New Haven, CT, USA
| | - K J Szymanska
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale University School of Medicine, New Haven, CT, USA
| | - B Musul
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale University School of Medicine, New Haven, CT, USA
| | - V Turan
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale University School of Medicine, New Haven, CT, USA
| | - E Taylan
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale University School of Medicine, New Haven, CT, USA
| | - R Garcia-Milian
- Bioinformatics Support Program, Yale School of Medicine, New Haven, CT, USA
| | - S Mehta
- Yale Center for Genome Analysis, Yale University, New Haven, CT, USA
| | - K Oktay
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
59
|
Bibli SI, Hu J, Looso M, Weigert A, Ratiu C, Wittig J, Drekolia MK, Tombor L, Randriamboavonjy V, Leisegang MS, Goymann P, Delgado Lagos F, Fisslthaler B, Zukunft S, Kyselova A, Justo AFO, Heidler J, Tsilimigras D, Brandes RP, Dimmeler S, Papapetropoulos A, Knapp S, Offermanns S, Wittig I, Nishimura SL, Sigala F, Fleming I. Mapping the Endothelial Cell S-Sulfhydrome Highlights the Crucial Role of Integrin Sulfhydration in Vascular Function. Circulation 2020; 143:935-948. [PMID: 33307764 DOI: 10.1161/circulationaha.120.051877] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND In vascular endothelial cells, cysteine metabolism by the cystathionine γ lyase (CSE), generates hydrogen sulfide-related sulfane sulfur compounds (H2Sn), that exert their biological actions via cysteine S-sulfhydration of target proteins. This study set out to map the "S-sulfhydrome" (ie, the spectrum of proteins targeted by H2Sn) in human endothelial cells. METHODS Liquid chromatography with tandem mass spectrometry was used to identify S-sulfhydrated cysteines in endothelial cell proteins and β3 integrin intraprotein disulfide bond rearrangement. Functional studies included endothelial cell adhesion, shear stress-induced cell alignment, blood pressure measurements, and flow-induced vasodilatation in endothelial cell-specific CSE knockout mice and in a small collective of patients with endothelial dysfunction. RESULTS Three paired sample sets were compared: (1) native human endothelial cells isolated from plaque-free mesenteric arteries (CSE activity high) and plaque-containing carotid arteries (CSE activity low); (2) cultured human endothelial cells kept under static conditions or exposed to fluid shear stress to decrease CSE expression; and (3) cultured endothelial cells exposed to shear stress to decrease CSE expression and treated with solvent or the slow-releasing H2Sn donor, SG1002. The endothelial cell "S-sulfhydrome" consisted of 3446 individual cysteine residues in 1591 proteins. The most altered family of proteins were the integrins and focusing on β3 integrin in detail we found that S-sulfhydration affected intraprotein disulfide bond formation and was required for the maintenance of an extended-open conformation of the β leg. β3 integrin S-sulfhydration was required for endothelial cell mechanotransduction in vitro as well as flow-induced dilatation in murine mesenteric arteries. In cultured cells, the loss of S-sulfhydration impaired interactions between β3 integrin and Gα13 (guanine nucleotide-binding protein subunit α 13), resulting in the constitutive activation of RhoA (ras homolog family member A) and impaired flow-induced endothelial cell realignment. In humans with atherosclerosis, endothelial function correlated with low H2Sn generation, impaired flow-induced dilatation, and failure to detect β3 integrin S-sulfhydration, all of which were rescued after the administration of an H2Sn supplement. CONCLUSIONS Vascular disease is associated with marked changes in the S-sulfhydration of endothelial cell proteins involved in mediating responses to flow. Short-term H2Sn supplementation improved vascular reactivity in humans highlighting the potential of interfering with this pathway to treat vascular disease.
Collapse
Affiliation(s)
- Sofia-Iris Bibli
- Institute for Vascular Signalling (S-I.B., J.H., J.W., M.K.D., V.R., F.D.L., B.F., S.Z., A.K., A.F.O.J., I.F.), Goethe University, Frankfurt am Main, Germany.,German Center of Cardiovascular Research (DZHK), Partner site RheinMain, Frankfurt am Main, Germany (S-I.B., J.Hu, M.L., C.R., J.W., L.T., V.R., M.S.L., P.G., F.D.L., B.F., S.Z., A.K., A.F.O.J., J.Heidler, R.P.B., S.D., S.O., I.W., I.F.)
| | - Jiong Hu
- Institute for Vascular Signalling (S-I.B., J.H., J.W., M.K.D., V.R., F.D.L., B.F., S.Z., A.K., A.F.O.J., I.F.), Goethe University, Frankfurt am Main, Germany.,German Center of Cardiovascular Research (DZHK), Partner site RheinMain, Frankfurt am Main, Germany (S-I.B., J.Hu, M.L., C.R., J.W., L.T., V.R., M.S.L., P.G., F.D.L., B.F., S.Z., A.K., A.F.O.J., J.Heidler, R.P.B., S.D., S.O., I.W., I.F.)
| | - Mario Looso
- German Center of Cardiovascular Research (DZHK), Partner site RheinMain, Frankfurt am Main, Germany (S-I.B., J.Hu, M.L., C.R., J.W., L.T., V.R., M.S.L., P.G., F.D.L., B.F., S.Z., A.K., A.F.O.J., J.Heidler, R.P.B., S.D., S.O., I.W., I.F.).,Bioinformatics Core Unit (M.L., P.G.), Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Andreas Weigert
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, Germany (A.W.)
| | - Corina Ratiu
- Centre for Molecular Medicine, Institute for Cardiovascular Physiology (C.R., M.S.L., R.P.B.), Goethe University, Frankfurt am Main, Germany.,German Center of Cardiovascular Research (DZHK), Partner site RheinMain, Frankfurt am Main, Germany (S-I.B., J.Hu, M.L., C.R., J.W., L.T., V.R., M.S.L., P.G., F.D.L., B.F., S.Z., A.K., A.F.O.J., J.Heidler, R.P.B., S.D., S.O., I.W., I.F.)
| | - Janina Wittig
- Institute for Vascular Signalling (S-I.B., J.H., J.W., M.K.D., V.R., F.D.L., B.F., S.Z., A.K., A.F.O.J., I.F.), Goethe University, Frankfurt am Main, Germany.,German Center of Cardiovascular Research (DZHK), Partner site RheinMain, Frankfurt am Main, Germany (S-I.B., J.Hu, M.L., C.R., J.W., L.T., V.R., M.S.L., P.G., F.D.L., B.F., S.Z., A.K., A.F.O.J., J.Heidler, R.P.B., S.D., S.O., I.W., I.F.)
| | - Maria Kyriaki Drekolia
- Institute for Vascular Signalling (S-I.B., J.H., J.W., M.K.D., V.R., F.D.L., B.F., S.Z., A.K., A.F.O.J., I.F.), Goethe University, Frankfurt am Main, Germany
| | - Lukas Tombor
- Institute for Cardiovascular Regeneration (L.T., S.D.), Goethe University, Frankfurt am Main, Germany.,German Center of Cardiovascular Research (DZHK), Partner site RheinMain, Frankfurt am Main, Germany (S-I.B., J.Hu, M.L., C.R., J.W., L.T., V.R., M.S.L., P.G., F.D.L., B.F., S.Z., A.K., A.F.O.J., J.Heidler, R.P.B., S.D., S.O., I.W., I.F.)
| | - Voahanginirina Randriamboavonjy
- Institute for Vascular Signalling (S-I.B., J.H., J.W., M.K.D., V.R., F.D.L., B.F., S.Z., A.K., A.F.O.J., I.F.), Goethe University, Frankfurt am Main, Germany.,German Center of Cardiovascular Research (DZHK), Partner site RheinMain, Frankfurt am Main, Germany (S-I.B., J.Hu, M.L., C.R., J.W., L.T., V.R., M.S.L., P.G., F.D.L., B.F., S.Z., A.K., A.F.O.J., J.Heidler, R.P.B., S.D., S.O., I.W., I.F.)
| | - Matthias S Leisegang
- Centre for Molecular Medicine, Institute for Cardiovascular Physiology (C.R., M.S.L., R.P.B.), Goethe University, Frankfurt am Main, Germany.,German Center of Cardiovascular Research (DZHK), Partner site RheinMain, Frankfurt am Main, Germany (S-I.B., J.Hu, M.L., C.R., J.W., L.T., V.R., M.S.L., P.G., F.D.L., B.F., S.Z., A.K., A.F.O.J., J.Heidler, R.P.B., S.D., S.O., I.W., I.F.)
| | - Philipp Goymann
- German Center of Cardiovascular Research (DZHK), Partner site RheinMain, Frankfurt am Main, Germany (S-I.B., J.Hu, M.L., C.R., J.W., L.T., V.R., M.S.L., P.G., F.D.L., B.F., S.Z., A.K., A.F.O.J., J.Heidler, R.P.B., S.D., S.O., I.W., I.F.).,Bioinformatics Core Unit (M.L., P.G.), Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Fredy Delgado Lagos
- Institute for Vascular Signalling (S-I.B., J.H., J.W., M.K.D., V.R., F.D.L., B.F., S.Z., A.K., A.F.O.J., I.F.), Goethe University, Frankfurt am Main, Germany.,German Center of Cardiovascular Research (DZHK), Partner site RheinMain, Frankfurt am Main, Germany (S-I.B., J.Hu, M.L., C.R., J.W., L.T., V.R., M.S.L., P.G., F.D.L., B.F., S.Z., A.K., A.F.O.J., J.Heidler, R.P.B., S.D., S.O., I.W., I.F.)
| | - Beate Fisslthaler
- Institute for Vascular Signalling (S-I.B., J.H., J.W., M.K.D., V.R., F.D.L., B.F., S.Z., A.K., A.F.O.J., I.F.), Goethe University, Frankfurt am Main, Germany.,German Center of Cardiovascular Research (DZHK), Partner site RheinMain, Frankfurt am Main, Germany (S-I.B., J.Hu, M.L., C.R., J.W., L.T., V.R., M.S.L., P.G., F.D.L., B.F., S.Z., A.K., A.F.O.J., J.Heidler, R.P.B., S.D., S.O., I.W., I.F.)
| | - Sven Zukunft
- Institute for Vascular Signalling (S-I.B., J.H., J.W., M.K.D., V.R., F.D.L., B.F., S.Z., A.K., A.F.O.J., I.F.), Goethe University, Frankfurt am Main, Germany.,German Center of Cardiovascular Research (DZHK), Partner site RheinMain, Frankfurt am Main, Germany (S-I.B., J.Hu, M.L., C.R., J.W., L.T., V.R., M.S.L., P.G., F.D.L., B.F., S.Z., A.K., A.F.O.J., J.Heidler, R.P.B., S.D., S.O., I.W., I.F.)
| | - Anastasia Kyselova
- Institute for Vascular Signalling (S-I.B., J.H., J.W., M.K.D., V.R., F.D.L., B.F., S.Z., A.K., A.F.O.J., I.F.), Goethe University, Frankfurt am Main, Germany.,German Center of Cardiovascular Research (DZHK), Partner site RheinMain, Frankfurt am Main, Germany (S-I.B., J.Hu, M.L., C.R., J.W., L.T., V.R., M.S.L., P.G., F.D.L., B.F., S.Z., A.K., A.F.O.J., J.Heidler, R.P.B., S.D., S.O., I.W., I.F.)
| | - Alberto Fernando Oliveira Justo
- Institute for Vascular Signalling (S-I.B., J.H., J.W., M.K.D., V.R., F.D.L., B.F., S.Z., A.K., A.F.O.J., I.F.), Goethe University, Frankfurt am Main, Germany.,German Center of Cardiovascular Research (DZHK), Partner site RheinMain, Frankfurt am Main, Germany (S-I.B., J.Hu, M.L., C.R., J.W., L.T., V.R., M.S.L., P.G., F.D.L., B.F., S.Z., A.K., A.F.O.J., J.Heidler, R.P.B., S.D., S.O., I.W., I.F.)
| | - Juliana Heidler
- Functional Proteomics (J.Heidler., I.W.), Goethe University, Frankfurt am Main, Germany.,German Center of Cardiovascular Research (DZHK), Partner site RheinMain, Frankfurt am Main, Germany (S-I.B., J.Hu, M.L., C.R., J.W., L.T., V.R., M.S.L., P.G., F.D.L., B.F., S.Z., A.K., A.F.O.J., J.Heidler, R.P.B., S.D., S.O., I.W., I.F.)
| | - Diamantis Tsilimigras
- First Propedeutic Department of Surgery, Vascular Surgery Division (D.T., F.S.), National and Kapodistrian University of Athens Medical School, Greece
| | - Ralf P Brandes
- Centre for Molecular Medicine, Institute for Cardiovascular Physiology (C.R., M.S.L., R.P.B.), Goethe University, Frankfurt am Main, Germany.,German Center of Cardiovascular Research (DZHK), Partner site RheinMain, Frankfurt am Main, Germany (S-I.B., J.Hu, M.L., C.R., J.W., L.T., V.R., M.S.L., P.G., F.D.L., B.F., S.Z., A.K., A.F.O.J., J.Heidler, R.P.B., S.D., S.O., I.W., I.F.)
| | - Stefanie Dimmeler
- Institute for Cardiovascular Regeneration (L.T., S.D.), Goethe University, Frankfurt am Main, Germany.,German Center of Cardiovascular Research (DZHK), Partner site RheinMain, Frankfurt am Main, Germany (S-I.B., J.Hu, M.L., C.R., J.W., L.T., V.R., M.S.L., P.G., F.D.L., B.F., S.Z., A.K., A.F.O.J., J.Heidler, R.P.B., S.D., S.O., I.W., I.F.)
| | - Andreas Papapetropoulos
- Laboratory of Pharmacology, Faculty of Pharmacy (A.P.), National and Kapodistrian University of Athens Medical School, Greece.,Clinical, Experimental Surgery and Translational Research Center, Biomedical Research Foundation of the Academy of Athens, Greece (A.P.)
| | - Stefan Knapp
- Institute for Pharmaceutical Chemistry and Buchmann Institute for Molecular Life Sciences (S.K.), Goethe University, Frankfurt am Main, Germany
| | - Stefan Offermanns
- German Center of Cardiovascular Research (DZHK), Partner site RheinMain, Frankfurt am Main, Germany (S-I.B., J.Hu, M.L., C.R., J.W., L.T., V.R., M.S.L., P.G., F.D.L., B.F., S.Z., A.K., A.F.O.J., J.Heidler, R.P.B., S.D., S.O., I.W., I.F.).,Department of Pharmacology (S.O.), Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Ilka Wittig
- Functional Proteomics (J.Heidler., I.W.), Goethe University, Frankfurt am Main, Germany
| | | | - Fragiska Sigala
- First Propedeutic Department of Surgery, Vascular Surgery Division (D.T., F.S.), National and Kapodistrian University of Athens Medical School, Greece
| | - Ingrid Fleming
- Institute for Vascular Signalling (S-I.B., J.H., J.W., M.K.D., V.R., F.D.L., B.F., S.Z., A.K., A.F.O.J., I.F.), Goethe University, Frankfurt am Main, Germany.,German Center of Cardiovascular Research (DZHK), Partner site RheinMain, Frankfurt am Main, Germany (S-I.B., J.Hu, M.L., C.R., J.W., L.T., V.R., M.S.L., P.G., F.D.L., B.F., S.Z., A.K., A.F.O.J., J.Heidler, R.P.B., S.D., S.O., I.W., I.F.)
| |
Collapse
|
60
|
Castiglione M, Jiang Y, Mazzeo C, Lee S, Chen J, Kaushansky K, Yin W, Lin RZ, Zheng H, Zhan H. Endothelial JAK2V617F mutation leads to thrombosis, vasculopathy, and cardiomyopathy in a murine model of myeloproliferative neoplasm. J Thromb Haemost 2020; 18:3359-3370. [PMID: 32920974 PMCID: PMC7756295 DOI: 10.1111/jth.15095] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 08/05/2020] [Accepted: 09/02/2020] [Indexed: 12/14/2022]
Abstract
OBJECTIVE Cardiovascular complications are the leading cause of morbidity and mortality in patients with myeloproliferative neoplasms (MPNs). The acquired kinase mutation JAK2V617F plays a central role in these disorders. Mechanisms responsible for cardiovascular dysfunction in MPNs are not fully understood, limiting the effectiveness of current treatment. Vascular endothelial cells (ECs) carrying the JAK2V617F mutation can be detected in patients with MPNs. The goal of this study was to test the hypothesis that the JAK2V617F mutation alters endothelial function to promote cardiovascular complications in patients with MPNs. APPROACH AND RESULTS We employed murine models of MPN in which the JAK2V617F mutation is expressed in specific cell lineages. When JAK2V617F is expressed in both blood cells and vascular ECs, the mice developed MPN and spontaneous, age-related dilated cardiomyopathy with an increased risk of sudden death as well as a prothrombotic and vasculopathy phenotype on histology evaluation. In contrast, despite having significantly higher leukocyte and platelet counts than controls, mice with JAK2V617F-mutant blood cells alone did not demonstrate any cardiac dysfunction, suggesting that JAK2V617F-mutant ECs are required for this cardiovascular disease phenotype. Furthermore, we demonstrated that the JAK2V617F mutation promotes a pro-adhesive, pro-inflammatory, and vasculopathy EC phenotype, and mutant ECs respond to flow shear differently than wild-type ECs. CONCLUSIONS These findings suggest that the JAK2V617F mutation can alter vascular endothelial function to promote cardiovascular complications in MPNs. Therefore, targeting the MPN vasculature represents a promising new therapeutic strategy for patients with MPNs.
Collapse
Affiliation(s)
| | - Ya‐Ping Jiang
- Department of Physiology and BiophysicsInstitute of Molecular CardiologyStony Brook UniversityStony BrookNYUSA
| | | | - Sandy Lee
- Department of Molecular and Cellular PharmacologyStony Brook UniversityStony BrookNYUSA
| | - Juei‐Suei Chen
- Department of MedicineStony Brook School of MedicineStony BrookNYUSA
| | - Kenneth Kaushansky
- Office of the Sr. Vice PresidentHealth SciencesStony Brook MedicineStony BrookNYUSA
| | - Wei Yin
- Department of Biomedical EngineeringStony Brook UniversityStony BrookNYUSA
| | - Richard Z. Lin
- Department of Physiology and BiophysicsInstitute of Molecular CardiologyStony Brook UniversityStony BrookNYUSA
- Medical ServiceNorthport VA Medical CenterNorthportNYUSA
| | - Haoyi Zheng
- Cardiac ImagingThe Heart CenterSaint Francis HospitalRoslynNYUSA
| | - Huichun Zhan
- Department of MedicineStony Brook School of MedicineStony BrookNYUSA
- Medical ServiceNorthport VA Medical CenterNorthportNYUSA
| |
Collapse
|
61
|
Reina-Torres E, De Ieso ML, Pasquale LR, Madekurozwa M, van Batenburg-Sherwood J, Overby DR, Stamer WD. The vital role for nitric oxide in intraocular pressure homeostasis. Prog Retin Eye Res 2020; 83:100922. [PMID: 33253900 DOI: 10.1016/j.preteyeres.2020.100922] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 11/13/2020] [Accepted: 11/23/2020] [Indexed: 02/07/2023]
Abstract
Catalyzed by endothelial nitric oxide (NO) synthase (eNOS) activity, NO is a gaseous signaling molecule maintaining endothelial and cardiovascular homeostasis. Principally, NO regulates the contractility of vascular smooth muscle cells and permeability of endothelial cells in response to either biochemical or biomechanical cues. In the conventional outflow pathway of the eye, the smooth muscle-like trabecular meshwork (TM) cells and Schlemm's canal (SC) endothelium control aqueous humor outflow resistance, and therefore intraocular pressure (IOP). The mechanisms by which outflow resistance is regulated are complicated, but NO appears to be a key player as enhancement or inhibition of NO signaling dramatically affects outflow function; and polymorphisms in NOS3, the gene that encodes eNOS modifies the relation between various environmental exposures and glaucoma. Based upon a comprehensive review of past foundational studies, we present a model whereby NO controls a feedback signaling loop in the conventional outflow pathway that is sensitive to changes in IOP and its oscillations. Thus, upon IOP elevation, the outflow pathway tissues distend, and the SC lumen narrows resulting in increased SC endothelial shear stress and stretch. In response, SC cells upregulate the production of NO, relaxing neighboring TM cells and increasing permeability of SC's inner wall. These IOP-dependent changes in the outflow pathway tissues reduce the resistance to aqueous humor drainage and lower IOP, which, in turn, diminishes the biomechanical signaling on SC. Similar to cardiovascular pathogenesis, dysregulation of the eNOS/NO system leads to dysfunctional outflow regulation and ocular hypertension, eventually resulting in primary open-angle glaucoma.
Collapse
Affiliation(s)
| | | | - Louis R Pasquale
- Eye and Vision Research Institute of New York Eye and Ear Infirmary at Mount Sinai, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | | | - Darryl R Overby
- Department of Bioengineering, Imperial College London, London, UK.
| | - W Daniel Stamer
- Department of Ophthalmology, Duke University, Durham, NC, USA.
| |
Collapse
|
62
|
Kyselova A, Siragusa M, Anthes J, Solari FA, Loroch S, Zahedi RP, Walter U, Fleming I, Randriamboavonjy V. Cyclin Y is expressed in Platelets and Modulates Integrin Outside-in Signaling. Int J Mol Sci 2020; 21:ijms21218239. [PMID: 33153214 PMCID: PMC7662234 DOI: 10.3390/ijms21218239] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/26/2020] [Accepted: 11/01/2020] [Indexed: 12/17/2022] Open
Abstract
Diabetes is associated with platelet hyper-reactivity and enhanced risk of thrombosis development. Here we compared protein expression in platelets from healthy donors and diabetic patients to identify differentially expressed proteins and their possible function in platelet activation. Mass spectrometry analyses identified cyclin Y (CCNY) in platelets and its reduced expression in platelets from diabetic patients, a phenomenon that could be attributed to the increased activity of calpains. To determine the role of CCNY in platelets, mice globally lacking the protein were studied. CCNY-/- mice demonstrated lower numbers of circulating platelets but platelet responsiveness to thrombin and a thromboxane A2 analogue were comparable with that of wild-type mice, as was agonist-induced α and dense granule secretion. CCNY-deficient platelets demonstrated enhanced adhesion to fibronectin and collagen as well as an attenuated spreading and clot retraction, indicating an alteration in "outside in" integrin signalling. This phenotype was accompanied by a significant reduction in the agonist-induced tyrosine phosphorylation of β3 integrin. Taken together we have shown that CCNY is present in anucleated platelets where it is involved in the regulation of integrin-mediated outside in signalling associated with thrombin stimulation.
Collapse
Affiliation(s)
- Anastasia Kyselova
- Institute for Vascular Signaling, Centre of Molecular Medicine, Goethe University, Frankfurt am Main, 60590 Frankfurt, Germany; (A.K.); (M.S.); (J.A.); (I.F.)
- German Center of Cardiovascular Research (DZHK), Partner site Rhein Main, 17475 Greifswald, Germany; (S.L.); (R.P.Z.); (U.W.)
| | - Mauro Siragusa
- Institute for Vascular Signaling, Centre of Molecular Medicine, Goethe University, Frankfurt am Main, 60590 Frankfurt, Germany; (A.K.); (M.S.); (J.A.); (I.F.)
- German Center of Cardiovascular Research (DZHK), Partner site Rhein Main, 17475 Greifswald, Germany; (S.L.); (R.P.Z.); (U.W.)
| | - Julian Anthes
- Institute for Vascular Signaling, Centre of Molecular Medicine, Goethe University, Frankfurt am Main, 60590 Frankfurt, Germany; (A.K.); (M.S.); (J.A.); (I.F.)
| | - Fiorella Andrea Solari
- Leibniz–Institute for Analytical Sciences (ISAS)- e.V., Otto-Hahn-Str. 6b, 44227 Dortmund, Germany;
| | - Stefan Loroch
- German Center of Cardiovascular Research (DZHK), Partner site Rhein Main, 17475 Greifswald, Germany; (S.L.); (R.P.Z.); (U.W.)
- Leibniz–Institute for Analytical Sciences (ISAS)- e.V., Otto-Hahn-Str. 6b, 44227 Dortmund, Germany;
| | - René P. Zahedi
- German Center of Cardiovascular Research (DZHK), Partner site Rhein Main, 17475 Greifswald, Germany; (S.L.); (R.P.Z.); (U.W.)
- Leibniz–Institute for Analytical Sciences (ISAS)- e.V., Otto-Hahn-Str. 6b, 44227 Dortmund, Germany;
| | - Ulrich Walter
- German Center of Cardiovascular Research (DZHK), Partner site Rhein Main, 17475 Greifswald, Germany; (S.L.); (R.P.Z.); (U.W.)
- Center for Thrombosis and Hemostasis (CTH), University Medical Center Mainz, 55131 Mainz, Germany
| | - Ingrid Fleming
- Institute for Vascular Signaling, Centre of Molecular Medicine, Goethe University, Frankfurt am Main, 60590 Frankfurt, Germany; (A.K.); (M.S.); (J.A.); (I.F.)
- German Center of Cardiovascular Research (DZHK), Partner site Rhein Main, 17475 Greifswald, Germany; (S.L.); (R.P.Z.); (U.W.)
| | - Voahanginirina Randriamboavonjy
- Institute for Vascular Signaling, Centre of Molecular Medicine, Goethe University, Frankfurt am Main, 60590 Frankfurt, Germany; (A.K.); (M.S.); (J.A.); (I.F.)
- German Center of Cardiovascular Research (DZHK), Partner site Rhein Main, 17475 Greifswald, Germany; (S.L.); (R.P.Z.); (U.W.)
- Correspondence: ; Tel.: +49-69-6301-6973; Fax: +49-69-6301-86880
| |
Collapse
|
63
|
Fiorenza M, Gliemann L, Brandt N, Bangsbo J. Hormetic modulation of angiogenic factors by exercise-induced mechanical and metabolic stress in human skeletal muscle. Am J Physiol Heart Circ Physiol 2020; 319:H824-H834. [PMID: 32822216 DOI: 10.1152/ajpheart.00432.2020] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
This study used an integrative experimental model in humans to investigate whether muscle angiogenic factors are differentially modulated by exercise stimuli eliciting different degrees of mechanical and metabolic stress. In a randomized crossover design, 12 men performed two low-volume high-intensity exercise regimens, including short sprint intervals (SSI) or long sprint intervals (LSI) inducing pronounced mechanical/metabolic stress, and a high-volume moderate-intensity continuous exercise protocol (MIC) inducing mild but prolonged mechanical/metabolic stress. Gene and protein expression of angiogenic factors was determined in vastus lateralis muscle samples obtained before and after exercise. Exercise upregulated muscle VEGF mRNA to a greater extent in LSI and MIC compared with SSI. Analysis of angiogenic factors sensitive to shear stress revealed more marked exercise-induced VEGF receptor 2 (VEGF-R2) mRNA responses in MIC than SSI, as well as greater platelet endothelial cell adhesion molecule (PECAM-1) and endothelial nitric oxide synthase (eNOS) mRNA responses in LSI than SSI. No apparent exercise-induced phosphorylation of shear stress-sensory proteins VEGF-R2Tyr1175, PECAM-1Tyr713, and eNOSSer1177 was observed despite robust elevations in femoral artery shear stress. Exercise evoked greater mRNA responses of the mechanical stretch sensor matrix metalloproteinase-9 (MMP9) in SSI than MIC. Exercise-induced mRNA responses of the metabolic stress sensor hypoxia-inducible factor-1α (HIF-1α) were more profound in LSI than SSI. These results suggest that low-volume high-intensity exercise transcriptionally activates angiogenic factors in a mechanical/metabolic stress-dependent manner. Furthermore, the angiogenic potency of low-volume high-intensity exercise appears similar to that of high-volume moderate-intensity exercise, but only on condition of eliciting severe mechanical/metabolic stress. We conclude that the angiogenic stimulus produced by exercise depends on both magnitude and protraction of myocellular homeostatic perturbations.NEW & NOTEWORTHY Skeletal muscle capillary growth is orchestrated by angiogenic factors sensitive to mechanical and metabolic signals. In this study, we employed an integrative exercise model to synergistically target, yet to different extents and for different durations, the mechanical and metabolic components of muscle activity that promote angiogenesis. Our results suggest that the magnitude of the myocellular perturbations incurred during exercise determines the amplitude of the angiogenic molecular signals, implying hormetic modulation of skeletal muscle angiogenesis by exercise-induced mechanical and metabolic stress.
Collapse
Affiliation(s)
- M Fiorenza
- Section of Integrative Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - L Gliemann
- Section of Integrative Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - N Brandt
- Section of Integrative Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - J Bangsbo
- Section of Integrative Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
64
|
The Glycocalyx and Its Role in Vascular Physiology and Vascular Related Diseases. Cardiovasc Eng Technol 2020; 12:37-71. [PMID: 32959164 PMCID: PMC7505222 DOI: 10.1007/s13239-020-00485-9] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 09/02/2020] [Indexed: 02/08/2023]
Abstract
Purpose In 2007 the two senior authors wrote a review on the structure and function of the endothelial glycocalyx layer (Weinbaum in Annu Rev Biomed Eng 9:121–167, 2007). Since then there has been an explosion of interest in this hydrated gel-like structure that coats the luminal surface of endothelial cells that line our vasculature due to its important functions in (A) basic vascular physiology and (B) vascular related diseases. This review will highlight the major advances that have occurred since our 2007 paper. Methods A literature search mainly focusing on the role of the glycocalyx in the two major areas described above was performed using electronic databases. Results In part (A) of this review, the new formulation of the century old Starling principle, now referred to as the Michel–Weinbaum glycoclayx model or revised Starling hypothesis, is described including new subtleties and physiological ramifications. New insights into mechanotransduction and release of nitric oxide due to fluid shear stress sensed by the glycocalyx are elaborated. Major advances in understanding the organization and function of glycocalyx components, and new techniques for measuring both its thickness and spatio-chemical organization based on super resolution, stochastic optical reconstruction microscopy (STORM) are presented. As discussed in part (B) of this review, it is now recognized that artery wall stiffness associated with hypertension and aging induces glycocalyx degradation, endothelial dysfunction and vascular disease. In addition to atherosclerosis and cardiovascular diseases, the glycocalyx plays an important role in lifestyle related diseases (e.g., diabetes) and cancer. Infectious diseases including sepsis, Dengue, Zika and Corona viruses, and malaria also involve the glycocalyx. Because of increasing recognition of the role of the glycocalyx in a wide range of diseases, there has been a vigorous search for methods to protect the glycocalyx from degradation or to enhance its synthesis in disease environments. Conclusion As we have seen in this review, many important developments in our basic understanding of GCX structure, function and role in diseases have been described since the 2007 paper. The future is wide open for continued GCX research.
Collapse
|
65
|
Antequera-González B, Martínez-Micaelo N, Alegret JM. Bicuspid Aortic Valve and Endothelial Dysfunction: Current Evidence and Potential Therapeutic Targets. Front Physiol 2020; 11:1015. [PMID: 32973551 PMCID: PMC7472870 DOI: 10.3389/fphys.2020.01015] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 07/24/2020] [Indexed: 12/23/2022] Open
Abstract
Bicuspid aortic valve (BAV), the most frequent congenital heart malformation, is characterized by the presence of a two-leaflet aortic valve instead of a three-leaflet one. BAV disease progression is associated with valvular dysfunction (in the form of stenosis or regurgitation) and aortopathy, which can lead to aneurysm and aortic dissection. This morphological abnormality modifies valve dynamics and promotes eccentric blood flow, which gives rise to alterations of the flow pattern and wall shear stress (WSS) of the ascending aorta. Recently, evidence of endothelial dysfunction (ED) in BAV disease has emerged. Different studies have addressed a reduced endothelial functionality by analyzing various molecular biomarkers and cellular parameters in BAV patients. Some authors have found impaired functionality of circulating endothelial progenitors in these patients, associating it with valvular dysfunction and aortic dilation. Others focused on systemic endothelial function by measuring artery flow-mediated dilation (FMD), showing a reduced FMD in BAV individuals. Novel biomarkers like increased endothelial microparticles (EMP), which are related to ED, have also been discovered in BAV patients. Finally, latest studies indicate that in BAV, endothelial-to-mesenchymal transition (EndoMT) may also be de-regulated, which could be caused by genetic, hemodynamic alterations, or both. Different hypothesis about the pathology of ED in BAV are nowadays being debated. Some authors blamed this impaired functionality just on genetic abnormalities, which could lead to a pathological aorta. Nevertheless, thanks to the development of new and high-resolution imaging techniques like 4D flow MRI, hemodynamics has gained great attention. Based on latest studies, alterations in blood flow seem to cause proper modification of the endothelial cells (ECs) function and morphology. It also seems to be associated with aortic dilation and decreased vasodilators expression, like nitric oxide (NO). Although nowadays ED in BAV has been reported by many, it is not clear which its main cause may be. Comprehending the pathways that promote ED and its relevance in BAV could help further understand and maybe prevent the serious consequences of this disease. This review will discuss the ED present in BAV, focusing on the latest evidence, biomarkers for ED and potential therapeutic targets (Figure 1).
Collapse
Affiliation(s)
- Borja Antequera-González
- Group of Cardiovascular Research, Pere Virgili Health Research Institute (IISPV), University of Rovira i Virgili, Reus, Spain
| | - Neus Martínez-Micaelo
- Group of Cardiovascular Research, Pere Virgili Health Research Institute (IISPV), University of Rovira i Virgili, Reus, Spain
| | - Josep M Alegret
- Group of Cardiovascular Research, Pere Virgili Health Research Institute (IISPV), University of Rovira i Virgili, Reus, Spain.,Department of Cardiology, University Hospital Sant Joan de Reus, University of Rovira i Virgili, Reus, Spain
| |
Collapse
|
66
|
Roux E, Bougaran P, Dufourcq P, Couffinhal T. Fluid Shear Stress Sensing by the Endothelial Layer. Front Physiol 2020; 11:861. [PMID: 32848833 PMCID: PMC7396610 DOI: 10.3389/fphys.2020.00861] [Citation(s) in RCA: 138] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 06/26/2020] [Indexed: 12/21/2022] Open
Abstract
Blood flow produces mechanical frictional forces, parallel to the blood flow exerted on the endothelial wall of the vessel, the so-called wall shear stress (WSS). WSS sensing is associated with several vascular pathologies, but it is first a physiological phenomenon. Endothelial cell sensitivity to WSS is involved in several developmental and physiological vascular processes such as angiogenesis and vascular morphogenesis, vascular remodeling, and vascular tone. Local conditions of blood flow determine the characteristics of WSS, i.e., intensity, direction, pulsatility, sensed by the endothelial cells that, through their effect of the vascular network, impact WSS. All these processes generate a local-global retroactive loop that determines the ability of the vascular system to ensure the perfusion of the tissues. In order to account for the physiological role of WSS, the so-called shear stress set point theory has been proposed, according to which WSS sensing acts locally on vessel remodeling so that WSS is maintained close to a set point value, with local and distant effects of vascular blood flow. The aim of this article is (1) to review the existing literature on WSS sensing involvement on the behavior of endothelial cells and its short-term (vasoreactivity) and long-term (vascular morphogenesis and remodeling) effects on vascular functioning in physiological condition; (2) to present the various hypotheses about WSS sensors and analyze the conceptual background of these representations, in particular the concept of tensional prestress or biotensegrity; and (3) to analyze the relevance, explanatory value, and limitations of the WSS set point theory, that should be viewed as dynamical, and not algorithmic, processes, acting in a self-organized way. We conclude that this dynamic set point theory and the biotensegrity concept provide a relevant explanatory framework to analyze the physiological mechanisms of WSS sensing and their possible shift toward pathological situations.
Collapse
Affiliation(s)
- Etienne Roux
- Inserm, UMR 1034, Biology of Cardiovascular Diseases, University of Bordeaux, Bordeaux, France.,UMR 8560 IHPST - Institut d'Histoire et de Philosophie des Sciences et des Techniques, CNRS, Université Paris 1 Panthéon-Sorbonne, Paris, France
| | - Pauline Bougaran
- Inserm, UMR 1034, Biology of Cardiovascular Diseases, University of Bordeaux, Bordeaux, France
| | - Pascale Dufourcq
- Inserm, UMR 1034, Biology of Cardiovascular Diseases, University of Bordeaux, Bordeaux, France
| | - Thierry Couffinhal
- Inserm, UMR 1034, Biology of Cardiovascular Diseases, University of Bordeaux, Bordeaux, France
| |
Collapse
|
67
|
Wright WS, Eshaq RS, Lee M, Kaur G, Harris NR. Retinal Physiology and Circulation: Effect of Diabetes. Compr Physiol 2020; 10:933-974. [PMID: 32941691 PMCID: PMC10088460 DOI: 10.1002/cphy.c190021] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
In this article, we present a discussion of diabetes and its complications, including the macrovascular and microvascular effects, with the latter of consequence to the retina. We will discuss the anatomy and physiology of the retina, including aspects of metabolism and mechanisms of oxygenation, with the latter accomplished via a combination of the retinal and choroidal blood circulations. Both of these vasculatures are altered in diabetes, with the retinal circulation intimately involved in the pathology of diabetic retinopathy. The later stages of diabetic retinopathy involve poorly controlled angiogenesis that is of great concern, but in our discussion, we will focus more on several alterations in the retinal circulation occurring earlier in the progression of disease, including reductions in blood flow and a possible redistribution of perfusion that may leave some areas of the retina ischemic and hypoxic. Finally, we include in this article a more recent area of investigation regarding the diabetic retinal vasculature, that is, the alterations to the endothelial surface layer that normally plays a vital role in maintaining physiological functions. © 2020 American Physiological Society. Compr Physiol 10:933-974, 2020.
Collapse
Affiliation(s)
- William S Wright
- Department of Biomedical Sciences, University of South Carolina School of Medicine Greenville, Greenville, South Carolina, USA
| | - Randa S Eshaq
- Department of Molecular and Cellular Physiology, Louisiana State University Health Shreveport, Shreveport, Louisiana, USA
| | - Minsup Lee
- Department of Molecular and Cellular Physiology, Louisiana State University Health Shreveport, Shreveport, Louisiana, USA
| | - Gaganpreet Kaur
- Department of Molecular and Cellular Physiology, Louisiana State University Health Shreveport, Shreveport, Louisiana, USA
| | - Norman R Harris
- Department of Molecular and Cellular Physiology, Louisiana State University Health Shreveport, Shreveport, Louisiana, USA
| |
Collapse
|
68
|
Schürmann C, Dienst FL, Pálfi K, Vasconez AE, Oo JA, Wang S, Buchmann GK, Offermanns S, van de Sluis B, Leisegang MS, Günther S, Humbert PO, Lee E, Zhu J, Weigert A, Mathoor P, Wittig I, Kruse C, Brandes RP. The polarity protein Scrib limits atherosclerosis development in mice. Cardiovasc Res 2020; 115:1963-1974. [PMID: 30949676 DOI: 10.1093/cvr/cvz093] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 02/27/2019] [Accepted: 04/02/2019] [Indexed: 12/14/2022] Open
Abstract
AIMS The protein Scrib (Scribble 1) is known to control apico-basal polarity in epithelial cells. The role of polarity proteins in the vascular system remains poorly characterized; however, we previously reported that Scrib maintains the endothelial phenotype and directed migration. On this basis, we hypothesized that Scrib has anti-atherosclerotic functions. METHODS AND RESULTS Tamoxifen-induced Scrib-knockout mice were crossed with ApoE-/- knockout mice and spontaneous atherosclerosis under high-fat diet (HFD), as well as accelerated atherosclerosis in response to partial carotid artery ligation and HFD, was induced. Deletion of Scrib resulted in increased atherosclerosis development in both models. Mechanistically, flow- as well as acetylcholine-induced endothelium-dependent relaxation and AKT phosphorylation was reduced by deletion of Scrib, whereas vascular permeability and leucocyte extravasation were increased after Scrib knockout. Scrib immune pull down in primary carotid endothelial cells and mass spectrometry identified Arhgef7 (Rho Guanine Nucleotide Exchange Factor 7, βPix) as interaction partner. Scrib or Arhgef7 down-regulation by siRNA reduced the endothelial barrier function in human umbilical vein endothelial cells. Gene expression analysis from murine samples and from human biobank material of carotid endarterectomies indicated that loss of Scrib resulted in endothelial dedifferentiation with a decreased expression of endothelial signature genes. CONCLUSIONS By maintaining a quiescent endothelial phenotype, the polarity protein Scrib elicits anti-atherosclerotic functions.
Collapse
Affiliation(s)
- Christoph Schürmann
- Institute for Cardiovascular Physiology, Goethe-University, Theodor-Stern Kai 7, Frankfurt, Frankfurt am Main, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site RheinMain, Theodor-Stern Kai 7, Frankfurt, Germany
| | - Franziska L Dienst
- Institute for Cardiovascular Physiology, Goethe-University, Theodor-Stern Kai 7, Frankfurt, Frankfurt am Main, Germany
| | - Katalin Pálfi
- Institute for Cardiovascular Physiology, Goethe-University, Theodor-Stern Kai 7, Frankfurt, Frankfurt am Main, Germany
| | - Andrea E Vasconez
- Institute for Cardiovascular Physiology, Goethe-University, Theodor-Stern Kai 7, Frankfurt, Frankfurt am Main, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site RheinMain, Theodor-Stern Kai 7, Frankfurt, Germany
| | - James A Oo
- Institute for Cardiovascular Physiology, Goethe-University, Theodor-Stern Kai 7, Frankfurt, Frankfurt am Main, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site RheinMain, Theodor-Stern Kai 7, Frankfurt, Germany
| | - ShengPeng Wang
- Department of Pharmacology, Max Planck Institute for Heart and Lung Research, Ludwigstrasse 43, Bad Nauheim, Germany
| | - Giulia K Buchmann
- Institute for Cardiovascular Physiology, Goethe-University, Theodor-Stern Kai 7, Frankfurt, Frankfurt am Main, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site RheinMain, Theodor-Stern Kai 7, Frankfurt, Germany
| | - Stefan Offermanns
- German Center for Cardiovascular Research (DZHK), Partner Site RheinMain, Theodor-Stern Kai 7, Frankfurt, Germany.,Department of Pharmacology, Max Planck Institute for Heart and Lung Research, Ludwigstrasse 43, Bad Nauheim, Germany
| | - Bart van de Sluis
- Department of Pediatrics, Molecular Genetics Section, University of Groningen, University Medical Center Groningen, Antonius Deusinglaan 1, AV Groningen, The Netherlands
| | - Matthias S Leisegang
- Institute for Cardiovascular Physiology, Goethe-University, Theodor-Stern Kai 7, Frankfurt, Frankfurt am Main, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site RheinMain, Theodor-Stern Kai 7, Frankfurt, Germany
| | - Stefan Günther
- ECCPS Bioinformatics and Sequencing Facility, Goethe-University, Ludwigstrasse 43, Bad Nauheim, Germany
| | - Patrick O Humbert
- Department of Biochemistry & Genetics, La Trobe Institute for Molecular Science, La Trobe University, Kingsbury Drive, Melbourne, Victoria, Australia.,Department of Clinical Pathology, Department of Molecular Biology and Biochemistry, The University of Melbourne, Grattan Street, Parkville, Victoria, Australia
| | - Eunjee Lee
- Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Pl, New York, NY, USA.,Sema4 Genomics, a Mount Sinai Venture, 333 Ludlow Street, South tower 3rd floor, Stamford, CT, USA
| | - Jun Zhu
- Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Pl, New York, NY, USA.,Sema4 Genomics, a Mount Sinai Venture, 333 Ludlow Street, South tower 3rd floor, Stamford, CT, USA
| | - Andreas Weigert
- Institute of Biochemistry I-Pathobiochemistry, Goethe-University, Frankfurt, Theodor-Stern Kai 7, Frankfurt am Main, Germany
| | - Praveen Mathoor
- Institute of Biochemistry I-Pathobiochemistry, Goethe-University, Frankfurt, Theodor-Stern Kai 7, Frankfurt am Main, Germany
| | - Ilka Wittig
- German Center for Cardiovascular Research (DZHK), Partner Site RheinMain, Theodor-Stern Kai 7, Frankfurt, Germany.,Functional Proteomics, SFB815 Core Unit, Medical School, Goethe University, Frankfurt, Theodor-Stern Kai 7, Frankfurt am Main, Germany
| | - Christoph Kruse
- Institute for Cardiovascular Physiology, Goethe-University, Theodor-Stern Kai 7, Frankfurt, Frankfurt am Main, Germany
| | - Ralf P Brandes
- Institute for Cardiovascular Physiology, Goethe-University, Theodor-Stern Kai 7, Frankfurt, Frankfurt am Main, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site RheinMain, Theodor-Stern Kai 7, Frankfurt, Germany
| |
Collapse
|
69
|
Hu J, Bibli SI, Wittig J, Zukunft S, Lin J, Hammes HP, Popp R, Fleming I. Soluble epoxide hydrolase promotes astrocyte survival in retinopathy of prematurity. J Clin Invest 2020; 129:5204-5218. [PMID: 31479425 DOI: 10.1172/jci123835] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 08/28/2019] [Indexed: 12/13/2022] Open
Abstract
Polyunsaturated fatty acids such as docosahexaenoic acid (DHA) positively affect the outcome of retinopathy of prematurity (ROP). Given that DHA metabolism by cytochrome P450 and soluble epoxide hydrolase (sEH) enzymes affects retinal angiogenesis and vascular stability, we investigated the role of sEH in a mouse model of ROP. In WT mice, hyperoxia elicited tyrosine nitration and inhibition of sEH and decreased generation of the DHA-derived diol 19,20-dihydroxydocosapentaenoic acid (19,20-DHDP). Correspondingly, in a murine model of ROP, sEH-/- mice developed a larger central avascular zone and peripheral pathological vascular tuft formation than did their WT littermates. Astrocytes were the cells most affected by sEH deletion, and hyperoxia increased astrocyte apoptosis. In rescue experiments, 19,20-DHDP prevented astrocyte loss by targeting the mitochondrial membrane to prevent the hyperoxia-induced dissociation of presenilin-1 and presenilin-1-associated protein to attenuate poly ADP-ribose polymerase activation and mitochondrial DNA damage. Therapeutic intravitreal administration of 19,20-DHDP not only suppressed astrocyte loss, but also reduced pathological vascular tuft formation in sEH-/- mice. Our data indicate that sEH activity is required for mitochondrial integrity and retinal astrocyte survival in ROP. Moreover, 19,20-DHDP may be more effective than DHA as a nutritional supplement for preventing retinopathy in preterm infants.
Collapse
Affiliation(s)
- Jiong Hu
- Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe University, Frankfurt am Main, Germany.,German Centre for Cardiovascular Research (DZHK) partner site Rhein-Main, Frankfurt am Main, Germany
| | - Sofia-Iris Bibli
- Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe University, Frankfurt am Main, Germany.,German Centre for Cardiovascular Research (DZHK) partner site Rhein-Main, Frankfurt am Main, Germany
| | - Janina Wittig
- Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe University, Frankfurt am Main, Germany.,German Centre for Cardiovascular Research (DZHK) partner site Rhein-Main, Frankfurt am Main, Germany
| | - Sven Zukunft
- Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe University, Frankfurt am Main, Germany.,German Centre for Cardiovascular Research (DZHK) partner site Rhein-Main, Frankfurt am Main, Germany
| | - Jihong Lin
- Fifth Medical Department, University Medicine Mannheim, University of Heidelberg, Mannheim, Germany
| | - Hans-Peter Hammes
- Fifth Medical Department, University Medicine Mannheim, University of Heidelberg, Mannheim, Germany
| | - Rüdiger Popp
- Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe University, Frankfurt am Main, Germany.,German Centre for Cardiovascular Research (DZHK) partner site Rhein-Main, Frankfurt am Main, Germany
| | - Ingrid Fleming
- Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe University, Frankfurt am Main, Germany.,German Centre for Cardiovascular Research (DZHK) partner site Rhein-Main, Frankfurt am Main, Germany
| |
Collapse
|
70
|
Xie X, Wang F, Zhu L, Yang H, Pan D, Liu Y, Qu X, Gu Y, Li X, Chen S. Low shear stress induces endothelial cell apoptosis and monocyte adhesion by upregulating PECAM‑1 expression. Mol Med Rep 2020; 21:2580-2588. [PMID: 32323830 PMCID: PMC7185273 DOI: 10.3892/mmr.2020.11060] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Accepted: 03/19/2020] [Indexed: 01/02/2023] Open
Abstract
Low shear stress serves an important role in the initiation and progression of atherosclerotic lesions, with an impact on progression, but its detailed mechanisms are .not yet fully known. The present study aimed to investigate endothelial cell (EC) apoptosis, as well as monocyte adhesion induced by low shear stress and the potential underlying mechanisms. The expression of platelet endothelial cell adhesion molecule-1 (PECAM-1) was demonstrated to be enhanced in human umbilical vascular ECs with a trend that was associated with time when stimulated by low shear stress compared with unstimulated cells. EC apoptosis was increased under low shear stress compared with unstimulated cells, and knockdown of PECAM-1 inhibited this process. Furthermore, downregulation of PECAM-1 reduced monocyte adhesion induced by low shear stress compared with that in the negative control cells. Mechanistically, PECAM-1 small interfering RNA transfection increased Akt and forkhead box O1 phosphorylation under low shear stress conditions compared with that in the negative control cells. Collectively, the findings of the present study revealed that low shear stress induced EC apoptosis and monocyte adhesion by upregulating PECAM-1 expression, which suggested that PECAM-1 may be a potential therapeutic target for atherosclerosis.
Collapse
Affiliation(s)
- Xiangrong Xie
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210006, P.R. China
| | - Feng Wang
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210006, P.R. China
| | - Linlin Zhu
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210006, P.R. China
| | - Hongfeng Yang
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210006, P.R. China
| | - Daorong Pan
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210006, P.R. China
| | - Yan Liu
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210006, P.R. China
| | - Xinliang Qu
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210006, P.R. China
| | - Yue Gu
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210006, P.R. China
| | - Xiaobo Li
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210006, P.R. China
| | - Shaoliang Chen
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210006, P.R. China
| |
Collapse
|
71
|
Cheriyan VT, Alfaidi M, Jorgensen AN, Alam MA, Abdullah CS, Kolluru GK, Bhuiyan MS, Kevil CG, Orr AW, Nam HW. Neurogranin regulates eNOS function and endothelial activation. Redox Biol 2020; 34:101487. [PMID: 32173345 PMCID: PMC7327963 DOI: 10.1016/j.redox.2020.101487] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 02/27/2020] [Accepted: 02/29/2020] [Indexed: 02/07/2023] Open
Abstract
Endothelial nitric oxide (NO) is a critical mediator of vascular function and vascular remodeling. NO is produced by endothelial nitric oxide synthase (eNOS), which is activated by calcium (Ca2+)-dependent and Ca2+-independent pathways. Here, we report that neurogranin (Ng), which regulates Ca2+-calmodulin (CaM) signaling in the brain, is uniquely expressed in endothelial cells (EC) of human and mouse vasculature, and is also required for eNOS regulation. To test the role of Ng in eNOS activation, Ng knockdown in human aortic endothelial cells (HAEC) was performed using Ng SiRNA along with Ng knockout (Ng −/−) in mice. Depletion of Ng expression decreased eNOS activity in HAEC and NO production in mice. We show that Ng expression was decreased by short-term laminar flow and long-them oscillating flow shear stress, and that Ng siRNA with shear stress decreased eNOS expression as well as eNOS phosphorylation at S1177. We further reveled that lack of Ng expression decreases both AKT-dependent eNOS phosphorylation, NF-κB-mediated eNOS expression, and promotes endothelial activation. Our findings also indicate that Ng modulates Ca2+-dependent calcineurin (CaN) activity, which suppresses Ca2+-independent AKT-dependent eNOS signaling. Moreover, deletion of Ng in mice also reduced eNOS activity and caused endothelial dysfunction in flow-mediated dilation experiments. Our results demonstrate that Ng plays a crucial role in Ca2+-CaM-dependent eNOS regulation and contributes to vascular remodeling, which is important for the pathophysiology of cardiovascular disease. Neurogranin is expressed in endothelial cell and is required for eNOS regulation. Short-term laminar flow and long-them oscillating flow decrease Neurogranin expression in endothelial cells. Neurogranin knockdown decreases both AKT-dependent eNOS phosphorylation and eNOS expression. Deletion of Ng in mice reduces eNOS activity and caused endothelial dysfunction in flow-mediated dilation.
Collapse
Affiliation(s)
- Vino T Cheriyan
- Department of Pharmacology, Toxicology, and Neuroscience, Louisiana State University Health Sciences Center, Shreveport, LA, 71130, USA
| | - Mabruka Alfaidi
- Department of Pathology, Louisiana State University Health Sciences Center, Shreveport, LA, 71130, USA
| | - Ashton N Jorgensen
- Department of Pharmacology, Toxicology, and Neuroscience, Louisiana State University Health Sciences Center, Shreveport, LA, 71130, USA
| | - Md Ashiqul Alam
- Department of Pharmacology, Toxicology, and Neuroscience, Louisiana State University Health Sciences Center, Shreveport, LA, 71130, USA
| | - Chowdhury S Abdullah
- Department of Pathology, Louisiana State University Health Sciences Center, Shreveport, LA, 71130, USA
| | - Gopi K Kolluru
- Department of Pathology, Louisiana State University Health Sciences Center, Shreveport, LA, 71130, USA
| | - Md Shenuarin Bhuiyan
- Department of Pathology, Louisiana State University Health Sciences Center, Shreveport, LA, 71130, USA
| | - Christopher G Kevil
- Department of Pathology, Louisiana State University Health Sciences Center, Shreveport, LA, 71130, USA
| | - A Wayne Orr
- Department of Pathology, Louisiana State University Health Sciences Center, Shreveport, LA, 71130, USA
| | - Hyung W Nam
- Department of Pharmacology, Toxicology, and Neuroscience, Louisiana State University Health Sciences Center, Shreveport, LA, 71130, USA.
| |
Collapse
|
72
|
Kaunas R. Good advice for endothelial cells: Get in line, relax tension, and go with the flow. APL Bioeng 2020; 4:010905. [PMID: 32128470 PMCID: PMC7044000 DOI: 10.1063/1.5129812] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 01/19/2020] [Indexed: 11/26/2022] Open
Abstract
Endothelial cells (ECs) are continuously subjected to fluid wall shear stress (WSS) and cyclic strain caused by pulsatile blood flow and pressure. It is well established that these hemodynamic forces each play important roles in vascular disease, but their combined effects are not well understood. ECs remodel in response to both WSS and cyclic strain to align along the vessel axis, but in areas prone to atherogenesis, such an alignment is absent. In this perspective, experimental and clinical findings will be reviewed, which have revealed the characteristics of WSS and cyclic strain, which are associated with atherosclerosis, spanning studies on whole blood vessels to individual cells to mechanosensing molecules. Examples are described regarding the use of computational modeling to elucidate the mechanisms by which EC alignment contributes to mechanical homeostasis. Finally, the need to move toward an integrated understanding of how hemodynamic forces influence EC mechanotransduction is presented, which holds the potential to move our currently fragmented understanding to a true appreciation of the role of mechanical stimuli in atherosclerosis.
Collapse
Affiliation(s)
- Roland Kaunas
- Department of Biomedical Engineering and Department of Cellular and Molecular Medicine, Texas A&M University, College Station, Texas 77843-3120, USA
| |
Collapse
|
73
|
Arishe OO, Ebeigbe AB, Webb RC. Mechanotransduction and Uterine Blood Flow in Preeclampsia: The Role of Mechanosensing Piezo 1 Ion Channels. Am J Hypertens 2020; 33:1-9. [PMID: 31545339 PMCID: PMC7768673 DOI: 10.1093/ajh/hpz158] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 09/13/2019] [Accepted: 09/19/2019] [Indexed: 12/31/2022] Open
Abstract
There is a large increase in uterine arterial blood flow during normal pregnancy. Structural and cellular adjustments occur in the uterine vasculature during pregnancy to accommodate this increased blood flow through a complex adaptive process that is dependent on multiple coordinated and interactive influences and this process is known as "vascular remodeling." The etiology of preeclampsia involves aberrant placentation and vascular remodeling leading to reduced uteroplacental perfusion. The placental ischemia leads to development of hypertension and proteinuria in the mother, intrauterine growth restriction, and perinatal death in the fetus. However, the underlying source of the deficient vascular remodeling and the subsequent development of preeclampsia remain to be fully understood. Mechanoreceptors in the vascular system convert mechanical force (shear stress) to biochemical signals and feedback mechanisms. This review focuses on the Piezo 1 channel, a mechanosensitive channel that is sensitive to shear stress in the endothelium; it induces Ca2+ entry which is linked to endothelial nitric oxide synthase (eNOS) activation as the mechanoreceptor responsible for uterine vascular dilatation during pregnancy. Here we describe the downstream signaling pathways involved in this process and the possibility of a deficiency in expression of Piezo 1 in preeclampsia leading to the abnormal vascular dysfunction responsible for the pathophysiology of the disease. The Piezo 1 ion channel is expressed in the endothelium and vascular smooth muscle cells (VSMCs) of small-diameter arteries. It plays a role in the structural remodeling of arteries and is involved in mechanotransduction of hemodynamic shear stress by endothelial cells (ECs).
Collapse
Affiliation(s)
- Olufunke O Arishe
- Department of Physiology, Medical College of Georgia at Augusta University, Augusta, Georgia, USA
- Department of Physiology, College of Medical Sciences, University of Benin, Benin City, Nigeria
| | - Anthony B Ebeigbe
- Department of Physiology, Medical College of Georgia at Augusta University, Augusta, Georgia, USA
- Department of Physiology, College of Medical Sciences, University of Benin, Benin City, Nigeria
| | - R Clinton Webb
- Department of Physiology, Medical College of Georgia at Augusta University, Augusta, Georgia, USA
| |
Collapse
|
74
|
Benz PM, Ding Y, Stingl H, Loot AE, Zink J, Wittig I, Popp R, Fleming I. AKAP12 deficiency impairs VEGF-induced endothelial cell migration and sprouting. Acta Physiol (Oxf) 2020; 228:e13325. [PMID: 31162891 PMCID: PMC6916389 DOI: 10.1111/apha.13325] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 05/31/2019] [Accepted: 05/31/2019] [Indexed: 12/12/2022]
Abstract
Aim Protein kinase (PK) A anchoring protein (AKAP) 12 is a scaffolding protein that anchors PKA to compartmentalize cyclic AMP signalling. This study assessed the consequences of the downregulation or deletion of AKAP12 on endothelial cell migration and angiogenesis. Methods The consequences of siRNA‐mediated downregulation AKAP12 were studied in primary cultures of human endothelial cells as well as in endothelial cells and retinas from wild‐type versus AKAP12−/− mice. Molecular interactions were investigated using a combination of immunoprecipitation and mass spectrometry. Results AKAP12 was expressed at low levels in confluent endothelial cells but its expression was increased in actively migrating cells, where it localized to lamellipodia. In the postnatal retina, AKAP12 was expressed by actively migrating tip cells at the angiogenic front, and its deletion resulted in defective extension of the vascular plexus. In migrating endothelial cells, AKAP12 was co‐localized with the PKA type II‐α regulatory subunit as well as multiple key regulators of actin dynamics and actin filament‐based movement; including components of the Arp2/3 complex and the vasodilator‐stimulated phosphoprotein (VASP). Fitting with the evidence of a physical VASP/AKAP12/PKA complex, it was possible to demonstrate that the VEGF‐stimulated and PKA‐dependent phosphorylation of VASP was dependent on AKAP12. Indeed, AKAP12 colocalized with phospho‐Ser157 VASP at the leading edge of migrating endothelial cells. Conclusion The results suggest that compartmentalized AKAP12/PKA signalling mediates VASP phosphorylation at the leading edge of migrating endothelial cells to translate angiogenic stimuli into altered actin dynamics and cell movement.
Collapse
Affiliation(s)
- Peter M. Benz
- Institute for Vascular Signalling, Centre for Molecular Medicine Goethe University Frankfurt am Main Germany
- German Center of Cardiovascular Research (DZHK), Partner site RheinMain Frankfurt am Main Germany
| | - Yindi Ding
- Institute for Vascular Signalling, Centre for Molecular Medicine Goethe University Frankfurt am Main Germany
- German Center of Cardiovascular Research (DZHK), Partner site RheinMain Frankfurt am Main Germany
| | - Heike Stingl
- Institute for Vascular Signalling, Centre for Molecular Medicine Goethe University Frankfurt am Main Germany
- German Center of Cardiovascular Research (DZHK), Partner site RheinMain Frankfurt am Main Germany
| | - Annemarieke E. Loot
- Institute for Vascular Signalling, Centre for Molecular Medicine Goethe University Frankfurt am Main Germany
| | - Joana Zink
- Institute for Vascular Signalling, Centre for Molecular Medicine Goethe University Frankfurt am Main Germany
- German Center of Cardiovascular Research (DZHK), Partner site RheinMain Frankfurt am Main Germany
| | - Ilka Wittig
- German Center of Cardiovascular Research (DZHK), Partner site RheinMain Frankfurt am Main Germany
- Functional Proteomics, SFB 815 Core Unit, Faculty of Medicine Goethe University Frankfurt am Main Germany
| | - Rüdiger Popp
- Institute for Vascular Signalling, Centre for Molecular Medicine Goethe University Frankfurt am Main Germany
- German Center of Cardiovascular Research (DZHK), Partner site RheinMain Frankfurt am Main Germany
| | - Ingrid Fleming
- Institute for Vascular Signalling, Centre for Molecular Medicine Goethe University Frankfurt am Main Germany
- German Center of Cardiovascular Research (DZHK), Partner site RheinMain Frankfurt am Main Germany
| |
Collapse
|
75
|
Bibli SI, Hu J, Leisegang MS, Wittig J, Zukunft S, Kapasakalidi A, Fisslthaler B, Tsilimigras D, Zografos G, Filis K, Brandes RP, Papapetropoulos A, Sigala F, Fleming I. Shear stress regulates cystathionine γ lyase expression to preserve endothelial redox balance and reduce membrane lipid peroxidation. Redox Biol 2020; 28:101379. [PMID: 31759247 PMCID: PMC6880097 DOI: 10.1016/j.redox.2019.101379] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 10/30/2019] [Accepted: 11/10/2019] [Indexed: 02/06/2023] Open
Abstract
Cystathionine γ lyase (CSE) is the major source of hydrogen sulfide-derived species (H2Sn) in endothelial cells and plays an important role in protecting against atherosclerosis. Here we investigated the molecular mechanisms underlying the regulation of CSE expression in endothelial cells by fluid shear stress/flow. Fluid shear stress decreased CSE expression in human and murine endothelial cells and was negatively correlated with the transcription factor Krüppel-like factor (KLF) 2. CSE was identified as a direct target of the KLF2-regulated microRNA, miR-27b and high expression of CSE in native human plaque-derived endothelial cells, was also inversely correlated with KLF2 and miR-27b levels. One consequence of decreased CSE expression was the loss of Prx6 sulfhydration (on Cys47), which resulted in Prx6 hyperoxidation, decamerization and inhibition, as well as a concomitant increase in endothelial cell reactive oxygen species and lipid membrane peroxidation. H2Sn supplementation in vitro was able to reverse the redox state of Prx6. Statin therapy, which is known to activate KLF2, also decreased CSE expression but increased CSE activity by preventing its phosphorylation on Ser377. As a result, the sulfhydration of Prx6 was partially restored in samples from plaque containing arteries from statin-treated donors. Taken together, the regulation of CSE expression by shear stress/disturbed flow is dependent on KLF2 and miR-27b. Moreover, in murine and human arteries CSE acts to maintain endothelial redox balance at least partly by targeting Prx6 to prevent its decamerization and inhibition of its peroxidase activity.
Collapse
Key Words
- (3′utr), 3′untranslated region
- (cse), cystathionine γ lyase
- (dhe), dihydroethidium
- (dppp), diphenyl-1-pyrenylphosphine
- (enos), endothelial nitric oxide synthase
- (h2sn), h2s-related sulfane sulfur compounds
- (h2s), hydrogen sulfide
- (h2o2), hydrogen peroxide
- (il-1β), interleukin-1β
- (klf2), krüppel-like factor 2
- (lc-ms/ms), liquid chromatography - tandem mass spectrometry
- (no), nitric oxide
- (prx), peroxiredoxin
- (ros), reactive oxygen species
- (sirna), small interfering rna
- (o2•-), superoxide anion
- (tbars), thiobarbituric acid reactive substances
Collapse
Affiliation(s)
- Sofia-Iris Bibli
- Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe University, Frankfurt am Main, Germany; German Center of Cardiovascular Research (DZHK), Partner site RheinMain, Frankfurt am Main, Germany
| | - Jiong Hu
- Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe University, Frankfurt am Main, Germany; German Center of Cardiovascular Research (DZHK), Partner site RheinMain, Frankfurt am Main, Germany
| | - Matthias S Leisegang
- German Center of Cardiovascular Research (DZHK), Partner site RheinMain, Frankfurt am Main, Germany; Institute for Cardiovascular Physiology, Goethe University, Frankfurt am Main, Germany
| | - Janina Wittig
- Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe University, Frankfurt am Main, Germany; German Center of Cardiovascular Research (DZHK), Partner site RheinMain, Frankfurt am Main, Germany
| | - Sven Zukunft
- Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe University, Frankfurt am Main, Germany; German Center of Cardiovascular Research (DZHK), Partner site RheinMain, Frankfurt am Main, Germany
| | - Andrea Kapasakalidi
- Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe University, Frankfurt am Main, Germany
| | - Beate Fisslthaler
- German Center of Cardiovascular Research (DZHK), Partner site RheinMain, Frankfurt am Main, Germany
| | - Diamantis Tsilimigras
- First Propedeutic Department of Surgery, Vascular Surgery Division, Hippokration Hospital, National and Kapodistrian University of Athens Medical School, Athens, Greece
| | - Georgios Zografos
- First Propedeutic Department of Surgery, Vascular Surgery Division, Hippokration Hospital, National and Kapodistrian University of Athens Medical School, Athens, Greece
| | - Konstantinos Filis
- First Propedeutic Department of Surgery, Vascular Surgery Division, Hippokration Hospital, National and Kapodistrian University of Athens Medical School, Athens, Greece
| | - Ralf P Brandes
- German Center of Cardiovascular Research (DZHK), Partner site RheinMain, Frankfurt am Main, Germany; Institute for Cardiovascular Physiology, Goethe University, Frankfurt am Main, Germany
| | - Andreas Papapetropoulos
- Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens Medical School, Athens, Greece; Clinical, Experimental Surgery and Translational Research Center, Biomedical Research Foundation of the Academy of Athens, Soranou Ephessiou 4, Athens, 11527, Greece
| | - Fragiska Sigala
- First Propedeutic Department of Surgery, Vascular Surgery Division, Hippokration Hospital, National and Kapodistrian University of Athens Medical School, Athens, Greece.
| | - Ingrid Fleming
- Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe University, Frankfurt am Main, Germany; German Center of Cardiovascular Research (DZHK), Partner site RheinMain, Frankfurt am Main, Germany.
| |
Collapse
|
76
|
Coxsackievirus and adenovirus receptor mediates the responses of endothelial cells to fluid shear stress. Exp Mol Med 2019; 51:1-15. [PMID: 31776326 PMCID: PMC6881322 DOI: 10.1038/s12276-019-0347-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 09/15/2019] [Accepted: 09/25/2019] [Indexed: 01/30/2023] Open
Abstract
Endothelial mechanotransduction by fluid shear stress (FSS) modulates endothelial function and vascular pathophysiology through mechanosensors on the cell membrane. The coxsackievirus and adenovirus receptor (CAR) is not only a viral receptor but also a component of tight junctions and plays an important role in tissue homeostasis. Here, we demonstrate the expression, regulatory mechanism, and role of CAR in vascular endothelial cells (ECs) under FSS conditions. Disturbed flow increased, whereas unidirectional laminar shear stress (LSS) decreased, CAR expression in ECs through the Krüppel-like factor 2 (KLF2)/activator protein 1 (AP-1) axis. Deletion of CAR reduced the expression of proinflammatory genes and endothelial inflammation induced by disturbed flow via the suppression of NF-κB activation. Consistently, disturbed flow-induced atherosclerosis was reduced in EC-specific CAR KO mice. CAR was found to be involved in endothelial mechanotransduction through the regulation of platelet endothelial cell adhesion molecule 1 (PECAM-1) phosphorylation. Our results demonstrate that endothelial CAR is regulated by FSS and that this regulated CAR acts as an important modulator of endothelial mechanotransduction by FSS. Research into the mechanisms by which blood flow disturbances affect the function of endothelial cells (ECs), the cells lining the interior of blood vessels, reveals potential new targets for treating atherosclerosis. Kihwan Kwon at Ewha Womans University in Seoul, South Korea, and colleagues found that a membrane protein, the coxsackie and adenovirus receptor, CAR, mediates the response of ECs to the shear stress exerted by blood flow. They showed, in human tissue and in mice, that CAR protein levels in ECs increase when they are exposed to low or oscillatory blood flow, which is linked to the build-up of plaque inside arteries. Lowering CAR levels in ECs reduced the expression of proinflammatory genes and the formation of atherosclerotic lesions in mice. These findings suggest that reducing CAR activity could be a promising approach for treating atherosclerosis.
Collapse
|
77
|
El Haouari M. Platelet Oxidative Stress and its Relationship with Cardiovascular Diseases in Type 2 Diabetes Mellitus Patients. Curr Med Chem 2019; 26:4145-4165. [PMID: 28982316 DOI: 10.2174/0929867324666171005114456] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 06/07/2017] [Accepted: 06/07/2017] [Indexed: 01/01/2023]
Abstract
Enhanced platelet activation and thrombosis are linked to various cardiovascular diseases (CVD). Among other mechanisms, oxidative stress seems to play a pivotal role in platelet hyperactivity. Indeed, upon stimulation by physiological agonists, human platelets generate and release several types of reactive oxygen species (ROS) such as O2 -, H2O2 or OH-, further amplifying the platelet activation response via various signalling pathways, including, formation of isoprostanes, Ca2+ mobilization and NO inactivation. Furthermore, excessive platelet ROS generation, incorporation of free radicals from environment and/or depletion of antioxidants induce pro-oxidant, pro-inflammatory and platelet hyperaggregability effects, leading to the incidence of cardiovascular events. Here, we review the current knowledge regarding the effect of oxidative stress on platelet signaling pathways and its implication in CVD such as type 2 diabetes mellitus. We also summarize the role of natural antioxidants included in vegetables, fruits and medicinal herbs in reducing platelet function via an oxidative stress-mediated mechanism.
Collapse
Affiliation(s)
- Mohammed El Haouari
- Centre Regional des Metiers de l'Education et de la Formation de Taza (CRMEF - Taza), B.P: 1178 - Taza Gare, Morocco
| |
Collapse
|
78
|
Siuda D, Randriamboavonjy V, Fleming I. Regulation of calpain 2 expression by miR-223 and miR-145. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2019; 1862:194438. [PMID: 31634637 DOI: 10.1016/j.bbagrm.2019.194438] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 08/26/2019] [Accepted: 09/24/2019] [Indexed: 12/12/2022]
Abstract
Calpain 2 (CAPN2) is a Ca2+-dependent cysteine-protease that is involved in different cellular processes. Despite its important role, little is known about how CAPN2 expression is regulated. This study addressed the potential regulation of CAPN2 by microRNAs (miRNAs) in human endothelial cells. Two miRNAs were found to regulate CAPN2 expression by two distinct mechanisms, one direct and the other indirect. MiR-223 directly targeted CAPN2 by binding to the CAPN2 3'-untranslated region. Mir-223 overexpression decreased CAPN2 protein levels in cultured cells and in mice miR-223 antagonism led to an increase in CAPN2 protein in lung tissue. MiR-145 overexpression also decreased CAPN2 expression but did not affect a CAPN2 luciferase construct, indicating that the effect was indirect. MiR-145 targets histone deacetylase (HDAC) 2, and HDAC inhibition transcriptionally regulated CAPN2 expression by hyperacetylation of the promoter of CAPN2 gene and a subsequent decrease in polymerase 2 binding. Indeed, down regulation of HDAC2 by miR-145 not only decreased CAPN2 protein expression and calpain activity, but also protected paxillin against calpain-dependent degradation. Thus, protein levels of CAPN2 are regulated by miR-223, acting directly on the 3'-untranslated region as well as by miR-145, which acts via an increase in HDAC2. ENZYMES: Calpain 2 (EC 3.4.22.53), histone deacetylase 2 (EC 3.5.1.98).
Collapse
Affiliation(s)
- Daniel Siuda
- Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe University, Frankfurt am Main, Germany; German Centre for Cardiovascular Research (DZHK), Partner site Rhine-Main, Frankfurt am Main, Germany
| | - Voahanginirina Randriamboavonjy
- Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe University, Frankfurt am Main, Germany; German Centre for Cardiovascular Research (DZHK), Partner site Rhine-Main, Frankfurt am Main, Germany
| | - Ingrid Fleming
- Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe University, Frankfurt am Main, Germany; German Centre for Cardiovascular Research (DZHK), Partner site Rhine-Main, Frankfurt am Main, Germany.
| |
Collapse
|
79
|
Wettschureck N, Strilic B, Offermanns S. Passing the Vascular Barrier: Endothelial Signaling Processes Controlling Extravasation. Physiol Rev 2019; 99:1467-1525. [PMID: 31140373 DOI: 10.1152/physrev.00037.2018] [Citation(s) in RCA: 150] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
A central function of the vascular endothelium is to serve as a barrier between the blood and the surrounding tissue of the body. At the same time, solutes and cells have to pass the endothelium to leave or to enter the bloodstream to maintain homeostasis. Under pathological conditions, for example, inflammation, permeability for fluid and cells is largely increased in the affected area, thereby facilitating host defense. To appropriately function as a regulated permeability filter, the endothelium uses various mechanisms to allow solutes and cells to pass the endothelial layer. These include transcellular and paracellular pathways of which the latter requires remodeling of intercellular junctions for its regulation. This review provides an overview on endothelial barrier regulation and focuses on the endothelial signaling mechanisms controlling the opening and closing of paracellular pathways for solutes and cells such as leukocytes and metastasizing tumor cells.
Collapse
Affiliation(s)
- Nina Wettschureck
- Department of Pharmacology, Max Planck Institute for Heart and Lung Research , Bad Nauheim , Germany ; and Centre for Molecular Medicine, Medical Faculty, J.W. Goethe University Frankfurt , Frankfurt , Germany
| | - Boris Strilic
- Department of Pharmacology, Max Planck Institute for Heart and Lung Research , Bad Nauheim , Germany ; and Centre for Molecular Medicine, Medical Faculty, J.W. Goethe University Frankfurt , Frankfurt , Germany
| | - Stefan Offermanns
- Department of Pharmacology, Max Planck Institute for Heart and Lung Research , Bad Nauheim , Germany ; and Centre for Molecular Medicine, Medical Faculty, J.W. Goethe University Frankfurt , Frankfurt , Germany
| |
Collapse
|
80
|
Eshaq RS, Harris NR. Loss of Platelet Endothelial Cell Adhesion Molecule-1 (PECAM-1) in the Diabetic Retina: Role of Matrix Metalloproteinases. Invest Ophthalmol Vis Sci 2019; 60:748-760. [PMID: 30793207 PMCID: PMC6385619 DOI: 10.1167/iovs.18-25068] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose To test the hypothesis that high glucose and matrix metalloproteinases (MMPs) contribute to the diabetes-induced loss of platelet endothelial cell adhesion molecule-1 (PECAM-1) in the retinal microvasculature. Methods PECAM-1 and MMP protein, activity, and interactions with PECAM-1 were assessed using western blotting, zymography, immunofluorescence, or coimmunoprecipitation assays. These assays were conducted using primary rat retinal microvascular endothelial cells (RRMECs) grown either in normal glucose (5 mM) or high glucose (25 mM) conditions and using retinas collected from streptozotocin-induced diabetic or control rats. The broad-spectrum MMP inhibitor GM6001 was administered in vivo and in vitro to ascertain the role of MMPs in the hyperglycemia-induced loss of PECAM-1. Results A dramatic decrease in PECAM-1 (western blotting, immunofluorescence) was observed in both the diabetic retina and in hyperglycemic RRMECs. The decrease in PECAM-1 was accompanied by a significant increase in the presence and activity of matrix metalloproteinase-2 (MMP-2) (but not matrix metalloproteinase-9 [MMP-9]) in the diabetic plasma (P < 0.05) and in hyperglycemic RRMECs (P < 0.05). Moreover, RRMEC PECAM-1 significantly decreased when treated with plasma collected from diabetic rats. Several MMP-2 cleavage sites on PECAM-1 were identified using in silico analysis. Moreover, PECAM-1/MMP-2 interactions were confirmed using coimmunoprecipitation. PECAM-1 was significantly decreased in RRMECs treated with MMP-2 (P < 0.05), but became comparable to controls with the MMP inhibitor GM6001 in both the diabetic retina and hyperglycemic RRMECs. Conclusions These results indicate a possible role of MMP-2 in hyperglycemia-induced PECAM-1 loss in retinal endothelial cells.
Collapse
Affiliation(s)
- Randa S Eshaq
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center, Shreveport, Louisiana, United States
| | - Norman R Harris
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center, Shreveport, Louisiana, United States
| |
Collapse
|
81
|
Myeloid-Specific Deletion of the AMPKα2 Subunit Alters Monocyte Protein Expression and Atherogenesis. Int J Mol Sci 2019; 20:ijms20123005. [PMID: 31248224 PMCID: PMC6627871 DOI: 10.3390/ijms20123005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 06/16/2019] [Accepted: 06/17/2019] [Indexed: 12/30/2022] Open
Abstract
The AMP-activated protein kinase (AMPK) is an energy sensing kinase that is activated by a drop in cellular ATP levels. Although several studies have addressed the role of the AMPKα1 subunit in monocytes and macrophages, little is known about the α2 subunit. The aim of this study was to assess the consequences of AMPKα2 deletion on protein expression in monocytes/macrophages, as well as on atherogenesis. A proteomics approach was applied to bone marrow derived monocytes from wild-type mice versus mice specifically lacking AMPKα2 in myeloid cells (AMPKα2∆MC mice). This revealed differentially expressed proteins, including methyltransferases. Indeed, AMPKα2 deletion in macrophages increased the ratio of S-adenosyl methionine to S-adenosyl homocysteine and increased global DNA cytosine methylation. Also, methylation of the vascular endothelial growth factor and matrix metalloproteinase-9 (MMP9) genes was increased in macrophages from AMPKα2∆MC mice, and correlated with their decreased expression. To link these findings with an in vivo phenotype, AMPKα2∆MC mice were crossed onto the ApoE-/- background and fed a western diet. ApoExAMPKα2∆MC mice developed smaller atherosclerotic plaques than their ApoExα2fl/fl littermates, that contained fewer macrophages and less MMP9 than plaques from ApoExα2fl/fl littermates. These results indicate that the AMPKα2 subunit in myeloid cells influences DNA methylation and thus protein expression and contributes to the development of atherosclerotic plaques.
Collapse
|
82
|
Schindler MJ, Adams V, Halle M. Exercise in Heart Failure—What Is the Optimal Dose to Improve Pathophysiology and Exercise Capacity? Curr Heart Fail Rep 2019; 16:98-107. [DOI: 10.1007/s11897-019-00428-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
83
|
Caligiuri G. Mechanotransduction, immunoregulation, and metabolic functions of CD31 in cardiovascular pathophysiology. Cardiovasc Res 2019; 115:1425-1434. [DOI: 10.1093/cvr/cvz132] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 05/02/2019] [Accepted: 05/14/2019] [Indexed: 12/13/2022] Open
Abstract
Abstract
Biomechanical changes in the heart and vessels drive rapid and dynamic regulation of blood flow, a vital process for meeting the changing metabolic needs of the peripheral tissues at any given point in time. The fluid movement of the blood exerts haemodynamic stress upon the solid elements of the cardiovascular system: the heart, vessels, and cellular components of the blood. Cardiovascular diseases can lead to prolonged mechanical stress, such as cardiac remodelling during heart failure or vascular stiffening in atherosclerosis. This can lead to a significantly reduced or increasingly turbulent blood supply, inducing a shift in cellular metabolism that, amongst other effects, can trigger the release of reactive oxygen species and initiate a self-perpetuating cycle of inflammation and oxidative stress. CD31 is the most abundant constitutive co-signalling receptor glycoprotein on endothelial cells, which line the cardiovascular system and form the first-line of cellular contact with the blood. By associating with most endothelial receptors involved in mechanosensing, CD31 regulates the response to biomechanical stimuli. In addition, by relocating in the lipid rafts of endothelial cells as well as of cells stably interacting with the endothelium, including leucocytes and platelets, CD31–CD31 trans-homophilic engagement guides and restrains platelet and immune cell accumulation and activation and at sites of damage. In this way, CD31 is at the centre of mediating mechanical, metabolic, and immunological changes within the circulation and provides a single target that may have pleiotropic beneficial effects.
Collapse
Affiliation(s)
- Giuseppina Caligiuri
- Université de Paris, Cardiovascular Immunobiology, UMRS1148, INSERM, Paris, France
- Cardiology Department and Physiology Departments, AP-HP, University Hospital Xavier Bichat, 46 Rue Henri Huchard, Paris, France
| |
Collapse
|
84
|
Gliemann L, Rytter N, Piil P, Nilton J, Lind T, Nyberg M, Cocks M, Hellsten Y. The Endothelial Mechanotransduction Protein Platelet Endothelial Cell Adhesion Molecule-1 Is Influenced by Aging and Exercise Training in Human Skeletal Muscle. Front Physiol 2018; 9:1807. [PMID: 30618819 PMCID: PMC6305393 DOI: 10.3389/fphys.2018.01807] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 11/30/2018] [Indexed: 12/14/2022] Open
Abstract
Aim: The aim was to determine the role of aging and exercise training on endothelial mechanosensor proteins and the hyperemic response to shear stress by passive leg movement. Methods: We examined the expression of mechanosensor proteins and vascular function in young (n = 14, 25 ± 3 years) and old (n = 14, 72 ± 5 years) healthy male subjects with eight weeks of aerobic exercise training. Before and after training, the hyperaemic response to passive leg movement was determined and a thigh muscle biopsy was obtained before and after passive leg movement to assess the acute effect of increased shear stress. Biopsies were analyzed for protein amount and phosphorylation of mechanosensor proteins; Platelet endothelial cell adhesion molecule-1 (PECAM-1), Vascular endothelial cadherin, Vascular endothelial growth factor receptor-2 and endothelial nitric oxide synthase (eNOS). Results: Before training, the old group presented a lower hyperaemic response to passive leg movement and a 35% lower (P < 0.05) relative basal phosphorylation level of PECAM-1 whereas there was no difference for the other mechanosensor proteins. After training, the eNOS protein amount, the amount of PECAM-1 protein and the passive leg movement-induced phosphorylation of PECAM-1 were higher in both groups. The hyperaemic response to passive leg movement was higher after training in the young group only. Conclusion: Aged individuals have a lower hyperaemic response to passive leg movement and a lower relative basal phosphorylation of PECAM-1 than young. The higher PECAM-1 phosphorylation despite a similar hyperemic level in the aged observed after training, suggests that training improved shear stress responsiveness of this mechanotransduction protein.
Collapse
Affiliation(s)
- Lasse Gliemann
- Department of Nutrition, Exercise and Sports, Section for Integrative Physiology, University of Copenhagen, Copenhagen, Denmark
| | - Nicolai Rytter
- Department of Nutrition, Exercise and Sports, Section for Integrative Physiology, University of Copenhagen, Copenhagen, Denmark
| | - Peter Piil
- Department of Nutrition, Exercise and Sports, Section for Integrative Physiology, University of Copenhagen, Copenhagen, Denmark
| | - Jannik Nilton
- Department of Nutrition, Exercise and Sports, Section for Integrative Physiology, University of Copenhagen, Copenhagen, Denmark
| | - Thomas Lind
- Department of Nutrition, Exercise and Sports, Section for Integrative Physiology, University of Copenhagen, Copenhagen, Denmark
| | - Michael Nyberg
- Department of Nutrition, Exercise and Sports, Section for Integrative Physiology, University of Copenhagen, Copenhagen, Denmark
| | - Matthew Cocks
- Exercise Metabolism Research Group, School of Sport and Exercise Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Ylva Hellsten
- Department of Nutrition, Exercise and Sports, Section for Integrative Physiology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
85
|
Baeyens N. Fluid shear stress sensing in vascular homeostasis and remodeling: Towards the development of innovative pharmacological approaches to treat vascular dysfunction. Biochem Pharmacol 2018; 158:185-191. [PMID: 30365948 DOI: 10.1016/j.bcp.2018.10.023] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 10/22/2018] [Indexed: 02/07/2023]
Abstract
Blood circulation, facilitating gas exchange and nutrient transportation, is a quintessential feature of life in vertebrates. Any disruption to blood flow, may it be by blockade or traumatic rupture, irrevocably leads to tissue infarction or death. Therefore, it is not surprising that hemostasis and vascular adaptation measures have been evolutionarily selected to mitigate the adverse consequences of altered circulation. Blood vessels can be broadly categorized as arteries, veins, or capillaries, based on their structure, hemodynamics, and gas exchange. However, all of them share one property: they are lined with an epithelial sheet called the endothelium, which typically lies on a basement membrane. This endothelium is the primary interface between the flowing blood and the rest of the body, and it has highly specialized molecular mechanisms to detect and respond to changes in blood perfusion. The purpose of this commentary will be to highlight some of the recent developments in the research on blood flow sensing, vascular remodeling, and homeostasis and to discuss the development of innovative pharmaceutical approaches targeting mechanosensing mechanisms to prolong patient survival and improve quality of life.
Collapse
Affiliation(s)
- Nicolas Baeyens
- Laboratoire de physiologie et pharmacologie, Faculté de Médecine, Université libre de Bruxelles, ULB, Belgium.
| |
Collapse
|
86
|
PAR-1 is a novel mechano-sensor transducing laminar flow-mediated endothelial signaling. Sci Rep 2018; 8:15172. [PMID: 30310081 PMCID: PMC6181929 DOI: 10.1038/s41598-018-33222-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 09/18/2018] [Indexed: 01/01/2023] Open
Abstract
Recent studies have indicated that protease-activated receptor-1 (PAR-1) is involved in cytoprotective and anti-inflammatory responses in endothelial cells (ECs). However, the role of PAR-1 in laminar flow-mediated atheroprotective responses remains unknown. Herein, we investigated whether PAR-1 regulates laminar flow-mediated mechanotransduction in ECs. Confocal analysis showed that PAR-1 was internalized into early endosomes in response to laminar flow. In addition, flow cytometry analysis showed that cell surface expression of PAR-1 was reduced by laminar flow, suggesting that PAR-1 was activated in response to laminar flow. Depletion of PAR-1 using human PAR-1 siRNA inhibited unidirectional laminar flow-mediated actin stress fiber formation and cellular alignment as well as atheroprotective gene expressions in HUVECs. Moreover, PAR-1 knockdown inhibited laminar flow-stimulated eNOS phosphorylation, and inhibited the phosphorylations of Src, AMPK, ERK5 and HDAC5. Furthermore, PAR-1 depletion inhibited laminar flow-mediated anti-inflammatory responses as demonstrated by reduced TNFα-induced VCAM-1 expression and by monocyte adhesion to HUVECs, and prevented laminar flow-mediated anti-apoptotic response. An investigation of the role of PAR-1 in vasomotor modulation using mouse aortic rings revealed that acetylcholine-induced vasorelaxation was diminished in PAR-1 deficient mice compared to littermate controls. Taken together, these findings suggest that PAR-1 be viewed as a novel pharmacologic target for the treatment of vascular diseases, including atherosclerosis.
Collapse
|
87
|
Massé DD, Shar JA, Brown KN, Keswani SG, Grande-Allen KJ, Sucosky P. Discrete Subaortic Stenosis: Perspective Roadmap to a Complex Disease. Front Cardiovasc Med 2018; 5:122. [PMID: 30320123 PMCID: PMC6166095 DOI: 10.3389/fcvm.2018.00122] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 08/17/2018] [Indexed: 12/13/2022] Open
Abstract
Discrete subaortic stenosis (DSS) is a congenital heart disease that results in the formation of a fibro-membranous tissue, causing an increased pressure gradient in the left ventricular outflow tract (LVOT). While surgical resection of the membrane has shown some success in eliminating the obstruction, it poses significant risks associated with anesthesia, sternotomy, and heart bypass, and it remains associated with a high rate of recurrence. Although a genetic etiology had been initially proposed, the association between DSS and left ventricle (LV) geometrical abnormalities has provided more support to a hemodynamic etiology by which congenital or post-surgical LVOT geometric derangements could generate abnormal shear forces on the septal wall, triggering in turn a fibrotic response. Validating this hypothetical etiology and understanding the mechanobiological processes by which altered shear forces induce fibrosis in the LVOT are major knowledge gaps. This perspective paper describes the current state of knowledge of DSS, articulates the research needs to yield mechanistic insights into a significant pathologic process that is poorly understood, and proposes several strategies aimed at elucidating the potential mechanobiological synergies responsible for DSS pathogenesis. The proposed roadmap has the potential to improve DSS management by identifying early targets for prevention of the fibrotic lesion, and may also prove beneficial in other fibrotic cardiovascular diseases associated with altered flow.
Collapse
Affiliation(s)
- Danielle D Massé
- Department of Mechanical and Materials Engineering, Wright State University, Dayton, OH, United States
| | - Jason A Shar
- Department of Mechanical and Materials Engineering, Wright State University, Dayton, OH, United States
| | - Kathleen N Brown
- Department of Bioengineering, Rice University, Houston, TX, United States
| | - Sundeep G Keswani
- Division of Pediatric Surgery, Texas Children's Hospital, Houston, TX, United States.,Department of Surgery, Baylor College of Medicine, Houston, TX, United States
| | | | - Philippe Sucosky
- Department of Mechanical and Materials Engineering, Wright State University, Dayton, OH, United States
| |
Collapse
|
88
|
Endothelial AMP-Activated Kinase α1 Phosphorylates eNOS on Thr495 and Decreases Endothelial NO Formation. Int J Mol Sci 2018; 19:ijms19092753. [PMID: 30217073 PMCID: PMC6165563 DOI: 10.3390/ijms19092753] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 09/07/2018] [Accepted: 09/11/2018] [Indexed: 02/08/2023] Open
Abstract
AMP-activated protein kinase (AMPK) is frequently reported to phosphorylate Ser1177 of the endothelial nitric-oxide synthase (eNOS), and therefore, is linked with a relaxing effect. However, previous studies failed to consistently demonstrate a major role for AMPK on eNOS-dependent relaxation. As AMPK also phosphorylates eNOS on the inhibitory Thr495 site, this study aimed to determine the role of AMPKα1 and α2 subunits in the regulation of NO-mediated vascular relaxation. Vascular reactivity to phenylephrine and acetylcholine was assessed in aortic and carotid artery segments from mice with global (AMPKα-/-) or endothelial-specific deletion (AMPKαΔEC) of the AMPKα subunits. In control and AMPKα1-depleted human umbilical vein endothelial cells, eNOS phosphorylation on Ser1177 and Thr495 was assessed after AMPK activation with thiopental or ionomycin. Global deletion of the AMPKα1 or α2 subunit in mice did not affect vascular reactivity. The endothelial-specific deletion of the AMPKα1 subunit attenuated phenylephrine-mediated contraction in an eNOS- and endothelium-dependent manner. In in vitro studies, activation of AMPK did not alter the phosphorylation of eNOS on Ser1177, but increased its phosphorylation on Thr495. Depletion of AMPKα1 in cultured human endothelial cells decreased Thr495 phosphorylation without affecting Ser1177 phosphorylation. The results of this study indicate that AMPKα1 targets the inhibitory phosphorylation Thr495 site in the calmodulin-binding domain of eNOS to attenuate basal NO production and phenylephrine-induced vasoconstriction.
Collapse
|
89
|
Albarrán-Juárez J, Iring A, Wang S, Joseph S, Grimm M, Strilic B, Wettschureck N, Althoff TF, Offermanns S. Piezo1 and G q/G 11 promote endothelial inflammation depending on flow pattern and integrin activation. J Exp Med 2018; 215:2655-2672. [PMID: 30194266 PMCID: PMC6170174 DOI: 10.1084/jem.20180483] [Citation(s) in RCA: 182] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 06/22/2018] [Accepted: 08/01/2018] [Indexed: 12/18/2022] Open
Abstract
Atherosclerosis preferentially develops in areas of disturbed flow. Albarrán-Juárez et al. provide evidence that this depends on at least two different endothelial mechanosignaling pathways, a flow direction-independent pathway involving Piezo1 and Gq/G11, as well as integrin signaling, which is only initiated in response to disturbed flow. The vascular endothelium is constantly exposed to mechanical forces, including fluid shear stress exerted by the flowing blood. Endothelial cells can sense different flow patterns and convert the mechanical signal of laminar flow into atheroprotective signals, including eNOS activation, whereas disturbed flow in atheroprone areas induces inflammatory signaling, including NF-κB activation. How endothelial cells distinguish different flow patterns is poorly understood. Here we show that both laminar and disturbed flow activate the same initial pathway involving the mechanosensitive cation channel Piezo1, the purinergic P2Y2 receptor, and Gq/G11-mediated signaling. However, only disturbed flow leads to Piezo1- and Gq/G11-mediated integrin activation resulting in focal adhesion kinase-dependent NF-κB activation. Mice with induced endothelium-specific deficiency of Piezo1 or Gαq/Gα11 show reduced integrin activation, inflammatory signaling, and progression of atherosclerosis in atheroprone areas. Our data identify critical steps in endothelial mechanotransduction, which distinguish flow pattern-dependent activation of atheroprotective and atherogenic endothelial signaling and suggest novel therapeutic strategies to treat inflammatory vascular disorders such as atherosclerosis.
Collapse
Affiliation(s)
- Julián Albarrán-Juárez
- Max Planck Institute for Heart and Lung Research, Department of Pharmacology, Bad Nauheim, Germany
| | - Andras Iring
- Max Planck Institute for Heart and Lung Research, Department of Pharmacology, Bad Nauheim, Germany
| | - ShengPeng Wang
- Max Planck Institute for Heart and Lung Research, Department of Pharmacology, Bad Nauheim, Germany
| | - Sayali Joseph
- Max Planck Institute for Heart and Lung Research, Department of Pharmacology, Bad Nauheim, Germany
| | - Myriam Grimm
- Max Planck Institute for Heart and Lung Research, Department of Pharmacology, Bad Nauheim, Germany
| | - Boris Strilic
- Max Planck Institute for Heart and Lung Research, Department of Pharmacology, Bad Nauheim, Germany
| | - Nina Wettschureck
- Max Planck Institute for Heart and Lung Research, Department of Pharmacology, Bad Nauheim, Germany.,Center for Molecular Medicine, Medical Faculty, J.W. Goethe University Frankfurt, Frankfurt, Germany.,German Center for Cardiovascular Research (DZHK)
| | - Till F Althoff
- Max Planck Institute for Heart and Lung Research, Department of Pharmacology, Bad Nauheim, Germany.,Charité - Universitätsmedizin Berlin, Department of Cardiology and Angiology, Campus Mitte, Berlin, Germany.,German Center for Cardiovascular Research (DZHK)
| | - Stefan Offermanns
- Max Planck Institute for Heart and Lung Research, Department of Pharmacology, Bad Nauheim, Germany .,Center for Molecular Medicine, Medical Faculty, J.W. Goethe University Frankfurt, Frankfurt, Germany.,German Center for Cardiovascular Research (DZHK)
| |
Collapse
|
90
|
Reed LC, Estrada SM, Walton RB, Napolitano PG, Ieronimakis N. Evaluating maternal hyperglycemic exposure and fetal placental arterial dysfunction in a dual cotyledon, dual perfusion model. Placenta 2018; 69:109-116. [PMID: 30213479 DOI: 10.1016/j.placenta.2018.07.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 07/11/2018] [Accepted: 07/27/2018] [Indexed: 01/17/2023]
Abstract
BACKGROUND Gestational diabetes affects almost 1 in 10 pregnancies and is associated with adverse outcomes including fetal demise. Pregnancy complications related to diabetes are attributed to placental vascular dysfunction. With diabetes, maternal hyperglycemia is thought to promote placental vasoconstriction. However, it remains poorly understood if and how hyperglycemia leads to placental vascular dysfunction or if humoral factors related to maternal diabetes are responsible. METHODS AND RESULTS Utilizing a human placenta dual cotyledon, dual perfusion assay we examined the arterial pressure response to the thromboxane mimetic U44619, in cotyledons exposed to normal vs. a hyperglycemic infusion into the intervillous space. Tissues were then analyzed for the activity of key signaling molecules related to vascular tone; eNOS, Akt, PKA and VEGFR2. Results indicate a significant increase in fetal vascular resistance with maternal exposure to hyperglycemia. This response corresponded with a reduction in the phosphorylation of eNOS at Ser1177 and Akt at Thr308. In contrast, VEGFR2 at Tyr1175 and PKA at Thr197 were not different with hyperglycemia. CONCLUSION Reductions of eNOS and Akt phosphorylation at key residues implicated in nitric oxide production suggest that hyperglycemia alters the vasodilatory signaling of placental vessels. In contrast, acute hyperglycemic exposure may not alter vasoconstriction via VEGF and PKA signaling. Altogether our results link hyperglycemic exposure in human placentas to nitric oxide signaling; a mechanisms that may account for the elevations in vascular resistance commonly observed in diabetic pregnancies.
Collapse
Affiliation(s)
- Luckey C Reed
- Department of Obstetrics and Gynecology, Madigan Army Medical Center, Tacoma, WA, USA
| | - Sarah M Estrada
- Department of Obstetrics and Gynecology, Madigan Army Medical Center, Tacoma, WA, USA
| | - Robert B Walton
- Department of Obstetrics and Gynecology, Madigan Army Medical Center, Tacoma, WA, USA
| | - Peter G Napolitano
- Department of Obstetrics and Gynecology, Madigan Army Medical Center, Tacoma, WA, USA
| | - Nicholas Ieronimakis
- Department of Clinical Investigation, Madigan Army Medical Center, Tacoma, WA, USA.
| |
Collapse
|
91
|
Bibli SI, Luck B, Zukunft S, Wittig J, Chen W, Xian M, Papapetropoulos A, Hu J, Fleming I. A selective and sensitive method for quantification of endogenous polysulfide production in biological samples. Redox Biol 2018; 18:295-304. [PMID: 30077923 PMCID: PMC6083819 DOI: 10.1016/j.redox.2018.07.016] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2018] [Revised: 07/08/2018] [Accepted: 07/19/2018] [Indexed: 12/13/2022] Open
Abstract
Hydrogen sulfide (H2S) is a gasotransmitter that regulates cellular homeostasis and impacts on multiple physiological and pathophysiological processes. However, it exerts many of its biological actions indirectly via the formation of H2S-derived sulfane sulfur species/polysulfides. Because of the high reactivity of sulfur species, the detection of H2S-derived polysulfides in biological systems is challenging and currently used methods are neither sensitive nor quantitative. Herein, we describe a LC-MS/MS-based method that makes use of Sulfane Sulfur Probe 4 to detect endogenously generated polysulfides in biological samples in a selective, sensitive and quantitative manner. The results indicate a large variability in the activity of the H2S-generating enzymes in different murine organs, but the method described was able to detect intracellular levels of polysulfides in the nanomolar range and identify cystathionine γ-lyase as the major intracellular source of sulfane sulfur species/polysulfides in murine endothelial cells and hearts. The protocol described can be applied to a variety of biological samples for the quantification of the H2S-derived polysulfides and has the potential to increase understanding on the control and consequences of this gaseous transmitter.
Collapse
Affiliation(s)
- Sofia-Iris Bibli
- Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe University, Frankfurt am Main, Germany; German Center of Cardiovascular Research (DZHK), Partner site RheinMain, Frankfurt am Main, Germany.
| | - Bert Luck
- Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe University, Frankfurt am Main, Germany; German Center of Cardiovascular Research (DZHK), Partner site RheinMain, Frankfurt am Main, Germany
| | - Sven Zukunft
- Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe University, Frankfurt am Main, Germany; German Center of Cardiovascular Research (DZHK), Partner site RheinMain, Frankfurt am Main, Germany
| | - Janina Wittig
- Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe University, Frankfurt am Main, Germany; German Center of Cardiovascular Research (DZHK), Partner site RheinMain, Frankfurt am Main, Germany
| | - Wei Chen
- Department of Chemistry, Washington State University, Pullman, WA 99164, USA
| | - Ming Xian
- Department of Chemistry, Washington State University, Pullman, WA 99164, USA
| | - Andreas Papapetropoulos
- Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece; Clinical, Experimental Surgery and Translational Research Center, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Jiong Hu
- Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe University, Frankfurt am Main, Germany; German Center of Cardiovascular Research (DZHK), Partner site RheinMain, Frankfurt am Main, Germany
| | - Ingrid Fleming
- Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe University, Frankfurt am Main, Germany; German Center of Cardiovascular Research (DZHK), Partner site RheinMain, Frankfurt am Main, Germany
| |
Collapse
|
92
|
Gliemann L, Rytter N, Lindskrog M, Slingsby MHL, Åkerström T, Sylow L, Richter EA, Hellsten Y. Endothelial mechanotransduction proteins and vascular function are altered by dietary sucrose supplementation in healthy young male subjects. J Physiol 2018. [PMID: 28620941 DOI: 10.1113/jp274623] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
KEY POINTS Mechanotransduction in endothelial cells is a central mechanism in the regulation of vascular tone and vascular remodelling Mechanotransduction and vascular function may be affected by high sugar levels in plasma because of a resulting increase in oxidative stress and increased levels of advanced glycation end-products (AGE). In healthy young subjects, 2 weeks of daily supplementation with 3 × 75 g of sucrose was found to reduce blood flow in response to passive lower leg movement and in response to 12 W of knee extensor exercise. This vascular impairment was paralleled by up-regulation of platelet endothelial cell adhesion molecule (PECAM)-1, endothelial nitric oxide synthase, NADPH oxidase and Rho family GTPase Rac1 protein expression, an increased basal phosphorylation status of vascular endothelial growth factor receptor 2 and a reduced phosphorylation status of PECAM-1. There were no measurable changes in AGE levels. The findings of the present study demonstrate that daily high sucrose intake markedly affects mechanotransduction proteins and has a detrimental effect on vascular function. ABSTRACT Endothelial mechanotransduction is important for vascular function but alterations and activation of vascular mechanosensory proteins have not been investigated in humans. In endothelial cell culture, simple sugars effectively impair mechanosensor proteins. To study mechanosensor- and vascular function in humans, 12 young healthy male subjects supplemented their diet with 3 × 75 g sucrose day-1 for 14 days in a randomized cross-over design. Before and after the intervention period, the hyperaemic response to passive lower leg movement and active knee extensor exercise was determined by ultrasound doppler. A muscle biopsy was obtained from the thigh muscle before and after acute passive leg movement to allow assessment of protein amounts and the phosphorylation status of mechanosensory proteins and NADPH oxidase. The sucrose intervention led to a reduced flow response to passive movement (by 17 ± 2%) and to 12 W of active exercise (by 9 ± 1%), indicating impaired vascular function. A reduced flow response to passive and active exercise was paralleled by a significant up-regulation of platelet endothelial cell adhesion molecule (PECAM-1), endothelial nitric oxide synthase, NADPH oxidase and the Rho family GTPase Rac1 protein expression in the muscle tissue, as well as an increased basal phosphorylation status of vascular endothelial growth factor receptor 2 and a reduced phosphorylation status of PECAM-1. The phosphorylation status was not acutely altered with passive leg movement. These findings indicate that a regular intake of high levels of sucrose can impair vascular mechanotransduction and increase the oxidative stress potential, and suggest that dietary excessive sugar intake may contribute to the development of vascular disease.
Collapse
Affiliation(s)
- Lasse Gliemann
- Section for Integrative Physiology, University of Copenhagen, Copenhagen, Denmark
| | - Nicolai Rytter
- Section for Integrative Physiology, University of Copenhagen, Copenhagen, Denmark
| | - Mads Lindskrog
- Section for Integrative Physiology, University of Copenhagen, Copenhagen, Denmark
| | | | - Thorbjörn Åkerström
- Section for Integrative Physiology, University of Copenhagen, Copenhagen, Denmark.,Insulin Pharmacology Department, Novo Nordisk A/S, Maaloev, Denmark
| | - Lykke Sylow
- Section Molecular Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Erik A Richter
- Section Molecular Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Ylva Hellsten
- Section for Integrative Physiology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
93
|
Xu S, Liu B, Yin M, Koroleva M, Mastrangelo M, Ture S, Morrell CN, Zhang DX, Fisher EA, Jin ZG. A novel TRPV4-specific agonist inhibits monocyte adhesion and atherosclerosis. Oncotarget 2018; 7:37622-37635. [PMID: 27191895 PMCID: PMC5122337 DOI: 10.18632/oncotarget.9376] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Accepted: 04/29/2016] [Indexed: 11/25/2022] Open
Abstract
TRPV4 ion channel mediates vascular mechanosensitivity and vasodilation. Here, we sought to explore whether non-mechanical activation of TRPV4 could limit vascular inflammation and atherosclerosis. We found that GSK1016790A, a potent and specific small-molecule agonist of TRPV4, induces the phosphorylation and activation of eNOS partially through the AMPK pathway. Moreover, GSK1016790A inhibited TNF-α-induced monocyte adhesion to human endothelial cells. Mice given GSK1016790A showed increased phosphorylation of eNOS and AMPK in the aorta and decreased leukocyte adhesion to TNF-α-inflamed endothelium. Importantly, oral administration of GSK1016790A reduced atherosclerotic plaque formation in ApoE deficient mice fed a Western-type diet. Together, the present study suggests that pharmacological activation of TRPV4 may serve as a potential therapeutic approach to treat atherosclerosis.
Collapse
Affiliation(s)
- Suowen Xu
- Aab Cardiovascular Research Institute and Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Bin Liu
- Aab Cardiovascular Research Institute and Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Meimei Yin
- Aab Cardiovascular Research Institute and Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Marina Koroleva
- Aab Cardiovascular Research Institute and Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Michael Mastrangelo
- Aab Cardiovascular Research Institute and Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Sara Ture
- Aab Cardiovascular Research Institute and Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Craig N Morrell
- Aab Cardiovascular Research Institute and Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - David X Zhang
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Edward A Fisher
- Department of Medicine, Division of Cardiology, and The Marc and Ruti Bell Program in Vascular Biology, New York University School of Medicine, New York, NY, USA
| | - Zheng Gen Jin
- Aab Cardiovascular Research Institute and Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| |
Collapse
|
94
|
ARA290, a Specific Agonist of Erythropoietin/CD131 Heteroreceptor, Improves Circulating Endothelial Progenitors' Angiogenic Potential and Homing Ability. Shock 2018; 46:390-7. [PMID: 27172159 DOI: 10.1097/shk.0000000000000606] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND Alternate erythropoietin (EPO)-mediated signaling via the EPOR/CD131 heteromeric receptor exerts the tissue-protective actions of EPO in a wide spectrum of injuries, especially ischemic diseases. Circulating endothelial progenitor cells contribute to endothelial repair and post-natal angiogenesis after chronic ischemic injury. This work aims to investigate the effects of ARA290, a specific agonist of EPOR/CD131 complex, on a subpopulation of endothelial progenitor cells named endothelial colony-forming cells (ECFCs) and to characterize its contribution to ECFCs-induced angiogenesis after peripheral ischemia. METHODS ARA290 effects on ECFCs properties were studied using cell cultures in vitro. We injected ARA290 to mice undergoing chronic hindlimb ischemia (CLI) in combination with ECFC transplantation. The homing of transplanted ECFC to ischemic tissue in vivo was assessed by SPECT/CT imaging. RESULTS In vitro, ARA290 enhanced the proliferation, migration, and resistance to H2O2-induced apoptosis of ECFCs. After ECFC transplantation to mice with CLI, a single ARA290 injection enhanced the ischemic/non-ischemic ratio of hindlimb blood flow and capillary density after 28 days and the homing of radiolabeled transplanted cells to the ischemic leg 4 h after transplantation. Prior neutralization of platelet-endothelial cell adhesion molecule-1 (CD31) expressed by the transplanted cells inhibited ARA290-induced improvement of homing. DISCUSSION ARA290 induces specific improvement of the biological activity of ECFCs. ARA290 administration in combination with ECFCs has a synergistic effect on post-ischemic angiogenesis in vivo. This potentiation appears to rely, at least in part, on a CD31-dependent increase in homing of the transplanted cells to the ischemic tissue.
Collapse
|
95
|
Abstract
Under physiological conditions, the arterial endothelium exerts a powerful protective influence to maintain vascular homeostasis. However, during the development of vascular disease, these protective activities are lost, and dysfunctional endothelial cells actually promote disease pathogenesis. Numerous investigations have analyzed the characteristics of dysfunctional endothelium with a view to understanding the processes responsible for the dysfunction and to determining their role in vascular pathology. This review adopts an alternate approach: reviewing the mechanisms that contribute to the initial formation of a healthy protective endothelium and on how those mechanisms may be disrupted, precipitating the appearance of dysfunctional endothelial cells and the progression of vascular disease. This approach, which highlights the role of endothelial adherens junctions and vascular endothelial-cadherin in endothelial maturation and endothelial dysfunction, provides new insight into the remarkable biology of this important cell layer and its role in vascular protection and vascular disease.
Collapse
|
96
|
The Role of Endothelial Surface Glycocalyx in Mechanosensing and Transduction. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1097:1-27. [PMID: 30315537 DOI: 10.1007/978-3-319-96445-4_1] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The endothelial cells (ECs) forming the inner wall of every blood vessel are constantly exposed to the mechanical forces generated by blood flow. The EC responses to these hemodynamic forces play a critical role in the homeostasis of the circulatory system. A variety of mechanosensors and transducers, locating on the EC surface, intra- and trans-EC membrane, and within the EC cytoskeleton, have thus been identified to ensure proper functions of ECs. Among them, the most recent candidate is the endothelial surface glycocalyx (ESG), which is a matrix-like thin layer covering the luminal surface of the EC. It consists of various proteoglycans, glycosaminoglycans, and plasma proteins and is close to other prominent EC mechanosensors and transducers. This chapter summarizes the ESG composition, thickness, and structure observed by different labeling and visualization techniques and in different types of vessels. It also presents the literature in determining the ESG mechanical properties by atomic force microscopy and optical tweezers. The molecular mechanisms by which the ESG plays the role in EC mechanosensing and transduction are described as well as the ESG remodeling by shear stress, the actin cytoskeleton, the membrane rafts, the angiogenic factors, and the sphingosine-1-phosphate.
Collapse
|
97
|
Pandey AK, Singhi EK, Arroyo JP, Ikizler TA, Gould ER, Brown J, Beckman JA, Harrison DG, Moslehi J. Mechanisms of VEGF (Vascular Endothelial Growth Factor) Inhibitor-Associated Hypertension and Vascular Disease. Hypertension 2017; 71:e1-e8. [PMID: 29279311 DOI: 10.1161/hypertensionaha.117.10271] [Citation(s) in RCA: 191] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Arvind K Pandey
- From the Division of Cardiovascular Medicine (A.K.P., E.K.S., J.B., J.A.B., J.M.), Division of Nephrology (J.P.A., T.A.I., E.R.G.), Vanderbilt Center for Kidney Disease (T.A.I.), Division of Clinical Pharmacology (D.G.H.) and Cardio-Oncology Program (J.M.), Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Eric K Singhi
- From the Division of Cardiovascular Medicine (A.K.P., E.K.S., J.B., J.A.B., J.M.), Division of Nephrology (J.P.A., T.A.I., E.R.G.), Vanderbilt Center for Kidney Disease (T.A.I.), Division of Clinical Pharmacology (D.G.H.) and Cardio-Oncology Program (J.M.), Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Juan Pablo Arroyo
- From the Division of Cardiovascular Medicine (A.K.P., E.K.S., J.B., J.A.B., J.M.), Division of Nephrology (J.P.A., T.A.I., E.R.G.), Vanderbilt Center for Kidney Disease (T.A.I.), Division of Clinical Pharmacology (D.G.H.) and Cardio-Oncology Program (J.M.), Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Talat Alp Ikizler
- From the Division of Cardiovascular Medicine (A.K.P., E.K.S., J.B., J.A.B., J.M.), Division of Nephrology (J.P.A., T.A.I., E.R.G.), Vanderbilt Center for Kidney Disease (T.A.I.), Division of Clinical Pharmacology (D.G.H.) and Cardio-Oncology Program (J.M.), Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Edward R Gould
- From the Division of Cardiovascular Medicine (A.K.P., E.K.S., J.B., J.A.B., J.M.), Division of Nephrology (J.P.A., T.A.I., E.R.G.), Vanderbilt Center for Kidney Disease (T.A.I.), Division of Clinical Pharmacology (D.G.H.) and Cardio-Oncology Program (J.M.), Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Jonathan Brown
- From the Division of Cardiovascular Medicine (A.K.P., E.K.S., J.B., J.A.B., J.M.), Division of Nephrology (J.P.A., T.A.I., E.R.G.), Vanderbilt Center for Kidney Disease (T.A.I.), Division of Clinical Pharmacology (D.G.H.) and Cardio-Oncology Program (J.M.), Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Joshua A Beckman
- From the Division of Cardiovascular Medicine (A.K.P., E.K.S., J.B., J.A.B., J.M.), Division of Nephrology (J.P.A., T.A.I., E.R.G.), Vanderbilt Center for Kidney Disease (T.A.I.), Division of Clinical Pharmacology (D.G.H.) and Cardio-Oncology Program (J.M.), Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - David G Harrison
- From the Division of Cardiovascular Medicine (A.K.P., E.K.S., J.B., J.A.B., J.M.), Division of Nephrology (J.P.A., T.A.I., E.R.G.), Vanderbilt Center for Kidney Disease (T.A.I.), Division of Clinical Pharmacology (D.G.H.) and Cardio-Oncology Program (J.M.), Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Javid Moslehi
- From the Division of Cardiovascular Medicine (A.K.P., E.K.S., J.B., J.A.B., J.M.), Division of Nephrology (J.P.A., T.A.I., E.R.G.), Vanderbilt Center for Kidney Disease (T.A.I.), Division of Clinical Pharmacology (D.G.H.) and Cardio-Oncology Program (J.M.), Department of Medicine, Vanderbilt University Medical Center, Nashville, TN.
| |
Collapse
|
98
|
Inhibition of soluble epoxide hydrolase prevents diabetic retinopathy. Nature 2017; 552:248-252. [PMID: 29211719 PMCID: PMC5828869 DOI: 10.1038/nature25013] [Citation(s) in RCA: 110] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Accepted: 11/09/2017] [Indexed: 01/14/2023]
Abstract
Diabetic retinopathy is an important cause of blindness in adults, and is characterized by progressive loss of vascular cells and slow dissolution of inter-vascular junctions, which result in vascular leakage and retinal oedema. Later stages of the disease are characterized by inflammatory cell infiltration, tissue destruction and neovascularization. Here we identify soluble epoxide hydrolase (sEH) as a key enzyme that initiates pericyte loss and breakdown of endothelial barrier function by generating the diol 19,20-dihydroxydocosapentaenoic acid, derived from docosahexaenoic acid. The expression of sEH and the accumulation of 19,20-dihydroxydocosapentaenoic acid were increased in diabetic mouse retinas and in the retinas and vitreous humour of patients with diabetes. Mechanistically, the diol targeted the cell membrane to alter the localization of cholesterol-binding proteins, and prevented the association of presenilin 1 with N-cadherin and VE-cadherin, thereby compromising pericyte-endothelial cell interactions and inter-endothelial cell junctions. Treating diabetic mice with a specific sEH inhibitor prevented the pericyte loss and vascular permeability that are characteristic of non-proliferative diabetic retinopathy. Conversely, overexpression of sEH in the retinal Müller glial cells of non-diabetic mice resulted in similar vessel abnormalities to those seen in diabetic mice with retinopathy. Thus, increased expression of sEH is a key determinant in the pathogenesis of diabetic retinopathy, and inhibition of sEH can prevent progression of the disease.
Collapse
|
99
|
Duran CL, Howell DW, Dave JM, Smith RL, Torrie ME, Essner JJ, Bayless KJ. Molecular Regulation of Sprouting Angiogenesis. Compr Physiol 2017; 8:153-235. [PMID: 29357127 DOI: 10.1002/cphy.c160048] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The term angiogenesis arose in the 18th century. Several studies over the next 100 years laid the groundwork for initial studies performed by the Folkman laboratory, which were at first met with some opposition. Once overcome, the angiogenesis field has flourished due to studies on tumor angiogenesis and various developmental models that can be genetically manipulated, including mice and zebrafish. In addition, new discoveries have been aided by the ability to isolate primary endothelial cells, which has allowed dissection of various steps within angiogenesis. This review will summarize the molecular events that control angiogenesis downstream of biochemical factors such as growth factors, cytokines, chemokines, hypoxia-inducible factors (HIFs), and lipids. These and other stimuli have been linked to regulation of junctional molecules and cell surface receptors. In addition, the contribution of cytoskeletal elements and regulatory proteins has revealed an intricate role for mobilization of actin, microtubules, and intermediate filaments in response to cues that activate the endothelium. Activating stimuli also affect various focal adhesion proteins, scaffold proteins, intracellular kinases, and second messengers. Finally, metalloproteinases, which facilitate matrix degradation and the formation of new blood vessels, are discussed, along with our knowledge of crosstalk between the various subclasses of these molecules throughout the text. Compr Physiol 8:153-235, 2018.
Collapse
Affiliation(s)
- Camille L Duran
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College Station, Texas, USA
| | - David W Howell
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College Station, Texas, USA
| | - Jui M Dave
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College Station, Texas, USA
| | - Rebecca L Smith
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College Station, Texas, USA
| | - Melanie E Torrie
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, Iowa, USA
| | - Jeffrey J Essner
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, Iowa, USA
| | - Kayla J Bayless
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College Station, Texas, USA
| |
Collapse
|
100
|
Nowobilski R, Kusinska K, Bukowska-Strakova K, Nizankowski R, Nowak W, Mika P, Jozkowicz A, Szczeklik A, Dulak J. Exercise training in intermittent claudication: Effects on antioxidant genes, inflammatory mediators and proangiogenic progenitor cells. Thromb Haemost 2017; 108:824-31. [DOI: 10.1160/th12-04-0278] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2012] [Accepted: 07/28/2012] [Indexed: 01/13/2023]
Abstract
SummaryExercise training remains a therapy of choice in intermittent claudication (IC). However, too exhaustive exercise may cause ischaemic injury and inflammatory response. We tested the impact of three-month treadmill training and single treadmill exercise on antioxidant gene expressions, cytokine concentrations and number of marrow-derived proangiogenic progenitor cells (PPC) in the blood of IC patients. Blood samples of 12 patients were collected before and after training, before and 1, 3 and 6 hours after the single exercise. PPCs were analysed with flow cytometry, cytokine concentrations were checked with Milliplex MAP, while expression of mRNAs and miRNAs was evaluated with qRT-PCR. Treadmill training improved pain-free walking time (from 144 ± 44 seconds [s] to 311 ± 134 s, p=0.02) and maximum walking time (from 578 ± 293 s to 859 ± 423 s, p=0.01) in IC patients. Before, but not after training, the single treadmill exercise increased the number of circulating CD45dimCD34+CD133-KDR+ PPCs (p=0.048), decreased expression of HMOX1 (p=0.04) in circulating leukocytes, reduced tumour necrosis factor-α (p=0.03) and tended to elevate myeloperoxidase (p=0.06) concentrations in plasma. In contrast, total plasminogen activator inhibitor-1 was decreased by single exercise only after, but not before training (p=0.02). Both before and after training the single exercise decreased monocyte chemoattractant protein (MCP)-1 (p=0.006 and p=0.03) concentration and increased SOD1 (p=0.001 and p=0.01) expression. Patients after training had also less interleukin-6 (p=0.03), but more MCP-1 (p=0.04) in the blood. In conclusion, treadmill training improves walking performance of IC patients, attenuates the single exercise-induced changes in gene expressions or PPC mobilisation, but may also lead to higher production of some proinflammatory cytokines.
Collapse
|