51
|
Crupi R, Paterniti I, Campolo M, Di Paola R, Cuzzocrea S, Esposito E. Exogenous T3 administration provides neuroprotection in a murine model of traumatic brain injury. Pharmacol Res 2013; 70:80-9. [PMID: 23313345 DOI: 10.1016/j.phrs.2012.12.009] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2012] [Revised: 12/12/2012] [Accepted: 12/26/2012] [Indexed: 01/26/2023]
Abstract
Traumatic brain injury (TBI) induces primary and secondary damage in both the endothelium and the brain parenchyma. While neurons die quickly by necrosis, a vicious cycle of secondary injury in endothelial cells exacerbates the initial injury. Thyroid hormones are reported to be decreased in patients with brain injury. Controlled cortical impact injury (CCI) is a widely used, clinically relevant model of TBI. Here, using CCI in adult male mice, we set to determine whether 3,5,3'-triiodothyronine (T3) attenuates posttraumatic neurodegeneration and neuroinflammation in an experimental model of TBI. Treatment with T3 (1.2μg/100g body weight, i.p.) 1h after TBI resulted in a significant improvement in motor and cognitive recovery after CCI, as well as in marked reduction of lesion volumes. Mouse model for brain injury showed reactive astrocytes with increased glial fibrillary acidic protein, and formation of inducible nitric oxide synthase (iNOS). Western blot analysis revealed the ability of T3 to reduce brain trauma through modulation of cytoplasmic-nuclear shuttling of nuclear factor-κB (NF-κB). Twenty-four hours after brain trauma, T3-treated mice also showed significantly lower number of TUNEL(+) apoptotic neurons and curtailed induction of Bax, compared to vehicle control. In addition, T3 significantly enhanced the post-TBI expression of the neuroprotective neurotrophins (BDNF and GDNF) compared to vehicle. Our data provide an additional mechanism for the anti-inflammatory effects of thyroid hormone with critical implications in immunopathology at the cross-roads of the immune-endocrine circuits.
Collapse
Affiliation(s)
- Rosalia Crupi
- Department of Biological and Environmental Sciences, University of Messina, Italy
| | | | | | | | | | | |
Collapse
|
52
|
Rocamonde B, Paradells S, Barcia J, Barcia C, García Verdugo J, Miranda M, Romero Gómez F, Soria J. Neuroprotection of lipoic acid treatment promotes angiogenesis and reduces the glial scar formation after brain injury. Neuroscience 2012; 224:102-15. [DOI: 10.1016/j.neuroscience.2012.08.028] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2012] [Revised: 08/08/2012] [Accepted: 08/14/2012] [Indexed: 12/30/2022]
|
53
|
Khan M, Dhammu TS, Sakakima H, Shunmugavel A, Gilg AG, Singh AK, Singh I. The inhibitory effect of S-nitrosoglutathione on blood-brain barrier disruption and peroxynitrite formation in a rat model of experimental stroke. J Neurochem 2012; 123 Suppl 2:86-97. [PMID: 23050646 PMCID: PMC3481195 DOI: 10.1111/j.1471-4159.2012.07947.x] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The hallmark of stroke injury is endothelial dysfunction leading to blood-brain barrier (BBB) leakage and edema. Among the causative factors of BBB disruption are accelerating peroxynitrite formation and the resultant decreased bioavailability of nitric oxide (NO). S-nitrosoglutathione (GSNO), an S-nitrosylating agent, was found not only to reduce the levels of peroxynitrite but also to protect the integrity of BBB in a rat model of cerebral ischemia and reperfusion (IR). A treatment with GSNO (3 μmol/kg) after IR reduced 3-nitrotyrosine levels in and around vessels and maintained NO levels in brain. This mechanism protected endothelial function by reducing BBB leakage, increasing the expression of Zonula occludens-1 (ZO-1), decreasing edema, and reducing the expression of matrix metalloproteinase-9 and E-selectin in the neurovascular unit. An administration of the peroxynitrite-forming agent 3-morpholino sydnonimine (3 μmol/kg) at reperfusion increased BBB leakage and decreased the expression of ZO-1, supporting the involvement of peroxynitrite in BBB disruption and edema. Mechanistically, the endothelium-protecting action of GSNO was invoked by reducing the activity of nuclear factor kappa B and increasing the expression of S-nitrosylated proteins. Taken together, the results support the ability of GSNO to improve endothelial function by reducing nitroxidative stress in stroke.
Collapse
Affiliation(s)
- Mushfiquddin Khan
- Department of Pediatrics, Medical University of South Carolina, Charleston, SC
| | - Tajinder S Dhammu
- Department of Pediatrics, Medical University of South Carolina, Charleston, SC
| | - Harutoshi Sakakima
- Department of Pediatrics, Medical University of South Carolina, Charleston, SC
| | | | - Anne G Gilg
- Department of Pediatrics, Medical University of South Carolina, Charleston, SC
| | - Avtar K. Singh
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC
- Ralph H. Johnson VA Medical Center, Charleston, SC
| | - Inderjit Singh
- Department of Pediatrics, Medical University of South Carolina, Charleston, SC
| |
Collapse
|
54
|
Administration of palmitoylethanolamide (PEA) protects the neurovascular unit and reduces secondary injury after traumatic brain injury in mice. Brain Behav Immun 2012; 26:1310-21. [PMID: 22884901 DOI: 10.1016/j.bbi.2012.07.021] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2012] [Revised: 07/27/2012] [Accepted: 07/27/2012] [Indexed: 12/22/2022] Open
Abstract
Traumatic brain injury (TBI) is a major cause of preventable death and morbidity in young adults. This complex condition is characterized by significant blood brain barrier leakage that stems from cerebral ischemia, inflammation, and redox imbalances in the traumatic penumbra of the injured brain. Recovery of function after TBI is partly through neuronal plasticity. In order to test whether treatments that enhance plasticity might improve functional recovery, a controlled cortical impact (CCI) in adult mice, as a model of TBI, in which a controlled cortical impactor produced full thickness lesions of the forelimb region of the sensorimotor cortex, was performed. Once trauma has occurred, combating these exacerbations is the keystone of an effective TBI therapy. The endogenous fatty acid palmitoylethanolamide (PEA) is one of the members of N-acyl-ethanolamines family that maintain not only redox balance but also inhibit the mechanisms of secondary injury. Therefore, we tested whether PEA shows efficacy in a mice model of experimental TBI. PEA treatment is able to reduced edema and brain infractions as evidenced by decreased 2,3,5-triphenyltetrazolium chloride staining across brain sections. PEA-mediated improvements in tissues histology shown by reduction of lesion size and improvement in apoptosis level further support the efficacy of PEA therapy. The PEA treatment blocked infiltration of astrocytes and restored CCI-mediated reduced expression of PAR, nitrotyrosine, iNOS, chymase, tryptase, CD11b and GFAP. PEA inhibited the TBI-mediated decrease in the expression of pJNK and NF-κB. PEA-treated injured animals improved neurobehavioral functions as evaluated by behavioral tests.
Collapse
|
55
|
Abstract
Alteplase (Actilyse(®), Activase(®)) is a recombinant tissue-type plasminogen activator that activates plasminogen directly to plasmin. It is the only pharmacological treatment currently approved for patients with acute ischaemic stroke. This article reviews the efficacy and tolerability of alteplase, focusing on data relevant to treatment between 0 and 4.5 hours after onset of stroke, and summarizes its pharmacological properties. Well designed clinical trials showed that alteplase administered within 3 hours (in the NINDS trial) and between 3 and 4.5 hours (in the ECASS III trial) after stroke onset significantly improved clinical outcomes at 90 days relative to placebo. Alteplase was generally well tolerated in these trials, with no significant difference observed between alteplase and placebo recipients in the 90-day mortality rates, despite significantly higher incidences of any and symptomatic intracranial haemorrhages in alteplase recipients. These results were generally supported by those of the SITS-MOST and SITS-ISTR observational studies, which showed that alteplase was effective and generally well tolerated when administered within 4.5 hours of stroke onset in routine clinical practice. However, results from SITS-ISTR indicated that the safety and functional outcomes were generally less favourable when alteplase was administered 3-4.5 hours after stroke onset than within 3 hours of stroke onset. Additionally, results from pooled analyses of randomized clinical trials indicated that the benefit of alteplase therapy over placebo decreased as the time between stroke onset and treatment initiation increased, with no significant benefit observed when treatment was initiated >4.5 hours after stroke onset. Moreover, the odds of mortality increased as the time between stroke onset and treatment initiation increased. Thus, the greatest benefit of alteplase therapy is gained with early treatment. Based on these results, current EU labelling and treatment guidelines recommend that alteplase should be administered as early as possible within 4.5 hours of symptom onset in patients with acute ischaemic stroke. However, recent results from a meta-analysis and IST-3 suggest that some patients may benefit from treatment up to 6 hours after stroke onset. Patients for whom alteplase therapy is contraindicated as per current EU licensing criteria, such as those aged >80 years, may also benefit from therapy. Further randomized trials of alteplase administered >4.5 hours after stroke in selected patients are required to confirm these findings.
Collapse
|
56
|
Zhuang Z, Zhou ML, You WC, Zhu L, Ma CY, Sun XJ, Shi JX. Hydrogen-rich saline alleviates early brain injury via reducing oxidative stress and brain edema following experimental subarachnoid hemorrhage in rabbits. BMC Neurosci 2012; 13:47. [PMID: 22587664 PMCID: PMC3436733 DOI: 10.1186/1471-2202-13-47] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2011] [Accepted: 04/10/2012] [Indexed: 12/31/2022] Open
Abstract
Background Increasing experimental and clinical data indicate that early brain injury (EBI) after subarachnoid hemorrhage (SAH) largely contributes to unfavorable outcomes, and it has been proved that EBI following SAH is closely associated with oxidative stress and brain edema. The present study aimed to examine the effect of hydrogen, a mild and selective cytotoxic oxygen radical scavenger, on oxidative stress injury, brain edema and neurology outcome following experimental SAH in rabbits. Results The level of MDA, caspase-12/3 and brain water content increased significantly at 72 hours after experimental SAH. Correspondingly, obvious brain injury was found in the SAH group by terminal deoxynucleotidyl transferase-mediated uridine 5’-triphosphate-biotin nick end-labeling (TUNEL) and Nissl staining. Similar results were found in the SAH + saline group. In contrast, the upregulated level of MDA, caspase-12/3 and brain edema was attenuated and the brain injury was substantially alleviated in the hydrogen treated rabbits, but the improvement of neurology outcome was not obvious. Conclusion The results suggest that treatment with hydrogen in experimental SAH rabbits could alleviate brain injury via decreasing the oxidative stress injury and brain edema. Hence, we conclude that hydrogen possesses the potential to be a novel therapeutic agent for EBI after SAH.
Collapse
Affiliation(s)
- Zong Zhuang
- Department of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing University, 305 East Zhongshan Road, Nanjing, 210002, Jiangsu Province, China
| | | | | | | | | | | | | |
Collapse
|
57
|
Divyya S, Naushad SM, Addlagatta A, Murthy P, Reddy CR, Digumarti RR, Gottumukkala SR, Kumar A, Rammurti S, Kutala VK. Paradoxical role of C1561T glutamate carboxypeptidase II (GCPII) genetic polymorphism in altering disease susceptibility. Gene 2012; 497:273-9. [DOI: 10.1016/j.gene.2012.01.055] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2011] [Revised: 12/12/2011] [Accepted: 01/21/2012] [Indexed: 10/14/2022]
|
58
|
Armstead WM, Kiessling JW, Riley J, Cines DB, Higazi AAR. tPA contributes to impaired NMDA cerebrovasodilation after traumatic brain injury through activation of JNK MAPK. Neurol Res 2011; 33:726-33. [PMID: 21756552 DOI: 10.1179/016164110x12807570509853] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
OBJECTIVE N-methyl-D-aspartate (NMDA)-induced pial artery dilation (PAD) is reversed to vasoconstriction after fluid percussion brain injury (FPI). Tissue type plasminogen activator (tPA) is up-regulated and the tPA antagonist, EEIIMD, prevents impaired NMDA PAD after FPI. Mitogen-activated protein kinase (MAPK), a family of at least three kinases, ERK, p38, and JNK, is also up-regulated after traumatic brain injury (TBI). We hypothesize that tPA impairs NMDA-induced cerebrovasodilation after FPI in a MAPK isoform-dependent mechanism. METHODS Lateral FPI was induced in newborn pigs. The closed cranial window technique was used to measure pial artery diameter and to collect cerebrospinal fluid (CSF). ERK, p38, and JNK MAPK concentrations in CSF were quantified by ELISA. RESULTS CSF JNK MAPK was increased by FPI, increased further by tPA, but blocked by JNK antagonists SP600125 and D-JNKI1. FPI modestly increased p38 and ERK isoforms of MAPK. NMDA-induced PAD was reversed to vasoconstriction after FPI, whereas dilator responses to papaverine were unchanged. tPA, in post-FPI CSF concentration, potentiated NMDA-induced vasoconstriction while papaverine dilation was unchanged. SP 600125 and D-JNKI1, blocked NMDA-induced vasoconstriction and fully restored PAD. The ERK antagonist U 0126 partially restored NMDA-induced PAD, while the p38 inhibitor SB203580 aggravated NMDA-induced vasoconstriction observed in the presence of tPA after FPI. DISCUSSION These data indicate that tPA contributes to impairment of NMDA-mediated cerebrovasodilation after FPI through JNK, while p38 may be protective. These data suggest that inhibition of the endogenous plasminogen activator system and JNK may improve cerebral hemodynamic outcome post-TBI.
Collapse
Affiliation(s)
- William M Armstead
- Department of Anesthesiology and Critical Care, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | | | | | | | | |
Collapse
|
59
|
Lemarchant S, Docagne F, Emery E, Vivien D, Ali C, Rubio M. tPA in the injured central nervous system: different scenarios starring the same actor? Neuropharmacology 2011; 62:749-56. [PMID: 22079561 DOI: 10.1016/j.neuropharm.2011.10.020] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2011] [Revised: 10/19/2011] [Accepted: 10/27/2011] [Indexed: 11/19/2022]
Abstract
When in 1947, Astrup and Permin reported that animal tissues contain fibrinokinase, a plasminogen activator, and when Pennica and colleagues (Pennica et al., 1983) cloned and expressed human tissue plasminogen activator (tPA) in Escherichia coli in 1983, they might did not realize how much their pioneer work would impact the life of millions of patients suffering from myocardial infarction or ischemic stroke. Some years after, accumulating evidence shows that tPA is not just a plasminogen activator of endothelial origin. Indeed, the main function of tPA released from the endothelium is to convert fibrin-bound plasminogen into active plasmin, thus dissolving the fibrin meshwork of blood clots. But this serine protease is also expressed by several cell types, and its beneficial and deleterious actions stand beyond fibrinolysis or even proteolysis. We will review here the reported effects and mechanisms of action of tPA in the course of three different pathologies of the central nervous system (CNS): spinal cord injury, ischemic stroke and multiple sclerosis. While these three disorders have distinct aetiologies, they share some pathogenic mechanisms. We will depict the main "good" and "bad" sides of tPA described to date during each of these pathological situations, as well as the proposed mechanisms explaining these effects. We speculate that due to common pathogenic pathways, tPA's actions described in one particular disease could in fact occur in the others. Finally, we will evaluate if tPA could be a therapeutic target for these pathologies. This article is part of a Special Issue entitled 'Post-Traumatic Stress Disorder'.
Collapse
Affiliation(s)
- Sighild Lemarchant
- INSERM U919, "Serine Proteases and Pathophysiology of the Neurovascular Unit", UMR CNRS 6232 Cinaps, GIP Cyceron, University of Caen, Bd H. Becquerel, BP 5229, 14074 Caen Cedex, France
| | | | | | | | | | | |
Collapse
|
60
|
Vivien D, Gauberti M, Montagne A, Defer G, Touzé E. Impact of tissue plasminogen activator on the neurovascular unit: from clinical data to experimental evidence. J Cereb Blood Flow Metab 2011; 31:2119-34. [PMID: 21878948 PMCID: PMC3210341 DOI: 10.1038/jcbfm.2011.127] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
About 15 million strokes occur each year worldwide. As the number one cause of morbidity and acquired disability, stroke is a major drain on public health-care funding, due to long hospital stays followed by ongoing support in the community or nursing-home care. Although during the last 10 years we have witnessed a remarkable progress in the understanding of the pathophysiology of ischemic stroke, reperfusion induced by recombinant tissue-type plasminogen activator (tPA-Actilyse) remains the only approved acute treatment by the health authorities. The objective of the present review is to provide an overview of our present knowledge about the impact of tPA on the neurovascular unit during acute ischemic stroke.
Collapse
Affiliation(s)
- Denis Vivien
- Inserm UMR-S 919, Serine Proteases and Pathophysiology of the Neurovascular Unit, GIP Cyceron, Université de Caen Basse-Normandie, Caen Cedex, France.
| | | | | | | | | |
Collapse
|
61
|
Copin JC, Bengualid DJ, Da Silva RF, Kargiotis O, Schaller K, Gasche Y. Recombinant tissue plasminogen activator induces blood-brain barrier breakdown by a matrix metalloproteinase-9-independent pathway after transient focal cerebral ischemia in mouse. Eur J Neurosci 2011; 34:1085-92. [DOI: 10.1111/j.1460-9568.2011.07843.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
62
|
Mohammadi MT, Shid-Moosavi SM, Dehghani GA. Contribution of nitric oxide synthase (NOS) in blood-brain barrier disruption during acute focal cerebral ischemia in normal rat. ACTA ACUST UNITED AC 2011; 19:13-20. [PMID: 21852076 DOI: 10.1016/j.pathophys.2011.07.003] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2010] [Revised: 07/25/2011] [Accepted: 07/25/2011] [Indexed: 11/17/2022]
Abstract
Endogenous level of nitric oxide (NO) is increased in the brain following the stroke, and deactivation of NO synthase has been shown to attenuate its destructive actions in animal stroke models using middle cerebral artery occlusion (MCAO) procedures. However, little is known about the effects of NO in cerebral vascular integrity and edema during acute cerebral ischemia. Here we investigated whether NO plays any role in the progression of blood-brain barrier (BBB) disruption and edema formation in ischemia/reperfusion injury. Intraperitoneal administration of NO substrate l-arginine (300mg/kg), or NOS inhibitor (l-NAME, 1mg/kg), was done in normal rats at 20min before a 60-min MCAO. Mean arterial blood pressures (MAP) and regional cerebral blood flow (rCBF) were continuously recorded during experiment. Neurological deficit score (NDS) was evaluated 12h after termination of MCAO followed with evaluations of cerebral infarction volume (CIV), edema formation and cerebral vascular permeability (CVP), as determined by the Evans blue dye extravasations (EBE) technique. No significant changes were observed in the values of MAP and rCBF with l-arginine or l-NAME during ischemia or reperfusion periods. There was a 75-85% reduction in rCBF in during MCAO which returned back to its pre-occlusion level during reperfusion. Acute cerebral ischemia with or without l-arginine augmented NDS (4.00±0.44 and 3.00±0.30), in conjunction with increased CIV (518±57mm(3) and 461±65mm(3)), provoked edema (3.09±0.45% and 3.30±0.49%), and elevated EBE (8.28±2.04μg/g and 5.09±1.41μg/g). Inhibition of NO production by l-NAME significantly improved NDS (1.50±0.22), diminished CIV (248±56mm(3)), edema (1.18±0.58%) and EBE (1.37±0.12μg/g). This study reconfirms the cerebroprotective properties of reduced tissue NO during acute ischemic stroke, and it also validates the deleterious actions of increased NOS activity on the disruption of cerebral microvascular integrity and edema formation of ischemia/reperfusion injuries in normal rat, without changing arterial blood pressure or blood flows to ischemic regions.
Collapse
|
63
|
Yao Y, Tsirka SE. Truncation of monocyte chemoattractant protein 1 by plasmin promotes blood-brain barrier disruption. J Cell Sci 2011; 124:1486-95. [PMID: 21486949 DOI: 10.1242/jcs.082834] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Previous studies have shown that plasmin cleaves monocyte chemoattractant protein 1 (MCP1; officially known as C-C motif chemokine 2, CCL2) at K104, and this cleavage enhances its chemotactic potency significantly. Accumulating evidence reveals that MCP1 also disrupts the integrity of the blood-brain barrier (BBB). Here, we show that K104Stop-MCP1, truncated at the K104 where plasmin would normally cleave, is more efficient than the full-length protein (FL-MCP1) in compromising the integrity of the BBB in in vitro and in vivo models. K104Stop-MCP1 increases the permeability of BBB in both wild-type mice and mice deficient for tissue plasminogen activator (tPA), which converts plasminogen into active plasmin, suggesting that plasmin-mediated truncation of MCP1 plays an important role in BBB compromise. Furthermore, we show that the mechanisms underlying MCP1-induced BBB disruption involve redistribution of tight junction proteins (occludin and ZO-1) and reorganization of the actin cytoskeleton. Finally, we show that the redistribution of ZO-1 is mediated by phosphorylation of ezrin-radixin-moesin (ERM) proteins. These findings identify plasmin as a key signaling molecule in the regulation of BBB integrity and suggest that plasmin inhibitors might be used to modulate diseases accompanied by BBB compromise.
Collapse
Affiliation(s)
- Yao Yao
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY 11794-8651, USA
| | | |
Collapse
|
64
|
Harston GWJ, Sutherland BA, Kennedy J, Buchan AM. The contribution of L-arginine to the neurotoxicity of recombinant tissue plasminogen activator following cerebral ischemia: a review of rtPA neurotoxicity. J Cereb Blood Flow Metab 2010; 30:1804-16. [PMID: 20736961 PMCID: PMC3023931 DOI: 10.1038/jcbfm.2010.149] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Alteplase is the only drug licensed for acute ischemic stroke, and in this formulation, the thrombolytic agent recombinant tissue plasminogen activator (rtPA) is stabilized in a solution of L-arginine. Improved functional outcomes after alteplase administration have been shown in clinical trials, along with improved histological and behavioral measures in experimental models of embolic stroke. However, in animal models of mechanically induced ischemia, alteplase can exacerbate ischemic damage. We have systematically reviewed the literature of both rtPA and L-arginine administration in mechanical focal ischemia. The rtPA worsens ischemic damage under certain conditions, whereas L-arginine can have both beneficial and deleterious effects dependent on the time of administration. The interaction between rtPA and L-arginine may be leading to the production of nitric oxide, which can cause direct neurotoxicity, altered cerebral blood flow, and disruption of the neurovascular unit. We suggest that alternative formulations of rtPA, in the absence of L-arginine, would provide new insight into rtPA neurotoxicity, and have the potential to offer more efficacious thrombolytic therapy for ischemic stroke patients.
Collapse
Affiliation(s)
- George W J Harston
- Nuffield Department of Clinical Medicine, Acute Stroke Programme, University of Oxford, Oxford, UK
| | | | | | | |
Collapse
|
65
|
Louboutin JP, Chekmasova A, Marusich E, Agrawal L, Strayer DS. Role of CCR5 and its ligands in the control of vascular inflammation and leukocyte recruitment required for acute excitotoxic seizure induction and neural damage. FASEB J 2010; 25:737-53. [PMID: 20940264 DOI: 10.1096/fj.10-161851] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Chemokines may play a role in leukocyte migration across the blood-brain barrier (BBB) during neuroinflammation and other neuropathological processes, such as epilepsy. We investigated the role of the chemokine receptor CCR5 in seizures. We used a rat model based on intraperitoneal kainic acid (KA) administration. Four months before KA injection, adult rats were given femoral intramarrow inoculations of SV (RNAiR5-RevM10.AU1), which carries an interfering RNA (RNAi) against CCR5, plus a marker epitope (AU1), or its monofunctional RNAi-carrying homologue, SV(RNAiR5). This treatment lowered expression of CCR5 in circulating cells. In control rats, seizures induced elevated expression of CCR5 ligands MIP-1α and RANTES in the microvasculature, increased BBB leakage and CCR5(+) cells, as well as neuronal loss, inflammation, and gliosis in the hippocampi. Animals given either the bifunctional or the monofunctional vector were largely protected from KA-induced seizures, neuroinflammation, BBB damage, and neuron loss. Brain CCR5 mRNA was reduced. Rats receiving RNAiR5-bearing vectors showed far greater repair responses: increased neuronal proliferation, and decreased production of MIP-1α and RANTES. Controls received unrelated SV(BUGT) vectors. Decrease in CCR5 in circulating cells strongly protected from excitotoxin-induced seizures, BBB leakage, CNS injury, and inflammation, and facilitated neurogenic repair.
Collapse
Affiliation(s)
- Jean-Pierre Louboutin
- Department of Pathology, Jefferson Medical College, 1020 Locust St., Rm. 251, Philadelphia, PA 19107, USA.
| | | | | | | | | |
Collapse
|
66
|
Tissue-type plasminogen activator induces plasmin-dependent proteolysis of intracellular neuronal nitric oxide synthase. Biol Cell 2010; 102:539-47. [PMID: 20636282 DOI: 10.1042/bc20100072] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND INFORMATION Despite its pro-fibrinolytic activity, tPA (tissue plasminogen activator) is a serine protease known to influence a number of physiological and pathological functions in the central nervous system. Accordingly, tPA was reported to mediate some of its functions in the central nervous system through NMDA (N-methyl-D-aspartate) receptors, LRP (low-density lipoprotein receptor-related protein) or annexin II. RESULTS We provide here both in vitro and in vivo evidence that tPA could mediate proteolysis and subsequent delocalization of neuronal nitric oxide synthase, thereby reducing endogenous neuronal nitric oxide release. We also demonstrate that although this effect is independent of NMDA receptors, LRP signalling and calpain-mediated proteolysis, it is dependent on the ability of tPA to promote the conversion of plasminogen into plasmin. CONCLUSION Altogether, these results demonstrate a new function for tPA in the central nervous system, which most likely contributes to its pleiotropic functions.
Collapse
|
67
|
Lin JL, Huang YH, Shen YC, Huang HC, Liu PH. Ascorbic acid prevents blood-brain barrier disruption and sensory deficit caused by sustained compression of primary somatosensory cortex. J Cereb Blood Flow Metab 2010; 30:1121-36. [PMID: 20051973 PMCID: PMC2949198 DOI: 10.1038/jcbfm.2009.277] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Transient compression of rat somatosensory cortex has been reported to affect cerebral microvasculature and sensory function simultaneously. However, the effects of long-term cortical compression remain unknown. Here, we investigated whether and to what extent sustained but moderate epidural compression of rat somatosensory cortex impairs somatic sensation and/or cortical microvasculature. Electrophysiological and behavioral tests revealed that sustained compression caused only short-term sensory deficit, particularly at 1 day after injury. Although the diameter of cortical microvessels was coincidentally reduced, no ischemic insult was observed. By measuring Evans Blue and immunoglobulin G extravasation, the blood-brain barrier (BBB) permeability was found to dramatically increase during 1 to 3 days, but this did not lead to brain edema. Furthermore, immunoblotting showed that the BBB component proteins occludin, claudin-5, type IV collagen, and glial fibrillary acidic protein were markedly upregulated in the injured cortex during 1 to 2 weeks when BBB regained integrity. Conversely, treatment of ascorbic acid prevented compression-induced BBB disruption and sensory impairment. Together, these data suggest that sustained compression of the somatosensory cortex compromises BBB integrity and somatic sensation only in the early period. Ascorbic acid may be used therapeutically to modulate cortical compression and/or BBB dysfunction.
Collapse
Affiliation(s)
- Jia-Li Lin
- Institute of Neuroscience, Tzu Chi University, Hualien, Taiwan
| | | | | | | | | |
Collapse
|
68
|
Armstead WM, Ganguly K, Kiessling JW, Riley J, Chen XH, Smith DH, Stein SC, Higazi AAR, Cines DB, Bdeir K, Zaitsev S, Muzykantov VR. Signaling, delivery and age as emerging issues in the benefit/risk ratio outcome of tPA For treatment of CNS ischemic disorders. J Neurochem 2010; 113:303-12. [PMID: 20405577 PMCID: PMC3467975 DOI: 10.1111/j.1471-4159.2010.06613.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Stroke is a leading cause of morbidity and mortality. While tissue-type plasminogen activator (tPA) remains the only FDA-approved treatment for ischemic stroke, clinical use of tPA has been constrained to roughly 3% of eligible patients because of the danger of intracranial hemorrhage and a narrow 3 h time window for safe administration. Basic science studies indicate that tPA enhances excitotoxic neuronal cell death. In this review, the beneficial and deleterious effects of tPA in ischemic brain are discussed along with emphasis on development of new approaches toward treatment of patients with acute ischemic stroke. In particular, roles of tPA-induced signaling and a novel delivery system for tPA administration based on tPA coupling to carrier red blood cells will be considered as therapeutic modalities for increasing tPA benefit/risk ratio. The concept of the neurovascular unit will be discussed in the context of dynamic relationships between tPA-induced changes in cerebral hemodynamics and histopathologic outcome of CNS ischemia. Additionally, the role of age will be considered since thrombolytic therapy is being increasingly used in the pediatric population, but there are few basic science studies of CNS injury in pediatric animals.
Collapse
Affiliation(s)
- William M Armstead
- Department of Anesthesiology and Critical Care, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
69
|
Steinberg A, Wiklund NP, Brundin L, Remahl AIMN. Levels of nitric oxide metabolites in cerebrospinal fluid in cluster headache. Cephalalgia 2010; 30:696-702. [PMID: 20511209 DOI: 10.1177/0333102409351799] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The pathophysiology of cluster headache (CH) is only partly understood. Nitric oxide (NO), a potent vasodilator, has been suggested to be involved, and increased plasma levels of nitrite, a stable product on NO degradation, have been identified in the active period and in remission. The aim of our study was to investigate the role of NO in CH by measuring its oxidation products, nitrite and nitrate, in the cerebrospinal fluid (CSF), a biological compartment closer to the supposed focus of the disorder. We collected CSF from 14 episodic CH patients. Lumbar puncture (LP) was performed at two occasions: in active period between headache attacks, and in remission, not earlier than three weeks after the last CH attack. Eleven healthy volunteers served as controls. To estimate NO production, we determined the levels of NO-oxidation end products (NOx), that is, the sum of nitrite and nitrate, by using capillary electrophoresis. CH patients in the active period had significantly increased NOx levels (mean 9.3, 95% confidence interval [CI] 8.5-10.1) compared with those in remission (mean 7.6, 95% CI 6.9-8.2; p < 001) and control subjects (mean 6.2, 95% CI 4.9-7.5; p < 0.001). CH patients also had statistically significant enhanced NOx levels in remission compared with those of control subjects (p = 0.034). CSF was also analysed with regard to inflammatory parameters and protein content. CSF showed signs of pleocytosis or oligoclonal bands or albumin increase in 43% of CH patients although these results were not conclusive. We suggest that CH patients have a generally raised NO tonus, both in the active period and in remission. We interpret these results as indications of a basal hyperfunction of the L-arginine-NO pathway, possibly as an expression of inflammatory activity, and sensitization of pain pathways. This is the first study analysing NOx in CSF in CH, and the results support NO involvement in the pathogenesis of CH.
Collapse
|
70
|
Suemitsu S, Watanabe M, Yokobayashi E, Usui S, Ishikawa T, Matsumoto Y, Yamada N, Okamoto M, Kuroda S. Fcgamma receptors contribute to pyramidal cell death in the mouse hippocampus following local kainic acid injection. Neuroscience 2010; 166:819-31. [PMID: 20074624 DOI: 10.1016/j.neuroscience.2010.01.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2009] [Revised: 01/05/2010] [Accepted: 01/05/2010] [Indexed: 01/26/2023]
Abstract
Recent studies have demonstrated the contribution of the gamma subunit of the Fc receptor of IgG (FcRgamma) to neuronal death following ischemic injury and Parkinson's disease. We examined the role of FcRgamma in hippocampal pyramidal cell death induced by kainic acid (KA). FcRgamma-deficient mice (FcRgamma-/-) and their FcRgamma+/+ littermates (wild type, B6) received an injection of KA into the dorsal hippocampus. Pyramidal cell death was quantified 24 and 72 h after the injection. The number of survived pyramidal cells was significantly larger in FcRgamma-/- mice than in B6 mice in both the CA1 and CA3. Immunohistochemical and immunofluorescent studies detected FcgammaRIIB protein in parvalbumin neurons, whereas FcgammaRIII and FcgammaRI proteins were detected in microglial cells. No activated microglial cells were detected 24 h after the KA injection in FcRgamma-/- mice, whereas many activated microglial cells were present in B6 mice. The production of nitrotyrosine as well as of the inducible nitric oxide synthase and cyclooxygenase-2 proteins, increased by 16 h after the KA injection in B6 mice. In addition, tissue plasminogen activator and metalloproteinase-2 proteins increased. By contrast, the magnitude of oxidative stress and the increase in protease expression were mild in FcRgamma-/- mice. Co-injection of a neutralizing antibody against FcgammaRll and FcgammaRlll with KA abolished pyramidal cell death and microglial activation. In addition, the neutralizing antibody reduced oxidative stress and expression of proteases. These observations suggested a role for FcgammaRllB in parvalbumin neurons as well as FcRgamma in microglia in pyramidal cell death.
Collapse
Affiliation(s)
- S Suemitsu
- Department of Neuropsychiatry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, 2-5-1 Shikatacho, Kitaku, 700-8558 Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
71
|
Khan M, Im YB, Shunmugavel A, Gilg AG, Dhindsa RK, Singh AK, Singh I. Administration of S-nitrosoglutathione after traumatic brain injury protects the neurovascular unit and reduces secondary injury in a rat model of controlled cortical impact. J Neuroinflammation 2009; 6:32. [PMID: 19889224 PMCID: PMC2777134 DOI: 10.1186/1742-2094-6-32] [Citation(s) in RCA: 114] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2009] [Accepted: 11/04/2009] [Indexed: 12/04/2022] Open
Abstract
Background Traumatic brain injury (TBI) is a major cause of preventable death and serious morbidity in young adults. This complex pathological condition is characterized by significant blood brain barrier (BBB) leakage that stems from cerebral ischemia, inflammation, and redox imbalances in the traumatic penumbra of the injured brain. Once trauma has occurred, combating these exacerbations is the keystone of an effective TBI therapy. Following other brain injuries, nitric oxide modulators such as S-nitrosoglutathione (GSNO) maintain not only redox balance but also inhibit the mechanisms of secondary injury. Therefore, we tested whether GSNO shows efficacy in a rat model of experimental TBI. Methods TBI was induced by controlled cortical impact (CCI) in adult male rats. GSNO (50 μg/kg body weight) was administered at two hours after CCI. GSNO-treated injured animals (CCI+GSNO group) were compared with vehicle-treated injured animals (CCI+VEH group) in terms of tissue morphology, BBB leakage, edema, inflammation, cell death, and neurological deficit. Results Treatment of the TBI animals with GSNO reduced BBB disruption as evidenced by decreased Evan's blue extravasation across brain, infiltration/activation of macrophages (ED1 positive cells), and reduced expression of ICAM-1 and MMP-9. The GSNO treatment also restored CCI-mediated reduced expression of BBB integrity proteins ZO-1 and occludin. GSNO-mediated improvements in tissue histology shown by reduction of lesion size and decreased loss of both myelin (measured by LFB staining) and neurons (assayed by TUNEL) further support the efficacy of GSNO therapy. GSNO-mediated reduced expression of iNOS in macrophages as well as decreased neuronal cell death may be responsible for the histological improvement and reduced exacerbations. In addition to these biochemical and histological improvements, GSNO-treated injured animals recovered neurobehavioral functions as evaluated by the rotarod task and neurological score measurements. Conclusion GSNO is a promising candidate to be evaluated in humans after brain trauma because it not only protects the traumatic penumbra from secondary injury and improves overall tissue structure but also maintains the integrity of BBB and reduces neurologic deficits following CCI in a rat model of experimental TBI.
Collapse
Affiliation(s)
- Mushfiquddin Khan
- Department of Pediatrics, Medical University of South Carolina, Charleston, SC 29425, USA.
| | | | | | | | | | | | | |
Collapse
|
72
|
Schreiner B, Heppner FL, Becher B. Modeling multiple sclerosis in laboratory animals. Semin Immunopathol 2009; 31:479-95. [PMID: 19802608 DOI: 10.1007/s00281-009-0181-4] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2009] [Accepted: 08/13/2009] [Indexed: 12/18/2022]
Abstract
Inflammatory demyelinating disease of the central nervous system is one of the most frequent causes of neurological disability in young adults. While in situ analysis and in vitro models do shed some light onto the processes of tissue damage and cellular interactions, the development of neuroinflammation and demyelination is a far too complex process to be adequately modeled by simple test tube systems. Thus, animal models using primarily genetically modified mice have been proven to be of paramount importance. In this chapter, we discuss recent advances in modeling brain diseases focusing on murine models and report on new tools to study the pathogenesis of complex diseases such as multiple sclerosis.
Collapse
|
73
|
Wu M, Tsirka SE. Endothelial NOS-deficient mice reveal dual roles for nitric oxide during experimental autoimmune encephalomyelitis. Glia 2009; 57:1204-15. [PMID: 19170181 DOI: 10.1002/glia.20842] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Multiple sclerosis (MS) is a demyelinating autoimmune disease characterized by infiltration of T cells into the central nervous system (CNS) after compromise of the blood-brain barrier. A model used to mimic the disease in mice is experimental autoimmune encephalomyelitis (EAE). In this report, we examine the clinical and histopathological course of EAE in eNOS-deficient (eNOS-/-) mice to determine the role of nitric oxide (NO) derived from this enzyme in the disease progression. We find that eNOS-/- mice exhibit a delayed onset of EAE that correlates with delayed BBB breakdown, thus suggesting that NO production by eNOS underlies the T cell infiltration into the CNS. However, the eNOS-/- mice also eventually exhibit more severe EAE and delayed recovery, indicating that NO undertakes dual roles in MS/EAE, one proinflammatory that triggers disease onset, and the other neuroprotective that promotes recovery from disease exacerbation events.
Collapse
Affiliation(s)
- Muzhou Wu
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, New York 11794-8651, USA
| | | |
Collapse
|
74
|
Beauchesne E, Desjardins P, Hazell AS, Butterworth RF. eNOS gene deletion restores blood-brain barrier integrity and attenuates neurodegeneration in the thiamine-deficient mouse brain. J Neurochem 2009; 111:452-9. [PMID: 19686244 DOI: 10.1111/j.1471-4159.2009.06338.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Wernicke's encephalopathy is a cerebral disorder caused by thiamine (vitamin B(1)) deficiency (TD). Neuropathologic consequences of TD include region-selective neuronal cell loss and blood-brain barrier (BBB) breakdown. Early increased expression of the endothelial isoform of nitric oxide synthase (eNOS) occurs selectively in vulnerable brain regions in TD. We hypothesize that region-selective eNOS induction in TD leads to altered expression of tight junction proteins and BBB breakdown. In order to address this issue, TD was induced in C57BL/6 wild-type (WT) and eNOS(-/-) mice by feeding a thiamine-deficient diet and treatment with the thiamine antagonist pyrithiamine. Pair-fed control mice were fed the same diet with additional thiamine. In medial thalamus of TD-WT mice (vulnerable area), increased heme oxygenase-1 and S-nitrosocysteine immunostaining was observed in vessel walls, compared to pair-fed control-WT mice. Concomitant increases in IgG extravasation, decreases in expression of the tight junction proteins occludin, zona occludens-1 and zona occludens-2, and up-regulation of matrix metalloproteinase-9 in endothelial cells were observed in the medial thalamus of TD-WT mice. eNOS gene deletion restored these BBB alterations, suggesting that eNOS-derived nitric oxide is a major factor leading to cerebrovascular alterations in TD. However, eNOS gene deletion only partially attenuated TD-related neuronal cell loss, suggesting the presence of mechanisms additional to BBB disruption in the pathogenesis of these changes.
Collapse
|
75
|
Su EJ, Fredriksson L, Schielke GP, Eriksson U, Lawrence DA. Tissue plasminogen activator-mediated PDGF signaling and neurovascular coupling in stroke. J Thromb Haemost 2009; 7 Suppl 1:155-8. [PMID: 19630790 PMCID: PMC2912222 DOI: 10.1111/j.1538-7836.2009.03402.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The use of tissue plasminogen activator (tPA) as a thrombolytic treatment in ischemic stroke is limited largely due to concerns for hemorrhagic complications. The underlying mechanisms are still unknown, but evidence is beginning to emerge that tPA interacts with key regulators of the neurovascular unit (NVU), and that these interactions may contribute to the undesirable side effects associated with the use of tPA in ischemic stroke. Understanding these connections and tPA's normal function within the NVU may offer new insights into future therapeutic approaches.
Collapse
Affiliation(s)
- E J Su
- Department of Internal Medicine, University of Michigan Medical School, MI 48109, USA
| | | | | | | | | |
Collapse
|
76
|
Molecular mechanisms of excitotoxicity and their relevance to pathogenesis of neurodegenerative diseases. Acta Pharmacol Sin 2009; 30:379-87. [PMID: 19343058 DOI: 10.1038/aps.2009.24] [Citation(s) in RCA: 789] [Impact Index Per Article: 52.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
A pivotal role for excitotoxicity in neurodegenerative diseases is gaining increasingly more acceptance, but the underlying mechanisms through which it participates in neurodegeneration still need further investigation. Excessive activation of glutamate receptors by excitatory amino acids leads to a number of deleterious consequences, including impairment of calcium buffering, generation of free radicals, activation of the mitochondrial permeability transition and secondary excitotoxicity. Recent studies implicate excitotoxicity in a variety of neuropathological conditions, suggesting that neurodegenerative diseases with distinct genetic etiologies may share excitotoxicity as a common pathogenic pathway. Thus, understanding the pathways involved in excitotoxicity is of critical importance for the future clinical treatment of many neurodegenerative diseases. This review discusses the current understanding of excitotoxic mechanisms and how they are involved in the pathogenesis of neurodegenerative diseases.
Collapse
|
77
|
Zhang C, An J, Strickland DK, Yepes M. The low-density lipoprotein receptor-related protein 1 mediates tissue-type plasminogen activator-induced microglial activation in the ischemic brain. THE AMERICAN JOURNAL OF PATHOLOGY 2009; 174:586-94. [PMID: 19147818 DOI: 10.2353/ajpath.2009.080661] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Microglia are the immune cells of the central nervous system (CNS) that become activated in response to pathological situations such as cerebral ischemia. Tissue-type plasminogen activator (tPA) is a serine proteinase that is found in the intravascular space and the CNS. The low-density lipoprotein receptor-related protein 1 (LRP1) is a member of the low-density lipoprotein receptor gene family found in neurons, astrocytes, and microglia. The present study investigated whether the interaction between tPA and microglial LRP1 plays a role in cerebral ischemia-induced microglial activation. We found that middle cerebral artery occlusion (MCAO) induces microglial activation in both wild-type and plasminogen-deficient (Plg(-/-)) mice. In contrast, MCAO-induced microglial activation is significantly decreased in tPA-deficient (tPA(-/-)) mice and in mice that lack LRP1 in microglial cells (macLRP(-)). We observed a significant increase in microglial activation when tPA(-/-) mice received treatment with murine tPA after MCAO. In contrast, treatment of macLRP(-) mice with tPA did not have an effect on the extent of microglial activation. Finally, both the volume of the ischemic lesion as well as inducible nitric oxide synthase production were significantly decreased in macLRP(-) mice and macLRP(-) microglia. In summary, our results indicate that the interaction between tPA and LRP1 induces microglial activation with the generation of an inflammatory response in the ischemic brain, suggesting a cytokine-like role for tPA in the CNS.
Collapse
Affiliation(s)
- Chen Zhang
- Department of Neurology and Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, GA 30322, USA
| | | | | | | |
Collapse
|
78
|
Go HY, Seo ES, Kim WT. Expression of nitric oxide synthase isoforms and N-methyl-D-aspartate receptor subunits according to transforming growth factor-β1 administration after hypoxic-ischemic brain injury in neonatal rats. KOREAN JOURNAL OF PEDIATRICS 2009. [DOI: 10.3345/kjp.2009.52.5.594] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Hae Young Go
- Department of Pediatrics, Gumi-Gangdong Hospital, Gumi, Gyungsangbookdo, Korea
| | - Eok Su Seo
- Department of Pediatrics, School of Medicine, Catholic University of Daegu, Daegu, Korea
| | - Woo Taek Kim
- Department of Ophthalmology, Dongguk University College of Medicine, Gyeongju, Gyungsangbookdo, Korea
| |
Collapse
|
79
|
Jung KH, Chu K, Lee ST, Park HK, Kim JH, Kang KM, Kim M, Lee SK, Roh JK. Augmentation of nitrite therapy in cerebral ischemia by NMDA receptor inhibition. Biochem Biophys Res Commun 2009; 378:507-12. [DOI: 10.1016/j.bbrc.2008.11.081] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2008] [Accepted: 11/17/2008] [Indexed: 11/28/2022]
|
80
|
Tissue-type plasminogen activator in the ischemic brain: more than a thrombolytic. Trends Neurosci 2009; 32:48-55. [DOI: 10.1016/j.tins.2008.09.006] [Citation(s) in RCA: 226] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2008] [Revised: 09/19/2008] [Accepted: 09/19/2008] [Indexed: 12/19/2022]
|
81
|
Jeon GS, Choi DH, Lee HN, Kim DW, Chung CK, Cho SS. Expression of L-serine biosynthetic enzyme 3-phosphoglycerate dehydrogenase (Phgdh) and neutral amino acid transporter ASCT1 following an excitotoxic lesion in the mouse hippocampus. Neurochem Res 2008; 34:827-34. [PMID: 18751891 DOI: 10.1007/s11064-008-9831-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2008] [Accepted: 08/05/2008] [Indexed: 10/21/2022]
Abstract
The nonessential amino acid L-serine functions as a glia-derived trophic factor and strongly promotes the survival and differentiation of cultured neurons. The L-serine biosynthetic enzyme 3-phosphoglycerate dehydrogenase (Phgdh) and the small neutral amino acid transporter ASCT1 are preferentially expressed in specific glial cells in the brain. However, their roles in pathological progression remain unclear. We examined the expression of Phgdh and ASCT1 in kainic acid (KA)-induced neurodegeneration of the mouse hippocampus using immunohistochemistry and Western blots. Our quantitative analysis revealed that Phgdh and ASCT1 were constitutively expressed in the normal brain and transiently upregulated by KA-treatment. At the cellular level, Phgdh was expressed in astrocytes in control and in KA-treated mice while ASCT1 that was expressed primarily in the neurons of the normal brain appeared also in activated astrocytes in KA treated mouse brain. The preferential glial expression of ASCT1 was consistent with that of Phgdh. These results demonstrate injury-induced changes in Phgdh and ASCT1 expression. It is hypothesized that the secretion of L-serine is regulated by astrocytes in response to toxic molecules such as glutamate and free radicals that promote neurodegeneration, and may correspond to the level of L-serine needed for neuronal survival and glial activation during brain insults.
Collapse
Affiliation(s)
- Gye Sun Jeon
- Department of Anatomy, Seoul National University College of Medicine, Seoul, South Korea
| | | | | | | | | | | |
Collapse
|
82
|
Zaja-Milatovic S, Gupta RC, Aschner M, Montine TJ, Milatovic D. Pharmacologic suppression of oxidative damage and dendritic degeneration following kainic acid-induced excitotoxicity in mouse cerebrum. Neurotoxicology 2008; 29:621-7. [PMID: 18556069 PMCID: PMC2517174 DOI: 10.1016/j.neuro.2008.04.009] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2008] [Revised: 03/27/2008] [Accepted: 04/08/2008] [Indexed: 11/20/2022]
Abstract
Intense seizure activity associated with status epilepticus and excitatory amino acid (EAA) imbalance initiates oxidative damage and neuronal injury in CA1 of the ventral hippocampus. We tested the hypothesis that dendritic degeneration of pyramidal neurons in the CA1 hippocampal area resulting from seizure-induced neurotoxicity is modulated by cerebral oxidative damage. Kainic acid (KA, 1 nmol/5 microl) was injected intracerebroventricularly to C57Bl/6 mice. F2-isoprostanes (F2-IsoPs) and F4-neuroprostanes (F4-NeuroPs) were used as surrogate measures of in vivo oxidative stress and biomarkers of lipid peroxidation. Nitric oxide synthase (NOS) activity was quantified by evaluating citrulline level and pyramidal neuron dendrites and spines were evaluated using rapid Golgi stains and a Neurolucida system. KA produced severe seizures in mice immediately after its administration and a significant (p<0.001) increase in F2-IsoPs, F4-NeuroPs and citrulline levels were seen 30 min following treatment. At the same time, hippocampal pyramidal neurons showed significant (p<0.001) reduction in dendritic length and spine density. In contrast, no significant change in neuronal dendrite and spine density or F2-IsoP, F4-NeuroPs and citrulline levels were found in mice pretreated with vitamin E (alpha-tocopherol, 100mg/kg, i.p.) for 3 days, or with N-tert-butyl-alpha-phenylnitrone (PBN, 200mg/kg, i.p.) or ibuprofen (inhibitors of cyclooxygenase, COX, 14 microg/ml of drinking water) for 2 weeks prior to KA treatment. These findings indicate novel interactions among free radical-induced generation of F2-IsoPs and F4-NeuroPs, nitric oxide and dendritic degeneration, closely associate oxidative damage to neuronal membranes with degeneration of the dendritic system, and point to possible interventions to limit severe damage in acute neurological disorders.
Collapse
Affiliation(s)
| | - Ramesh C. Gupta
- Breathitt Veterinary Center, Murray State University, Hopkinsville, KY
| | - Michael Aschner
- Vanderbilt University Medical Center, Vanderbilt University, Nashville, TN
| | | | - Dejan Milatovic
- Vanderbilt University Medical Center, Vanderbilt University, Nashville, TN
| |
Collapse
|
83
|
Nittby H, Grafström G, Eberhardt JL, Malmgren L, Brun A, Persson BRR, Salford LG. Radiofrequency and extremely low-frequency electromagnetic field effects on the blood-brain barrier. Electromagn Biol Med 2008; 27:103-26. [PMID: 18568929 DOI: 10.1080/15368370802061995] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
During the last century, mankind has introduced electricity and during the very last decades, the microwaves of the modern communication society have spread a totally new entity--the radiofrequency fields--around the world. How does this affect biology on Earth? The mammalian brain is protected by the blood-brain barrier, which prevents harmful substances from reaching the brain tissue. There is evidence that exposure to electromagnetic fields at non thermal levels disrupts this barrier. In this review, the scientific findings in this field are presented. The result is a complex picture, where some studies show effects on the blood-brain barrier, whereas others do not. Possible mechanisms for the interactions between electromagnetic fields and the living organisms are discussed. Demonstrated effects on the blood-brain barrier, as well as a series of other effects upon biology, have caused societal anxiety. Continued research is needed to come to an understanding of how these possible effects can be neutralized, or at least reduced. Furthermore, it should be kept in mind that proven effects on biology also should have positive potentials, e.g., for medical use.
Collapse
Affiliation(s)
- Henrietta Nittby
- Department of Neurosurgery, The Rausing Laboratory, Lund University, Lund, Sweden.
| | | | | | | | | | | | | |
Collapse
|
84
|
Key role of tissue plasminogen activator in neurovascular coupling. Proc Natl Acad Sci U S A 2008; 105:1073-8. [PMID: 18195371 DOI: 10.1073/pnas.0708823105] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The increase in blood flow evoked by synaptic activity is essential for normal brain function and underlies functional brain imaging signals. Nitric oxide, a vasodilator released by NMDA receptor activation, is critical for the flow increase, but the factors linking NMDA receptor activity to nitric oxide-dependent hyperemia are poorly understood. Here, we show that tissue plasminogen activator (tPA), a serine protease implicated in NMDA receptor signaling, is required for the flow increase evoked by somatosensory stimulation. tPA acts by facilitating neuronal nitric oxide release, but this effect does not involve enhancement of NMDA currents or the associated intracellular Ca(2+) rise. Rather, the evidence suggests that tPA controls NMDA-dependent nitric oxide synthesis by influencing the phosphorylation state of neuronal nitric oxide synthase. These findings unveil a previously unrecognized role of tPA in vital homeostatic mechanisms coupling NMDA receptor signaling with nitric oxide synthesis and local cerebral perfusion.
Collapse
|
85
|
The multiple sclerosis degradome: enzymatic cascades in development and progression of central nervous system inflammatory disease. Curr Top Microbiol Immunol 2008; 318:133-75. [PMID: 18219817 DOI: 10.1007/978-3-540-73677-6_6] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
An array of studies implicate different classes of protease and their endogenous inhibitors in multiple sclerosis (MS) pathogenesis based on expression patterns in MS lesions, sera, and/or cerebrospinal fluid (CSF). Growing evidence exists regarding their mechanistic roles in inflammatory and neurodegenerative aspects of this disease. Proteolytic events participate in demyelination, axon injury, apoptosis, and development of the inflammatory response including immune cell activation and extravasation, cytokine and chemokine activation/inactivation, complement activation, and epitope spreading. The potential significance of proteolytic activity to MS therefore relates not only to their potential use as important biomarkers of disease activity, but additionally as prospective therapeutic targets. Experimental data indicate that understanding the net physiological consequence of altered protease levels in MS development and progression necessitates understanding protease activity in the context of substrates, endogenous inhibitors, and proteolytic cascade interactions, which together make up the MS degradome. This review will focus on evidence regarding the potential physiologic role of those protease families already identified as markers of disease activity in MS; that is, the metallo-, serine, and cysteine proteases.
Collapse
|
86
|
Abstract
Glutathione peroxidase-1 (GPX1) represents the first identified mammalian selenoprotein, and our understanding in the metabolic regulation and function of this abundant selenoenzyme has greatly advanced during the past decade. Selenocysteine insertion sequence-associating factors, adenosine, and Abl and Arg tyrosine kinases are potent, Se-independent regulators of GPX1 gene, protein, and activity. Overwhelming evidences have been generated using the GPX1 knockout and transgenic mice for the in vivo protective role of GPX1 in coping with oxidative injury and death mediated by reactive oxygen species. However, GPX1 exerts an intriguing dual role in reactive nitrogen species (RNS)-related oxidative stress. Strikingly, knockout of GPX1 rendered mice resistant to toxicities of drugs including acetaminophen and kainic acid, known as RNS inducers. Intracellular and tissue levels of GPX1 activity affect apoptotic signaling pathway, protein kinase phosphorylation, and oxidant-mediated activation of NFkappaB. Data are accumulating to link alteration or abnormality of GPX1 expression to etiology of cancer, cardiovascular disease, neurodegeneration, autoimmune disease, and diabetes. Future research should focus on the mechanism of GPX1 in the pathogeneses and potential applications of GPX1 manipulation in the treatment of these disorders.
Collapse
Affiliation(s)
- Xin Gen Lei
- Department of Animal Science, Cornell University, Ithaca, NY 14853, USA.
| | | | | |
Collapse
|
87
|
Zhang X, Polavarapu R, She H, Mao Z, Yepes M. Tissue-type plasminogen activator and the low-density lipoprotein receptor-related protein mediate cerebral ischemia-induced nuclear factor-kappaB pathway activation. THE AMERICAN JOURNAL OF PATHOLOGY 2007; 171:1281-90. [PMID: 17717150 PMCID: PMC1988877 DOI: 10.2353/ajpath.2007.070472] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Tissue-type plasminogen activator (tPA) is a serine proteinase found in the intravascular space and the central nervous system. The low-density lipoprotein receptor-related protein (LRP) is a member of the low-density lipoprotein receptor gene family found in neurons and astrocytes. Cerebral ischemia induces activation of the nuclear factor (NF)-kappaB pathway. The present study investigated the role that the interaction between tPA and LRP plays on middle cerebral artery occlusion (MCAO)-induced NF-kappaB-mediated inflammatory response. We found that MCAO increased LRP expression primarily in astrocytes and that this effect was significantly decreased in the absence of tPA. The onset of the ischemic insult induced activation of the NF-kappaB pathway in wild-type and plasminogen (Plg(-/-))-deficient mice, and this effect was attenuated after inhibition of LRP or genetic deficiency of tPA. Moreover, administration of tPA to tPA(-/-) mice resulted in activation of the NF-kappaB pathway comparable with that observed in wild-type and Plg(-/-) mice. We also report that inhibition of either tPA activity or LRP or genetic deficiency of tPA resulted in a significant decrease in MCAO-induced nitric oxide production and inducible nitric-oxide synthase expression. In conclusion, our results demonstrate that after MCAO the interaction between tPA and LRP results in NF-kappaB activation in astrocytes and induction of inducible nitric-oxide synthase expression in the ischemic tissue, suggesting a cytokine-like plasminogen-independent role for tPA during cerebral ischemia.
Collapse
Affiliation(s)
- Xiaohui Zhang
- Department of Neurology and Center for Neurodegenerative Disease, Emory University School of Medicine, Whitehead Biomedical Research Bldg., 615 Michael St., Suite 505J, Atlanta, GA 30322, USA
| | | | | | | | | |
Collapse
|
88
|
Pelegrí C, Canudas AM, del Valle J, Casadesus G, Smith MA, Camins A, Pallàs M, Vilaplana J. Increased permeability of blood-brain barrier on the hippocampus of a murine model of senescence. Mech Ageing Dev 2007; 128:522-8. [PMID: 17697702 DOI: 10.1016/j.mad.2007.07.002] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2007] [Revised: 06/22/2007] [Accepted: 07/01/2007] [Indexed: 10/23/2022]
Abstract
SAMP8 mice show several indicative characteristics of accelerated aging and have been used to study the physiological and physiopathological processes that take place during senescence. There is some controversy about the presence of a functional blood-brain barrier (BBB) disturbance on these animals, which could be related to the oxidative stress or the amyloidosis present in their brain. In order to elucidate BBB status in the hippocampus of SAMP8 mice, in this study we have determined the extravasation from brain microvessels of endogenous IgG in SAMP8 mice aged 3, 7 and 12 months and in age-matched control SAMR1 mice. Immunohistochemistry, confocal microscopy and an imaging methodology specially designed to quantify IgG extravasation have been used. The choroid plexus was analyzed as a control for positive extravasation in SAMP8 and SAMR1 mice and, as expected, in all studied ages high IgG immunoreactivity was observed in both strains. We have found significantly higher levels of IgG extravasation in the hippocampus of 12-month-old SAMP8 mice compared to SAMR1 mice, indicating an increased permeability of BBB in aged senescence-accelerated mice.
Collapse
Affiliation(s)
- Carme Pelegrí
- Departament de Fisiologia, Facultat de Farmàcia, Universitat de Barcelona, Av. Joan XXIII s/n, 08028 Barcelona, Spain.
| | | | | | | | | | | | | | | |
Collapse
|
89
|
Parathath SR, Gravanis I, Tsirka SE. Nitric Oxide Synthase Isoforms Undertake Unique Roles During Excitotoxicity. Stroke 2007; 38:1938-45. [PMID: 17446423 DOI: 10.1161/strokeaha.106.478826] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background and Purpose—
Excitotoxicity is a component of many neurodegenerative diseases. The signaling events that lead from excitotoxic injury to neuronal death remain incompletely defined. Pharmacological approaches have shown that nitric oxide production is critical for the progression of neurodegeneration after the initiation of excitotoxicity by the glutamate analog kainate. Although nitric oxide additionally triggers blood–brain barrier (BBB) breakdown, the breakdown does not in itself inevitably lead to neuronal cell death, because neuroprotective pharmacological means can be used subsequently to prevent the neural death.
Methods—
In this study, we use a genetic approach to analyze the contribution of 3 nitric oxide synthase (NOS) isoforms, neuronal NOS, endothelial NOS, and inducible NOS, to neurodegeneration and BBB breakdown in this setting.
Results—
We find that neuronal NOS is critical for the progression of kainate-stimulated neurodegeneration, whereas endothelial NOS is required only for BBB breakdown. Inducible NOS is not required for either event.
Conclusions—
The observation that endothelial NOS-deficient mice undergo excitotoxic neurodegeneration in the absence of BBB breakdown unlinks the two processes. These findings suggest that it may be possible to achieve full amelioration of excitotoxic-triggered neurodegeneration through developing isoform-specific inhibitors solely for neuronal NOS.
Collapse
Affiliation(s)
- Susana R Parathath
- Program in Molecular and Cellular Biology, Stony Brook University, Stony Brook, NY 11794-8651, USA
| | | | | |
Collapse
|
90
|
Sheehan JJ, Zhou C, Gravanis I, Rogove AD, Wu YP, Bogenhagen DF, Tsirka SE. Proteolytic activation of monocyte chemoattractant protein-1 by plasmin underlies excitotoxic neurodegeneration in mice. J Neurosci 2007; 27:1738-45. [PMID: 17301181 PMCID: PMC6673734 DOI: 10.1523/jneurosci.4987-06.2007] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Exposure of neurons to high concentrations of excitatory neurotransmitters causes them to undergo excitotoxic death via multiple synergistic injury mechanisms. One of these mechanisms involves actions undertaken locally by microglia, the CNS-resident macrophages. Mice deficient in the serine protease plasmin exhibit decreased microglial migration to the site of excitatory neurotransmitter release and are resistant to excitotoxic neurodegeneration. Microglial chemotaxis can be signaled by the chemokine monocyte chemoattractant protein-1 (MCP-1)/CCL2 (CC chemokine ligand 2). We show here that mice genetically deficient for MCP-1 phenocopy plasminogen deficiency by displaying decreased microglial recruitment and resisting excitotoxic neurodegeneration. Connecting these pathways, we demonstrate that MCP-1 undergoes a proteolytic processing step mediated by plasmin. The processing, which consists of removal of the C terminus of MCP-1, enhances the potency of MCP-1 in in vitro migration assays. Finally, we show that infusion of the cleaved form of MCP-1 into the CNS restores microglial recruitment and excitotoxicity in plasminogen-deficient mice. These findings identify MCP-1 as a key downstream effector in the excitotoxic pathway triggered by plasmin and identify plasmin as an extracellular chemokine activator. Finally, our results provide a mechanism that explains the resistance of plasminogen-deficient mice to excitotoxicity.
Collapse
Affiliation(s)
- John J. Sheehan
- Department of Pharmacological Sciences and Program in Molecular and Cellular Pharmacology, Stony Brook University, Stony Brook, New York 11794-8651
| | - Chun Zhou
- Department of Pharmacological Sciences and Program in Molecular and Cellular Pharmacology, Stony Brook University, Stony Brook, New York 11794-8651
| | - Iordanis Gravanis
- Department of Pharmacological Sciences and Program in Molecular and Cellular Pharmacology, Stony Brook University, Stony Brook, New York 11794-8651
| | - Andrew D. Rogove
- Department of Pharmacological Sciences and Program in Molecular and Cellular Pharmacology, Stony Brook University, Stony Brook, New York 11794-8651
| | - Yan-Ping Wu
- Department of Pharmacological Sciences and Program in Molecular and Cellular Pharmacology, Stony Brook University, Stony Brook, New York 11794-8651
| | - Daniel F. Bogenhagen
- Department of Pharmacological Sciences and Program in Molecular and Cellular Pharmacology, Stony Brook University, Stony Brook, New York 11794-8651
| | - Stella E. Tsirka
- Department of Pharmacological Sciences and Program in Molecular and Cellular Pharmacology, Stony Brook University, Stony Brook, New York 11794-8651
| |
Collapse
|
91
|
Haorah J, Ramirez SH, Schall K, Smith D, Pandya R, Persidsky Y. Oxidative stress activates protein tyrosine kinase and matrix metalloproteinases leading to blood-brain barrier dysfunction. J Neurochem 2007; 101:566-76. [PMID: 17250680 DOI: 10.1111/j.1471-4159.2006.04393.x] [Citation(s) in RCA: 252] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The blood-brain barrier (BBB) formed by brain microvascular endothelial cells (BMVEC) regulates the passage of molecules and leukocytes in and out of the brain. Oxidative stress is a major underlying cause of neurodegenerative and neuroinflammatory disorders and BBB injury associated with them. Using human BMVEC grown on porous membranes covered with basement membrane (BM) matrix (BBB models), we demonstrated that reactive oxygen species (ROS) augmented permeability and monocyte migration across BBB. ROS activated matrix metalloproteinases (MMP-1, -2, and -9) and decreased tissue inhibitors of MMPs (TIMP-1 and -2) in a protein tyrosine kinase (PTK)-dependent manner. Increase in MMPs and PTK activities paralleled degradation of BM protein and enhanced tyrosine phosphorylation of tight junction (TJ) protein. These effects and enhanced permeability/monocyte migration were prevented by inhibitors of MMPs, PTKs, or antioxidant suggesting that oxidative stress caused BBB injury via degradation of BM protein by activated MMPs and by PTK-mediated TJ protein phosphorylation. These findings point to new therapeutic interventions ameliorating BBB dysfunction in neurological disorders such as stroke or neuroinflammation.
Collapse
Affiliation(s)
- James Haorah
- Center for Neurovirology and Neurodegenerative Disorders, Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, Nebraska 68198-5215, USA.
| | | | | | | | | | | |
Collapse
|