51
|
Hua T, Robitaille M, Roberts-Thomson SJ, Monteith GR. The intersection between cysteine proteases, Ca 2+ signalling and cancer cell apoptosis. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2023; 1870:119532. [PMID: 37393017 DOI: 10.1016/j.bbamcr.2023.119532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 06/19/2023] [Accepted: 06/26/2023] [Indexed: 07/03/2023]
Abstract
Apoptosis is a highly complex and regulated cell death pathway that safeguards the physiological balance between life and death. Over the past decade, the role of Ca2+ signalling in apoptosis and the mechanisms involved have become clearer. The initiation and execution of apoptosis is coordinated by three distinct groups of cysteines proteases: the caspase, calpain and cathepsin families. Beyond its physiological importance, the ability to evade apoptosis is a prominent hallmark of cancer cells. In this review, we will explore the involvement of Ca2+ in the regulation of caspase, calpain and cathepsin activity, and how the actions of these cysteine proteases alter intracellular Ca2+ handling during apoptosis. We will also explore how apoptosis resistance can be achieved in cancer cells through deregulation of cysteine proteases and remodelling of the Ca2+ signalling toolkit.
Collapse
Affiliation(s)
- Trinh Hua
- School of Pharmacy, The University of Queensland, Brisbane, QLD 4102, Australia.
| | - Mélanie Robitaille
- School of Pharmacy, The University of Queensland, Brisbane, QLD 4102, Australia.
| | | | - Gregory R Monteith
- School of Pharmacy, The University of Queensland, Brisbane, QLD 4102, Australia; Mater Research Institute, Translational Research Institute, The University of Queensland, Brisbane, QLD, Australia.
| |
Collapse
|
52
|
Kubat Oktem E. BMP4, SGSH, and SLC11A2 are Predicted to Be Biomarkers of Aging Associated with Programmed Cell Death. J Mol Neurosci 2023; 73:713-723. [PMID: 37632651 DOI: 10.1007/s12031-023-02148-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 08/10/2023] [Indexed: 08/28/2023]
Abstract
Most neurodegenerative diseases are exacerbated by aging, with symptoms often worsening over time. Programmed cell death (PCD) is a controlled cell suicide mechanism that is essential for the stability, growth, and homeostasis of organisms. Understanding the effects of aging at the level of systems biology could lead to new therapeutic approaches for a broad spectrum of neurodegenerative diseases. In the absence of comprehensive functional studies on the relationship between PCD and aging of the prefrontal cortex, this study provides prefrontal brain biomarkers of aging associated with PCD that could open the way for improved therapeutic techniques for age-related neurodegenerative diseases. To this end, publicly available transcriptome data were subjected to bioinformatic analyses such as differential gene expression, functional enrichment, and the weighted gene coexpression network analysis (WGCNA). The diagnostic utility of the biomarkers was tested using a logistic regression-based prediction model. Three genes, namely BMP4, SGSH, and SLC11A2, were found to be aging biomarkers associated with PCD. Finally, a multifactorial regulatory network with interacting proteins, transcription factors (TFs), competing endogenous RNAs (ceRNAs), and microRNAs (miRNAs) was constructed around these biomarkers. The elements of this multifactorial regulatory network were mainly enriched in BMP signaling. Further exploration of these three biomarkers and their regulatory elements would enable the development of 3PM (predictive, preventive, and personalized) medicine for the treatment of age-related neurodegenerative diseases.
Collapse
Affiliation(s)
- Elif Kubat Oktem
- Department of Molecular Biology and Genetics, Faculty of Engineering and Natural Sciences, Istanbul Medeniyet University, Kuzey Yerleşkesi H Blok, Ünalan Mah. Ünalan Sk. D100 Karayolu Yanyol 34700, Üsküdar, Istanbul, Turkey.
| |
Collapse
|
53
|
Qin H, Abulaiti A, Maimaiti A, Abulaiti Z, Fan G, Aili Y, Ji W, Wang Z, Wang Y. Integrated machine learning survival framework develops a prognostic model based on inter-crosstalk definition of mitochondrial function and cell death patterns in a large multicenter cohort for lower-grade glioma. J Transl Med 2023; 21:588. [PMID: 37660060 PMCID: PMC10474752 DOI: 10.1186/s12967-023-04468-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 08/24/2023] [Indexed: 09/04/2023] Open
Abstract
BACKGROUND Lower-grade glioma (LGG) is a highly heterogeneous disease that presents challenges in accurately predicting patient prognosis. Mitochondria play a central role in the energy metabolism of eukaryotic cells and can influence cell death mechanisms, which are critical in tumorigenesis and progression. However, the prognostic significance of the interplay between mitochondrial function and cell death in LGG requires further investigation. METHODS We employed a robust computational framework to investigate the relationship between mitochondrial function and 18 cell death patterns in a cohort of 1467 LGG patients from six multicenter cohorts worldwide. A total of 10 commonly used machine learning algorithms were collected and subsequently combined into 101 unique combinations. Ultimately, we devised the mitochondria-associated programmed cell death index (mtPCDI) using machine learning models that exhibited optimal performance. RESULTS The mtPCDI, generated by combining 18 highly influential genes, demonstrated strong predictive performance for prognosis in LGG patients. Biologically, mtPCDI exhibited a significant correlation with immune and metabolic signatures. The high mtPCDI group exhibited enriched metabolic pathways and a heightened immune activity profile. Of particular importance, our mtPCDI maintains its status as the most potent prognostic indicator even following adjustment for potential confounding factors, surpassing established clinical models in predictive strength. CONCLUSION Our utilization of a robust machine learning framework highlights the significant potential of mtPCDI in providing personalized risk assessment and tailored recommendations for metabolic and immunotherapy interventions for individuals diagnosed with LGG. Of particular significance, the signature features highly influential genes that present further prospects for future investigations into the role of PCD within mitochondrial function.
Collapse
Affiliation(s)
- Hu Qin
- Department of Neurosurgery, Neurosurgery Centre, The First Affiliated Hospital of Xinjiang Medical University, No. 137, South Liyushan Road, Xinshi District, Urumqi City, 830054, Xinjiang, China
| | - Aimitaji Abulaiti
- Department of Neurosurgery, Neurosurgery Centre, The First Affiliated Hospital of Xinjiang Medical University, No. 137, South Liyushan Road, Xinshi District, Urumqi City, 830054, Xinjiang, China
| | - Aierpati Maimaiti
- Department of Neurosurgery, Neurosurgery Centre, The First Affiliated Hospital of Xinjiang Medical University, No. 137, South Liyushan Road, Xinshi District, Urumqi City, 830054, Xinjiang, China
| | - Zulihuma Abulaiti
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, Xinjiang, China
| | - Guofeng Fan
- Department of Neurosurgery, Neurosurgery Centre, The First Affiliated Hospital of Xinjiang Medical University, No. 137, South Liyushan Road, Xinshi District, Urumqi City, 830054, Xinjiang, China
| | - Yirizhati Aili
- Department of Neurosurgery, Neurosurgery Centre, The First Affiliated Hospital of Xinjiang Medical University, No. 137, South Liyushan Road, Xinshi District, Urumqi City, 830054, Xinjiang, China
| | - Wenyu Ji
- Department of Neurosurgery, Neurosurgery Centre, The First Affiliated Hospital of Xinjiang Medical University, No. 137, South Liyushan Road, Xinshi District, Urumqi City, 830054, Xinjiang, China
| | - Zengliang Wang
- Department of Neurosurgery, Neurosurgery Centre, The First Affiliated Hospital of Xinjiang Medical University, No. 137, South Liyushan Road, Xinshi District, Urumqi City, 830054, Xinjiang, China
| | - Yongxin Wang
- Department of Neurosurgery, Neurosurgery Centre, The First Affiliated Hospital of Xinjiang Medical University, No. 137, South Liyushan Road, Xinshi District, Urumqi City, 830054, Xinjiang, China.
| |
Collapse
|
54
|
He X, Li X, Tian W, Li C, Li P, Zhao J, Yang S, Li S. The role of redox-mediated lysosomal dysfunction and therapeutic strategies. Biomed Pharmacother 2023; 165:115121. [PMID: 37418979 DOI: 10.1016/j.biopha.2023.115121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 06/30/2023] [Accepted: 07/01/2023] [Indexed: 07/09/2023] Open
Abstract
Redox homeostasis refers to the dynamic equilibrium between oxidant and reducing agent in the body which plays a crucial role in maintaining normal physiological activities of the body. The imbalance of redox homeostasis can lead to the development of various human diseases. Lysosomes regulate the degradation of cellular proteins and play an important role in influencing cell function and fate, and lysosomal dysfunction is closely associated with the development of various diseases. In addition, several studies have shown that redox homeostasis plays a direct or indirect role in regulating lysosomes. Therefore, this paper systematically reviews the role and mechanisms of redox homeostasis in the regulation of lysosomal function. Therapeutic strategies based on the regulation of redox exerted to disrupt or restore lysosomal function are further discussed. Uncovering the role of redox in the regulation of lysosomes helps to point new directions for the treatment of many human diseases.
Collapse
Affiliation(s)
- Xiaomeng He
- Department of Pharmacy, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Xuening Li
- Institute of Clinical Pharmacology, Central South University, Changsha, China
| | - Wei Tian
- The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Chenyu Li
- The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Pengfei Li
- The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Jingyuan Zhao
- The First Affiliated Hospital of Dalian Medical University, Dalian, China.
| | - Shilei Yang
- Department of Pharmacy, The First Affiliated Hospital of Dalian Medical University, Dalian, China.
| | - Shuai Li
- Department of Pharmacy, The First Affiliated Hospital of Dalian Medical University, Dalian, China.
| |
Collapse
|
55
|
Mutvei AP, Nagiec MJ, Blenis J. Balancing lysosome abundance in health and disease. Nat Cell Biol 2023; 25:1254-1264. [PMID: 37580388 DOI: 10.1038/s41556-023-01197-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 06/28/2023] [Indexed: 08/16/2023]
Abstract
Lysosomes are catabolic organelles that govern numerous cellular processes, including macromolecule degradation, nutrient signalling and ion homeostasis. Aberrant changes in lysosome abundance are implicated in human diseases. Here we outline the mechanisms of lysosome biogenesis and turnover, and discuss how changes in the lysosome pool impact physiological and pathophysiological processes.
Collapse
Affiliation(s)
- Anders P Mutvei
- Department of Laboratory Medicine, Division of Pathology, Karolinska Institutet, Huddinge, Sweden.
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden.
| | - Michal J Nagiec
- Meyer Cancer Center and Department of Pharmacology, Weill Cornell Medical College, New York, NY, USA
| | - John Blenis
- Meyer Cancer Center and Department of Pharmacology, Weill Cornell Medical College, New York, NY, USA.
| |
Collapse
|
56
|
Xu Y, Chen C, Liao Z, Xu P. cGAS-STING signaling in cell death: Mechanisms of action and implications in pathologies. Eur J Immunol 2023; 53:e2350386. [PMID: 37424054 DOI: 10.1002/eji.202350386] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 06/14/2023] [Accepted: 06/15/2023] [Indexed: 07/11/2023]
Abstract
Cyclic GMP-AMP synthase (cGAS) monitors dsDNA in the cytosol in response to pathogenic invasion or tissue injury, initiating cGAS-STING signaling cascades that regulate various cellular physiologies, including IFN /cytokine production, autophagy, protein synthesis, metabolism, senescence, and distinct types of cell death. cGAS-STING signaling is crucial for host defense and tissue homeostasis; however, its dysfunction frequently leads to infectious, autoimmune, inflammatory, degenerative, and cancerous diseases. Our knowledge regarding the relationships between cGAS-STING signaling and cell death is rapidly evolving, highlighting their essential roles in pathogenesis and disease progression. Nevertheless, the direct control of cell death by cGAS-STING signaling, rather than IFN/NF-κB-mediated transcriptional regulation, remains relatively unexplored. This review examines the mechanistic interplays between cGAS-STING cascades and apoptosis, necroptosis, pyroptosis, ferroptosis, and autophagic/lysosomal cell death. We will also discuss their pathological implications in human diseases, particularly in autoimmunity, cancer, and organ injury scenarios. We hope that this summary will stimulate discussion for further exploration of the complex life-or-death responses to cellular damage mediated by cGAS-STING signaling.
Collapse
Affiliation(s)
- Yifan Xu
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou, China
| | - Chen Chen
- MOE Laboratory of Biosystems Homeostasis and Protection, Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Zhiyong Liao
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou, China
| | - Pinglong Xu
- MOE Laboratory of Biosystems Homeostasis and Protection, Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
- Institute of Intelligent Medicine, Zhejiang University-Hangzhou Global Scientific and Technological Innovation Center (HIC-ZJU), Hangzhou, China
- Cancer Center, Zhejiang University, Hangzhou, China
| |
Collapse
|
57
|
Yu H, Hao Z, Liu X, Wei Z, Tan R, Liu X, Chen Q, Chen Y, Zhou H, Liu Y, Fu Z. Autophagy blockage and lysosomal dysfunction are involved in diallyl sulfide-induced inhibition of malignant growth in hepatocellular carcinoma cells. ENVIRONMENTAL TOXICOLOGY 2023; 38:2100-2110. [PMID: 37209385 DOI: 10.1002/tox.23834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 04/23/2023] [Accepted: 05/01/2023] [Indexed: 05/22/2023]
Abstract
Diallyl sulfide (DAS), as a major component of garlic extracts, has been shown to inhibit growth of hepatocellular carcinoma cells (HCC), but the underlying mechanism is still elusive. In this study, we aimed to explore the involvement of autophagy in DAS-induced growth inhibition of HepG2 and Huh7 hepatocellular carcinoma cells. We studied growth of DAS-treated HepG2 and Huh7 cells using the MTS and clonogenic assays. Autophagic flux was examined by immunofluorescence and confocal microscopy. The expression levels of autophagy-related proteins AMPK, mTOR, p62, LC3-II, LAMP1, and cathepsin D in the HepG2 and Huh7 cells treated with DAS as well as the tumors formed by HepG2 cells in the nude mice in the presence or absence of DAS were examined using western blotting and immunohistochemistry analysis. We found that DAS treatment induced activation of AMPK/mTOR, and accumulation of LC3-II and p62 both in vivo and in vitro. DAS inhibited autophagic flux through blocking the fusion of autophagosomes with lysosomes. Furthermore, DAS induced an increase in lysosomal pH and inhibition of Cathepsin D maturation. Co-treatment with an autophagy inhibitor (Chloroquine, CQ) further enhanced the growth inhibitory activity of DAS in HCC cells. Thus, our findings indicate that autophagy is involved in DAS-mediated growth inhibition of HCC cells both in vitro and in vivo.
Collapse
Affiliation(s)
- Haiyan Yu
- Department of Pathology and Pathophysiology, School of Medicine, Jianghan University, Wuhan, People's Republic of China
| | - Zhiwei Hao
- Department of Pathology and Pathophysiology, School of Medicine, Jianghan University, Wuhan, People's Republic of China
| | - Xuemin Liu
- Department of Pathology and Pathophysiology, School of Medicine, Jianghan University, Wuhan, People's Republic of China
| | - Zhixuan Wei
- Department of Pathology and Pathophysiology, School of Medicine, Jianghan University, Wuhan, People's Republic of China
| | - Renming Tan
- Department of Pathology and Pathophysiology, School of Medicine, Jianghan University, Wuhan, People's Republic of China
| | - Xiaotian Liu
- Department of Pathology and Pathophysiology, School of Medicine, Jianghan University, Wuhan, People's Republic of China
| | - Qiongxia Chen
- Department of Pathology and Pathophysiology, School of Medicine, Jianghan University, Wuhan, People's Republic of China
| | - Ying Chen
- Department of Pathology and Pathophysiology, School of Medicine, Jianghan University, Wuhan, People's Republic of China
| | - Hongyan Zhou
- Department of Pathology and Pathophysiology, School of Medicine, Jianghan University, Wuhan, People's Republic of China
| | - Yuchen Liu
- Cancer Institute, School of Medicine, Jianghan University, Wuhan, People's Republic of China
| | - Zhengqi Fu
- Department of Pathology and Pathophysiology, School of Medicine, Jianghan University, Wuhan, People's Republic of China
- Cancer Institute, School of Medicine, Jianghan University, Wuhan, People's Republic of China
| |
Collapse
|
58
|
Fettucciari K, Dini F, Marconi P, Bassotti G. Role of the Alteration in Calcium Homeostasis in Cell Death Induced by Clostridioides difficile Toxin A and Toxin B. BIOLOGY 2023; 12:1117. [PMID: 37627001 PMCID: PMC10452684 DOI: 10.3390/biology12081117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 08/05/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023]
Abstract
Clostridioides difficile (C. difficile), responsible for 15-25% of gastrointestinal infections, causes health problems mainly due to the toxic activity of toxins A and B (Tcds). These are responsible for its clinical manifestations, including diarrhea, pseudomembranous colitis, toxic megacolon and death, with a mortality of 5-30% in primary infection, that increase following relapses. Studies on Tcd-induced cell death have highlighted a key role of caspases, calpains, and cathepsins, with involvement of mitochondria and reactive oxygen species (ROS) in a complex signaling pathway network. The complex response in the execution of various types of cell death (apoptosis, necrosis, pyroptosis and pyknosis) depends on the amount of Tcd, cell types, and Tcd receptors involved, and could have as initial/precocious event the alterations in calcium homeostasis. The entities, peculiarities and cell types involved in these alterations will decide the signaling pathways activated and cell death type. Calcium homeostasis alterations can be caused by calcium influx through calcium channel activation, transient intracellular calcium oscillations, and leakage of calcium from intracellular stores. These increases in cytoplasmic calcium have important effects on all calcium-regulated molecules, which may play a direct role in several cell death types and/or activate other cell death effectors, such as caspases, calpains, ROS and proapoptotic Bcl-2 family members. Furthermore, some support for the possible role of the calcium homeostasis alteration in Tcd-induced cell death originates from the similarity with cytotoxic effects that cause pore-forming toxins, based mainly on calcium influx through plasma membrane pores.
Collapse
Affiliation(s)
- Katia Fettucciari
- Biosciences & Medical Embryology Section, Department of Medicine and Surgery, University of Perugia, 06129 Perugia, Italy;
| | - Fabrizio Dini
- School of Biosciences and Veterinary Medicine, University of Camerino, 62024 Matelica, Italy;
| | - Pierfrancesco Marconi
- Biosciences & Medical Embryology Section, Department of Medicine and Surgery, University of Perugia, 06129 Perugia, Italy;
| | - Gabrio Bassotti
- Gastroenterology, Hepatology & Digestive Endoscopy Section, Department of Medicine and Surgery, University of Perugia, 06129 Perugia, Italy;
- Gastroenterology & Hepatology Unit, Santa Maria Della Misericordia Hospital, 06129 Perugia, Italy
| |
Collapse
|
59
|
Eriksson I, Vainikka L, Persson HL, Öllinger K. Real-Time Monitoring of Lysosomal Membrane Permeabilization Using Acridine Orange. Methods Protoc 2023; 6:72. [PMID: 37623923 PMCID: PMC10459729 DOI: 10.3390/mps6040072] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/24/2023] [Accepted: 08/02/2023] [Indexed: 08/26/2023] Open
Abstract
Loss of lysosomal membrane integrity results in leakage of lysosomal hydrolases to the cytosol which might harm cell function and induce cell death. Destabilization of lysosomes often precede apoptotic or necrotic cell death and occur during both physiological and pathological conditions. The weak base acridine orange readily enters cells and accumulates in the acidic environment of lysosomes. Vital staining with acridine orange is a well-proven technique to observe lysosomal destabilization using fluorescence microscopy and flow cytometry. These analyses are, however, time consuming and only adapted for discrete time points, which make them unsuitable for large-scale approaches. Therefore, we have developed a time-saving, high-throughput microplate reader-based method to follow destabilization of the lysosomal membrane in real-time using acridine orange. This protocol can easily be adopted for patient samples since the number of cells per sample is low and the time for analysis is short.
Collapse
Affiliation(s)
- Ida Eriksson
- Experimental Pathology, Department of Biomedical and Clinical Sciences, Linköping University, 581 85 Linköping, Sweden; (L.V.); (K.Ö.)
| | - Linda Vainikka
- Experimental Pathology, Department of Biomedical and Clinical Sciences, Linköping University, 581 85 Linköping, Sweden; (L.V.); (K.Ö.)
| | - Hans Lennart Persson
- Department of Respiratory Medicine in Linköping, Linköping University, 581 85 Linköping, Sweden;
- Department of Health, Medicine and Caring Sciences, Linköping University, 581 85 Linköping, Sweden
| | - Karin Öllinger
- Experimental Pathology, Department of Biomedical and Clinical Sciences, Linköping University, 581 85 Linköping, Sweden; (L.V.); (K.Ö.)
| |
Collapse
|
60
|
Hu X, Wang M, Shi S, Keerthi Raja M, Gupta G, Chen H, Xu P. Polymer/copper nanocomplex-induced lysosomal cell death promotes tumor lymphocyte infiltration and synergizes anti-PD-L1 immunotherapy for triple-negative breast cancer. Biomater Sci 2023; 11:5641-5652. [PMID: 37409576 PMCID: PMC10530473 DOI: 10.1039/d3bm00627a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/07/2023]
Abstract
Our previous research discovered that combining the PDA-PEG polymer with copper ions can selectively kill cancer cells. However, the precise mechanism by which this combination functions was not fully understood. This study revealed that the PDA-PEG polymer and copper ions form complementary PDA-PEG/copper (Poly/Cu) nanocomplexes by facilitating copper ion uptake and lysosomal escape. An in vitro study found that Poly/Cu killed 4T1 cells through a lysosome cell death pathway. Furthermore, Poly/Cu inhibited both the proteasome function and autophagy pathway and induced immunogenic cell death (ICD) in 4T1 cells. The Poly/Cu induced ICD coupled with the checkpoint blockade effect of the anti-PD-L1 antibody (aPD-L1) synergistically promoted immune cell penetration into the tumor mass. Benefiting from the tumor-targeting effect and cancer cell-selective killing effect of Poly/Cu complexes, the combinatory treatment of aPD-L1 and Poly/Cu effectively suppressed the progression of triple-negative breast cancer without inducing systemic side effects.
Collapse
Affiliation(s)
- Xiangxiang Hu
- Department of Drug Discovery and Biomedical Sciences, University of South Carolina, 715 Sumter St., Columbia, SC 29208, USA.
| | - Mingming Wang
- Department of Drug Discovery and Biomedical Sciences, University of South Carolina, 715 Sumter St., Columbia, SC 29208, USA.
| | - Shanshan Shi
- Department of Drug Discovery and Biomedical Sciences, University of South Carolina, 715 Sumter St., Columbia, SC 29208, USA.
| | - Manikanda Keerthi Raja
- Department of Biological Sciences, University of South Carolina, 715 Sumter St., Columbia, SC 29208, USA
| | - Gourab Gupta
- Department of Biological Sciences, University of South Carolina, 715 Sumter St., Columbia, SC 29208, USA
| | - Hexin Chen
- Department of Biological Sciences, University of South Carolina, 715 Sumter St., Columbia, SC 29208, USA
| | - Peisheng Xu
- Department of Drug Discovery and Biomedical Sciences, University of South Carolina, 715 Sumter St., Columbia, SC 29208, USA.
| |
Collapse
|
61
|
Gutay-Tóth Z, Gellen G, Doan M, Eliason JF, Vincze J, Szente L, Fenyvesi F, Goda K, Vecsernyés M, Szabó G, Bacso Z. Cholesterol-Depletion-Induced Membrane Repair Carries a Raft Conformer of P-Glycoprotein to the Cell Surface, Indicating Enhanced Cholesterol Trafficking in MDR Cells, Which Makes Them Resistant to Cholesterol Modifications. Int J Mol Sci 2023; 24:12335. [PMID: 37569709 PMCID: PMC10419235 DOI: 10.3390/ijms241512335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 07/26/2023] [Accepted: 07/31/2023] [Indexed: 08/13/2023] Open
Abstract
The human P-glycoprotein (P-gp), a transporter responsible for multidrug resistance, is present in the plasma membrane's raft and non-raft domains. One specific conformation of P-gp that binds to the monoclonal antibody UIC2 is primarily associated with raft domains and displays heightened internalization in cells overexpressing P-gp, such as in NIH-3T3 MDR1 cells. Our primary objective was to investigate whether the trafficking of this particular P-gp conformer is dependent on cholesterol levels. Surprisingly, depleting cholesterol using cyclodextrin resulted in an unexpected increase in the proportion of raft-associated P-gp within the cell membrane, as determined by UIC2-reactive P-gp. This increase appears to be a compensatory response to cholesterol loss from the plasma membrane, whereby cholesterol-rich raft micro-domains are delivered to the cell surface through an augmented exocytosis process. Furthermore, this exocytotic event is found to be part of a complex trafficking mechanism involving lysosomal exocytosis, which contributes to membrane repair after cholesterol reduction induced by cyclodextrin treatment. Notably, cells overexpressing P-gp demonstrated higher total cellular cholesterol levels, an increased abundance of stable lysosomes, and more effective membrane repair following cholesterol modifications. These modifications encompassed exocytotic events that involved the transport of P-gp-carrying rafts. Importantly, the enhanced membrane repair capability resulted in a durable phenotype for MDR1 expressing cells, as evidenced by significantly improved viabilities of multidrug-resistant Pgp-overexpressing immortal NIH-3T3 MDR1 and MDCK-MDR1 cells compared to their parents when subjected to cholesterol alterations.
Collapse
Affiliation(s)
- Zsuzsanna Gutay-Tóth
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (Z.G.-T.); (G.G.); (M.D.); (K.G.); (G.S.)
- Doctoral School of Molecular Cell and Immune Biology, University of Debrecen, 4032 Debrecen, Hungary
| | - Gabriella Gellen
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (Z.G.-T.); (G.G.); (M.D.); (K.G.); (G.S.)
- Doctoral School of Molecular Cell and Immune Biology, University of Debrecen, 4032 Debrecen, Hungary
- MTA-ELTE Lendület Ion Mobility Mass Spectrometry Research Group, Department of Analytical Chemistry, Institute of Chemistry, ELTE Eötvös Loránd University, 1053 Budapest, Hungary
| | - Minh Doan
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (Z.G.-T.); (G.G.); (M.D.); (K.G.); (G.S.)
| | - James F. Eliason
- Great Lakes Stem Cell Innovation Center, Detroit, MI 48202, USA;
| | - János Vincze
- Department of Physiology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary;
| | - Lajos Szente
- CycloLab Cyclodextrin Research & Development Laboratory, Ltd., 1097 Budapest, Hungary;
| | - Ferenc Fenyvesi
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, 4032 Debrecen, Hungary; (F.F.); (M.V.)
| | - Katalin Goda
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (Z.G.-T.); (G.G.); (M.D.); (K.G.); (G.S.)
| | - Miklós Vecsernyés
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, 4032 Debrecen, Hungary; (F.F.); (M.V.)
| | - Gábor Szabó
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (Z.G.-T.); (G.G.); (M.D.); (K.G.); (G.S.)
| | - Zsolt Bacso
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (Z.G.-T.); (G.G.); (M.D.); (K.G.); (G.S.)
- Doctoral School of Molecular Cell and Immune Biology, University of Debrecen, 4032 Debrecen, Hungary
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, 4032 Debrecen, Hungary; (F.F.); (M.V.)
| |
Collapse
|
62
|
Park W, Wei S, Kim BS, Kim B, Bae SJ, Chae YC, Ryu D, Ha KT. Diversity and complexity of cell death: a historical review. Exp Mol Med 2023; 55:1573-1594. [PMID: 37612413 PMCID: PMC10474147 DOI: 10.1038/s12276-023-01078-x] [Citation(s) in RCA: 56] [Impact Index Per Article: 56.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/22/2023] [Accepted: 07/11/2023] [Indexed: 08/25/2023] Open
Abstract
Death is the inevitable fate of all living organisms, whether at the individual or cellular level. For a long time, cell death was believed to be an undesirable but unavoidable final outcome of nonfunctioning cells, as inflammation was inevitably triggered in response to damage. However, experimental evidence accumulated over the past few decades has revealed different types of cell death that are genetically programmed to eliminate unnecessary or severely damaged cells that may damage surrounding tissues. Several types of cell death, including apoptosis, necrosis, autophagic cell death, and lysosomal cell death, which are classified as programmed cell death, and pyroptosis, necroptosis, and NETosis, which are classified as inflammatory cell death, have been described over the years. Recently, several novel forms of cell death, namely, mitoptosis, paraptosis, immunogenic cell death, entosis, methuosis, parthanatos, ferroptosis, autosis, alkaliptosis, oxeiptosis, cuproptosis, and erebosis, have been discovered and advanced our understanding of cell death and its complexity. In this review, we provide a historical overview of the discovery and characterization of different forms of cell death and highlight their diversity and complexity. We also briefly discuss the regulatory mechanisms underlying each type of cell death and the implications of cell death in various physiological and pathological contexts. This review provides a comprehensive understanding of different mechanisms of cell death that can be leveraged to develop novel therapeutic strategies for various diseases.
Collapse
Affiliation(s)
- Wonyoung Park
- Department of Korean Medical Science, School of Korean Medicine, Pusan National University, Yangsan, Gyeongsangnam-do, 50612, Republic of Korea
- Korean Medical Research Center for Healthy Aging, Pusan National University, Yangsan, Gyeongsangnam-do, 50612, Republic of Korea
| | - Shibo Wei
- Department of Precision Medicine, School of Medicine, Sungkyunkwan University School of Medicine, Suwon, Gyeonggi-do, 16419, Republic of Korea
| | - Bo-Sung Kim
- Department of Korean Medical Science, School of Korean Medicine, Pusan National University, Yangsan, Gyeongsangnam-do, 50612, Republic of Korea
- Korean Medical Research Center for Healthy Aging, Pusan National University, Yangsan, Gyeongsangnam-do, 50612, Republic of Korea
| | - Bosung Kim
- Department of Korean Medical Science, School of Korean Medicine, Pusan National University, Yangsan, Gyeongsangnam-do, 50612, Republic of Korea
- Korean Medical Research Center for Healthy Aging, Pusan National University, Yangsan, Gyeongsangnam-do, 50612, Republic of Korea
| | - Sung-Jin Bae
- Department of Molecular Biology and Immunology, Kosin University College of Medicine, Busan, 49267, Republic of Korea
| | - Young Chan Chae
- Department of Biological Sciences, UNIST, Ulsan, 44919, Republic of Korea
| | - Dongryeol Ryu
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea
| | - Ki-Tae Ha
- Department of Korean Medical Science, School of Korean Medicine, Pusan National University, Yangsan, Gyeongsangnam-do, 50612, Republic of Korea.
- Korean Medical Research Center for Healthy Aging, Pusan National University, Yangsan, Gyeongsangnam-do, 50612, Republic of Korea.
| |
Collapse
|
63
|
Xiong J, Chen J, Guo Z, Zhang C, Yuan L, Gao K. A novel machine learning-based programmed cell death-related clinical diagnostic and prognostic model associated with immune infiltration in endometrial cancer. Front Oncol 2023; 13:1224071. [PMID: 37534256 PMCID: PMC10393255 DOI: 10.3389/fonc.2023.1224071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 06/29/2023] [Indexed: 08/04/2023] Open
Abstract
Background To explore the underlying mechanism of programmed cell death (PCD)-related genes in patients with endometrial cancer (EC) and establish a prognostic model. Methods The RNA sequencing data (RNAseq), single nucleotide variation (SNV) data, and corresponding clinical data were downloaded from TCGA. The prognostic PCD-related genes were screened and subjected to consensus clustering analysis. The two clusters were compared by weighted correlation network analysis (WGCNA), immune infiltration analysis, and other analyses. The least absolute shrinkage and selection operator (LASSO) algorithm was used to construct the PCD-related prognostic model. The biological significance of the PCD-related gene signature was evaluated through various bioinformatics methods. Results We identified 43 PCD-related genes that were significantly related to prognoses of EC patients, and classified them into two clusters via consistent clustering analysis. Patients in cluster B had higher tumor purity, higher T stage, and worse prognoses compared to those in cluster A. The latter generally showed higher immune infiltration. A prognostic model was constructed using 11 genes (GZMA, ASNS, GLS, PRKAA2, VLDLR, PRDX6, PSAT1, CDKN2A, SIRT3, TNFRSF1A, LRPPRC), and exhibited good diagnostic performance. Patients with high-risk scores were older, and had higher stage and grade tumors, along with worse prognoses. The frequency of mutations in PCD-related genes was correlated with the risk score. LRPPRC, an adverse prognostic gene in EC, was strongly correlated with proliferation-related genes and multiple PCD-related genes. LRPPRC expression was higher in patients with higher clinical staging and in the deceased patients. In addition, a positive correlation was observed between LRPPRC and infiltration of multiple immune cell types. Conclusion We identified a PCD-related gene signature that can predict the prognosis of EC patients and offer potential targets for therapeutic interventions.
Collapse
Affiliation(s)
- Jian Xiong
- Department of Obstetrics and Gynaecology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | | | - Zhongming Guo
- Department of Pathology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | | | - Li Yuan
- Department of Pathology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Kefei Gao
- Department of Obstetrics and Gynaecology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
64
|
Zhong D, Wang R, Zhang H, Wang M, Zhang X, Chen H. Induction of lysosomal exocytosis and biogenesis via TRPML1 activation for the treatment of uranium-induced nephrotoxicity. Nat Commun 2023; 14:3997. [PMID: 37414766 PMCID: PMC10326073 DOI: 10.1038/s41467-023-39716-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 06/27/2023] [Indexed: 07/08/2023] Open
Abstract
Uranium (U) is a well-known nephrotoxicant which forms precipitates in the lysosomes of renal proximal tubular epithelial cells (PTECs) after U-exposure at a cytotoxic dose. However, the roles of lysosomes in U decorporation and detoxification remain to be elucidated. Mucolipin transient receptor potential channel 1 (TRPML1) is a major lysosomal Ca2+ channel regulating lysosomal exocytosis. We herein demonstrate that the delayed administration of the specific TRPML1 agonist ML-SA1 significantly decreases U accumulation in the kidney, mitigates renal proximal tubular injury, increases apical exocytosis of lysosomes and reduces lysosomal membrane permeabilization (LMP) in renal PTECs of male mice with single-dose U poisoning or multiple-dose U exposure. Mechanistic studies reveal that ML-SA1 stimulates intracellular U removal and reduces U-induced LMP and cell death through activating the positive TRPML1-TFEB feedback loop and consequent lysosomal exocytosis and biogenesis in U-loaded PTECs in vitro. Together, our studies demonstrate that TRPML1 activation is an attractive therapeutic strategy for the treatment of U-induced nephrotoxicity.
Collapse
Affiliation(s)
- Dengqin Zhong
- Institute of Radiation Medicine, Shanghai Medical College, Fudan University, Shanghai, PR China
| | - Ruiyun Wang
- Institute of Radiation Medicine, Shanghai Medical College, Fudan University, Shanghai, PR China
| | - Hongjing Zhang
- Institute of Radiation Medicine, Shanghai Medical College, Fudan University, Shanghai, PR China
| | - Mengmeng Wang
- Institute of Radiation Medicine, Shanghai Medical College, Fudan University, Shanghai, PR China
| | - Xuxia Zhang
- Institute of Radiation Medicine, Shanghai Medical College, Fudan University, Shanghai, PR China
| | - Honghong Chen
- Institute of Radiation Medicine, Shanghai Medical College, Fudan University, Shanghai, PR China.
| |
Collapse
|
65
|
Ferret L, Alvarez-Valadez K, Rivière J, Muller A, Bohálová N, Yu L, Guittat L, Brázda V, Kroemer G, Mergny JL, Djavaheri-Mergny M. G-quadruplex ligands as potent regulators of lysosomes. Autophagy 2023; 19:1901-1915. [PMID: 36740766 PMCID: PMC10283436 DOI: 10.1080/15548627.2023.2170071] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 12/03/2022] [Accepted: 12/05/2022] [Indexed: 02/07/2023] Open
Abstract
Guanine-quadruplex structures (G4) are unusual nucleic acid conformations formed by guanine-rich DNA and RNA sequences and known to control gene expression mechanisms, from transcription to protein synthesis. So far, a number of molecules that recognize G4 have been developed for potential therapeutic applications in human pathologies, including cancer and infectious diseases. These molecules are called G4 ligands. When the biological effects of G4 ligands are studied, the analysis is often limited to nucleic acid targets. However, recent evidence indicates that G4 ligands may target other cellular components and compartments such as lysosomes and mitochondria. Here, we summarize our current knowledge of the regulation of lysosome by G4 ligands, underlying their potential functional impact on lysosome biology and autophagic flux, as well as on the transcriptional regulation of lysosomal genes. We outline the consequences of these effects on cell fate decisions and we systematically analyzed G4-prone sequences within the promoter of 435 lysosome-related genes. Finally, we propose some hypotheses about the mechanisms involved in the regulation of lysosomes by G4 ligands.
Collapse
Affiliation(s)
- Lucille Ferret
- Centre de Recherche des Cordeliers, INSERM UMRS 1138, Sorbonne Université, Université Paris Cité, Equipe labellisée par la Ligue contre le Cancer, Institut universitaire de France, Paris, France
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France
| | - Karla Alvarez-Valadez
- Centre de Recherche des Cordeliers, INSERM UMRS 1138, Sorbonne Université, Université Paris Cité, Equipe labellisée par la Ligue contre le Cancer, Institut universitaire de France, Paris, France
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France
| | - Jennifer Rivière
- Department of Medicine III, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
| | - Alexandra Muller
- Centre de Recherche des Cordeliers, INSERM UMRS 1138, Sorbonne Université, Université Paris Cité, Equipe labellisée par la Ligue contre le Cancer, Institut universitaire de France, Paris, France
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France
| | - Natalia Bohálová
- Department of Biophysical Chemistry and Molecular Oncology, Institute of Biophysics, The Czech Academy of Sciences, Brno, Czech Republic
| | - Luo Yu
- Laboratoire d’Optique et Biosciences, Ecole Polytechnique, CNRS, INSERM, Institut Polytechnique de Paris, 91128Palaiseau, France
- CNRS UMR9187, INSERM U1196, Université Paris-Saclay, Orsay, France
| | - Lionel Guittat
- Laboratoire d’Optique et Biosciences, Ecole Polytechnique, CNRS, INSERM, Institut Polytechnique de Paris, 91128Palaiseau, France
- UFR SMBH, Université Sorbonne Paris Nord, Bobigny, France
| | - Vaclav Brázda
- Department of Biophysical Chemistry and Molecular Oncology, Institute of Biophysics, The Czech Academy of Sciences, Brno, Czech Republic
| | - Guido Kroemer
- Centre de Recherche des Cordeliers, INSERM UMRS 1138, Sorbonne Université, Université Paris Cité, Equipe labellisée par la Ligue contre le Cancer, Institut universitaire de France, Paris, France
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France
- Institut du Cancer Paris CARPEM, Department of Biology, Hôpital Européen Georges Pompidou, AP-HP, Paris, France
| | - Jean-Louis Mergny
- Department of Biophysical Chemistry and Molecular Oncology, Institute of Biophysics, The Czech Academy of Sciences, Brno, Czech Republic
- Laboratoire d’Optique et Biosciences, Ecole Polytechnique, CNRS, INSERM, Institut Polytechnique de Paris, 91128Palaiseau, France
| | - Mojgan Djavaheri-Mergny
- Centre de Recherche des Cordeliers, INSERM UMRS 1138, Sorbonne Université, Université Paris Cité, Equipe labellisée par la Ligue contre le Cancer, Institut universitaire de France, Paris, France
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France
| |
Collapse
|
66
|
Chauhan C, Kaundal RK. Understanding the role of cGAS-STING signaling in ischemic stroke: a new avenue for drug discovery. Expert Opin Drug Discov 2023; 18:1133-1149. [PMID: 37537969 DOI: 10.1080/17460441.2023.2244409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/27/2023] [Accepted: 08/01/2023] [Indexed: 08/05/2023]
Abstract
INTRODUCTION Ischemic stroke is a significant global health challenge with limited treatment options. Neuroinflammation, driven by microglial activation, plays a critical role in stroke pathophysiology. The cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) signaling pathway has emerged as a key player in microglial activation, sterile neuroinflammation, and cell death following stroke. Understanding the interplay between this pathway and stroke pathophysiology is crucial for exploring newer therapeutics for stroke patients. AREAS COVERED This review discusses the pivotal role of the cGAS-STING pathway in ischemic stroke. It explores the interplay between cGAS-STING activation, neuroinflammation, microglia activation, M2 polarization, neutrophil infiltration, and cytokine release. Additionally, the authors examine its contributions to various cell death programs (pyroptosis, apoptosis, necroptosis, lysosomal cell death, autophagy, and ferroptosis). The review summarizes recent studies on targeting cGAS-STING signaling in stroke, highlighting the therapeutic potential of small molecule inhibitors and RNA-based approaches in mitigating neuroinflammation, preventing cell death, and improving patient outcomes. EXPERT OPINION Understanding cGAS-STING signaling in ischemic stroke offers an exciting avenue for drug discovery. Targeting this pathway holds promise for developing novel therapeutics that effectively mitigate neuroinflammation, prevent cell death, and enhance patient outcomes. Further research and development of therapeutic strategies are warranted to fully exploit the potential of this pathway as a therapeutic target for stroke.
Collapse
Affiliation(s)
- Chandan Chauhan
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Raebareli (NIPER-R), Lucknow, India
| | - Ravinder Kumar Kaundal
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Raebareli (NIPER-R), Lucknow, India
| |
Collapse
|
67
|
Li W, Wang Q, Lu J, Zhao B, Geng Y, Wu X, Chen X. Machine learning-based prognostic modeling of lysosome-related genes for predicting prognosis and immune status of patients with hepatocellular carcinoma. Front Immunol 2023; 14:1169256. [PMID: 37275878 PMCID: PMC10237352 DOI: 10.3389/fimmu.2023.1169256] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 05/10/2023] [Indexed: 06/07/2023] Open
Abstract
Background Hepatocellular carcinoma (HCC) is a leading cause of cancer-related deaths worldwide. Lysosomes are organelles that play an important role in cancer progression by breaking down biomolecules. However, the molecular mechanisms of lysosome-related genes in HCC are not fully understood. Methods We downloaded HCC datasets from TCGA and GEO as well as lysosome-related gene sets from AIMGO. After univariate Cox screening of the set of lysosome-associated genes differentially expressed in HCC and normal tissues, risk models were built by machine learning. Model effects were assessed using the concordance index (C-index), Kaplan-Meier (K-M) and receiver operating characteristic curves (ROC). Additionally, we explored the biological function and immune microenvironment between the high- and low-risk groups, and analyzed the response of the high- and low-risk groups to immunotherapy responsiveness and chemotherapeutic agents. Finally, we explored the function of a key gene (RAMP3) at the cellular level. Results Univariate Cox yielded 46 differentially and prognostically significant lysosome-related genes, and risk models were constructed using eight genes (RAMP3, GPLD1, FABP5, CD68, CSPG4, SORT1, CSPG5, CSF3R) derived from machine learning. The risk model was a better predictor of clinical outcomes, with the higher risk group having worse clinical outcomes. There were significant differences in biological function, immune microenvironment, and responsiveness to immunotherapy and drug sensitivity between the high and low-risk groups. Finally, we found that RAMP3 inhibited the proliferation, migration, and invasion of HCC cells and correlated with the sensitivity of HCC cells to Idarubicin. Conclusion Lysosome-associated gene risk models built by machine learning can effectively predict patient prognosis and offer new prospects for chemotherapy and immunotherapy in HCC. In addition, cellular-level experiments suggest that RAMP3 may be a new target for the treatment of HCC.
Collapse
Affiliation(s)
- Wenhua Li
- Key Laboratory for Prevention and Treatment of High Morbidity in Central Asia, National Health and Health Commission, Shihezi, China
- Department of Immunology, Shihezi University School of Medicine, Shihezi, China
| | - Qianwen Wang
- Key Laboratory for Prevention and Treatment of High Morbidity in Central Asia, National Health and Health Commission, Shihezi, China
- Department of Immunology, Shihezi University School of Medicine, Shihezi, China
| | - Junxia Lu
- Key Laboratory for Prevention and Treatment of High Morbidity in Central Asia, National Health and Health Commission, Shihezi, China
- Department of Immunology, Shihezi University School of Medicine, Shihezi, China
| | - Bin Zhao
- Key Laboratory for Prevention and Treatment of High Morbidity in Central Asia, National Health and Health Commission, Shihezi, China
- Department of Immunology, Shihezi University School of Medicine, Shihezi, China
| | - Yuqing Geng
- Key Laboratory for Prevention and Treatment of High Morbidity in Central Asia, National Health and Health Commission, Shihezi, China
- Department of Immunology, Shihezi University School of Medicine, Shihezi, China
| | - Xiangwei Wu
- Key Laboratory for Prevention and Treatment of High Morbidity in Central Asia, National Health and Health Commission, Shihezi, China
- Department of Immunology, Shihezi University School of Medicine, Shihezi, China
- The First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, China
| | - Xueling Chen
- Key Laboratory for Prevention and Treatment of High Morbidity in Central Asia, National Health and Health Commission, Shihezi, China
- Department of Immunology, Shihezi University School of Medicine, Shihezi, China
| |
Collapse
|
68
|
Li J, Yi X, Liu L, Wang X, Ai J. Advances in tumor nanotechnology: theragnostic implications in tumors via targeting regulated cell death. Apoptosis 2023:10.1007/s10495-023-01851-3. [PMID: 37184582 DOI: 10.1007/s10495-023-01851-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/29/2023] [Indexed: 05/16/2023]
Abstract
Cell death constitutes an indispensable part of the organismal balance in the human body. Generally, cell death includes regulated cell death (RCD) and accidental cell death (ACD), reflecting the intricately molecule-dependent process and the uncontrolled response, respectively. Furthermore, diverse RCD pathways correlate with multiple diseases, such as tumors and neurodegenerative diseases. Meanwhile, with the development of precision medicine, novel nano-based materials have gradually been applied in the clinical diagnosis and treatment of tumor patients. As the carrier, organic, inorganic, and biomimetic nanomaterials could facilitate the distribution, improve solubility and bioavailability, enhance biocompatibility and decrease the toxicity of drugs in the body, therefore, benefiting tumor patients with better survival outcomes and quality of life. In terms of the most studied cell death pathways, such as apoptosis, necroptosis, and pyroptosis, plenty of studies have explored specific types of nanomaterials targeting the molecules and signals in these pathways. However, no attempt was made to display diverse nanomaterials targeting different RCD pathways comprehensively. In this review, we elaborate on the potential mechanisms of RCD, including intrinsic and extrinsic apoptosis, necroptosis, ferroptosis, pyroptosis, autophagy-dependent cell death, and other cell death pathways together with corresponding nanomaterials. The thorough presentation of RCD pathways and diverse nano-based materials may provide a wider cellular and molecular landscape of tumor diagnosis and treatments.
Collapse
Affiliation(s)
- Jin Li
- Department of Urology/Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
- West China School of Medicine, Sichuan University, Chengdu, China
| | - Xianyanling Yi
- Department of Urology/Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
- West China School of Medicine, Sichuan University, Chengdu, China
| | - Liangren Liu
- Department of Urology/Institute of Urology, West China Hospital, Sichuan University, Chengdu, China.
| | - Xiaohui Wang
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China.
| | - Jianzhong Ai
- Department of Urology/Institute of Urology, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
69
|
Kim MS, Yang SH, Kim MS. Role of ABCA2 and its single nucleotide polymorphisms (4873T>A and 4879G>C) in the regulation of multi-drug resistance in oral squamous carcinoma cells. Biochem Biophys Res Commun 2023; 666:1-9. [PMID: 37167718 DOI: 10.1016/j.bbrc.2023.05.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 04/27/2023] [Accepted: 05/04/2023] [Indexed: 05/13/2023]
Abstract
Lysosomal exocytosis is an essential cellular event for remodeling the extracellular matrix through secreting lysosomal enzymes and developing drug resistance. However, the detailed mechanism underlying the lysosomal exocytosis-driven acquisition of drug resistance is not completely understood. Genetic variations in gefitinib-sensitive (HSC3) and -resistant (HSC3/GR) oral squamous carcinoma cell lines were identified using whole-exome sequencing (WES). The physiological role of the ATP-binding cassette subfamily A member 2 (ABCA2) in gefitinib-induced lysosomal trafficking was evaluated in vitro, through overexpressing ABCA2 and its single nucleotide polymorphisms (SNPs). WES analysis showed that the 554 SNPs harboring 244 genes appeared to be differentially generated depending on gefitinib resistance. Among these genes, ABCA2 was enriched in 24 of 39 gene ontology terms. Two missense SNPs of ABCA2, 4873T > A (rs1831123356) and 4873T > A, were generated only in gefitinib-sensitive cells. Furthermore, HEK293 cells expressing the wild-type ABCA2 (WT ABCA2) acquired tolerance for gefitinib-induced cytotoxicity by increasing gefitinib sequestration in lysosomes and lysosomal exocytosis. Conversely, cells expressing each ABCA2 SNP exhibited lower efficacy in developing tolerance to gefitinib-induced responses than those expressing WT ABCA2. Notably, HSC3/GR cells were also tolerant to erlotinib and sunitinib but not osimertinib. Furthermore, tolerance for multiple tyrosine kinase inhibitors was attenuated by the deletion of ABCA2. These findings demonstrate that ABCA2 and its SNPs should be considered prominent targets for overcoming multi-drug resistance and enhancing the efficacy of chemotherapeutics.
Collapse
Affiliation(s)
- Mi Seong Kim
- Department of Oral Physiology, Institute of Biomaterial-Implant, School of Dentistry, Wonkwang University, Iksan, Jeonbuk, 54538, Republic of Korea; Wonkwang Dental Research Institute, School of Dentistry, Wonkwang University, Iksan, Jeonbuk, 54538, Republic of Korea
| | - Sei Hoon Yang
- Department of Internal Medicine, School of Medicine, Wonkwang University, Iksan, Jeonbuk, 54538, Republic of Korea.
| | - Min Seuk Kim
- Department of Oral Physiology, Institute of Biomaterial-Implant, School of Dentistry, Wonkwang University, Iksan, Jeonbuk, 54538, Republic of Korea.
| |
Collapse
|
70
|
Uzhytchak M, Smolková B, Lunova M, Frtús A, Jirsa M, Dejneka A, Lunov O. Lysosomal nanotoxicity: Impact of nanomedicines on lysosomal function. Adv Drug Deliv Rev 2023; 197:114828. [PMID: 37075952 DOI: 10.1016/j.addr.2023.114828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 03/28/2023] [Accepted: 04/12/2023] [Indexed: 04/21/2023]
Abstract
Although several nanomedicines got clinical approval over the past two decades, the clinical translation rate is relatively small so far. There are many post-surveillance withdrawals of nanomedicines caused by various safety issues. For successful clinical advancement of nanotechnology, it is of unmet need to realize cellular and molecular foundation of nanotoxicity. Current data suggest that lysosomal dysfunction caused by nanoparticles is emerging as the most common intracellular trigger of nanotoxicity. This review analyzes prospect mechanisms of lysosomal dysfunction-mediated toxicity induced by nanoparticles. We summarized and critically assessed adverse drug reactions of current clinically approved nanomedicines. Importantly, we show that physicochemical properties have great impact on nanoparticles interaction with cells, excretion route and kinetics, and subsequently on toxicity. We analyzed literature on adverse reactions of current nanomedicines and hypothesized that adverse reactions might be linked with lysosomal dysfunction caused by nanomedicines. Finally, from our analysis it becomes clear that it is unjustifiable to generalize safety and toxicity of nanoparticles, since different particles possess distinct toxicological properties. We propose that the biological mechanism of the disease progression and treatment should be central in the optimization of nanoparticle design.
Collapse
Affiliation(s)
- Mariia Uzhytchak
- Institute of Physics of the Czech Academy of Sciences, 18221 Prague, Czech Republic
| | - Barbora Smolková
- Institute of Physics of the Czech Academy of Sciences, 18221 Prague, Czech Republic
| | - Mariia Lunova
- Institute of Physics of the Czech Academy of Sciences, 18221 Prague, Czech Republic; Institute for Clinical & Experimental Medicine (IKEM), 14021 Prague, Czech Republic
| | - Adam Frtús
- Institute of Physics of the Czech Academy of Sciences, 18221 Prague, Czech Republic
| | - Milan Jirsa
- Institute for Clinical & Experimental Medicine (IKEM), 14021 Prague, Czech Republic
| | - Alexandr Dejneka
- Institute of Physics of the Czech Academy of Sciences, 18221 Prague, Czech Republic
| | - Oleg Lunov
- Institute of Physics of the Czech Academy of Sciences, 18221 Prague, Czech Republic.
| |
Collapse
|
71
|
Berg AL, Showalter MR, Kosaisawe N, Hu M, Stephens NC, Sa M, Heil H, Castro N, Chen JJ, VanderVorst K, Wheeler MR, Rabow Z, Cajka T, Albeck J, Fiehn O, Carraway KL. Cellular transformation promotes the incorporation of docosahexaenoic acid into the endolysosome-specific lipid bis(monoacylglycerol)phosphate in breast cancer. Cancer Lett 2023; 557:216090. [PMID: 36773796 PMCID: PMC10589064 DOI: 10.1016/j.canlet.2023.216090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 01/26/2023] [Accepted: 02/04/2023] [Indexed: 02/12/2023]
Abstract
Bis(monoacylglycero)phosphates (BMPs), a class of lipids highly enriched within endolysosomal organelles, are key components of the lysosomal intraluminal vesicles responsible for activating sphingolipid catabolic enzymes. While BMPs are understudied relative to other phospholipids, recent reports associate BMP dysregulation with a variety of pathological states including neurodegenerative diseases and lysosomal storage disorders. Since the dramatic lysosomal remodeling characteristic of cellular transformation could impact BMP abundance and function, we employed untargeted lipidomics approaches to identify and quantify BMP species in several in vitro and in vivo models of breast cancer and comparative non-transformed cells and tissues. We observed lower BMP levels within transformed cells relative to normal cells, and consistent enrichment of docosahexaenoic acid (22:6) fatty acyl chain-containing BMP species in both human- and mouse-derived mammary tumorigenesis models. Our functional analysis points to a working model whereby 22:6 BMPs serve as reactive oxygen species scavengers in tumor cells, protecting lysosomes from oxidant-induced lysosomal membrane permeabilization. Our findings suggest that breast tumor cells might divert polyunsaturated fatty acids into BMP lipids as part of an adaptive response to protect their lysosomes from elevated reactive oxygen species levels, and raise the possibility that BMP-mediated lysosomal protection is a tumor-specific vulnerability that may be exploited therapeutically.
Collapse
Affiliation(s)
- Anastasia L Berg
- Department of Biochemistry and Molecular Medicine and UC Davis Comprehensive Cancer Center, University of California Davis School of Medicine, Sacramento, CA, USA
| | - Megan R Showalter
- West Coast Metabolomics Center, UC Davis Genome Center, University of California Davis, Davis, CA, USA
| | - Nont Kosaisawe
- Department of Molecular and Cellular Biology, University of California Davis, Davis, CA, USA
| | - Michelle Hu
- Department of Biochemistry and Molecular Medicine and UC Davis Comprehensive Cancer Center, University of California Davis School of Medicine, Sacramento, CA, USA
| | - Nathanial C Stephens
- West Coast Metabolomics Center, UC Davis Genome Center, University of California Davis, Davis, CA, USA
| | - Michael Sa
- West Coast Metabolomics Center, UC Davis Genome Center, University of California Davis, Davis, CA, USA
| | - Hailey Heil
- West Coast Metabolomics Center, UC Davis Genome Center, University of California Davis, Davis, CA, USA
| | - Noemi Castro
- Department of Biochemistry and Molecular Medicine and UC Davis Comprehensive Cancer Center, University of California Davis School of Medicine, Sacramento, CA, USA
| | - Jenny J Chen
- Department of Biochemistry and Molecular Medicine and UC Davis Comprehensive Cancer Center, University of California Davis School of Medicine, Sacramento, CA, USA
| | - Kacey VanderVorst
- Department of Biochemistry and Molecular Medicine and UC Davis Comprehensive Cancer Center, University of California Davis School of Medicine, Sacramento, CA, USA
| | - Madelyn R Wheeler
- Department of Biochemistry and Molecular Medicine and UC Davis Comprehensive Cancer Center, University of California Davis School of Medicine, Sacramento, CA, USA
| | - Zachary Rabow
- West Coast Metabolomics Center, UC Davis Genome Center, University of California Davis, Davis, CA, USA
| | - Tomas Cajka
- West Coast Metabolomics Center, UC Davis Genome Center, University of California Davis, Davis, CA, USA; Institute of Physiology of the Czech Academy of Sciences, Prague, 14200, Czech Republic
| | - John Albeck
- Department of Molecular and Cellular Biology, University of California Davis, Davis, CA, USA
| | - Oliver Fiehn
- West Coast Metabolomics Center, UC Davis Genome Center, University of California Davis, Davis, CA, USA
| | - Kermit L Carraway
- Department of Biochemistry and Molecular Medicine and UC Davis Comprehensive Cancer Center, University of California Davis School of Medicine, Sacramento, CA, USA.
| |
Collapse
|
72
|
The role of lysosomes in metabolic and autoimmune diseases. Nat Rev Nephrol 2023; 19:366-383. [PMID: 36894628 DOI: 10.1038/s41581-023-00692-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/09/2023] [Indexed: 03/11/2023]
Abstract
Lysosomes are catabolic organelles that contribute to the degradation of intracellular constituents through autophagy and of extracellular components through endocytosis, phagocytosis and macropinocytosis. They also have roles in secretory mechanisms, the generation of extracellular vesicles and certain cell death pathways. These functions make lysosomes central organelles in cell homeostasis, metabolic regulation and responses to environment changes including nutrient stresses, endoplasmic reticulum stress and defects in proteostasis. Lysosomes also have important roles in inflammation, antigen presentation and the maintenance of long-lived immune cells. Their functions are tightly regulated by transcriptional modulation via TFEB and TFE3, as well as by major signalling pathways that lead to activation of mTORC1 and mTORC2, lysosome motility and fusion with other compartments. Lysosome dysfunction and alterations in autophagy processes have been identified in a wide variety of diseases, including autoimmune, metabolic and kidney diseases. Deregulation of autophagy can contribute to inflammation, and lysosomal defects in immune cells and/or kidney cells have been reported in inflammatory and autoimmune pathologies with kidney involvement. Defects in lysosomal activity have also been identified in several pathologies with disturbances in proteostasis, including autoimmune and metabolic diseases such as Parkinson disease, diabetes mellitus and lysosomal storage diseases. Targeting lysosomes is therefore a potential therapeutic strategy to regulate inflammation and metabolism in a variety of pathologies.
Collapse
|
73
|
Gallagher ER, Holzbaur ELF. The selective autophagy adaptor p62/SQSTM1 forms phase condensates regulated by HSP27 that facilitate the clearance of damaged lysosomes via lysophagy. Cell Rep 2023; 42:112037. [PMID: 36701233 PMCID: PMC10366342 DOI: 10.1016/j.celrep.2023.112037] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 12/16/2022] [Accepted: 01/10/2023] [Indexed: 01/27/2023] Open
Abstract
In response to lysosomal damage, cells engage several quality-control mechanisms, including the selective isolation and degradation of damaged lysosomes by lysophagy. Here, we report that the selective autophagy adaptor SQSTM1/p62 is recruited to damaged lysosomes in both HeLa cells and neurons and is required for lysophagic flux. The Phox and Bem1p (PB1) domain of p62 mediates oligomerization and is specifically required for lysophagy. Consistent with this observation, we find that p62 forms condensates on damaged lysosomes. These condensates are precisely tuned by the small heat shock protein HSP27, which is phosphorylated in response to lysosomal injury and maintains the liquidity of p62 condensates, facilitating autophagosome formation. Mutations in p62 have been identified in patients with amyotrophic lateral sclerosis (ALS); ALS-associated mutations in p62 impair lysophagy, suggesting that deficits in this pathway may contribute to neurodegeneration. Thus, p62 condensates regulated by HSP27 promote lysophagy by forming platforms for autophagosome biogenesis at damaged lysosomes.
Collapse
Affiliation(s)
- Elizabeth R Gallagher
- Department of Physiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Erika L F Holzbaur
- Department of Physiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA.
| |
Collapse
|
74
|
Mondal B, Padhy A, Maji S, Gupta A, Sen Gupta S. Dual stimuli-responsive cross-linked nanoassemblies from an amphiphilic mannose-6-phosphate based tri-block copolymer for lysosomal membrane permeabilization. Biomater Sci 2023; 11:1810-1827. [PMID: 36655818 DOI: 10.1039/d2bm02110b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Stimuli-responsive cross-linked nanocarriers that can induce lysosomal cell death (LCD) via lysosomal membrane permeabilization (LMP) represent a new class of delivery platforms and have attracted the attention of researchers in the biomedical field. The advantages of such cross-linked nanocarriers are as follows (i) they remain intact during blood circulation; and (ii) they reach the target site via specific receptor-mediated endocytosis leading to the enhancement of therapeutic efficacy and reduction of side effects. Herein, we have synthesized a mannose-6-phosphate (M6P) based amphiphilic ABC type tri-block copolymer having two chains of FDA-approved poly(ε-caprolactone) (PCL) as the hydrophobic block, and poly(S-(o-nitrobenzyl)-L-cysteine) (NBC) acts as the photoresponsive crosslinker block. Two different tri-block copolymers, [(PCL35)2-b-NBC20-b-M6PGP20] and [(PCL35)2-b-NBC15-b-M6PGP20], were synthesized which upon successful self-assembly initially formed spherical uncross-linked "micellar-type" aggregates (UCL-M) and vesicles (UCL-V), respectively. The uncross-linked nanocarriers upon UV treatment for thirty minutes were covalently crosslinked in the middle PNBC block giving rise to the di-sulfide bonds and forming interface cross-linked "micellar-type" aggregates (ICL-M) and vesicles (ICL-V). DLS, TEM, and AFM techniques were used to successfully characterize the morphology of these nanocarriers. The dual stimuli (redox and enzyme) responsiveness of the cross-linked nanocarriers and their trafficking to the lysosome in mammalian cells via receptor-mediated endocytosis was probed using confocal microscopy images. Furthermore, the addition of a chloroquine (CQ, a known lysosomotropic agent) encapsulated cross-linked nanocarrier (CQ@ICL-V) to non-cancerous (HEK-293T) cells and liver (HepG2), and breast cancer cells (MDA-MB-231) was found to initiate lysosomal membrane permeabilization (LMP) followed by lysosomal destabilization which eventually led to lysosomal cell death (LCD). Due to the targeted delivery of CQ to the lysosomes of cancerous cells, almost a 90% smaller amount of CQ was able to achieve similar cell death to CQ alone.
Collapse
Affiliation(s)
- Basudeb Mondal
- Indian Institute of Science Education and Research Kolkata, Department of Chemical Sciences, Mohanpur Campus, Nadia-741246, India.
| | - Abinash Padhy
- Indian Institute of Science Education and Research Kolkata, Department of Chemical Sciences, Mohanpur Campus, Nadia-741246, India.
| | - Saptarshi Maji
- Indian Institute of Science Education and Research Kolkata, Department of Biological Sciences, Mohanpur Campus, Nadia-741246, India
| | - Arnab Gupta
- Indian Institute of Science Education and Research Kolkata, Department of Biological Sciences, Mohanpur Campus, Nadia-741246, India
| | - Sayam Sen Gupta
- Indian Institute of Science Education and Research Kolkata, Department of Chemical Sciences, Mohanpur Campus, Nadia-741246, India.
| |
Collapse
|
75
|
Cai Z, Yu J, Hu J, Sun K, Liu M, Gu D, Chen J, Xu Y, He X, Wei W, Wang Z, Sun B. Three near-infrared and lysosome-targeting probes for photodynamic therapy (PDT). SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 286:122027. [PMID: 36323089 DOI: 10.1016/j.saa.2022.122027] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 10/16/2022] [Accepted: 10/18/2022] [Indexed: 06/16/2023]
Abstract
Lysosome, an organelle which contains a number of hydrolases and hydrogen ions, plays a crucial role in cellular survival and apoptosis. If selectively destroy lysosomes membrane, inner hydrolases and hydrogen ions will leak and induce cell death. In this work, three lysosome-targeting fluorescent probes (HCL 1-3, heptamethine cyanine lysosomal-targeting probe) were designed, synthesized and developed for photodynamic therapy. Piperazine and N, N-dimethyl structures made HCL 1-3 have good lysosome targeting ability while Pearson's correlation coefficients reached 0.85, 0.87 and 0.78. It can be concluded from MTT test, HCL 1-3 have high photo cytotoxicity and low dark cytotoxicity from MTT test. Calcein/PI staining assays also supported cytotoxicity of HCL 1-3 under light conditions. In vivo experiments, HCL 2 accumulated in tumor and a strong fluorescence signal was observed at 12 h post injection. All results showed that our experiments provide help and new ideas for cyanine dyes in cancer treatment.
Collapse
Affiliation(s)
- Zhuoer Cai
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, PR China
| | - Jiaying Yu
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, PR China
| | - Jinzhong Hu
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, PR China
| | - Kai Sun
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, PR China
| | - Min Liu
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, PR China
| | - Dihai Gu
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, PR China
| | - Jian Chen
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, PR China
| | - Yang Xu
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, PR China
| | - Xiaofan He
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, PR China
| | - Wanying Wei
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, PR China
| | - Zining Wang
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, PR China
| | - Baiwang Sun
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, PR China.
| |
Collapse
|
76
|
Shah H, Stankov M, Panayotova-Dimitrova D, Yazdi A, Budida R, Klusmann JH, Behrens GMN. Autolysosomal activation combined with lysosomal destabilization efficiently targets myeloid leukemia cells for cell death. Front Oncol 2023; 13:999738. [PMID: 36816923 PMCID: PMC9931186 DOI: 10.3389/fonc.2023.999738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 01/09/2023] [Indexed: 02/04/2023] Open
Abstract
Introduction Current cancer research has led to a renewed interest in exploring lysosomal membrane permeabilization and lysosomal cell death as a targeted therapeutic approach for cancer treatment. Evidence suggests that differences in lysosomal biogenesis between cancer and normal cells might open a therapeutic window. Lysosomal membrane stability may be affected by the so-called 'busy lysosomal behaviour' characterized by higher lysosomal abundance and activity and more intensive fusion or interaction with other vacuole compartments. Methods We used a panel of multiple myeloid leukemia (ML) cell lines as well as leukemic patient samples and updated methodology to study auto-lysosomal compartment, lysosomal membrane permeabilization and lysosomal cell death. Results Our analyses demonstrated several-fold higher constitutive autolysosomal activity in ML cells as compared to human CD34+ hematopoietic cells. Importantly, we identified mefloquine as a selective activator of ML cells' lysosomal biogenesis, which induced a sizeable increase in ML lysosomal mass, acidity as well as cathepsin B and L activity. Concomitant mTOR inhibition synergistically increased lysosomal activity and autolysosomal fusion and simultaneously decreased the levels of key lysosomal stabilizing proteins, such as LAMP-1 and 2. Discussion In conclusion, mefloquine treatment combined with mTOR inhibition synergistically induced targeted ML cell death without additional toxicity. Taken together, these data provide a molecular mechanism and thus a rationale for a therapeutic approach for specific targeting of ML lysosomes.
Collapse
Affiliation(s)
- Harshit Shah
- Department for Rheumatology and Immunology, Hannover Medical School, Hannover, Germany
| | - Metodi Stankov
- Department for Rheumatology and Immunology, Hannover Medical School, Hannover, Germany
| | - Diana Panayotova-Dimitrova
- Department of Dermatology and Allergology, University Hospital Rheinisch-Westfälische Technische Hochschule (RWTH), Aachen, Germany
| | - Amir Yazdi
- Department of Dermatology and Allergology, University Hospital Rheinisch-Westfälische Technische Hochschule (RWTH), Aachen, Germany
| | | | - Jan-Henning Klusmann
- Pediatric Hematology and Oncology, Department of Pediatrics, Goethe University Frankfurt, Frankfurt (Main), Germany
| | - Georg M. N. Behrens
- Department for Rheumatology and Immunology, Hannover Medical School, Hannover, Germany,*Correspondence: Georg M. N. Behrens,
| |
Collapse
|
77
|
Patra S, Patil S, Klionsky DJ, Bhutia SK. Lysosome signaling in cell survival and programmed cell death for cellular homeostasis. J Cell Physiol 2023; 238:287-305. [PMID: 36502521 DOI: 10.1002/jcp.30928] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/06/2022] [Accepted: 11/24/2022] [Indexed: 12/14/2022]
Abstract
Recent developments in lysosome biology have transformed our view of lysosomes from static garbage disposals that can also act as suicide bags to decidedly dynamic multirole adaptive operators of cellular homeostasis. Lysosome-governed signaling pathways, proteins, and transcription factors equilibrate the rate of catabolism and anabolism (autophagy to lysosomal biogenesis and metabolite pool maintenance) by sensing cellular metabolic status. Lysosomes also interact with other organelles by establishing contact sites through which they exchange cellular contents. Lysosomal function is critically assessed by lysosomal positioning and motility for cellular adaptation. In this setting, mechanistic target of rapamycin kinase (MTOR) is the chief architect of lysosomal signaling to control cellular homeostasis. Notably, lysosomes can orchestrate explicit cell death mechanisms, such as autophagic cell death and lysosomal membrane permeabilization-associated regulated necrotic cell death, to maintain cellular homeostasis. These lines of evidence emphasize that the lysosomes serve as a central signaling hub for cellular homeostasis.
Collapse
Affiliation(s)
- Srimanta Patra
- Cancer and Cell Death Laboratory, Department of Life Science, National Institute of Technology, Rourkela, Odisha, India
| | - Shankargouda Patil
- Division of Oral Pathology, Department of Maxillofacial Surgery and Diagnostic Sciences, College of Dentistry, Jazan University, Jazan, Saudi Arabia
| | - Daniel J Klionsky
- Department of Molecular, Cellular and Developmental Biology, Life Sciences Institute, University of Michigan, Ann Arbor, Michigan, USA
| | - Sujit K Bhutia
- Cancer and Cell Death Laboratory, Department of Life Science, National Institute of Technology, Rourkela, Odisha, India
| |
Collapse
|
78
|
Chen F, Zhu S, Kang R, Tang D, Liu J. ATP6V0D1 promotes alkaliptosis by blocking STAT3-mediated lysosomal pH homeostasis. Cell Rep 2023; 42:111911. [PMID: 36640329 DOI: 10.1016/j.celrep.2022.111911] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 12/09/2022] [Accepted: 12/12/2022] [Indexed: 12/30/2022] Open
Abstract
Alkaliptosis, a type of regulated cell death driven by intracellular alkalization, was first described in pancreatic ductal adenocarcinoma (PDAC) cells after treatment with the opioid analgesic drug JTC801. Here, we used mass-spectrometry-based drug target identification, cellular thermal shift assay, and point mutation technologies to reveal ATP6V0D1 as a direct JTC801 target that drives alkaliptosis in human PDAC cells. Functionally, the protein stability of ATP6V0D1, when mediated by JTC801, increases the interaction between ATP6V0D1 and STAT3, resulting in increased expression and activity of STAT3 for sustaining lysosome homeostasis. Consequently, the pharmacological or genetic inhibition of STAT3 restores the sensitivity of ATP6V0D1-deficient cells to alkaliptosis in vitro or in suitable mouse models. Clinically, a high expression of ATP6V0D1 correlates with prolonged survival of patients with PDAC. Together, these results illustrate a link between ATP6V0D1 and PDAC and advance our understanding of alkaliptosis in targeted therapy.
Collapse
Affiliation(s)
- Fangquan Chen
- DAMP Laboratory, Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510150, China; Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, Guangzhou Medical University, Guangzhou, Guangdong 511436, China
| | - Shan Zhu
- Department of Pediatrics, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China
| | - Rui Kang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Daolin Tang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX 75390, USA.
| | - Jiao Liu
- DAMP Laboratory, Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510150, China; Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, Guangzhou Medical University, Guangzhou, Guangdong 511436, China.
| |
Collapse
|
79
|
Bassotti G, Fruganti A, Stracci F, Marconi P, Fettucciari K. Cytotoxic synergism of Clostridioides difficile toxin B with proinflammatory cytokines in subjects with inflammatory bowel diseases. World J Gastroenterol 2023; 29:582-596. [PMID: 36742168 PMCID: PMC9896618 DOI: 10.3748/wjg.v29.i4.582] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 12/03/2022] [Accepted: 12/27/2022] [Indexed: 01/20/2023] Open
Abstract
Clostridioides difficile (C. difficile) is progressively colonizing humans and animals living with humans. During this process, hypervirulent strains and mutated toxin A and B of C. difficile (TcdA and TcdB) are originating and developing. While in healthy subjects colonization by C. difficile becomes a risk after the use of antibiotics that alter the microbiome, other categories of people are more susceptible to infection and at risk of relapse, such as those with inflammatory bowel disease (IBD). Recent in vitro studies suggest that this increased susceptibility could be due to the strong cytotoxic synergism between TcdB and proinflammatory cytokines the tumor necrosis factor-alpha and interferon-gamma (CKs). Therefore, in subjects with IBD the presence of an inflammatory state in the colon could be the driver that increases the susceptibility to C. difficile infection and its progression and relapses. TcdB is internalized in the cell via three receptors: chondroitin sulphate proteoglycan 4; poliovirus receptor-like 3; and Wnt receptor frizzled family. Chondroitin sulphate proteoglycan 4 and Wnt receptor frizzled family are involved in cell death by apoptosis or necrosis depending on the concentration of TcdB and cell types, while poliovirus receptor-like 3 induces only necrosis. It is possible that cytokines could also induce a greater expression of receptors for TcdB that are more involved in necrosis than in apoptosis. Therefore, in subjects with IBD there are the conditions: (1) For greater susceptibility to C. difficile infection, such as the inflammatory state, and abnormalities of the microbiome and of the immune system; (2) for the enhancement of the cytotoxic activity of TcdB +Cks; and (3) for a greater expression of TcdB receptors stimulated by cytokines that induce cell death by necrosis rather than apoptosis. The only therapeutic approach currently possible in IBD patients is monitoring of C. difficile colonization for interventions aimed at reducing tumor necrosis factor-alpha and interferon-gamma levels when the infection begins. The future perspective is to generate bacteriophages against C. difficile for targeted therapy.
Collapse
Affiliation(s)
- Gabrio Bassotti
- Department of Medicine and Surgery, Gastroenterology, Hepatology & Digestive Endoscopy Section University of Perugia Medical School, Piazza Lucio Severi, Perugia 06132, Italy, and Santa Maria della Misericordia Hospital, Gastroenterology & Hepatology Unit Perugia 06156, Italy
| | - Alessandro Fruganti
- School of Biosciences and Veterinary Medicine, University of Camerino, Matelica 62024, Italy
| | - Fabrizio Stracci
- Medicine and Surgery, Hygiene and Public Health Section, University of Perugia, Perugia 06123, Italy
| | - Pierfrancesco Marconi
- Medicine and Surgery, Biosciences & Medical Embryology Section, University of Perugia, Perugia 06132, Italy
| | - Katia Fettucciari
- Medicine and Surgery, Biosciences & Medical Embryology Section, University of Perugia, Perugia 06132, Italy
| |
Collapse
|
80
|
Implication of Vegetable Oil-Derived Hydroxynonenal in the Lysosomal Cell Death for Lifestyle-Related Diseases. Nutrients 2023; 15:nu15030609. [PMID: 36771317 PMCID: PMC9921130 DOI: 10.3390/nu15030609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/18/2023] [Accepted: 01/19/2023] [Indexed: 01/27/2023] Open
Abstract
Lysosomes are membrane-bound vesicular structures that mediate degradation and recycling of damaged macromolecules and organelles within the cell. For ensuring the place of degradation within the acidic organelle, the integrity of the lysosomal-limiting membrane is critical in order to not injure the cell. As lysosomes fade away in response to acute intense insults or long-term mild insults, dissolving lysosomes are hardly detected during the phase of cell degeneration. If observed at the right time, however, lysosomal membrane rupture/permeabilization can be detected using an electron microscope. In both the experimental and clinical materials, here the author reviewed electron microphotographs showing disintegrity of the lysosomal-limiting membrane. Regardless of insults, cell types, organs, diseases, or species, leakage of lysosomal content occurred either by the apparent disruption of the lysosomal membrane (rupture) and/or through the ultrastructurally blurred membrane (permeabilization). Since lysosomal rupture occurs in the early phase of necrotic cell death, it is difficult to find vivid lysosomes after the cell death or disease are completed. A lipid peroxidation product, 4-hydroxy-2-nonenal (hydroxynonenal), is incorporated into the serum by the intake of ω-6 polyunsaturated fatty acid-rich vegetable oils (exogenous), and/or is generated by the peroxidation of membrane lipids due to the oxidative stress (intrinsic). Exogenous and intrinsic hydroxynonenal may synergically oxidize the representative cell stress protein Hsp70.1, which has dual functions as a 'chaperone protein' and 'lysosomal stabilizer'. Hydroxynonenal-mediated carbonylation of Hsp70.1 facilitates calpain-mediated cleavage to induce lysosomal membrane rupture and the resultant cell death. Currently, vegetable oils such as soybean and canola oils are the most widely consumed cooking oils at home and in restaurants worldwide. Accordingly, high linoleic acid content may be a major health concern, because cells can become damaged by its major end product, hydroxynonenal. By focusing on dynamic changes of the lysosomal membrane integrity at the ultrastructural level, implications of its rupture/permeabilization on cell death/degeneration were discussed as an etiology of lifestyle-related diseases.
Collapse
|
81
|
Lysosomes as a Target of Anticancer Therapy. Int J Mol Sci 2023; 24:ijms24032176. [PMID: 36768500 PMCID: PMC9916765 DOI: 10.3390/ijms24032176] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 01/14/2023] [Accepted: 01/19/2023] [Indexed: 01/25/2023] Open
Abstract
Lysosomes are organelles containing acidic hydrolases that are responsible for lysosomal degradation and the maintenance of cellular homeostasis. They play an important role in autophagy, as well as in various cell death pathways, such as lysosomal and apoptotic death. Various agents, including drugs, can induce lysosomal membrane permeability, resulting in the translocation of acidic hydrolases into the cytoplasm, which promotes lysosomal-mediated death. This type of death may be of great importance in anti-cancer therapy, as both cancer cells with disturbed pathways leading to apoptosis and drug-resistant cells can undergo it. Important compounds that damage the lysosomal membrane include lysosomotropic compounds, antihistamines, immunosuppressants, DNA-damaging drugs, chemotherapeutics, photosensitizers and various plant compounds. An interesting approach in the treatment of cancer and the search for ways to overcome the chemoresistance of cancer cells may also be combining lysosomotropic compounds with targeted modulators of autophagy to induce cell death. These compounds may be an alternative in oncological treatment, and lysosomes may become a promising therapeutic target for many diseases, including cancer. Understanding the functional relationships between autophagy and apoptosis and the possibilities of their regulation, both in relation to normal and cancer cells, can be used to develop new and more effective anticancer therapies.
Collapse
|
82
|
Zhang H, Chen Y, Li F, Wu C, Cai W, Ye H, Su H, He M, Yang L, Wang X, Zhou K, Ni W. Elamipretide alleviates pyroptosis in traumatically injured spinal cord by inhibiting cPLA2-induced lysosomal membrane permeabilization. J Neuroinflammation 2023; 20:6. [PMID: 36609266 PMCID: PMC9825014 DOI: 10.1186/s12974-023-02690-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Accepted: 01/02/2023] [Indexed: 01/09/2023] Open
Abstract
Spinal cord injury (SCI) is a devastating injury that may result in permanent motor impairment. The active ingredients of medications are unable to reach the affected area due to the blood‒brain barrier. Elamipretide (SS-31) is a new and innovative aromatic cationic peptide. Because of its alternating aromatic and cationic groups, it freely crosses the blood‒brain barrier. It is also believed to decrease inflammation and protect against a variety of neurological illnesses. This study explored the therapeutic value of SS-31 in functional recovery after SCI and its possible underlying mechanism. A spinal cord contusion injury model as well as the Basso Mouse Scale, footprint assessment, and inclined plane test were employed to assess how well individuals could function following SCI. The area of glial scarring, the number of dendrites, and the number of synapses after SCI were confirmed by HE, Masson, MAP2, and Syn staining. Western blotting, immunofluorescence, and enzyme-linked immunosorbent assays were employed to examine the expression levels of pyroptosis-, autophagy-, lysosomal membrane permeabilization (LMP)- and MAPK signalling-related proteins. The outcomes showed that SS-31 inhibited pyroptosis, enhanced autophagy and attenuated LMP in SCI. Mechanistically, we applied AAV vectors to upregulate Pla2g4A in vivo and found that SS-31 enhanced autophagy and attenuated pyroptosis and LMP by inhibiting phosphorylation of cPLA2. Ultimately, we applied asiatic acid (a p38-MAPK agonist) to test whether SS-31 regulated cPLA2 partially through the MAPK-P38 signalling pathway. Our group is the first to suggest that SS-31 promotes functional recovery partially by inhibiting cPLA2-mediated autophagy impairment and preventing LMP and pyroptosis after SCI, which may have potential clinical application value.
Collapse
Affiliation(s)
- Haojie Zhang
- grid.417384.d0000 0004 1764 2632Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, 325000 Zhejiang China ,grid.268099.c0000 0001 0348 3990The Second School of Medicine, Wenzhou Medical University, Wenzhou, 325000 Zhejiang China ,grid.268099.c0000 0001 0348 3990Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, 325000 Zhejiang China
| | - Yituo Chen
- grid.417384.d0000 0004 1764 2632Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, 325000 Zhejiang China ,grid.268099.c0000 0001 0348 3990The Second School of Medicine, Wenzhou Medical University, Wenzhou, 325000 Zhejiang China ,grid.268099.c0000 0001 0348 3990Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, 325000 Zhejiang China
| | - Feida Li
- grid.417384.d0000 0004 1764 2632Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, 325000 Zhejiang China ,grid.268099.c0000 0001 0348 3990The Second School of Medicine, Wenzhou Medical University, Wenzhou, 325000 Zhejiang China ,grid.268099.c0000 0001 0348 3990Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, 325000 Zhejiang China
| | - Chenyu Wu
- grid.417384.d0000 0004 1764 2632Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, 325000 Zhejiang China ,grid.268099.c0000 0001 0348 3990The Second School of Medicine, Wenzhou Medical University, Wenzhou, 325000 Zhejiang China ,grid.268099.c0000 0001 0348 3990Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, 325000 Zhejiang China
| | - Wanta Cai
- grid.417384.d0000 0004 1764 2632Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, 325000 Zhejiang China ,grid.268099.c0000 0001 0348 3990The Second School of Medicine, Wenzhou Medical University, Wenzhou, 325000 Zhejiang China ,grid.268099.c0000 0001 0348 3990Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, 325000 Zhejiang China
| | - Hantao Ye
- grid.417384.d0000 0004 1764 2632Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, 325000 Zhejiang China ,grid.268099.c0000 0001 0348 3990The Second School of Medicine, Wenzhou Medical University, Wenzhou, 325000 Zhejiang China ,grid.268099.c0000 0001 0348 3990Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, 325000 Zhejiang China
| | - Haohan Su
- grid.417384.d0000 0004 1764 2632Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, 325000 Zhejiang China ,grid.268099.c0000 0001 0348 3990The Second School of Medicine, Wenzhou Medical University, Wenzhou, 325000 Zhejiang China ,grid.268099.c0000 0001 0348 3990Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, 325000 Zhejiang China
| | - Mingjun He
- grid.417384.d0000 0004 1764 2632Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, 325000 Zhejiang China ,grid.268099.c0000 0001 0348 3990The Second School of Medicine, Wenzhou Medical University, Wenzhou, 325000 Zhejiang China ,grid.268099.c0000 0001 0348 3990Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, 325000 Zhejiang China
| | - Liangliang Yang
- grid.268099.c0000 0001 0348 3990School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035 Zhejiang China
| | - Xiangyang Wang
- grid.417384.d0000 0004 1764 2632Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, 325000 Zhejiang China ,grid.268099.c0000 0001 0348 3990The Second School of Medicine, Wenzhou Medical University, Wenzhou, 325000 Zhejiang China ,grid.268099.c0000 0001 0348 3990Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, 325000 Zhejiang China
| | - Kailiang Zhou
- grid.417384.d0000 0004 1764 2632Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, 325000 Zhejiang China ,grid.268099.c0000 0001 0348 3990The Second School of Medicine, Wenzhou Medical University, Wenzhou, 325000 Zhejiang China ,grid.268099.c0000 0001 0348 3990Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, 325000 Zhejiang China
| | - Wenfei Ni
- grid.417384.d0000 0004 1764 2632Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, 325000 Zhejiang China ,grid.268099.c0000 0001 0348 3990The Second School of Medicine, Wenzhou Medical University, Wenzhou, 325000 Zhejiang China ,grid.268099.c0000 0001 0348 3990Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, 325000 Zhejiang China
| |
Collapse
|
83
|
Organelle-Specific Mechanisms in Crosstalk between Apoptosis and Ferroptosis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2023; 2023:3400147. [PMID: 36644574 PMCID: PMC9836800 DOI: 10.1155/2023/3400147] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 11/23/2022] [Accepted: 12/01/2022] [Indexed: 01/07/2023]
Abstract
Apoptosis has been extensively studied, whereas ferroptosis is a newly discovered form of regulated cell death that involves iron-dependent accumulations of lipid hydroperoxides. While these two cell death mechanisms were initially believed to be mutually exclusive, recent studies have revealed cellular contexts requiring a balanced interaction between them. Numerous subcellular sites and signaling molecules within these sites are involved in both processes, either as modules or switches that allow cells to choose on how to proceed. The close relationships between apoptosis and ferroptosis, as well as the possibility of switching from one to the other, are described in this review. To understand the crosstalk between apoptosis and ferroptosis, various organelle-specific mechanisms must be analyzed and compared. The ability to switch apoptosis to ferroptosis by targeting cellular organelles has a great potential in cancer therapy.
Collapse
|
84
|
Lv X, Gao Z, Tang W, Qin J, Wang W, Liu J, Li M, Teng F, Yi L, Dong J, Wei Y. Trends of therapy in the treatment of asthma. Ther Adv Respir Dis 2023; 17:17534666231155748. [PMID: 36942731 PMCID: PMC10031615 DOI: 10.1177/17534666231155748] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023] Open
Abstract
BACKGROUND To better understand the development of therapy for asthma, grasp the core paradigm associated with the transformation of cognition of asthma treatment and asthma, explore potential and effective therapies for asthma, discover new biomarkers and mechanisms related to asthma treatment, find novel targets for anti-asthma drugs, and predict the future trends of asthma therapy, we used a bibliometric analysis to research articles related to the therapies for asthma published from 1983 to 2022. METHODS A comprehensive search was conducted to analyze the articles associated with therapy for asthma with the help of the Web of Science Core Collection (WOSCC) database from January 1, 1983 to August 14, 2022. The CiteSpace 6.1.R2 software and VOS viewer 6.1.8 software were utilized to analyze the overall structure of the network, network clusters, links between clusters, key nodes, and pathways. RESULTS A total of 3902 publications related to therapies on asthma were published in 3211 academic journals by a total of 14,655 authors in 3476 organizations from 87 countries or regions from 1983 to 2022. The United States published the most articles (n = 1143), followed by England (n = 574) and China (n = 405). However, the centrality of China was 0.4, higher than the United States (centrality = 0.16) and Singapore (centrality = 0.11). Akdis Cezmi published the most papers. Journal of Allergy and Clinical Immunology published the most studies on therapies for asthma. Asthma was the most frequent keyword (n = 594). The betweenness centrality value of keywords that were greater than 0.1 included airway inflammation (centrality = 0.22), double blind (centrality = 0.18), asthma (centrality = 0.17), inflammation (centrality = 0.12), and inhaled corticosteroid (centrality = 0.11). CONCLUSIONS The results from this biometric review provide insight into the development of therapy for asthma, the paradigm of recognition of this field, the approach of discovering new targets, exploration and combination of new mechanisms, and the frontier trend of this field in future.
Collapse
Affiliation(s)
- Xiaodi Lv
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China
- Institutes of Integrative Medicine, Fudan University, Shanghai, China
| | - Zhen Gao
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China
- Institutes of Integrative Medicine, Fudan University, Shanghai, China
| | - Weifeng Tang
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China
- Institutes of Integrative Medicine, Fudan University, Shanghai, China
| | - Jingjing Qin
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China
- Institutes of Integrative Medicine, Fudan University, Shanghai, China
| | - Wenqian Wang
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China
- Institutes of Integrative Medicine, Fudan University, Shanghai, China
| | - Jiaqi Liu
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China
- Institutes of Integrative Medicine, Fudan University, Shanghai, China
| | - Mihui Li
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China
- Institutes of Integrative Medicine, Fudan University, Shanghai, China
| | - Fangzhou Teng
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China
- Institutes of Integrative Medicine, Fudan University, Shanghai, China
| | - La Yi
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China
- Institutes of Integrative Medicine, Fudan University, Shanghai, China
| | - Jingcheng Dong
- Department of Integrative Medicine, Huashan Hospital, Fudan University, 12 Middle Urumqi Road, Shanghai 200040, China
- Institutes of Integrative Medicine, Fudan University, Shanghai, China
| | - Ying Wei
- Department of Integrative Medicine, Huashan Hospital, Fudan University, 12 Middle Urumqi Road, Shanghai 200040, China
- Institutes of Integrative Medicine, Fudan University, Shanghai, China
| |
Collapse
|
85
|
Xu J, Zhang K, Zhang G. Prognostic Lysosome-Related Biomarkers for Predicting Drug Candidates in Hepatocellular Carcinoma: An Insilco Analysis. J Hepatocell Carcinoma 2023; 10:459-472. [PMID: 36974330 PMCID: PMC10039712 DOI: 10.2147/jhc.s401338] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 03/15/2023] [Indexed: 03/29/2023] Open
Abstract
Background Lysosomes play an important role in enhancing tumorigenesis and chemoresistance in hepatocellular carcinoma (HCC). Therefore, a detailed analysis of the role of lysosome-related genes could improve the poor prognosis of HCC patients. Methods Lysosome-associated genes were downloaded from the GO and Genome Enrichment Analysis (GSEA) databases. After analyzing lysosome-associated differentially expressed genes (DEGs) between the TCGA and GTEx cohorts, we used univariate Cox regression, LASSO-Cox regression, stepwise Cox regression, and multivariate Cox regression analyses to build a predictive risk model. The ICGC cohort was used as a test cohort for the prognostic signature's validation. It was also assessed how significantly the signature affected the tumor microenvironment (TME) and sensitivity to immune checkpoint inhibitors. To investigate the expression of this signature in clinical samples, qRT-PCR and immunohistochemistry (IHC) were carried out in 50 normal tissues and 59 HCC tissues. Results A total of 894 lysosome-associated genes were obtained. After identifying 113 lysosome-associated DEGs, we constructed a five-gene prognostic signature (RRAGD, AP1M2, CRHBP, NCSTN, and SLCO4C1) that can be effectively applied to the prognostic classification of HCC patients in TCGA and ICGC cohorts. Additionally, we discovered that this signature can affect the proportion of macrophage infiltration in TME. We also evaluated several tumor-sensitive medicines that affect this signature. Finally, we discovered that HCC tissues had lower amounts of CRHBP compared to normal tissues by the qRT-PCR and IHC assay. Conclusion We developed and validated a predictive signature of five lysosome-related genes for HCC patients and verified the downregulation of CRHBP expression in clinical samples, which may provide fresh perspectives for customized immunotherapy.
Collapse
Affiliation(s)
- Junxiu Xu
- Department of Medical Laboratory, Zhengzhou University Fifth Affiliated Hospital, Zhengzhou, People’s Republic of China
| | - Kai Zhang
- Department of Medical Laboratory, Zhengzhou University Third Affiliated Hospital, Zhengzhou, People’s Republic of China
| | - Genhao Zhang
- Department of Blood Transfusion, Zhengzhou University First Affiliated Hospital, Zhengzhou, People’s Republic of China
- Correspondence: Genhao Zhang, Zhengzhou University First Affiliated Hospital, Jianshe Road 1#, Zhengzhou, 450052, People’s Republic of China, Email
| |
Collapse
|
86
|
Chen Y, Lu Y, Huang C, Wu J, Shao Y, Wang Z, Zhang H, Fu Z. Subtypes analysis and prognostic model construction based on lysosome-related genes in colon adenocarcinoma. Front Genet 2023; 14:1149995. [PMID: 37168510 PMCID: PMC10166181 DOI: 10.3389/fgene.2023.1149995] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 04/12/2023] [Indexed: 05/13/2023] Open
Abstract
Background: Lysosomes are essential for the development and recurrence of cancer. The relationship between a single lysosome-related gene and cancer has previously been studied, but the relationship between the lysosome-related genes (LRGs) and colon adenocarcinoma (COAD) remains unknown. This research examined the role of lysosome-related genes in colon adenocarcinoma. Methods: 28 lysosome-related genes associated with prognosis (PLRGs) were found by fusing the gene set that is differently expressed between tumor and non-tumor in colon adenocarcinoma with the gene set that is related to lysosomes. Using consensus unsupervised clustering of PLRGs, the colon adenocarcinoma cohort was divided into two subtypes. Prognostic and tumor microenvironment (TME) comparisons between the two subtypes were then made. The PLRGs_score was constructed using the least absolute shrinkage and selection operator regression (LASSO) method to quantify each patient's prognosis and provide advice for treatment. Lastly, Western Blot and immunohistochemistry (IHC) were used to identify MOGS expression at the protein level in colon adenocarcinoma tissues. Results: PLRGs had more somatic mutations and changes in genetic level, and the outcomes of the two subtypes differed significantly in terms of prognosis, tumor microenvironment, and enrichment pathways. Then, PLRGs_score was established based on two clusters of differential genes in the cancer genome atlas (TCGA) database, and external verification was performed using the gene expression omnibus (GEO) database. Then, we developed a highly accurate nomogram to enhance the clinical applicability of the PLRGs_score. Finally, a higher PLRGs_score was associated with a poorer overall survival (OS), a lower tumor mutation burden (TMB), a lower cancer stem cell (CSC) index, more microsatellite stability (MSS), and a higher clinical stage. MOGS was substantially elevated at the protein level in colon adenocarcinoma as additional confirmation. Conclusion: Overall, based on PLRGs, we identified two subtypes that varied significantly in terms of prognosis and tumor microenvironment. Then, in order to forecast patient prognosis and make treatment suggestions, we developed a diagnostic model with major significance for prognosis, clinical relevance, and immunotherapy. Moreover, we were the first to demonstrate that MOGS is highly expressed in colon adenocarcinoma.
Collapse
Affiliation(s)
- Yang Chen
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
- The First College of Clinical Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yunfei Lu
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
- The First College of Clinical Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Changzhi Huang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
- The First College of Clinical Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jingyu Wu
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
- The First College of Clinical Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yu Shao
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
- The First College of Clinical Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Zhenling Wang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
- The First College of Clinical Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Hongqiang Zhang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
- The First College of Clinical Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Zan Fu
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
- The First College of Clinical Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
- *Correspondence: Zan Fu,
| |
Collapse
|
87
|
Shen J, Zhao C, Zhang H, Zhou P, Li Z. Classification of tuberculosis-related programmed cell death-related patient subgroups and associated immune cell profiling. Front Immunol 2023; 14:1159713. [PMID: 37205113 PMCID: PMC10185908 DOI: 10.3389/fimmu.2023.1159713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 04/12/2023] [Indexed: 05/21/2023] Open
Abstract
Background Tuberculosis (TB) is the deadliest communicable disease in the world with the exception of the ongoing COVID-19 pandemic. Programmed cell death (PCD) patterns play key roles in the development and progression of many disease states such that they may offer value as effective biomarkers or therapeutic targets that can aid in identifying and treating TB patients. Materials and methods The Gene Expression Omnibus (GEO) was used to gather TB-related datasets after which immune cell profiles in these data were analyzed to examine the potential TB-related loss of immune homeostasis. Profiling of differentially expressed PCD-related genes was performed, after which candidate hub PCD-associated genes were selected via a machine learning approach. TB patients were then stratified into two subsets based on the expression of PCD-related genes via consensus clustering. The potential roles of these PCD-associated genes in other TB-related diseases were further examined. Results In total, 14 PCD-related differentially expressed genes (DEGs) were identified and highly expressed in TB patient samples and significantly correlated with the abundance of many immune cell types. Machine learning algorithms enabled the selection of seven hub PCD-related genes that were used to establish PCD-associated patient subgroups, followed by the validation of these subgroups in independent datasets. These findings, together with GSVA results, indicated that immune-related pathways were significantly enriched in TB patients exhibiting high levels of PCD-related gene expression, whereas metabolic pathways were significantly enriched in the other patient group. Single cell RNA-seq (scRNA-seq) further highlighted significant differences in the immune status of these different TB patient samples. Furthermore, we used CMap to predict five potential drugs for TB-related diseases. Conclusion These results highlight clear enrichment of PCD-related gene expression in TB patients and suggest that this PCD activity is closely associated with immune cell abundance. This thus indicates that PCD may play a role in TB progression through the induction or dysregulation of an immune response. These findings provide a foundation for further research aimed at clarifying the molecular drivers of TB, the selection of appropriate diagnostic biomarkers, and the design of novel therapeutic interventions aimed at treating this deadly infectious disease.
Collapse
Affiliation(s)
- Jie Shen
- School of Medical Laboratory, Weifang Medical University, Weifang, China
| | - Chao Zhao
- Office of Academic Affairs, Weifang Medical University, Weifang, China
| | - Hong Zhang
- School of Public Health, Weifang Medical University, Weifang, China
| | - Peipei Zhou
- School of Medical Laboratory, Weifang Medical University, Weifang, China
| | - Zhenpeng Li
- School of Medical Laboratory, Weifang Medical University, Weifang, China
- *Correspondence: Zhenpeng Li,
| |
Collapse
|
88
|
Yamashita G, Takano N, Kazama H, Tsukahara K, Miyazawa K. p53 regulates lysosomal membrane permeabilization as well as cytoprotective autophagy in response to DNA-damaging drugs. Cell Death Dis 2022; 8:502. [PMID: 36581628 PMCID: PMC9800408 DOI: 10.1038/s41420-022-01293-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/21/2022] [Accepted: 12/22/2022] [Indexed: 12/31/2022]
Abstract
Lysosomes are single-membraned organelles that mediate the intracellular degradation of macromolecules. Various stress can induce lysosomal membrane permeabilization (LMP), translocating intralysosomal components, such as cathepsins, to the cytoplasm, which induces lysosomal-dependent cell death (LDCD). This study reports that p53 regulates LMP in response to DNA-damaging drugs. Treating wild-type TP53 A549 cells with DNA-damaging drugs (namely, doxorubicin, carboplatin, and etoposide) induced LMP and accelerated cell death more rapidly than treating TP53-knockout (KO) A549 cells. This suggested p53-dependent LMP and LDCD induction in response to DNA damage. LMP was induced by p53-dependent BID upregulation and activation, followed by translocation of truncated BID to lysosomes. Simultaneously, autophagy for damaged lysosome elimination (lysophagy) was activated via the p53-mTOR-TEFB/TFE3 pathways in response to DNA damage. These data suggested the dichotomous nature of p53 for LMP regulation; LMP induction and repression via the p53-BID axis and p53-mTOR-TFEB/TFE3 pathway, respectively. Blocking autophagy with hydroxychloroquine or azithromycin as well as ATG5 KO enhanced LMP and LDCD induction after exposure to DNA-damaging drugs. Furthermore, lysosomal membrane stabilization using U18666A, a cholesterol transporter Niemann-Pick disease C1 (NPC1) inhibitor, suppressed LMP as well as LDCD in wild-type TP53, but not in TP53-KO, A549 cells. Thus, LMP is finely regulated by TP53 after exposure to DNA-damaging drugs.
Collapse
Affiliation(s)
- Gai Yamashita
- grid.412781.90000 0004 1775 2495Department of Otorhinolaryngology, Head and Neck Surgery, Tokyo Medical University Hospital, Shinjuku-ku, Tokyo, 160-0023 Japan
| | - Naoharu Takano
- grid.410793.80000 0001 0663 3325Department of Biochemistry, Tokyo Medical University, Shinjuku-ku, Tokyo, 160-8402 Japan
| | - Hiromi Kazama
- grid.410793.80000 0001 0663 3325Department of Biochemistry, Tokyo Medical University, Shinjuku-ku, Tokyo, 160-8402 Japan
| | - Kiyoaki Tsukahara
- grid.412781.90000 0004 1775 2495Department of Otorhinolaryngology, Head and Neck Surgery, Tokyo Medical University Hospital, Shinjuku-ku, Tokyo, 160-0023 Japan
| | - Keisuke Miyazawa
- grid.410793.80000 0001 0663 3325Department of Biochemistry, Tokyo Medical University, Shinjuku-ku, Tokyo, 160-8402 Japan
| |
Collapse
|
89
|
Stahl-Meyer K, Bilgin M, Holland LKK, Stahl-Meyer J, Kirkegaard T, Petersen NHT, Maeda K, Jäättelä M. Galactosyl- and glucosylsphingosine induce lysosomal membrane permeabilization and cell death in cancer cells. PLoS One 2022; 17:e0277058. [PMID: 36409725 PMCID: PMC9678304 DOI: 10.1371/journal.pone.0277058] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 10/18/2022] [Indexed: 11/22/2022] Open
Abstract
Isomeric lysosphingolipids, galactosylsphingosine (GalSph) and glucosylsphingosine (GlcSph), are present in only minute levels in healthy cells. Due to defects in their lysosomal hydrolysis, they accumulate at high levels and cause cytotoxicity in patients with Krabbe and Gaucher diseases, respectively. Here, we show that GalSph and GlcSph induce lysosomal membrane permeabilization, a hallmark of lysosome-dependent cell death, in human breast cancer cells (MCF7) and primary fibroblasts. Supporting lysosomal leakage as a causative event in lysosphingolipid-induced cytotoxicity, treatment of MCF7 cells with lysosome-stabilizing cholesterol prevented GalSph- and GlcSph-induced cell death almost completely. In line with this, fibroblasts from a patient with Niemann-Pick type C disease, which is caused by defective lysosomal cholesterol efflux, were significantly less sensitive to lysosphingolipid-induced lysosomal leakage and cell death. Prompted by the data showing that MCF7 cells with acquired resistance to lysosome-destabilizing cationic amphiphilic drugs (CADs) were partially resistant to the cell death induced by GalSph and GlcSph, we compared these cell death pathways with each other. Like CADs, GalSph and GlcSph activated the cyclic AMP (cAMP) signalling pathway, and cAMP-inducing forskolin sensitized cells to cell death induced by low concentrations of lysosphingolipids. Contrary to CADs, lysosphingolipid-induced cell death was independent of lysosomal Ca2+ efflux through P2X purinerigic receptor 4. These data reveal GalSph and GlcSph as lysosome-destabilizing lipids, whose putative use in cancer therapy should be further investigated. Furthermore, the data supports the development of lysosome stabilizing drugs for the treatment of Krabbe and Gaucher diseases and possibly other sphingolipidoses.
Collapse
Affiliation(s)
- Kamilla Stahl-Meyer
- Cell Death and Metabolism, Center for Autophagy, Recycling and Disease, Danish Cancer Society Research Center, Copenhagen, Denmark
- Orphazyme A/S, Copenhagen, Denmark
| | - Mesut Bilgin
- Cell Death and Metabolism, Center for Autophagy, Recycling and Disease, Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Lya K. K. Holland
- Cell Death and Metabolism, Center for Autophagy, Recycling and Disease, Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Jonathan Stahl-Meyer
- Cell Death and Metabolism, Center for Autophagy, Recycling and Disease, Danish Cancer Society Research Center, Copenhagen, Denmark
| | | | | | - Kenji Maeda
- Cell Death and Metabolism, Center for Autophagy, Recycling and Disease, Danish Cancer Society Research Center, Copenhagen, Denmark
- * E-mail: (MJ); (KM)
| | - Marja Jäättelä
- Cell Death and Metabolism, Center for Autophagy, Recycling and Disease, Danish Cancer Society Research Center, Copenhagen, Denmark
- Department of Cellular and molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
- * E-mail: (MJ); (KM)
| |
Collapse
|
90
|
Yang J, Griffin A, Qiang Z, Ren J. Organelle-targeted therapies: a comprehensive review on system design for enabling precision oncology. Signal Transduct Target Ther 2022; 7:379. [PMID: 36402753 PMCID: PMC9675787 DOI: 10.1038/s41392-022-01243-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 10/19/2022] [Accepted: 10/25/2022] [Indexed: 11/21/2022] Open
Abstract
Cancer is a major threat to human health. Among various treatment methods, precision therapy has received significant attention since the inception, due to its ability to efficiently inhibit tumor growth, while curtailing common shortcomings from conventional cancer treatment, leading towards enhanced survival rates. Particularly, organelle-targeted strategies enable precise accumulation of therapeutic agents in organelles, locally triggering organelle-mediated cell death signals which can greatly reduce the therapeutic threshold dosage and minimize side-effects. In this review, we comprehensively discuss history and recent advances in targeted therapies on organelles, specifically including nucleus, mitochondria, lysosomes and endoplasmic reticulum, while focusing on organelle structures, organelle-mediated cell death signal pathways, and design guidelines of organelle-targeted nanomedicines based on intervention mechanisms. Furthermore, a perspective on future research and clinical opportunities and potential challenges in precision oncology is presented. Through demonstrating recent developments in organelle-targeted therapies, we believe this article can further stimulate broader interests in multidisciplinary research and technology development for enabling advanced organelle-targeted nanomedicines and their corresponding clinic translations.
Collapse
Affiliation(s)
- Jingjing Yang
- grid.24516.340000000123704535Institute of Nano and Biopolymeric Materials, School of Materials Science and Engineering, Tongji University, 201804 Shanghai, China
| | - Anthony Griffin
- grid.267193.80000 0001 2295 628XSchool of Polymer Science and Engineering, University of Southern Mississippi, Hattiesburg, MS 39406 USA
| | - Zhe Qiang
- grid.267193.80000 0001 2295 628XSchool of Polymer Science and Engineering, University of Southern Mississippi, Hattiesburg, MS 39406 USA
| | - Jie Ren
- grid.24516.340000000123704535Institute of Nano and Biopolymeric Materials, School of Materials Science and Engineering, Tongji University, 201804 Shanghai, China
| |
Collapse
|
91
|
Jo MH, Kim YT, Park SJ. Dieckol Inhibits Autophagic Flux and Induces Apoptotic Cell Death in A375 Human Melanoma Cells via Lysosomal Dysfunction and Mitochondrial Membrane Impairment. Int J Mol Sci 2022; 23:ijms232214149. [PMID: 36430634 PMCID: PMC9696613 DOI: 10.3390/ijms232214149] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/11/2022] [Accepted: 11/14/2022] [Indexed: 11/19/2022] Open
Abstract
Dieckol is a natural brown algal-derived polyphenol and its cytotoxic potential against various types of cancer cells has been studied. However, the effects of dieckol on autophagy in cancer cells remain unknown. Here, we show that dieckol inhibits the growth of A375 human melanoma cells by inducing apoptotic cell death, which is associated with lysosomal dysfunction and the inhibition of autophagic flux. Dieckol induces autophagosome accumulation by inhibiting autophagosome-lysosome fusion. Moreover, dieckol not only triggers lysosomal membrane permeabilization, followed by an increase in lysosomal pH and the inactivation of cathepsin B and D, but also causes the loss of mitochondrial membrane potential. Importantly, a cathepsin D inhibitor partially relieved dieckol-induced mitochondrial membrane impairment and caspase-mediated apoptosis. Collectively, our findings indicate that dieckol is a novel autophagy inhibitor that induces apoptosis-mediated cell death via lysosomal dysfunction and mitochondrial membrane impairment in A375 human melanoma cells. This suggests the novel potential value of dieckol as a chemotherapeutic drug candidate for melanoma treatment.
Collapse
Affiliation(s)
- Min-Hee Jo
- Department of Chemistry, Pukyong National University, Busan 48513, Republic of Korea
| | - Yong-Tae Kim
- Department of Food Science & Biotechnology, Kunsan National University, Gunsan 54150, Republic of Korea
- Correspondence: (Y.-T.K.); (S.J.P.)
| | - Sun Joo Park
- Department of Chemistry, Pukyong National University, Busan 48513, Republic of Korea
- Correspondence: (Y.-T.K.); (S.J.P.)
| |
Collapse
|
92
|
Mijanović O, Jakovleva A, Branković A, Zdravkova K, Pualic M, Belozerskaya TA, Nikitkina AI, Parodi A, Zamyatnin AA. Cathepsin K in Pathological Conditions and New Therapeutic and Diagnostic Perspectives. Int J Mol Sci 2022; 23:ijms232213762. [PMID: 36430239 PMCID: PMC9698382 DOI: 10.3390/ijms232213762] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/03/2022] [Accepted: 11/05/2022] [Indexed: 11/10/2022] Open
Abstract
Cathepsin K (CatK) is a part of the family of cysteine proteases involved in many important processes, including the degradation activity of collagen 1 and elastin in bone resorption. Changes in levels of CatK are associated with various pathological conditions, primarily related to bone and cartilage degradation, such as pycnodysostosis (associated with CatK deficiency), osteoporosis, and osteoarthritis (associated with CatK overexpression). Recently, the increased secretion of CatK is being highly correlated to vascular inflammation, hypersensitivity pneumonitis, Wegener granulomatosis, berylliosis, tuberculosis, as well as with tumor progression. Due to the wide spectrum of diseases in which CatK is involved, the design and validation of active site-specific inhibitors has been a subject of keen interest in pharmaceutical companies in recent decades. In this review, we summarized the molecular background of CatK and its involvement in various diseases, as well as its clinical significance for diagnosis and therapy.
Collapse
Affiliation(s)
- Olja Mijanović
- Dia-M, LCC, 7 b.3 Magadanskaya Str., 129345 Moscow, Russia
- The Human Pathology Department, Sechenov First Moscow State University, 119991 Moscow, Russia
| | | | - Ana Branković
- Department of Forensics Engineering, University of Criminal Investigation and Police Studies, Cara Dusana 196, 11000 Belgrade, Serbia
| | - Kristina Zdravkova
- AD Alkaloid Skopje, Boulevar Alexander the Great 12, 1000 Skopje, North Macedonia
| | - Milena Pualic
- Institute Cardiovascular Diseases Dedinje, Heroja Milana Tepica 1, 11000 Belgrade, Serbia
| | - Tatiana A. Belozerskaya
- Bach Institute of Biochemistry, Research Center of Biotechnology, Russian Academy of Sciences, 119071 Moscow, Russia
| | - Angelina I. Nikitkina
- ArhiMed Clinique for New Medical Technologies, Vavilova St. 68/2, 119261 Moscow, Russia
| | - Alessandro Parodi
- Scientific Center for Translation Medicine, Sirius University of Science and Technology, 354340 Sochi, Russia
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| | - Andrey A. Zamyatnin
- Scientific Center for Translation Medicine, Sirius University of Science and Technology, 354340 Sochi, Russia
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, 119991 Moscow, Russia
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia
- Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7X, UK
- Correspondence: ; Tel.: +7-9261180220
| |
Collapse
|
93
|
Garcia EA, Bhatti I, Henson ES, Gibson SB. Prostate Cancer Cells Are Sensitive to Lysosomotropic Agent Siramesine through Generation Reactive Oxygen Species and in Combination with Tyrosine Kinase Inhibitors. Cancers (Basel) 2022; 14:cancers14225478. [PMID: 36428570 PMCID: PMC9688505 DOI: 10.3390/cancers14225478] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/01/2022] [Accepted: 11/02/2022] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Prostate cancer is the most common cancer affecting men often resulting in aggressive tumors with poor prognosis. Even with new treatment strategies, drug resistance often occurs in advanced prostate cancers. The use of lysosomotropic agents offers a new treatment possibility since they disrupt lysosomal membranes and can trigger a series of events leading to cell death. In addition, combining lysosomotropic agents with targeted inhibitors can induce increased cell death in different cancer types, but prostate cancer cells have not been investigated. METHODS We treated prostate cancer cells with lysosomotropic agents and determine their cytotoxicity, lysosome membrane permeabilization (LMP), reactive oxygen species (ROS) levels, and mitochondrial dysfunction. In addition, we treated cells with lysosomotropic agent in combination with tyrosine kinase inhibitor, lapatinib, and determined cell death, and the role of ROS in this cell death. RESULTS Herein, we found that siramesine was the most effective lysosomotropic agent at inducing LMP, increasing ROS, and inducing cell death in three different prostate cancer cell lines. Siramesine was also effective at increasing cell death in combination with the tyrosine kinase inhibitor, lapatinib. This increase in cell death was mediated by lysosome membrane permeabilization, an increased in ROS levels, loss of mitochondrial membrane potential and increase in mitochondrial ROS levels. The combination of siramesine and lapatinib induced apoptosis, cleavage of PARP and decreased expression of Bcl-2 family member Mcl-1. Furthermore, lipid peroxidation occurred with siramesine treatment alone or in combination with lapatinib. Treating cells with the lipid peroxidation inhibitor alpha-tocopherol resulted in reduced siramesine induced cell death alone or in combination with lapatinib. The combination of siramesine and lapatinib failed to increase cell death responses in normal prostate epithelial cells. CONCLUSIONS This suggests that lysomotropic agents such as siramesine in combination with tyrosine kinase inhibitors induces cell death mediated by ROS and could be an effective treatment strategy in advanced prostate cancer.
Collapse
Affiliation(s)
- Emily A. Garcia
- Department of Biochemistry and Medical Genetics, University of Manitoba Winnipeg, Winnipeg, MB R3T 2N2, Canada
- CancerCare Manitoba Research Institute, CancerCare Manitoba, Winnipeg, MB R3E 0V9, Canada
| | - Ilsa Bhatti
- Department of Oncology, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Elizabeth S. Henson
- Department of Biochemistry and Medical Genetics, University of Manitoba Winnipeg, Winnipeg, MB R3T 2N2, Canada
- CancerCare Manitoba Research Institute, CancerCare Manitoba, Winnipeg, MB R3E 0V9, Canada
| | - Spencer B. Gibson
- Department of Biochemistry and Medical Genetics, University of Manitoba Winnipeg, Winnipeg, MB R3T 2N2, Canada
- CancerCare Manitoba Research Institute, CancerCare Manitoba, Winnipeg, MB R3E 0V9, Canada
- Department of Oncology, University of Alberta, Edmonton, AB T6G 2R3, Canada
- Spencer Gibson, Department of Oncology, University of Alberta, Edmonton, AB T6G 2R3, Canada
- Correspondence:
| |
Collapse
|
94
|
Riche K, Lenard NR. Quercetin's Effects on Glutamate Cytotoxicity. Molecules 2022; 27:7620. [PMID: 36364448 PMCID: PMC9657878 DOI: 10.3390/molecules27217620] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 11/03/2022] [Accepted: 11/04/2022] [Indexed: 08/13/2023] Open
Abstract
The potentially therapeutic effects of the naturally abundant plant flavonoid quercetin have been extensively studied. An extensive body of literature suggests that quercetin's powerful antioxidant effects may relate to its ability to treat disease. Glutamate excitotoxicity occurs when a neuron is overstimulated by the neurotransmitter glutamate and causes dysregulation of intracellular calcium concentrations. Quercetin has been shown to be preventative against many forms of neuronal cell death resulting from glutamate excitotoxicity, such as oncosis, intrinsic apoptosis, mitochondrial permeability transition, ferroptosis, phagoptosis, lysosomal cell death, parthanatos, and death by reactive oxygen species (ROS)/reactive nitrogen species (RNS) generation. The clinical importance for the attenuation of glutamate excitotoxicity arises from the need to deter the continuous formation of tissue infarction caused by various neurological diseases, such as ischemic stroke, seizures, neurodegenerative diseases, and trauma. This review aims to summarize what is known concerning glutamate physiology and glutamate excitotoxic pathophysiology and provide further insight into quercetin's potential to hinder neuronal death caused by cell death pathways activated by glutamate excitotoxicity. Quercetin's bioavailability may limit its use clinically, however. Thus, future research into ways to increase its bioavailability are warranted.
Collapse
Affiliation(s)
| | - Natalie R. Lenard
- Department of Biology, School of Arts and Sciences, Franciscan Missionaries of Our Lady University, 5414 Brittany Drive, Baton Rouge, LA 70808, USA
| |
Collapse
|
95
|
Leveraging diverse cell-death patterns to predict the prognosis and drug sensitivity of triple-negative breast cancer patients after surgery. Int J Surg 2022; 107:106936. [PMID: 36341760 DOI: 10.1016/j.ijsu.2022.106936] [Citation(s) in RCA: 162] [Impact Index Per Article: 81.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 08/08/2022] [Accepted: 09/09/2022] [Indexed: 10/14/2022]
Abstract
BACKGROUND Postoperative progression and chemotherapy resistance is the major cause of treatment failure in patients with triple-negative breast cancer (TNBC). Currently, there is a lack of an ideal predictive model for the progression and drug sensitivity of postoperative TNBC patients. Diverse programmed cell death (PCD) patterns play an important role in tumor progression, which has the potential to be a prognostic and drug sensitivity indicator for TNBC after surgery. MATERIALS AND METHODS Twelve PCD patterns (apoptosis, necroptosis, pyroptosis, ferroptosis, cuproptosis, entotic cell death, netotic cell death, parthanatos, lysosome-dependent cell death, autophagy-dependent cell death, alkaliptosis, and oxeiptosis) were analyzed for model construction. Bulk transcriptome, single-cell transcriptome, genomics, and clinical information were collected from TCGA-BRCA, METABRIC, GSE58812, GSE21653, GSE176078, GSE75688, and KM-plotter cohorts to validate the model. RESULTS The machine learning algorithm established a cell death index (CDI) with a 12-gene signature. Validated in five independent datasets, TNBC patients with high CDI had a worse prognosis after surgery. Two molecular subtypes of TNBC with distinct vital biological processes were identified by an unsupervised clustering model. A nomogram with high predictive performance was constructed by incorporating CDI with clinical features. Furthermore, CDI was associated with immune checkpoint genes and key tumor microenvironment components by integrated analysis of bulk and single-cell transcriptome. TNBC patients with high CDI are resistant to standard adjuvant chemotherapy regimens (docetaxel, oxaliplatin, etc.); however, they might be sensitive to palbociclib (an FDA-approved drug for luminal breast cancer). CONCLUSION Generally, we established a novel CDI model by comprehensively analyzing diverse cell death patterns, which can accurately predict clinical prognosis and drug sensitivity of TNBC after surgery. A user-friendly website was created to facilitate the application of this prediction model (https://tnbc.shinyapps.io/CDI_Model/).
Collapse
|
96
|
Rank L, Puhl AC, Havener TM, Anderson E, Foil DH, Zorn KM, Monakhova N, Riabova O, Hickey AJ, Makarov V, Ekins S. Multiple approaches to repurposing drugs for neuroblastoma. Bioorg Med Chem 2022; 73:117043. [PMID: 36208544 PMCID: PMC9870653 DOI: 10.1016/j.bmc.2022.117043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/27/2022] [Accepted: 09/28/2022] [Indexed: 01/26/2023]
Abstract
Neuroblastoma (NB) is the second leading extracranial solid tumor of early childhood with about two-thirds of cases presenting before the age of 5, and accounts for roughly 15 percent of all pediatric cancer fatalities in the United States. Treatments against NB are lacking, resulting in a low survival rate in high-risk patients. A repurposing approach using already approved or clinical stage compounds can be used for diseases for which the patient population is small, and the commercial market limited. We have used Bayesian machine learning, in vitro cell assays, and combination analysis to identify molecules with potential use for NB. We demonstrated that pyronaridine (SH-SY5Y IC50 1.70 µM, SK-N-AS IC50 3.45 µM), BAY 11-7082 (SH-SY5Y IC50 0.85 µM, SK-N-AS IC50 1.23 µM), niclosamide (SH-SY5Y IC50 0.87 µM, SK-N-AS IC50 2.33 µM) and fingolimod (SH-SY5Y IC50 4.71 µM, SK-N-AS IC50 6.11 µM) showed cytotoxicity against NB. As several of the molecules are approved drugs in the US or elsewhere, they may be repurposed more readily for NB treatment. Pyronaridine was also tested in combinations in SH-SY5Y cells and demonstrated an antagonistic effect with either etoposide or crizotinib. Whereas when crizotinib and etoposide were combined with each other they had a synergistic effect in these cells. We have also described several analogs of pyronaridine to explore the structure-activity relationship against cell lines. We describe multiple molecules demonstrating cytotoxicity against NB and the further evaluation of these molecules and combinations using other NB cells lines and in vivo models will be important in the future to assess translational potential.
Collapse
Affiliation(s)
- Laura Rank
- Collaborations Pharmaceuticals, Inc, 840 Main Campus Drive, Lab 3510, Raleigh, NC, USA
| | - Ana C Puhl
- Collaborations Pharmaceuticals, Inc, 840 Main Campus Drive, Lab 3510, Raleigh, NC, USA.
| | - Tammy M Havener
- UNC Catalyst for Rare Diseases, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, North Carolina, USA
| | - Edward Anderson
- UNC Catalyst for Rare Diseases, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, North Carolina, USA
| | - Daniel H Foil
- Collaborations Pharmaceuticals, Inc, 840 Main Campus Drive, Lab 3510, Raleigh, NC, USA
| | - Kimberley M Zorn
- Collaborations Pharmaceuticals, Inc, 840 Main Campus Drive, Lab 3510, Raleigh, NC, USA
| | | | - Olga Riabova
- Research Center of Biotechnology RAS, 119071 Moscow, Russia
| | - Anthony J Hickey
- Research Center of Biotechnology RAS, 119071 Moscow, Russia; RTI International, Research Triangle Park, NC, USA
| | - Vadim Makarov
- Research Center of Biotechnology RAS, 119071 Moscow, Russia
| | - Sean Ekins
- Collaborations Pharmaceuticals, Inc, 840 Main Campus Drive, Lab 3510, Raleigh, NC, USA.
| |
Collapse
|
97
|
Zamyatnin AA, Gregory LC, Townsend PA, Soond SM. Beyond basic research: the contribution of cathepsin B to cancer development, diagnosis and therapy. Expert Opin Ther Targets 2022; 26:963-977. [PMID: 36562407 DOI: 10.1080/14728222.2022.2161888] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
INTRODUCTION In view of other candidate proteins from the cathepsin family of proteases holding great potential in being targeted during cancer therapy, the importance of Cathepsin B (CtsB) stands out as being truly exceptional. Based on its contribution to oncogenesis, its intimate connection with regulating apoptosis and modulating extracellular and intracellular functions through its secretion or compartmentalized subcellular localization, collectively highlight its complex molecular involvement with a myriad of normal and pathological regulatory processes. Despite its complex functional nature, CtsB is emerging as one of the few cathepsin proteases that has been extensively researched to yield tangible outcomes for cancer therapy. AREAS COVERED In this article, we review the scientific literature that has justified or shaped the importance of CtsB expression in cancer progression, from the perspective of highlighting a paradigm that is rapidly changing from basic research toward a broader clinical and translational context. EXPERT OPINION In doing so, we detail its maturation as a diagnostic marker through describing the development of CtsB-specific Activity-Based Probes, the rapid evolution of these toward a new generation of Prodrugs, and the evaluation of these in model systems for their therapeutic potential as anti-cancer agents in the clinic.
Collapse
Affiliation(s)
- Andrey A Zamyatnin
- School of Biosciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK.,Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Moscow, Russian Federation.,Department of Biotechnology, Sirius University of Science and Technology, Sochi, Russia.,Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Levy C Gregory
- School of Biosciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK
| | - Paul A Townsend
- School of Biosciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK.,Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Moscow, Russian Federation
| | - Surinder M Soond
- School of Biosciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK.,Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Moscow, Russian Federation
| |
Collapse
|
98
|
Polanco JC, Götz J. Exosomal and vesicle-free tau seeds-propagation and convergence in endolysosomal permeabilization. FEBS J 2022; 289:6891-6907. [PMID: 34092031 DOI: 10.1111/febs.16055] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 05/19/2021] [Accepted: 06/04/2021] [Indexed: 01/13/2023]
Abstract
In Alzheimer's disease (AD), β-amyloid peptides aggregate to form amyloid plaques, and the microtubule-associated protein tau forms neurofibrillary tangles. However, severity and duration of AD correlate with the stereotypical emergence of tau tangles throughout the brain, suggestive of a gradual region-to-region spreading of pathological tau. The current notion in the field is that misfolded tau seeds propagate transsynaptically and corrupt the proper folding of soluble tau in recipient neurons. This is supported by accumulating evidence showing that in AD, functional connectivity and not proximity predicts the spreading of tau pathology. Tau seeds can be found in two flavors, vesicle-free, that is, naked as in oligomers and fibrils, or encapsulated by membranes of secreted vesicles known as exosomes. Both types of seeds have been shown to propagate between interconnected neurons. Here, we describe potential ways of how their propagation can be controlled in several subcellular compartments by manipulating mechanisms affecting production, neuron-to-neuron transmission, internalization, endosomal escape, and autophagy. We emphasize that although vesicle-free tau seeds and exosomes differ, they share the ability to trigger endolysosomal permeabilization. Such a mechanistic convergence in endolysosomal permeabilization presents itself as a unique opportunity to target both types of tau seeding. We discuss the cellular response to endolysosomal damage that might be key to control permeabilization, and the significant overlap in the seeding mechanism of proteopathic agents other than tau, which suggests that targeting the endolysosomal pathway could pave the way toward developing broad-spectrum treatments for neurodegenerative diseases.
Collapse
Affiliation(s)
- Juan Carlos Polanco
- Clem Jones Centre for Ageing Dementia Research (CJCADR), Queensland Brain Institute (QBI), The University of Queensland, Brisbane, QLD, Australia
| | - Jürgen Götz
- Clem Jones Centre for Ageing Dementia Research (CJCADR), Queensland Brain Institute (QBI), The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
99
|
Zhang H, Li X, You P, Song X, Fan Q, Tao X, Qu Y. Highly tumoricidal efficiency of non-oxidized MXene-Ti3C2Tx quantum dots on human uveal melanoma. Front Bioeng Biotechnol 2022; 10:1028470. [PMID: 36277391 PMCID: PMC9582440 DOI: 10.3389/fbioe.2022.1028470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 09/26/2022] [Indexed: 12/02/2022] Open
Abstract
Uveal melanoma (UM) is a highly malignant intraocular tumor with poor prognosis. Current topical ophthalmic therapies purpose to conserve the eye and useful vision. Due to the risks and limited clinical benefits, the topical treatments of UM remain challenging and complex. In this study, newly developed non-oxidized MXene-Ti3C2Tx quantum dots (NMQDs-Ti3C2Tx) are proposed for UM treatment. Surprisingly, NMQDs-Ti3C2Tx shows significant tumor-killing effects on UM cells in a dose-dependent manner and causes severe necrosis near the injection site on the xenograft UM tumor model. Moreover, NMQDs-Ti3C2Tx exhibits excellent biocompatibility with normal retina pigment epithelium (RPE) cells and does not cause any damage in C57BL/6 mice eyes. Mechanistically, NMQDs-Ti3C2Tx inhibits the proliferation, invasion, and migration of UM cells via its desirable reactive oxygen species (ROS) generation ability, which causes lipid peroxidation and mitophagy, triggering cell ferroptosis. Furthermore, NMQDs-Ti3C2Tx is detected accumulating in autolysosomes which exacerbates cell death. This work provides new light on the topical treatment of UM.
Collapse
Affiliation(s)
- Huankai Zhang
- Department of Ophthalmology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China
| | - Xuesong Li
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, China
| | - Pan You
- Department of Cell Biology, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Xian Song
- Department of Ophthalmology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China
| | - Qian Fan
- Department of Ophthalmology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China
| | - Xutang Tao
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, China
| | - Yi Qu
- Department of Ophthalmology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China
- *Correspondence: Yi Qu,
| |
Collapse
|
100
|
Megha KB, Swathi S, Joseph X, Vandana U, Mohanan PV. Cytocompatibility of Pluronics F-127 on adenocarcinomic human alveolar basal epithelial cells (A549 cells). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:71124-71135. [PMID: 35595887 DOI: 10.1007/s11356-022-20925-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 05/13/2022] [Indexed: 06/15/2023]
Abstract
Pluronics, due to its high water-soluble and thermoreversible ability, attracted much in biomedical applications. They are mainly utilized in drug delivery, gene therapy, and tissue remodeling. The study aims to explore the cytocompatibility of Pluronics F-127, which has gained much popularity due to its various properties. The cells were exposed to varying concentrations of Pluronics F-127 in A549 cells for 24 h. According to the MTT and neutral red assay, A549 cells displayed dose-dependent cell viability. The cell's morphology was preserved after treatment, as seen in phase-contrast and Giemsa staining. When exposed to PF-127, lysosomal, cytoskeletal, and nuclear integrity were maintained. The percentage of live cells in all the treated groups was more significant than 90%, according to the live/dead flow cytometric analyses. The study identified the cytocompatibility of Pluronics F-127 required for the breakthrough in biomedical applications.
Collapse
Affiliation(s)
- Kizhakkepurakkal Balachandran Megha
- Toxicology Divison, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology (Govt. of India), Poojapura, Trivandrum, 695 012, Kerala, India
| | - Sundaresan Swathi
- Toxicology Divison, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology (Govt. of India), Poojapura, Trivandrum, 695 012, Kerala, India
| | - Xavier Joseph
- Toxicology Divison, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology (Govt. of India), Poojapura, Trivandrum, 695 012, Kerala, India
| | - Unnikrishnan Vandana
- Toxicology Divison, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology (Govt. of India), Poojapura, Trivandrum, 695 012, Kerala, India
| | - Parayanthala Valappil Mohanan
- Toxicology Divison, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology (Govt. of India), Poojapura, Trivandrum, 695 012, Kerala, India.
| |
Collapse
|