51
|
|
52
|
Ramnanan CJ, McMullen DC, Bielecki A, Storey KB. Regulation of sarcoendoplasmic reticulum Ca2+-ATPase (SERCA) in turtle muscle and liver during acute exposure to anoxia. J Exp Biol 2010; 213:17-25. [DOI: 10.1242/jeb.036087] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
SUMMARY
The freshwater turtle Trachemys scripta elegans naturally tolerates extended periods of anoxia during winter hibernation at the bottom of ice-locked ponds. Survival in this anoxic state is facilitated by a profound depression of metabolic rate. As calcium levels are known to be elevated in anoxic turtles, and ion pumping is an ATP-expensive process, we proposed that activity of the sarcoendoplasmic reticulum Ca2+-ATPase (SERCA) would be reduced in muscle and liver of T. s. elegans during acute (up to 20 h) exposure to anoxia. SERCA activity decreased ∼30% in liver and ∼40% in muscle after 1 h anoxia exposure and was ∼50% lower after 20 h of anoxia exposure in both tissues, even though SERCA protein levels did not change. SERCA kinetic parameters (increased substrate Km values, increased Arrhenius activation energy) were indicative of a less active enzyme form under anoxic conditions. Interestingly, the less active SERCA in anoxic turtles featured greater stability than the enzyme from normoxic animals as determined by both kinetic analysis (effect of low pH and low temperatures on Km MgATP) and conformational resistance to urea denaturation. The quick time course of deactivation and the stable changes in kinetic parameters that resulted suggested that SERCA was regulated by a post-translational mechanism. In vitro experiments indicated that SERCA activity could be blunted by protein phosphorylation and enhanced by dephosphorylation in a tissue-specific manner.
Collapse
Affiliation(s)
- C. J. Ramnanan
- Vanderbilt University School of Medicine, Department of Molecular Physiology, 710 Robinson Research Building, 2200 Pierce Avenue, Nashville, TN 37232, USA
| | - D. C. McMullen
- Stroke Branch, National Institute of Neurological Disorder and Stroke, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20892, USA
| | - A. Bielecki
- Institute of Biochemistry and Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario, Canada, K1S 5B6
| | - K. B. Storey
- Institute of Biochemistry and Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario, Canada, K1S 5B6
| |
Collapse
|
53
|
Cramp RL, Kayes SM, Meyer EA, Franklin CE. Ups and downs of intestinal function with prolonged fasting during aestivation in the burrowing frog, Cyclorana alboguttata. J Exp Biol 2009; 212:3656-63. [DOI: 10.1242/jeb.027748] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
SUMMARY
Although green striped burrowing frogs (Cyclorana alboguttata)experience large reductions in the mass and absorptive surface area of the small intestine (SI) during aestivation, little is known about how this may affect the functional capacity of the SI. We examined changes in the function(l-proline uptake rate and capacity) and metabolism of the SI(in vitro oxygen consumption, Na+/K+-ATPase activity and abundance) of C. alboguttata following 6 months of aestivation. l-Proline uptake rate was significantly higher in aestivating frogs, but overall uptake capacity was lower than in active frogs. Total SI oxygen consumption rate (VO2) was also lower in aestivating frogs, despite no difference in mass-specific V̇O2. The proportion of intestinal V̇O2 associated with Na+/K+-ATPase activity and protein synthesis was equivalent between active and aestivating frogs, suggesting these processes were unaffected by aestivation. Indeed, the activity of Na+/K+-ATPase transporters in the SI of aestivating frogs was not different from that of active animals. Aestivating frogs maintained Na+/K+-ATPase activity, despite experiencing a reduction in the density of Na+/K+-ATPase transporters, by increasing the molecular activity of the remaining pumps to 2–3 times that of active frogs. These results show that functionality of the SI is maintained at the cellular level, potentially facilitating the reclamation of nutrients from the intestinal lumen while in aestivation. Despite this, the functional capacity of the SI in aestivating C. alboguttata is significantly reduced due to a reduction in tissue mass,helping frogs to conserve energy while in aestivation.
Collapse
Affiliation(s)
- Rebecca L. Cramp
- School of Biological Sciences, The University of Queensland, St Lucia,Queensland, 4072 Australia
| | - Sara M. Kayes
- School of Biological Sciences, The University of Queensland, St Lucia,Queensland, 4072 Australia
| | - Edward A. Meyer
- School of Biological Sciences, The University of Queensland, St Lucia,Queensland, 4072 Australia
| | - Craig E. Franklin
- School of Biological Sciences, The University of Queensland, St Lucia,Queensland, 4072 Australia
| |
Collapse
|
54
|
Winnick JJ, An Z, Moore MC, Ramnanan CJ, Farmer B, Shiota M, Cherrington AD. A physiological increase in the hepatic glycogen level does not affect the response of net hepatic glucose uptake to insulin. Am J Physiol Endocrinol Metab 2009; 297:E358-66. [PMID: 19470836 PMCID: PMC2724107 DOI: 10.1152/ajpendo.00043.2009] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
To determine the effect of an acute increase in hepatic glycogen on net hepatic glucose uptake (NHGU) and disposition in response to insulin in vivo, studies were performed on two groups of dogs fasted 18 h. During the first 4 h of the study, somatostatin was infused peripherally, while insulin and glucagon were replaced intraportally in basal amounts. Hyperglycemia was brought about by glucose infusion, and either saline (n = 7) or fructose (n = 7; to stimulate NHGU and glycogen deposition) was infused intraportally. A 2-h control period then followed, during which the portal fructose and saline infusions were stopped, allowing NHGU and glycogen deposition in the fructose-infused animals to return to rates similar to those of the animals that received the saline infusion. This was followed by a 2-h experimental period, during which hyperglycemia was continued but insulin infusion was increased fourfold in both groups. During the initial 4-h glycogen loading period, NHGU averaged 1.18 +/- 0.27 and 5.55 +/- 0.53 mg x kg(-1) x min(-1) and glycogen synthesis averaged 0.72 +/- 0.24 and 3.98 +/- 0.57 mg x kg(-1) x min(-1) in the saline and fructose groups, respectively (P < 0.05). During the 2-h hyperinsulinemic period, NHGU rose from 1.5 +/- 0.4 and 0.9 +/- 0.2 to 3.1 +/- 0.6 and 2.5 +/- 0.5 mg x kg(-1) x min(-1) in the saline and fructose groups, respectively, a change of 1.6 mg x kg(-1) x min(-1) in both groups despite a significantly greater liver glycogen level in the fructose-infused group. Likewise, the metabolic fate of the extracted glucose (glycogen, lactate, or carbon dioxide) was not different between groups. These data indicate that an acute physiological increase in the hepatic glycogen content does not alter liver glucose uptake and storage under hyperglycemic/hyperinsulinemic conditions in the dog.
Collapse
Affiliation(s)
- Jason J Winnick
- Department of Molecular Physiology and Biophysics, Vanderbilt University Medical Center, Nashville, Tennessee 37232-6015, USA.
| | | | | | | | | | | | | |
Collapse
|
55
|
EGG MARGIT, HÖCKNER MARTINA, BRANDSTÄTTER ANITA, SCHULER DIETMAR, DALLINGER REINHARD. Structural and bioinformatic analysis of the Roman snail Cd-Metallothionein gene uncovers molecular adaptation towards plasticity in coping with multifarious environmental stress. Mol Ecol 2009; 18:2426-43. [DOI: 10.1111/j.1365-294x.2009.04191.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
56
|
Regulation of global protein translation and protein degradation in aerobic dormancy. Mol Cell Biochem 2008; 323:9-20. [DOI: 10.1007/s11010-008-9959-2] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2008] [Accepted: 10/28/2008] [Indexed: 11/26/2022]
|
57
|
Äänismaa P, Gatlik-Landwojtowicz E, Seelig A. P-Glycoprotein Senses Its Substrates and the Lateral Membrane Packing Density: Consequences for the Catalytic Cycle. Biochemistry 2008; 47:10197-207. [DOI: 10.1021/bi800209h] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Päivi Äänismaa
- Biophysical Chemistry, Biozentrum, University of Basel, Klingelbergstrasse 70, Basel CH-4056, Switzerland
| | - Ewa Gatlik-Landwojtowicz
- Biophysical Chemistry, Biozentrum, University of Basel, Klingelbergstrasse 70, Basel CH-4056, Switzerland
| | - Anna Seelig
- Biophysical Chemistry, Biozentrum, University of Basel, Klingelbergstrasse 70, Basel CH-4056, Switzerland
| |
Collapse
|
58
|
McMullen DC, Storey KB. Suppression of Na+K+ -ATPase activity by reversible phosphorylation over the winter in a freeze-tolerant insect. JOURNAL OF INSECT PHYSIOLOGY 2008; 54:1023-1027. [PMID: 18501921 DOI: 10.1016/j.jinsphys.2008.04.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2008] [Revised: 04/01/2008] [Accepted: 04/02/2008] [Indexed: 05/26/2023]
Abstract
Larvae of the gall fly, Eurosta solidaginis, use the cold hardiness strategy of freeze tolerance as well as entry into a hypometabolic state (diapause) to survive the winter. Cold hardiness strategies have been extensively explored in this species, but the metabolic features of winter hypometabolism have received little attention. A primary consumer of energy in cells is the ATP-dependent sodium-potassium ion pump (Na(+)K(+)-ATPase) so inhibitory controls over transmembrane ion movements could contribute substantially to energy savings over the winter months. Na(+)K(+)-ATPase activity was quantified in larvae sampled between October and April. Activity was high in October (0.56+/-0.13nmol/min/mg) but fell by 85% in November, remained low through midwinter, and then increased strongly in April. To determine whether the seasonal change in Na(+)K(+)-ATPase activity was linked with posttranslational modification of the enzyme, extracts from 15 degrees C-acclimated larvae were incubated under conditions that stimulated protein kinases A, G, or C. The action of all three kinases suppressed Na(+)K(+)-ATPase activity to levels just 3-8% of control values whereas the opposite treatment with alkaline phosphatase had no effect. Hence, the seasonal suppression of Na(+)K(+)-ATPase activity may be linked to enzyme phosphorylation. Furthermore, acute cold (3 degrees C) or hypoxia exposures of 15 degrees C-acclimated larvae did not alter enzyme activity, and freezing at -16 degrees C increased activity, so environmental factors do not appear to directly influence enzyme activity. Rather, it appears that winter suppression of ion motive ATPase activity may be part of a program of winter metabolic suppression.
Collapse
Affiliation(s)
- David C McMullen
- Department of Chemistry, Institute of Biochemistry, Carleton University, 1125 Colonel By Drive, Ottawa, Ont., Canada K1S 5B6. mcmulled@
| | | |
Collapse
|
59
|
Storey KB, Storey JM. Tribute to P. L. Lutz: putting life on 'pause'--molecular regulation of hypometabolism. ACTA ACUST UNITED AC 2008; 210:1700-14. [PMID: 17488933 DOI: 10.1242/jeb.02716] [Citation(s) in RCA: 169] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Entry into a hypometabolic state is an important survival strategy for many organisms when challenged by environmental stress, including low oxygen, cold temperatures and lack of food or water. The molecular mechanisms that regulate transitions to and from hypometabolic states, and stabilize long-term viability during dormancy, are proving to be highly conserved across phylogenic lines. A number of these mechanisms were identified and explored using anoxia-tolerant turtles as the model system, particularly from the research contributions made by Dr Peter L. Lutz in his explorations of the mechanisms of neuronal suppression in anoxic brain. Here we review some recent advances in understanding the biochemical mechanisms of metabolic arrest with a focus on ideas such as the strategies used to reorganize metabolic priorities for ATP expenditure, molecular controls that suppress cell functions (e.g. ion pumping, transcription, translation, cell cycle arrest), changes in gene expression that support hypometabolism, and enhancement of defense mechanisms (e.g. antioxidants, chaperone proteins, protease inhibitors) that stabilize macromolecules and promote long-term viability in the hypometabolic state.
Collapse
Affiliation(s)
- Kenneth B Storey
- Institute of Biochemistry, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario, K1S 5B6, Canada.
| | | |
Collapse
|
60
|
Ramnanan CJ, Groom AG, Storey KB. Akt and its downstream targets play key roles in mediating dormancy in land snails. Comp Biochem Physiol B Biochem Mol Biol 2007; 148:245-55. [PMID: 17611133 DOI: 10.1016/j.cbpb.2007.06.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2007] [Revised: 06/04/2007] [Accepted: 06/05/2007] [Indexed: 02/01/2023]
Abstract
Estivation, a state of aerobic dormancy, facilitates survival during adverse environmental conditions and is characterized at the molecular level by regulatory protein phosphorylation. The Akt (protein kinase B) signaling pathway regulates diverse responses in cells and the present study analyzes its role in the estivating desert snail Otala lactea. Kinetic analysis (maximal velocity, substrate affinities) determined that Akt was activated in tissues of estivating snails and Western blotting and in vitro incubations promoting changes to Akt phosphorylation state both confirmed that higher amounts of active (phosphorylated Ser473) Akt were present during estivation. Akt protein stability was also enhanced during estivation as assessed from urea denaturation studies. Multiple downstream targets of Akt were differentially regulated during estivation. Estivating animals showed elevated levels of phosphorylated FOXO3a (Ser253) and BAD (Ser136), no change in mTOR (Ser2481 and Ser2448), and reduced amounts of phosphorylated glycogen synthase kinase-3 (GSK-3) beta subunit (Ser9). Kinetic analysis of GSK-3 showed 1.5-1.7 fold higher activities in estivating snails coupled with increased GSK-3 substrate affinities in hepatopancreas. The data suggest an active role for Akt signaling during estivation emphasizing anti-apoptotic actions but uncoupling growth/proliferation actions to help achieve life extension on a limited energy budget.
Collapse
Affiliation(s)
- Christopher J Ramnanan
- Vanderbilt University School of Medicine, Department of Molecular Physiology, 710 Robinson Research Building, 2200 Pierce Avenue, Nashville, TN 37232, USA.
| | | | | |
Collapse
|
61
|
Ramnanan CJ, Storey KB. The regulation of thapsigargin-sensitive sarcoendoplasmic reticulum Ca2+-ATPase activity in estivation. J Comp Physiol B 2007; 178:33-45. [PMID: 17690892 DOI: 10.1007/s00360-007-0197-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2007] [Revised: 07/17/2007] [Accepted: 07/26/2007] [Indexed: 10/23/2022]
Abstract
Estivation (aerobic dormancy) is characterized by sustained metabolic rate depression, which is crucial to survival in the face of unfavorable environmental conditions and enables the preservation of endogenous fuel reserves. Ion pumping is one of the most energetically taxing physiological processes in cells, and ion motive ATPases are likely loci to be differentially regulated in models of metabolic arrest. We proposed that the sarcoendoplasmic reticulum (SER) calcium-ATPase (SERCA) would be deactivated in the estivating desert snail Otala lactea, potentially contributing to the overall suppression of metabolism. SERCA kinetic parameters [decreased maximal velocities, increased substrate K (m) values, increased Arrhenius activation energy (E (a))] were indicative of a less active enzyme in the estivated state. Interestingly, the less active SERCA population in dormant snails featured greater kinetic (K (m) Mg.ATP versus temperature) and conformational (resistance to urea denaturation) stability than that in active snails. Western blotting confirmed that SERCA protein content did not change during estivation. In light of this observation, we proposed that estivation-dependent changes in SERCA activity was due to changes in SERCA phosphorylation state. In vitro studies promoting specific kinase or phosphatase action indicated that decreased SERCA activity in estivation was linked with endogenous kinase activity whereas reactivation of SERCA was facilitated by endogenous protein phosphatases (PP).
Collapse
Affiliation(s)
- Christopher J Ramnanan
- Department of Molecular Physiology, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA.
| | | |
Collapse
|
62
|
Storey KB. Anoxia tolerance in turtles: Metabolic regulation and gene expression. Comp Biochem Physiol A Mol Integr Physiol 2007; 147:263-76. [PMID: 17035057 DOI: 10.1016/j.cbpa.2006.03.019] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2005] [Revised: 03/14/2006] [Accepted: 03/24/2006] [Indexed: 01/08/2023]
Abstract
Freshwater turtles of the Trachemys and Chrysemys genera are champion facultative anaerobes able to survive for several months without oxygen during winter hibernation in cold water. They have been widely used as models to identify and understand the molecular mechanisms of natural anoxia tolerance and the molecular basis of the hypoxic/ischemic injuries that occur in oxygen-sensitive systems and underlie medical problems such as heart attack and stroke. Peter L. Lutz spent much of his career investigating turtle anaerobiosis with a particular focus on the mechanisms of brain ion homeostasis and neurotransmitter responses to anoxia exposure and the mechanisms that suppress brain ion channel function and neuronal excitability during anaerobiosis. Our interests intersected over the mechanisms of metabolic rate depression which is key to long term anoxia survival. Studies in my lab have shown that a key mechanism of metabolic arrest is reversible protein phosphorylation which provides coordinated suppression of the rates of multiple ATP-producing, ATP-utilizing and related cellular processes to allow organisms to enter a stable hypometabolic state. Anoxia tolerance is also supported by selective gene expression as revealed by recent studies using cDNA library and DNA array screening. New studies with both adult T. scripta elegans and hatchling C. picta marginata have identified prominent groups of genes that are up-regulated under anoxia in turtle organs, in several cases suggesting aspects of cell function and metabolic regulation that have not previously been associated with anaerobiosis. These groups of anoxia-responsive genes include mitochondrially-encoded subunits of electron transport chain proteins, iron storage proteins, antioxidant enzymes, serine protease inhibitors, transmembrane solute carriers, neurotransmitter receptors and transporters, and shock proteins.
Collapse
Affiliation(s)
- Kenneth B Storey
- Institute of Biochemistry, College of Natural Sciences, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario, Canada K1S 5B6.
| |
Collapse
|
63
|
Richards JG, Wang YS, Brauner CJ, Gonzalez RJ, Patrick ML, Schulte PM, Choppari-Gomes AR, Almeida-Val VM, Val AL. Metabolic and ionoregulatory responses of the Amazonian cichlid, Astronotus ocellatus, to severe hypoxia. J Comp Physiol B 2007; 177:361-74. [PMID: 17219139 DOI: 10.1007/s00360-006-0135-2] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2006] [Revised: 11/14/2006] [Accepted: 11/24/2006] [Indexed: 11/28/2022]
Abstract
We examined the metabolic and ionoregulatory responses of the Amazonian cichlid, Astronotus ocellatus, to 20 h exposure to severe hypoxia (0.37 +/- 0.19 mg O(2)/l; 4.6% air saturation) or 8 h severe hypoxia followed by 12 h recovery in normoxic water. During 20 h exposure to hypoxia, white muscle [ATP] was maintained at normoxic levels primarily through a 20% decrease in [creatine phosphate] (CrP) and an activation of glycolysis yielding lactate accumulation. Muscle lactate accumulation maintained cytoplasmic redox state ([NAD(+)]/[NADH]) and was associated with an inactivation of the mitochondrial enzyme pyruvate dehydrogenase (PDH). The inactivation of PDH was not associated with significant changes in cytoplasmic allosteric modulators ([ADP(free)], redox state, or [pyruvate]). Hypoxia exposure caused an approximately 65% decrease in gill Na(+)/K(+) ATPase activity, which was not matched by changes in Na(+)/K(+) ATPase alpha-subunit protein abundance indicating post-translational modification of Na(+)/K(+) ATPase was responsible for the decrease in activity. Despite decreases in gill Na(+)/K(+) ATPase activity, plasma [Na(+)] increased, but this increase was possibly due to a significant hemoconcentration and fluid shift out of the extracellular space. Hypoxia caused an increase in Na(+)/K(+) ATPase alpha-subunit mRNA abundance pointing to either reduced mRNA degradation during exposure to hypoxia or enhanced expression of Na(+)/K(+) ATPase alpha-subunit relative to other genes.
Collapse
Affiliation(s)
- J G Richards
- Department of Zoology, The University of British Columbia, 6270 University Blvd, Vancouver, BC, Canada V6T 1Z4.
| | | | | | | | | | | | | | | | | |
Collapse
|
64
|
Glanville EJ, Seebacher F. Compensation for environmental change by complementary shifts of thermal sensitivity and thermoregulatory behaviour in an ectotherm. J Exp Biol 2006; 209:4869-77. [PMID: 17142675 DOI: 10.1242/jeb.02585] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARY
Thermoregulating animals are thought to have evolved a preferred body temperature at which thermally sensitive performance is optimised. Even during thermoregulation, however, many animals experience pronounced variability in body temperature, and may regulate to different body temperatures depending on environmental conditions. Here we test the hypothesis that there is a trade-off between regulating to lower body temperatures in cooler conditions and locomotory and metabolic performance. Animals (estuarine crocodiles, Crocodylus porosus) acclimated to cold (N=8) conditions had significantly lower maximum and mean daily body temperatures after 33 days than warm-acclimated animals (N=9), despite performing characteristic thermoregulatory behaviours. Concomitant with behavioural changes, maximum sustained swimming speed (Ucrit) shifted to the respective mean body temperatures during acclimation (cold=20°C, warm=29°C), but there was no difference in the maxima between acclimation groups. Mitochondrial oxygen consumption changed significantly during acclimation, and maximum respiratory control ratios coincided with mean body temperatures in liver, muscle and heart tissues. There were significant changes in the activities of regulatory metabolic enzymes (lactate dehydrogenase, citrate synthase, cytochrome c oxidase) and these were tissue specific. The extraordinary shift in behaviour and locomotory and metabolic performance shows that within individuals, behaviour and physiology covary to maximise performance in different environments.
Collapse
Affiliation(s)
- E J Glanville
- School of Biological Sciences A08, University of Sydney, NSW 2006, Australia
| | | |
Collapse
|