51
|
Sureban SM, Murmu N, Rodriguez P, May R, Maheshwari R, Dieckgraefe BK, Houchen CW, Anant S. Functional antagonism between RNA binding proteins HuR and CUGBP2 determines the fate of COX-2 mRNA translation. Gastroenterology 2007; 132:1055-65. [PMID: 17383427 DOI: 10.1053/j.gastro.2006.12.031] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2006] [Accepted: 11/16/2006] [Indexed: 12/19/2022]
Abstract
BACKGROUND AND AIMS Cyclooxygenase-2 (COX-2) expression is regulated at the levels of messenger RNA (mRNA) stability and translation by AU-rich elements (ARE) located in its 3' untranslated region (3'UTR). Although structurally homologous RNA binding proteins HuR and CUGBP2 stabilize COX-2 mRNA, HuR induces whereas CUGBP2 inhibits COX-2 mRNA translation. This study aimed to determine the antagonism between these proteins on COX-2 expression. METHODS COX-2 ARE binding activity was determined by nitrocellulose filter binding and UV cross-linking assays using recombinant glutathione S-transferase (GST)/HuR and GST/CUGBP2. Protein:protein interactions were determined by GST pull-down, yeast 2-hybrid, and immunocytochemistry assays. Nucleocytoplasmic shutting was determined by heterokaryon analyses. The effect of CUGBP2 and HuR on COX-2 ARE-dependent translation was shown by a chimeric luciferase mRNA containing COX-2 3'UTR. HT-29 cells were subjected to 12 Gy gamma-irradiation in a cesium irradiator. RESULTS CUGBP2 and HuR bind with similar affinities to COX-2 ARE, but CUGBP2 competes with HuR for binding. In vitro, HuR and CUGBP2 heterodimerize. Furthermore, FLAG-tagged HuR and myc-tagged CUGBP2 colocalize in the nucleus of HCT-116 cells. Moreover, both proteins shuttled between the nucleus and cytoplasm. In vitro, HuR enhanced whereas CUGBP2 inhibited translation of the chimeric luciferase COX-2 3'UTR mRNA. Furthermore, CUGBP2 competitively inhibited HuR-mediated translation of the transcript. In HT-29 cells transfected with HuR and CUGBP2, a switch in COX-2 mRNA binding from predominantly HuR to CUGBP2 occurred after radiation treatment, which was coupled with increased silencing of the COX-2 mRNA. CONCLUSIONS CUGBP2 overrides HuR and suppresses COX-2 mRNA translation.
Collapse
Affiliation(s)
- Sripathi M Sureban
- Department of Medicine, University of Oklahoma Health Science Center, Oklahoma City, Oklahoma 73104, USA
| | | | | | | | | | | | | | | |
Collapse
|
52
|
Nezu Y, Kino Y, Sasagawa N, Nishino I, Ishiura S. Expression of MBNL and CELF mRNA transcripts in muscles with myotonic dystrophy. Neuromuscul Disord 2007; 17:306-12. [PMID: 17331722 DOI: 10.1016/j.nmd.2007.01.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2006] [Revised: 12/24/2006] [Accepted: 01/08/2007] [Indexed: 11/15/2022]
Abstract
Myotonic dystrophy type 1 (DM1) is an autosomal dominant disorder that causes muscle wasting, myotonia, cardiac conduction abnormalities, and other multi-systemic symptoms. Current evidence supports a pathogenic mechanism involving aberrantly expanded CTG repeats in the 3'-untranslated region of the DM protein kinase (DMPK) gene. The repeats are thought to recruit various RNA-binding proteins such as muscleblind-like (MBNL) proteins into foci in the nuclei of DM cells, resulting in loss of function. However, aberrant regulation of transcription or subsequent RNA processing of MBNL-family mRNAs might also be part of the pathogenic mechanism of DM. We used real-time RT-PCR analysis to examine the possibility that MBNL mRNA expression is altered in DM1 patients. We also examined mRNA expression for members of the CUG-BP and ETR-3-like factor (CELF) family of RNA-binding proteins given that CELF proteins regulate alternative splicing and are also implicated in DM. We found that DM1 muscles displayed aberrant regulation of alternative splicing as reported previously; however, the levels of MBNL and CELF mRNA expression did not show any significant changes. Our results suggest that the expression and stability of the mRNA for these RNA-binding proteins are unaffected in DM1.
Collapse
Affiliation(s)
- Yuriko Nezu
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan
| | | | | | | | | |
Collapse
|
53
|
Vicente M, Monferrer L, Poulos MG, Houseley J, Monckton DG, O'dell KMC, Swanson MS, Artero RD. Muscleblind isoforms are functionally distinct and regulate alpha-actinin splicing. Differentiation 2007; 75:427-40. [PMID: 17309604 DOI: 10.1111/j.1432-0436.2006.00156.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Drosophila Muscleblind (Mbl) proteins control terminal muscle and neural differentiation, but their molecular function has not been experimentally addressed. Such an analysis is relevant as the human Muscleblind-like homologs (MBNL1-3) are implicated in the pathogenesis of the inherited muscular developmental and degenerative disease myotonic dystrophy. The Drosophila muscleblind gene expresses four protein coding splice forms (mblA to mblD) that are differentially expressed during the Drosophila life cycle, and which vary markedly in their ability to rescue the embryonic lethal phenotype of muscleblind mutant flies. Analysis of muscleblind mutant embryos reveals misregulated alternative splicing of the transcripts encoding Z-band component alpha-Actinin, which can be replicated in human cells expressing a Drosophilaalpha-actinin minigene and epitope-tagged Muscleblind isoforms. MblC appreciably altered alpha-actinin splicing in this assay, whereas other isoforms had only a marginal or no effect, demonstrating functional specialization among Muscleblind proteins. To further analyze the molecular basis of these differences, we studied the subcellular localization of Muscleblind isoforms. Consistent with the splicing assay results, MblB and MblC were enriched in the nucleus while MblA was predominantly cytoplasmic. In myotonic dystrophy, transcripts bearing expanded non-coding CUG or CCUG repeats interfere with the function of human MBNL proteins. Co-expression of CUG repeat RNA with the alpha-actinin minigene altered splicing compared with that seen in muscleblind mutant embryos, indicating that CUG repeat expansion RNA also interferes with Drosophila muscleblind function. Moreover MblA, B, and C co-localize with CUG repeat RNA in nuclear foci in cell culture. Our observations indicate that Muscleblind isoforms perform different functions in vivo, that MblC controls muscleblind-dependent alternative splicing events, and establish the functional conservation between Muscleblind and MBNL proteins both over a physiological target (alpha-actinin) and a pathogenic one (CUG repeats).
Collapse
Affiliation(s)
- Marta Vicente
- Department of Genetics, University of Valencia, Doctor Moliner 50, Burjasot E-46100, Valencia, Spain
| | | | | | | | | | | | | | | |
Collapse
|
54
|
Matlin AJ, Moore MJ. Spliceosome assembly and composition. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2007; 623:14-35. [PMID: 18380338 DOI: 10.1007/978-0-387-77374-2_2] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Cells control alternative splicing by modulating assembly of the pre-mRNA splicing machinery at competing splice sites. Therefore, a working knowledge of spliceosome assembly is essential for understanding how alternative splice site choices are achieved. In this chapter, we review spliceosome assembly with particular emphasis on the known steps and factors subject to regulation during alternative splice site selection in mammalian cells. We also review recent advances regarding similarities and differences between the in vivo and in vitro assembly pathways, as well as proofreading mechanisms contributing to the fidelity of splice site selection.
Collapse
Affiliation(s)
- Arianne J Matlin
- Howard Hughes Medical Institute, Department of Biochemistry, Brandeis University, Waltham, MA 02454, USA
| | | |
Collapse
|
55
|
Martinez-Contreras R, Cloutier P, Shkreta L, Fisette JF, Revil T, Chabot B. hnRNP proteins and splicing control. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2007; 623:123-47. [PMID: 18380344 DOI: 10.1007/978-0-387-77374-2_8] [Citation(s) in RCA: 282] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Proteins of the heterogeneous nuclear ribonucleoparticles (hnRNP) family form a structurally diverse group of RNA binding proteins implicated in various functions in metazoans. Here we discuss recent advances supporting a role for these proteins in precursor-messenger RNA (pre-mRNA) splicing. Heterogeneous nuclear RNP proteins can repress splicing by directly antagonizing the recognition of splice sites, or can interfere with the binding of proteins bound to enhancers. Recently, hnRNP proteins have been shown to hinder communication between factors bound to different splice sites. Conversely, several reports have described a positive role for some hnRNP proteins in pre-mRNA splicing. Moreover, cooperative interactions between bound hnRNP proteins may encourage splicing between specific pairs of splice sites while simultaneously hampering other combinations. Thus, hnRNP proteins utilize a variety of strategies to control splice site selection in a manner that is important for both alternative and constitutive pre-mRNA splicing.
Collapse
|
56
|
Marquis J, Paillard L, Audic Y, Cosson B, Danos O, Le Bec C, Osborne H. CUG-BP1/CELF1 requires UGU-rich sequences for high-affinity binding. Biochem J 2006; 400:291-301. [PMID: 16938098 PMCID: PMC1652823 DOI: 10.1042/bj20060490] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
CUG-BP1 [CUG-binding protein 1 also called CELF (CUG-BP1 and ETR3 like factors) 1] is a human RNA-binding protein that has been implicated in the control of splicing and mRNA translation. The Xenopus homologue [EDEN-BP (embryo deadenylation element-binding protein)] is required for rapid deadenylation of certain maternal mRNAs just after fertilization. A variety of sequence elements have been described as target sites for these two proteins but their binding specificity is still controversial. Using a SELEX (systematic evolution of ligand by exponential enrichment) procedure and recombinant CUG-BP1 we selected two families of aptamers. Surface plasmon resonance and electrophoretic mobility-shift assays showed that these two families differed in their ability to bind CUG-BP1. Furthermore, the selected high-affinity aptamers form two complexes with CUG-BP1 in electrophoretic mobility assays whereas those that bind with low affinity only form one complex. The validity of the distinction between the two families of aptamers was confirmed by a functional in vivo deadenylation assay. Only those aptamers that bound CUG-BP1 with high affinity conferred deadenylation on a reporter mRNA. These high-affinity RNAs are characterized by a richness in UGU motifs. Using these binding site characteristics we identified the Xenopus maternal mRNA encoding the MAPK (mitogen-activated protein kinase) phosphatase (XCl100alpha) as a substrate for EDEN-BP. In conclusion, high-affinity CUG-BP1 binding sites are sequence elements at least 30 nucleotides in length that are enriched in combinations of U and G nucleotides and contain at least 4 UGU trinucleotide motifs. Such sequence elements are functionally competent to target an RNA for deadenylation in vivo.
Collapse
Affiliation(s)
- Julien Marquis
- *Généthon, CNRS UMR 8115, 1 bis rue de l'Internationale 91002 Evry cedex 2, France
| | - Luc Paillard
- †CNRS UMR 6061, Génétique et Développement, IFR 140 GFAS, Université de Rennes 1, Faculté de Médecine, 2 Avenue Léon Bernard, CS 34317, 35043 Rennes Cedex, France
| | - Yann Audic
- †CNRS UMR 6061, Génétique et Développement, IFR 140 GFAS, Université de Rennes 1, Faculté de Médecine, 2 Avenue Léon Bernard, CS 34317, 35043 Rennes Cedex, France
| | - Bertrand Cosson
- †CNRS UMR 6061, Génétique et Développement, IFR 140 GFAS, Université de Rennes 1, Faculté de Médecine, 2 Avenue Léon Bernard, CS 34317, 35043 Rennes Cedex, France
| | - Olivier Danos
- *Généthon, CNRS UMR 8115, 1 bis rue de l'Internationale 91002 Evry cedex 2, France
| | - Christine Le Bec
- *Généthon, CNRS UMR 8115, 1 bis rue de l'Internationale 91002 Evry cedex 2, France
| | - H. Beverley Osborne
- †CNRS UMR 6061, Génétique et Développement, IFR 140 GFAS, Université de Rennes 1, Faculté de Médecine, 2 Avenue Léon Bernard, CS 34317, 35043 Rennes Cedex, France
- To whom correspondence should be addressed (email )
| |
Collapse
|
57
|
Rideau AP, Gooding C, Simpson PJ, Monie TP, Lorenz M, Hüttelmaier S, Singer RH, Matthews S, Curry S, Smith CWJ. A peptide motif in Raver1 mediates splicing repression by interaction with the PTB RRM2 domain. Nat Struct Mol Biol 2006; 13:839-48. [PMID: 16936729 DOI: 10.1038/nsmb1137] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2006] [Accepted: 07/27/2006] [Indexed: 11/08/2022]
Abstract
Polypyrimidine tract-binding protein (PTB) is a regulatory splicing repressor. Raver1 acts as a PTB corepressor for splicing of alpha-tropomyosin (Tpm1) exon 3. Here we define a minimal region of Raver1 that acts as a repressor domain when recruited to RNA. A conserved [S/G][I/L]LGxxP motif is essential for splicing repressor activity and sufficient for interaction with PTB. An adjacent proline-rich region is also essential for repressor activity but not for PTB interaction. NMR analysis shows that LLGxxP peptides interact with a hydrophobic groove on the dorsal surface of the RRM2 domain of PTB, which constitutes part of the minimal repressor region of PTB. The requirement for the PTB-Raver1 interaction that we have characterized may serve to bring the additional repressor regions of both proteins into a configuration that allows them to synergistically effect exon skipping.
Collapse
Affiliation(s)
- Alexis P Rideau
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, CB2 1GA, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
58
|
Barreau C, Paillard L, Méreau A, Osborne HB. Mammalian CELF/Bruno-like RNA-binding proteins: molecular characteristics and biological functions. Biochimie 2006; 88:515-25. [PMID: 16480813 DOI: 10.1016/j.biochi.2005.10.011] [Citation(s) in RCA: 119] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2005] [Accepted: 10/27/2005] [Indexed: 11/24/2022]
Abstract
In mammals, the CELF/Bruno-like family of RNA-binding proteins contains six members. The founder members of the family are the CUG-BP1 (CELF1) and ETR-3 (CELF2) proteins. Four other members have been identified mainly by sequence similarity. The founder members were cloned or identified in a number of laboratories which has lead to a profusion of names and two separate naming systems. In addition, different members of the CELF/Bruno-like protein family have been shown to be implicated in two major post-transcriptional regulatory processes, namely the alternative splicing and the control of translation and stability of target mRNAs. Several studies have indicated a certain functional redundancy between the CELF proteins in fulfilling these functions. The multiplicity of gene names and the eventual functional redundancy is a source of potential confusion in published work. We present here a synthetic picture of the present situation and, where possible, models are proposed that can account for the data obtained in the various laboratories with different biological models. Furthermore, we have highlighted some important questions that still need to be resolved.
Collapse
Affiliation(s)
- Carine Barreau
- UMR 6061 CNRS-Université de Rennes-I, IFR 140, 2, avenue Léon-Bernard, CS 34317, 35043 Rennes cedex, France
| | | | | | | |
Collapse
|
59
|
Clerte C, Hall KB. Characterization of multimeric complexes formed by the human PTB1 protein on RNA. RNA (NEW YORK, N.Y.) 2006; 12:457-75. [PMID: 16431980 PMCID: PMC1383584 DOI: 10.1261/rna.2178406] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2005] [Accepted: 11/18/2005] [Indexed: 05/06/2023]
Abstract
Polypyrimidine tract binding protein (PTB or hnRNP I) has several known functions in eukaryotic cells, including exon exclusion during alternative splicing events, mRNA stabilization, and regulation of viral translation and replication. PTB contains four RNA Binding Domains (RBDs, or RRMs), all of which can potentially bind RNA, but their roles in the various biological functions of PTB are not clear. We investigate the properties of the complexes formed by human PTB1 on two target RNAs: the rat GABAA receptor gamma2 subunit pre-mRNA and the Hepatitis C Virus 3' NonTranslated RNA. The GABA RNA contains four polypyrimidine tracts in the intron and exon, while the HCV NTR contains a 75-nt U-rich tract and a highly structured 3'-terminus. Electrophoretic mobility shift assays show that PTB1 protein first binds to both RNAs with nanomolar affinities, but subsequent protein addition leads to formation of higher-order complexes. Stoichiometry experiments show that the ultimate complexes contain up to eight PTB1 proteins per RNA strand. Protein constructs containing two tandem RBDs also bind the two RNAs, but with different affinities and stoichiometries. Nuclease protection assays show that PTB1 protects the polypyrimidine tracts in the GABA RNA, as does a construct consisting of RBD3 and RBD4; however, a construct containing RBD1 and RBD2 enhances cleavage of bound RNA. The binding mechanisms of PTB1 are unique to the full-length protein; these modes appear to include direct association with the RNA as well as weaker intermolecular protein associations.
Collapse
Affiliation(s)
- Caroline Clerte
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, 660 S. Euclid Ave., St. Louis, MO 63110, USA
| | | |
Collapse
|
60
|
Kuyumcu-Martinez NM, Cooper TA. Misregulation of alternative splicing causes pathogenesis in myotonic dystrophy. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2006; 44:133-59. [PMID: 17076268 PMCID: PMC4127983 DOI: 10.1007/978-3-540-34449-0_7] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Myotonic dystrophy (DM), the most common form of adult onset muscular dystrophy, affects skeletal muscle, heart, and the central nervous system (CNS). Mortality results primarily from muscle wasting and cardiac arrhythmias. There are two forms of the disease: DM1 and DM2. DM1, which constitutes 98% of cases, is caused by a CTG expansion in the 3' untranslated region (UTR) of the DMPK gene. DM2 is caused by a CCTG expansion in the first intron of the ZNF9 gene. RNA containing CUG- or CCUG-expanded repeats are transcribed but are retained in the nucleus in foci. Disease pathogenesis results primarily from a gain of function of the expanded RNAs, which alter developmentally regulated alternative splicing as well as pathways of muscle differentiation. The toxic RNA has been implicated in sequestration of splicing regulators and transcription factors thereby causing specific symptoms of the disease. Here we review the proposed mechanisms for the toxic effects of the expanded repeats and discuss the molecular mechanisms of splicing misregulation and disease pathogenesis.
Collapse
|
61
|
Abstract
Various mechanisms have been proposed to explain mutually exclusive splicing of pairs of exons. A paper in this issue of Cell (Graveley, 2005) provides a fascinating insight into the perplexing question of how only one exon at a time is chosen from an array of 48 exons in the Drosophila Dscam gene.
Collapse
|
62
|
Shukla S, Del Gatto-Konczak F, Breathnach R, Fisher SA. Competition of PTB with TIA proteins for binding to a U-rich cis-element determines tissue-specific splicing of the myosin phosphatase targeting subunit 1. RNA (NEW YORK, N.Y.) 2005; 11:1725-36. [PMID: 16177139 PMCID: PMC1370859 DOI: 10.1261/rna.7176605] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2004] [Accepted: 08/09/2005] [Indexed: 05/04/2023]
Abstract
A considerable amount of smooth muscle phenotypic diversity is generated by tissue-specific and developmentally regulated splicing of alternative exons. The control mechanisms are unknown. We are using a myosin phosphatase targeting subunit-1 (MYPT1) alternative exon as a model to investigate this question. In the present study, we show that the RNA binding proteins TIA and PTB function as antagonistic enhancers and suppressors of splicing of the alternative exon, respectively. Each functions through a single U-rich element, containing two UCUU motifs, just downstream of the alternative exon 5' splice site. Tissue-specific down-regulation of TIA protein in the perinatal period allows PTB to bind to the U-rich element and suppress splicing of the alternative exon as the visceral smooth muscle acquires the fast-phasic smooth muscle contractile phenotype. This provides a novel role for PTB in the tissue-specific regulation of splicing of alternative exons during the generation of smooth muscle phenotypic diversity.
Collapse
Affiliation(s)
- Supriya Shukla
- Department of Medicine (Cardiology), Case Western Reserve University School of Medicine, BRB 422, Cleveland, OH 44106-4958, USA
| | | | | | | |
Collapse
|
63
|
Lin JC, Tarn WY. Exon selection in alpha-tropomyosin mRNA is regulated by the antagonistic action of RBM4 and PTB. Mol Cell Biol 2005; 25:10111-21. [PMID: 16260624 PMCID: PMC1280272 DOI: 10.1128/mcb.25.22.10111-10121.2005] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2005] [Revised: 07/05/2005] [Accepted: 08/19/2005] [Indexed: 12/26/2022] Open
Abstract
RNA-binding motif protein 4 (RBM4) has been implicated in the regulation of precursor mRNA splicing. Using differential display analysis, we identified mRNAs that associate with RBM4-containing messenger RNPs in vivo. Among these mRNAs, alpha-tropomyosin (alpha-TM) is known to exhibit a muscle cell type-specific splicing pattern. The level of the skeletal muscle-specific alpha-TM mRNA isoform partially correlated with that of RBM4 in human tissues examined and could be modulated by ectopic overexpression or suppression of RBM4. These results indicated that RBM4 directly influences the expression of the skeletal muscle-specific alpha-TM isoform. Using minigenes, we demonstrated that RBM4 can activate the selection of skeletal muscle-specific exons, possibly via binding to intronic pyrimidine-rich elements. By contrast, the splicing regulator polypyrimidine tract binding protein (PTB) excluded these exons; moreover, RBM4 antagonized this PTB-mediated exon exclusion likely by competing with PTB for binding to a CU-rich element. This study suggests a possible mechanism underlying the regulated alternative splicing of alpha-TM by the antagonistic splicing regulators RBM4 and PTB.
Collapse
Affiliation(s)
- Jung-Chun Lin
- Institute of Biomedical Sciences, Academia Sinica, 128 Academy Road Section 2, Nankang, Taipei 11529, Taiwan
| | | |
Collapse
|
64
|
Ladd AN, Stenberg MG, Swanson MS, Cooper TA. Dynamic balance between activation and repression regulates pre-mRNA alternative splicing during heart development. Dev Dyn 2005; 233:783-93. [PMID: 15830352 DOI: 10.1002/dvdy.20382] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Cardiac troponin T (cTNT) exon 5 splicing is developmentally regulated such that it is included in embryonic but not adult heart. CUG-BP and ETR-3-like factor (CELF) proteins promote exon inclusion, whereas polypyrimidine tract binding protein (PTB) and muscleblind-like (MBNL) proteins repress inclusion. In this study, we addressed what happens to these regulatory proteins during heart development to shift the regulatory balance of cTNT alternative splicing. Using dominant-negative proteins, we found that both CELF and PTB activities are required for appropriate splicing in cardiomyocytes. Two CELF proteins, CUG-BP and ETR-3, are nuclear and cytoplasmic in embryonic heart but are down-regulated in adult heart concomitant with loss of exon inclusion. In contrast, PTB and MBNL1 are expressed throughout heart development. The patterns of cTNT splicing and expression of its regulatory factors are conserved between mouse and chicken. Thus, alternative splicing is determined by a balance between positive and negative regulation, and modulation of expression levels of auxiliary splicing regulators may drive developmental splicing changes. ETR-3 and CUG-BP proteins are also down-regulated in other tissues during development, suggesting that CELF proteins play a broad role in developmental splicing regulation.
Collapse
Affiliation(s)
- Andrea N Ladd
- Department of Pathology, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | |
Collapse
|
65
|
Oberstrass FC, Auweter SD, Erat M, Hargous Y, Henning A, Wenter P, Reymond L, Amir-Ahmady B, Pitsch S, Black DL, Allain FHT. Structure of PTB bound to RNA: specific binding and implications for splicing regulation. Science 2005; 309:2054-7. [PMID: 16179478 DOI: 10.1126/science.1114066] [Citation(s) in RCA: 357] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The polypyrimidine tract binding protein (PTB) is a 58-kilodalton RNA binding protein involved in multiple aspects of messenger RNA metabolism, including the repression of alternative exons. We have determined the solution structures of the four RNA binding domains (RBDs) of PTB, each bound to a CUCUCU oligonucleotide. Each RBD binds RNA with a different binding specificity. RBD3 and RBD4 interact, resulting in an antiparallel orientation of their bound RNAs. Thus, PTB will induce RNA looping when bound to two separated pyrimidine tracts within the same RNA. This leads to structural models for how PTB functions as an alternative-splicing repressor.
Collapse
Affiliation(s)
- Florian C Oberstrass
- Institute for Molecular Biology and Biophysics, Department of Biology, Swiss Federal Institute of Technology, Zürich, ETH-Hönggerberg, CH-8093 Zürich, Switzerland
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
66
|
Izquierdo JM, Majós N, Bonnal S, Martínez C, Castelo R, Guigó R, Bilbao D, Valcárcel J. Regulation of Fas alternative splicing by antagonistic effects of TIA-1 and PTB on exon definition. Mol Cell 2005; 19:475-84. [PMID: 16109372 DOI: 10.1016/j.molcel.2005.06.015] [Citation(s) in RCA: 279] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2004] [Revised: 05/12/2005] [Accepted: 06/15/2005] [Indexed: 02/04/2023]
Abstract
Fas exon 6 can be included or skipped to generate mRNAs encoding, respectively, a membrane bound form of the receptor that promotes apoptosis or a soluble isoform that prevents programmed cell death. We report that the apoptosis-inducing protein TIA-1 promotes U1 snRNP binding to the 5' splice site of intron 6, which in turn facilitates exon definition by enhancing U2AF binding to the 3' splice site of intron 5. The polypyrimidine tract binding protein (PTB) promotes exon skipping by binding to an exonic splicing silencer and inhibiting the association of U2AF and U2 snRNP with the upstream 3' splice site, without affecting recognition of the downstream 5' splice site by U1. Remarkably, U1 snRNP-mediated recognition of the 5' splice site is required both for efficient U2AF binding and for U2AF inhibition by PTB. We propose that TIA-1 and PTB regulate Fas splicing and possibly Fas-mediated apoptosis by targeting molecular events that lead to exon definition.
Collapse
|
67
|
Sharma S, Falick AM, Black DL. Polypyrimidine tract binding protein blocks the 5' splice site-dependent assembly of U2AF and the prespliceosomal E complex. Mol Cell 2005; 19:485-96. [PMID: 16109373 PMCID: PMC1635971 DOI: 10.1016/j.molcel.2005.07.014] [Citation(s) in RCA: 123] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2005] [Revised: 07/10/2005] [Accepted: 07/25/2005] [Indexed: 01/06/2023]
Abstract
Polypyrimidine tract binding protein (PTB) represses some alternatively spliced exons by direct occlusion of splice sites. In repressing the splicing of the c-src N1 exon, we find that PTB acts by a different mechanism. PTB does not interfere with U1 snRNP binding to the N1 5' splice site. Instead, PTB prevents formation of the prespliceosomal early (E) complex across the intervening intron by preventing the assembly of the splicing factor U2AF on the 3' splice site of exon 4. When the unregulated 5' splice site of the upstream exon 3 is present, U2AF binding is restored and splicing between exons 3 and 4 proceeds in spite of the N1 exon bound PTB. Thus, rather than directly blocking the N1 splice sites, PTB prevents the 5' splice site-dependent assembly of U2AF into the E complex. This mechanism likely occurs in many other alternative exons.
Collapse
Affiliation(s)
- Shalini Sharma
- Howard Hughes Medical Institute, University of California, Los Angeles, MRL5-748, Charles E. Young Drive South, Los Angeles, California 90095, USA
| | | | | |
Collapse
|
68
|
Spellman R, Rideau A, Matlin A, Gooding C, Robinson F, McGlincy N, Grellscheid SN, Southby J, Wollerton M, Smith CWJ. Regulation of alternative splicing by PTB and associated factors. Biochem Soc Trans 2005; 33:457-60. [PMID: 15916540 DOI: 10.1042/bst0330457] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
PTB (polypyrimidine tract-binding protein) is a repressive regulator of alternative splicing. We have investigated the role of PTB in three model alternative splicing systems. In the alpha-actinin gene, PTB represses the SM (smooth muscle) exon by binding to key sites in the polypyrimidine tract. Repressive binding to these sites is assisted by co-operative binding to additional downstream sites. SM exon splicing can be activated by CELF proteins, which also bind co-operatively to interspersed sites and displace PTB from the pyrimidine tract. Exon 11 of PTB pre-mRNA is repressed by PTB in an autoregulatory feedback loop. Exon 11-skipped RNA gets degraded through nonsense-mediated decay. Less than 1% of steady-state PTB mRNA is represented by this isoform, but inhibition of nonsense-mediated decay by RNA interference against Upf1 shows that at least 20% of PTB RNA is consumed by this pathway. This represents a widespread but under-appreciated role of alternative splicing in the quantitative regulation of gene expression, an important addition to its role as a generator of protein isoform diversity. Repression of alpha-tropomyosin exon 3 is an exceptional example of PTB regulation, because repression only occurs at high levels in SM cells, despite the fact that PTB is widely expressed. In this case, a PTB-interacting cofactor, raver1, appears to play an important role. By the use of 'tethering' assays, we have identified discrete domains within both PTB and raver1 that mediate their repressive activities on this splicing event.
Collapse
Affiliation(s)
- R Spellman
- Department of Biochemistry, University of Cambridge, 80, Tennis Court Road, Cambridge CB2 1GA, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
69
|
Abstract
RNA-binding proteins play a major part in the control of gene expression during early development. At this stage, the majority of regulation occurs at the levels of translation and RNA localization. These processes are, in general, mediated by RNA-binding proteins interacting with specific sequence motifs in the 3'-untranslated regions of their target RNAs. Although initial work concentrated on the analysis of these sequences and their trans-acting factors, we are now beginning to gain an understanding of the mechanisms by which some of these proteins function. In this review, we will describe a number of different families of RNA-binding proteins, grouping them together on the basis of common regulatory strategies, and emphasizing the recurrent themes that occur, both across different species and as a response to different biological problems.
Collapse
|
70
|
Matlin AJ, Clark F, Smith CWJ. Understanding alternative splicing: towards a cellular code. Nat Rev Mol Cell Biol 2005; 6:386-98. [PMID: 15956978 DOI: 10.1038/nrm1645] [Citation(s) in RCA: 953] [Impact Index Per Article: 47.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
In violation of the 'one gene, one polypeptide' rule, alternative splicing allows individual genes to produce multiple protein isoforms - thereby playing a central part in generating complex proteomes. Alternative splicing also has a largely hidden function in quantitative gene control, by targeting RNAs for nonsense-mediated decay. Traditional gene-by-gene investigations of alternative splicing mechanisms are now being complemented by global approaches. These promise to reveal details of the nature and operation of cellular codes that are constituted by combinations of regulatory elements in pre-mRNA substrates and by cellular complements of splicing regulators, which together determine regulated splicing pathways.
Collapse
Affiliation(s)
- Arianne J Matlin
- Department of Biochemistry, 80 Tennis Court Road, University of Cambridge, CB2 1GA, UK
| | | | | |
Collapse
|
71
|
Crovato TE, Egebjerg J. ASF/SF2 and SC35 regulate the glutamate receptor subunit 2 alternative flip/flop splicing. FEBS Lett 2005; 579:4138-44. [PMID: 16023113 DOI: 10.1016/j.febslet.2005.06.044] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2005] [Revised: 06/17/2005] [Accepted: 06/21/2005] [Indexed: 11/19/2022]
Abstract
The properties of the glutamate receptor subunits 1-4 (GluR1-4) are influenced by the alternative splicing of two homologous and mutually exclusive exons flip and flop. The flip form is most abundant during early development, while the flop form is dominant in adults. From transfections with a GluR2 mini-gene we show that flip is the preferred splice form in all tested cell lines, but coexpression of the SR-proteins ASF/SF2 and SC35 increases the flop to flip splice ratio. The increased flop incorporation depends on ASF/SF2- and SC35-dependent enhancer elements located in the flop exon, which stimulate the splicing between the flop exon and the preceding exon 13.
Collapse
Affiliation(s)
- Trine Elkjaer Crovato
- Department of Molecular Biology, University of Aarhus, C.F. Møllers Alle 130, DK-8000 Aarhus C, Denmark.
| | | |
Collapse
|
72
|
Abstract
CUG-BP and ETR-3 like factor (CELF) proteins are regulators of pre-mRNA alternative splicing. We created a series of truncation mutants to identify the regions of CELF proteins that are required to activate and to repress alternative splicing of different exons. This analysis was performed in parallel on two CELF proteins, ETR-3 (CUG-BP2, NAPOR, BRUNOL3) and CELF4 (BRUNOL4). We identified a 20-residue region of CELF4 required for repression or activation, in contrast to ETR-3, for which the required residues are more disperse. For both ETR-3 and CELF4, distinct regions were required to activate splicing of two different alternative exons, while regions required for repression of an additional third exon overlapped with regions required for activation. Our results suggest that activation of different splicing events by individual CELF proteins requires separable regions, implying the nature of the protein–protein interactions required for activation are target-dependent. The finding that residues required for activation and repression overlap suggests either that the same region interacts with different proteins to mediate different effects or that interactions with the same proteins can have different effects on splicing due to yet-to-be defined downstream events. These results provide a foundation for identifying CELF-interacting proteins involved in activated and/or repressed splicing.
Collapse
Affiliation(s)
- Jin Han
- Department of Pathology, Baylor College of MedicineHouston, TX 77030, USA
| | - Thomas A. Cooper
- Department of Pathology, Baylor College of MedicineHouston, TX 77030, USA
- Department of Molecular and Cellular Biology, Baylor College of MedicineHouston, TX 77030, USA
- To whom correspondence should be addressed. Tel: +1 713 798 3141; Fax: +1 713 798 5838;
| |
Collapse
|
73
|
Amir-Ahmady B, Boutz PL, Markovtsov V, Phillips ML, Black DL. Exon repression by polypyrimidine tract binding protein. RNA (NEW YORK, N.Y.) 2005; 11:699-716. [PMID: 15840818 PMCID: PMC1370756 DOI: 10.1261/rna.2250405] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2005] [Accepted: 02/18/2005] [Indexed: 05/22/2023]
Abstract
Polypyrimidine tract binding protein (PTB) is known to silence the splicing of many alternative exons. However, exons repressed by PTB are affected by other RNA regulatory elements and proteins. This makes it difficult to dissect the structure of the pre-mRNP complexes that silence splicing, and to understand the role of PTB in this process. We determined the minimal requirements for PTB-mediated splicing repression. We find that the minimal sequence for high affinity binding by PTB is relatively large, containing multiple polypyrimidine elements. Analytical ultracentrifugation and proteolysis mapping of RNA cross-links on the PTB protein indicate that most PTB exists as a monomer, and that a polypyrimidine element extends across multiple PTB domains. The high affinity site is bound initially by a PTB monomer and at higher concentrations by additional PTB molecules. Significantly, this site is not sufficient for splicing repression when placed in the 3' splice site of a strong test exon. Efficient repression requires a second binding site within the exon itself or downstream from it. This second site enhances formation of a multimeric PTB complex, even if it does not bind well to PTB on its own. These experiments show that PTB can be sufficient to repress splicing of an otherwise constitutive exon, without binding sites for additional regulatory proteins and without competing with U2AF binding. The minimal complex mediating splicing repression by PTB requires two binding sites bound by an oligomeric PTB complex.
Collapse
Affiliation(s)
- Batoul Amir-Ahmady
- Department of Microbiology, Immunology & Molecular Genetics, University of California Los Angeles, Los Angeles, CA 90095-1662, USA
| | | | | | | | | |
Collapse
|
74
|
Minovitsky S, Gee SL, Schokrpur S, Dubchak I, Conboy JG. The splicing regulatory element, UGCAUG, is phylogenetically and spatially conserved in introns that flank tissue-specific alternative exons. Nucleic Acids Res 2005; 33:714-24. [PMID: 15691898 PMCID: PMC548355 DOI: 10.1093/nar/gki210] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Previous studies have identified UGCAUG as an intron splicing enhancer that is frequently located adjacent to tissue-specific alternative exons in the human genome. Here, we show that UGCAUG is phylogenetically and spatially conserved in introns that flank brain-enriched alternative exons from fish to man. Analysis of sequence from the mouse, rat, dog, chicken and pufferfish genomes revealed a strongly statistically significant association of UGCAUG with the proximal intron region downstream of brain-enriched alternative exons. The number, position and sequence context of intronic UGCAUG elements were highly conserved among mammals and in chicken, but more divergent in fish. Control datasets, including constitutive exons and non-tissue-specific alternative exons, exhibited a much lower incidence of closely linked UGCAUG elements. We propose that the high sequence specificity of the UGCAUG element, and its unique association with tissue-specific alternative exons, mark it as a critical component of splicing switch mechanism(s) designed to activate a limited repertoire of splicing events in cell type-specific patterns. We further speculate that highly conserved UGCAUG-binding protein(s) related to the recently described Fox-1 splicing factor play a critical role in mediating this specificity.
Collapse
Affiliation(s)
| | | | | | | | - John G. Conboy
- To whom correspondence should be addressed. Tel: +1 510 4866973; Fax: +1 510 4866746;
| |
Collapse
|
75
|
Faustino NA, Cooper TA. Identification of putative new splicing targets for ETR-3 using sequences identified by systematic evolution of ligands by exponential enrichment. Mol Cell Biol 2005; 25:879-87. [PMID: 15657417 PMCID: PMC544011 DOI: 10.1128/mcb.25.3.879-887.2005] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2004] [Revised: 08/30/2004] [Accepted: 11/01/2004] [Indexed: 01/24/2023] Open
Abstract
ETR-3 (also know as BRUNOL3, NAPOR, and CUGBP2) is one of six members of the CELF (CUG-BP1- and ETR-3-like factor) family of splicing regulators. ETR-3 regulates splicing by direct binding to the pre-mRNA. We performed systematic evolution of ligands by exponential enrichment (SELEX) to identify the preferred binding sequence of ETR-3. After five rounds of SELEX, ETR-3 selected UG-rich sequences, in particular UG repeats and UGUU motifs. Either of these selected motifs was able to restore ETR-3 binding and responsiveness to a nonresponsive splicing reporter in vivo. Moreover, this effect was not specific to ETR-3 since minigenes containing either of the two motifs were responsive to two other CELF proteins (CUG-BP1 and CELF4), indicating that different members of the CELF family can mediate their effects via a common binding site. Using the SELEX-identified motifs to search the human genome, we identified several possible new ETR-3 targets. We created minigenes for two of these genes, the CFTR and MTMR1 genes, and confirmed that ETR-3 regulates their splicing patterns. For the CFTR minigene this regulation was demonstrated to be dependent on the presence of the putative binding site identified in our screen. These results validate this approach to search for new targets for RNA processing proteins.
Collapse
Affiliation(s)
- Nuno André Faustino
- Department of Pathology, Baylor College of Medicine, One Baylor Place, Houston, TX 77030, USA
| | | |
Collapse
|
76
|
Wagner EJ, Baraniak AP, Sessions OM, Mauger D, Moskowitz E, Garcia-Blanco MA. Characterization of the intronic splicing silencers flanking FGFR2 exon IIIb. J Biol Chem 2005; 280:14017-27. [PMID: 15684416 DOI: 10.1074/jbc.m414492200] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The cell type-specific alternative splicing of FGFR2 pre-mRNA results in the mutually exclusive use of exons IIIb and IIIc, which leads to critically important differences in receptor function. The choice of exon IIIc in mesenchymal cells involves activation of this exon and repression of exon IIIb. This repression is mediated by the function of upstream and downstream intronic splicing silencers (UISS and DISS). Here we present a detailed characterization of the determinants of silencing function within UISS and DISS. We used a systematic mutational analysis, introducing deletions and substitutions to define discrete elements within these two silencers of exon IIIb. We show that UISS requires polypyrimidine tract-binding protein (PTB)-binding sites, which define the UISS1 sub-element, and an eight nucleotide sequence 5'-GCAGCACC-3' (UISS2) that is also required. Even though UISS2 does not bind PTB, the full UISS can be replaced with a synthetic silencer designed to provide optimal PTB binding. DISS is composed of a 5'-conserved sub-element (5'-CE) and two regions that contain multiple PTB sites and are functionally redundant (DISS1 and DISS2). DISS1 and DISS2 are separated by the activator sequence IAS2, and together these opposing elements form the intronic control element. Deletion of DISS in the FGFR2 exon IIIb context resulted in the near full inclusion of exon IIIb, and insertion of this silencer downstream of a heterologous exon with a weak 5' splice site was capable of repressing exon inclusion. Extensive deletion analysis demonstrated that the majority of silencing activity could be mapped to the conserved octamer CUCGGUGC within the 5'CE. Replacement of 5'CE and DISS1 with PTB-binding elements failed to restore repression of exon IIIb. We tested the importance of the relative position of the silencers and of the subelements within each silencer. Whereas UISS1, UISS2, DISS1, and DISS2 appear somewhat malleable, the 5'CE is rigid in terms of relative position and redundancy. Our data defined elements of function within the ISSs flanking exon IIIb and suggested that silencing of this exon is mediated by multiple trans-acting factors.
Collapse
Affiliation(s)
- Eric J Wagner
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | | | | | | | |
Collapse
|
77
|
Královicová J, Houngninou-Molango S, Krämer A, Vorechovsky I. Branch site haplotypes that control alternative splicing. Hum Mol Genet 2004; 13:3189-202. [PMID: 15496424 DOI: 10.1093/hmg/ddh334] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We show that the allele-dependent expression of transcripts encoding soluble HLA-DQbeta chains is determined by branchpoint sequence (BPS) haplotypes in DQB1 intron 3. BPS RNAs associated with low inclusion of the transmembrane exon in mature transcripts showed impaired binding to splicing factor 1 (SF1), indicating that alternative splicing of DQB1 is controlled by differential BPS recognition early during spliceosome assembly. We also demonstrate that naturally occurring human BPS point mutations that alter splicing and lead to recognizable phenotypes cluster in BP and in position -2 relative to BP, implicating impaired SF1-BPS interactions in disease-associated BPS substitutions. Coding DNA variants produced smaller fluctuations of exon inclusion levels than random exonic substitutions, consistent with a selection against coding mutations that alter their own exonization. Finally, proximal splicing in this multi-allelic reporter system was promoted by at least seven SR proteins and repressed by hnRNPs F, H and I, supporting an extensive antagonism of factors balancing the splice site selection. These results provide the molecular basis for the haplotype-specific expression of soluble DQbeta, improve prediction of intronic point mutations and indicate how extraordinary, selection-driven DNA variability in HLA affects pre-mRNA splicing.
Collapse
Affiliation(s)
- Jana Královicová
- University of Southampton School of Medicine, Division of Human Genetics, Southampton SO16 6YD, UK
| | | | | | | |
Collapse
|
78
|
Simpson PJ, Monie TP, Szendröi A, Davydova N, Tyzack JK, Conte MR, Read CM, Cary PD, Svergun DI, Konarev PV, Curry S, Matthews S. Structure and RNA Interactions of the N-Terminal RRM Domains of PTB. Structure 2004; 12:1631-43. [PMID: 15341728 DOI: 10.1016/j.str.2004.07.008] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2004] [Revised: 05/28/2004] [Accepted: 07/06/2004] [Indexed: 11/25/2022]
Abstract
The polypyrimidine tract binding protein (PTB) is an important regulator of alternative splicing that also affects mRNA localization, stabilization, polyadenylation, and translation. NMR structural analysis of the N-terminal half of PTB (residues 55-301) shows a canonical structure for RRM1 but reveals novel extensions to the beta strands and C terminus of RRM2 that significantly modify the beta sheet RNA binding surface. Although PTB contains four RNA recognition motifs (RRMs), it is widely held that only RRMs 3 and 4 are involved in RNA binding and that RRM2 mediates homodimerization. However, we show here not only that the RRMs 1 and 2 contribute substantially to RNA binding but also that full-length PTB is monomeric, with an elongated structure determined by X-ray solution scattering that is consistent with a linear arrangement of the constituent RRMs. These new insights into the structure and RNA binding properties of PTB suggest revised models of its mechanism of action.
Collapse
Affiliation(s)
- Peter J Simpson
- Department of Biological Sciences, Imperial College, South Kensington Campus, Exhibition Road, London SW7 2AZ, UK
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
79
|
Flanagan M, Liang H, Norton PA. Alternative splicing of fibronectin mRNAs in chondrosarcoma cells: role of far upstream intron sequences. J Cell Biochem 2004; 90:709-18. [PMID: 14587027 DOI: 10.1002/jcb.10687] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The fibronectin (FN) gene encodes multiple mRNAs through the process of alternative splicing, and production of certain isoforms is characteristic of a given cell type. Chondrocytes produce FNs that completely lack alternative exon EIIIA, and loss of inclusion of the exon is tightly linked to chondrogenic condensation of mesenchymal cells. The inclusion of a second exon, EIIIB, is high in embryonic cartilage, but declines with age. Multiple exons are omitted to produce the (V + C)-form that is highly specific for cartilage and chondrocytes. A rat chondrosarcoma cell line, RCS, was identified that preserves key features of the cartilage-specific splicing phenotype. RCS cells, which exclude exon EIIIA, and HeLa cells, which include exon EIIIA similar to mesenchymal cells, were used to assess the contribution of intron sequences flanking exon EIIIA to splicing regulation. Deletion of most of the intron downstream of the exon had little effect on splicing in either cell type. However, deletions within upstream intron 32-A reduced inclusion of the alternative exon in both cell types. The sequences involved lie more than 200 nucleotides away from the exon, but could not be localized to a single region by deletion mapping. These intronic sequences contribute to the efficiency of exon EIIIA recognition, but not to cell-type specific regulation. The normally inhibitory factor polypyrimidine tract binding protein promotes exon EIIIA inclusion in a manner that is partially dependent on the regulatory sequences within intron 32-A.
Collapse
Affiliation(s)
- Matthew Flanagan
- Jefferson Center for Biomedical Research and Department of Biochemistry and Molecular Pharmacology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | | | | |
Collapse
|
80
|
Ladd AN, Cooper TA. Multiple domains control the subcellular localization and activity of ETR-3, a regulator of nuclear and cytoplasmic RNA processing events. J Cell Sci 2004; 117:3519-29. [PMID: 15226369 DOI: 10.1242/jcs.01194] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Embryonic lethal abnormal vision (ELAV) type RNA binding protein 3 (ETR-3; also called NAPOR, CUGBP2, or BRUNOL3) has been implicated in the regulation of nuclear and cytoplasmic RNA processing events, including alternative splicing, RNA editing, stability and translation. Here, we report that the ETR-3 protein contains multiple regions that control its subcellular localization and are important for its activity as a splicing regulator. We cloned ETR-3 from chicken heart and fused it to the C terminus of green fluorescent protein (GFPcETR3vL). GFPcETR3vL is found predominantly in the nucleus and is an active regulator of alternative splicing in cotransfection assays with a cardiac troponin T minigene. ETR-3 contains two N-terminal RNA recognition motifs (RRMs), a 210-amino acid divergent domain, and a C-terminal RRM. We demonstrate that the C terminus contains a strong nuclear localization signal overlapping the third RRM, which can confer nuclear localization on a normally cytoplasmic pyruvate kinase chimera. Additional deletions revealed nuclear localization and export activities in the divergent domain of ETR-3, as well as regions within the first two RRMs that are important for cytoplasmic localization. The nuclear export activity of the divergent domain is sensitive to leptomycin B, indicating that export to the cytoplasm is mediated via a CRM1-dependent pathway. The C terminus and a region within the divergent domain were also shown to be important for splicing activity of ETR-3. This is the first characterization of protein domains involved in mediating the subcellular localization and splicing activity of a member of the CELF family of RNA processing regulators.
Collapse
Affiliation(s)
- Andrea N Ladd
- Department of Pathology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | | |
Collapse
|
81
|
Hamon S, Le Sommer C, Mereau A, Allo MR, Hardy S. Polypyrimidine tract-binding protein is involved in vivo in repression of a composite internal/3' -terminal exon of the Xenopus alpha-tropomyosin Pre-mRNA. J Biol Chem 2004; 279:22166-75. [PMID: 15010470 DOI: 10.1074/jbc.m313809200] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The Xenopus alpha(fast)-tropomyosin gene contains, at its 3' -end, a composite internal/3' -terminal exon (exon 9A9'), which is subjected to three different patterns of splicing according to the cell type. Exon 9A9' is included as a terminal exon in the myotome and as an internal exon in adult striated muscles, whereas it is skipped in nonmuscle cells. We have developed an in vivo model based on transient expression of minigenes encompassing the regulated exon 9A9' in Xenopus oocytes and embryos. We first show that the different alpha-tropomyosin minigenes recapitulate the splicing pattern of the endogenous gene and constitute valuable tools to seek regulatory sequences involved in exon 9A9' usage. A mutational analysis led to the identification of an intronic element that is involved in the repression of exon 9A9' in nonmuscle cells. This element harbors four polypyrimidine track-binding protein (PTB) binding sites that are essential for the repression of exon 9A9'. We show using UV cross-linking and immunoprecipitation experiments that Xenopus PTB (XPTB) interacts with these PTB binding sites. Finally, we show that depletion of endogenous XPTB in Xenopus embryos using a morpholinobased translational inhibition strategy resulted in exon 9A9' inclusion in embryonic epidermal cells. These results demonstrate that XPTB is required in vivo to repress the terminal exon 9A9' and suggest that PTB could be a major actor in the repression of regulated 3' -terminal exon.
Collapse
Affiliation(s)
- Sandra Hamon
- UMR 6061 CNRS, Université de Rennes 1, Faculté de Médecine, 35043 Rennes cedex, France
| | | | | | | | | |
Collapse
|
82
|
Singh G, Charlet-B N, Han J, Cooper TA. ETR-3 and CELF4 protein domains required for RNA binding and splicing activity in vivo. Nucleic Acids Res 2004; 32:1232-41. [PMID: 14973222 PMCID: PMC373409 DOI: 10.1093/nar/gkh275] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2003] [Revised: 01/20/2004] [Accepted: 01/20/2004] [Indexed: 11/13/2022] Open
Abstract
Members of the CUG-BP and ETR-3 like factor (CELF) protein family bind within conserved intronic elements (called MSEs) flanking the cardiac troponin T (cTNT) alternative exon 5 and promote exon inclusion in vivo and in vitro. Here we use a comparative deletion analysis of two family members (ETR-3 and CELF4) to identify separate domains required for RNA binding and splicing activity in vivo. CELF proteins contain two adjacent RNA binding domains (RRM1 and RRM2) near the N-terminus and one RRM (RRM3) near the C-terminus, which are separated by a 160-230 residue divergent domain of unknown function. Either RRM1 or RRM2 of CELF4 are necessary and sufficient for binding MSE RNA and RRM2 plus an additional 66 amino acids of the divergent domain are as effective as full-length protein in activating MSE-dependent splicing in vivo. Non-overlapping N- and C-terminal regions of ETR-3 containing either RRM1 and RRM2 or RRM3 plus segments of the adjacent divergent domain activate MSE-dependent exon inclusion demonstrating an unusual functional redundancy of the N- and C-termini of the protein. These results identify specific regions of ETR-3 and CELF4 that are likely targets of protein-protein interactions required for splicing activation.
Collapse
Affiliation(s)
- Gopal Singh
- Department of Pathology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | | | | | | |
Collapse
|
83
|
Shukla S, Dirksen WP, Joyce KM, Le Guiner-Blanvillain C, Breathnach R, Fisher SA. TIA proteins are necessary but not sufficient for the tissue-specific splicing of the myosin phosphatase targeting subunit 1. J Biol Chem 2004; 279:13668-76. [PMID: 14736875 DOI: 10.1074/jbc.m314138200] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We are using the tissue-specific splicing of myosin phosphatase targeting subunit (MYPT1) as a model to investigate smooth muscle phenotypic diversity. We previously identified a U-rich intronic enhancer flanking the 5' splice site (IE1), and a bipartite exonic enhancer/suppressor, that regulate splicing of the MYPT1 central alternative exon. Here we show that T-cell inhibitor of apoptosis (TIA-1) and T-cell inhibitor of apoptosis-related (TIAR) proteins bind to the IE1. Co-transfection of TIA expression vectors with a MYPT1 mini-gene construct increase splicing of the central alternative exon. TIA proteins do not enhance splicing when the palindromic exonic splicing enhancer (ESE) is mutated, indicating that TIAs are necessary but not sufficient for splicing. The ESE specifically binds SRp55 and SRp20 proteins, supporting a model in which both SR and TIA proteins binding to their cis-elements are required for the recruitment of the splicing complex to a weak 5' splice site. Inactivation of TIA proteins in the DT40 cell line (TIA-1(-/-)TIAR(+/-)) reduced the splicing of the central alternative exon of the endogenous MYPT1 as well as stably transfected MYPT1 minigene constructs. Splicing of the MYPT1 3' alternative exon and the MLC(17) alternative exon were unaffected, suggesting that TIA proteins regulate a subset of smooth muscle/nonmuscle alternative splicing reactions. Finally, reduced RNA binding and reduced expression of the TIA and SR proteins in phasic (gizzard) smooth muscle around hatching coincided with the switch from exon inclusion to exon skipping, suggesting that loss of TIA and SR enhancer activity may play a role in the developmental switch in MYPT1 splicing.
Collapse
Affiliation(s)
- Supriya Shukla
- Departments of Medicine, Case Western Reserve University school of Medicine, Cleveland, Ohio 44106-4958, USA
| | | | | | | | | | | |
Collapse
|
84
|
Wollerton MC, Gooding C, Wagner EJ, Garcia-Blanco MA, Smith CWJ. Autoregulation of Polypyrimidine Tract Binding Protein by Alternative Splicing Leading to Nonsense-Mediated Decay. Mol Cell 2004; 13:91-100. [PMID: 14731397 DOI: 10.1016/s1097-2765(03)00502-1] [Citation(s) in RCA: 305] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Polypyrimdine tract binding protein (PTB) is a regulator of alternative splicing, mRNA 3' end formation, mRNA stability and localization, and IRES-mediated translation. Transient overexpression of PTB can influence alternative splicing, sometimes resulting in nonphysiological splicing patterns. Here, we show that alternative skipping of PTB exon 11 leads to an mRNA that is removed by NMD and that this pathway consumes at least 20% of the PTB mRNA in HeLa cells. We also show that exon 11 skipping is itself promoted by PTB in a negative feedback loop. This autoregulation may serve both to prevent disruptively high levels of PTB expression and to restore nuclear levels when PTB is mobilized to the cytoplasm. Our findings suggest that alternative splicing can act not only to generate protein isoform diversity but also to quantitatively control gene expression and complement recent bioinformatic analyses, indicating a high prevalence of human alternative splicing leading to NMD.
Collapse
Affiliation(s)
- Matthew C Wollerton
- Department of Biochemistry, 80 Tennis Court Road, University of Cambridge, Cambridge CB2 1GA, United Kingdom
| | | | | | | | | |
Collapse
|
85
|
Simpson CG, Jennings SN, Clark GP, Thow G, Brown JWS. Dual functionality of a plant U-rich intronic sequence element. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2004; 37:82-91. [PMID: 14675434 DOI: 10.1046/j.1365-313x.2003.01941.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
In potato invertase genes, the constitutively included, 9-nucleotide (nt)-long mini-exon requires a strong branchpoint and U-rich polypyrimidine tract for inclusion. The strength of these splicing signals was demonstrated by greatly enhanced splicing of a poorly spliced intron and by their ability to support splicing of an artificial mini-exon, following their introduction. Plant introns also require a second splicing signal, UA-rich intronic elements, for efficient intron splicing. Mutation of the branchpoint caused loss of mini-exon inclusion without loss of splicing enhancement, showing that the same U-rich sequence can function as either a polypyrimidine tract or a UA-rich intronic element. The distinction between the splicing signals depended on intron context (the presence or absence of an upstream, adjacent and functional branchpoint), and on the sequence context of the U-rich elements. Polypyrimidine tracts tolerated C residues while UA-rich intronic elements tolerated As. Thus, in plant introns, U-rich splicing elements can have dual roles as either a general plant U-rich splicing signal or a polypyrimidine tract. Finally, overexpression of two different U-rich binding proteins enhanced intron recognition significantly. These results highlight the importance of co-operation between splicing signals, the importance of other nucleotides within U-rich elements for optimal binding of competing splicing factors and effects on splicing efficiency of U-rich binding proteins.
Collapse
Affiliation(s)
- Craig G Simpson
- Gene Expression, Scottish Crop Research Institute, Invergowrie, Dundee, DD2 5DA Scotland, UK
| | | | | | | | | |
Collapse
|
86
|
Gromak N, Rideau A, Southby J, Scadden ADJ, Gooding C, Hüttelmaier S, Singer RH, Smith CWJ. The PTB interacting protein raver1 regulates alpha-tropomyosin alternative splicing. EMBO J 2003; 22:6356-64. [PMID: 14633994 PMCID: PMC291850 DOI: 10.1093/emboj/cdg609] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2003] [Revised: 09/19/2003] [Accepted: 10/13/2003] [Indexed: 01/09/2023] Open
Abstract
Regulated switching of the mutually exclusive exons 2 and 3 of alpha-tropomyosin (TM) involves repression of exon 3 in smooth muscle cells. Polypyrimidine tract-binding protein (PTB) is necessary but not sufficient for regulation of TM splicing. Raver1 was identified in two-hybrid screens by its interactions with the cytoskeletal proteins actinin and vinculin, and was also found to interact with PTB. Consistent with these interactions raver1 can be localized in either the nucleus or cytoplasm. Here we show that raver1 is able to promote the smooth muscle-specific alternative splicing of TM by enhancing PTB-mediated repression of exon 3. This activity of raver1 is dependent upon characterized PTB-binding regulatory elements and upon a region of raver1 necessary for interaction with PTB. Heterologous recruitment of raver1, or just its C-terminus, induced very high levels of exon 3 skipping, bypassing the usual need for PTB binding sites downstream of exon 3. This suggests a novel mechanism for PTB-mediated splicing repression involving recruitment of raver1 as a potent splicing co-repressor.
Collapse
Affiliation(s)
- Natalia Gromak
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, UK
| | | | | | | | | | | | | | | |
Collapse
|
87
|
Loria PM, Duke A, Rand JB, Hobert O. Two neuronal, nuclear-localized RNA binding proteins involved in synaptic transmission. Curr Biol 2003; 13:1317-23. [PMID: 12906792 DOI: 10.1016/s0960-9822(03)00532-3] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
While there is evidence that distinct protein isoforms resulting from alternative pre-mRNA splicing play critical roles in neuronal development and function, little is known about molecules regulating alternative splicing in the nervous system. Using Caenorhabditis elegans as a model for studying neuron/target communication, we report that unc-75 mutant animals display neuroanatomical and behavioral defects indicative of a role in modulating GABAergic and cholinergic neurotransmission but not neuronal development. We show that unc-75 encodes an RRM domain-containing RNA binding protein that is exclusively expressed in the nervous system and neurosecretory gland cells. UNC-75 protein, as well as a subset of related C. elegans RRM proteins, localizes to dynamic nuclear speckles; this localization pattern supports a role for the protein in pre-mRNA splicing. We found that human orthologs of UNC-75, whose splicing activity has recently been documented in vitro, are expressed nearly exclusively in brain and when expressed in C. elegans, rescue unc-75 mutant phenotypes and localize to subnuclear puncta. Furthermore, we report that the subnuclear-localized EXC-7 protein, the C. elegans ortholog of the neuron-restricted Drosophila ELAV splicing factor, acts in parallel to UNC-75 to also affect cholinergic synaptic transmission. In conclusion, we identified a new neuronal, putative pre-mRNA splicing factor, UNC-75, and show that UNC-75, as well as the C. elegans homolog of ELAV, is required for the fine tuning of synaptic transmission. These findings thus provide a novel molecular link between pre-mRNA splicing and presynaptic function.
Collapse
Affiliation(s)
- Paula M Loria
- Department of Biochemistry and Molecular Biophysics, Center for Neurobiology and Behavior, Columbia University, College of Physicians and Surgeons, 701 West 168th Street, New York, NY 10032, USA
| | | | | | | |
Collapse
|