51
|
Kashima T, Nakamura K, Kawaguchi J, Takanashi M, Ishida T, Aburatani H, Kudo A, Fukayama M, Grigoriadis AE. Overexpression of cadherins suppresses pulmonary metastasis of osteosarcoma in vivo. Int J Cancer 2003; 104:147-54. [PMID: 12569568 DOI: 10.1002/ijc.10931] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Osteosarcoma by nature shows aggressive pulmonary metastasis; however, the underlying molecular mechanisms remain unclear. We previously showed that N-cadherin and cadherin-11 (OB-cadherin), which are highly expressed in normal osteoblasts, are anomalously expressed in human osteosarcoma (Kashima et al., Am J Pathol 1999;155:1549-55). In the present study, we examined the role of cadherins in osteosarcoma metastasis using the mouse osteosarcoma cell line Dunn and its highly metastatic subline LM8. Oligonucleotide array and RT-PCR analyses demonstrated that Dunn and LM8 cells did not express appreciable levels of several members of the cadherin family, and Western blot analysis confirmed that Dunn and LM8 cells did not express P-cadherin, E-cadherin, N-cadherin or cadherin-11 protein. We therefore investigated the functional consequences of cadherin overexpression on cell migration and in vivo metastatic potential of LM8 cells. Several LM8 clones were isolated which expressed exogenous N-cadherin and cadherin-11 localized to the cell membrane and able to bind to beta-catenin. Overexpression of N-cadherin or cadherin-11 in LM8 cells did not affect cell proliferation but caused an inhibitory effect on cell migration in vitro. In vivo analysis showed that N-cadherin- and cadherin-11-overexpressing cells exhibited a marked reduction in their ability to form pulmonary metastases, with significant decreases in lung weight and the number and weight of metastatic lesions, as well as the size and weight of primary lesions at the s.c.-inoculated site. These observations demonstrate that disruption of N-cadherin- and cadherin-11-mediated cell-cell adhesion is critical in the pulmonary metastasis of osteosarcoma.
Collapse
Affiliation(s)
- Takeshi Kashima
- Department of Human Pathology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
52
|
Abstract
Cell-cell adhesion mediated by cadherins is essential for the function of bone forming cells during osteogenesis. Here, the evidence that N-cadherin is an important regulator of osteoblast differentiation and osteogenesis is reviewed. Osteoblasts express a limited number of cadherins, including the classic N-cadherin. The expression profile of N-cadherin in osteoblasts during bone formation in vivo and in vitro suggests a role of this molecule in osteogenesis. Functional studies using neutralizing antibodies or antisense oligonucleotides indicate that N-cadherin is involved in the control the expression of osteoblast marker gene expression and differentiation. Cleavage of N-cadherin during osteoblast apoptosis also suggests a role of N-cadherin-mediated-cell-cell adhesion in osteoblast survival. Hormonal and local factors that regulate osteoblast function also regulate N-cadherin expression and subsequent cell-cell adhesion associated with osteoblast differentiation or survival. Signaling mechanisms involved in N-cadherin-mediated cell-cell adhesion and osteoblast gene expression have also been identified. Alterations of N-cadherin expression are associated with abnormal osteoblast differentiation and osteogenesis in pathological conditions. These findings indicate that N-cadherin plays a role in normal and pathological bone formation and provide some insight into the process involved in N-cadherin-mediated cell-cell adhesion and differentiation in osteoblasts.
Collapse
Affiliation(s)
- Pierre J Marie
- INSERM U 349, affiliated CNRS, Biology and Pathology of Osteoblast, Lariboisière Hospital, Paris, France.
| |
Collapse
|
53
|
Wiggan O, Fadel MP, Hamel PA. Pax3 induces cell aggregation and regulates phenotypic mesenchymal-epithelial interconversion. J Cell Sci 2002; 115:517-29. [PMID: 11861759 DOI: 10.1242/jcs.115.3.517] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Paired box-containing transcription factors play fundamental roles in pattern formation during embryonic development of diverse organisms ranging from Drosophila to mammals. Although mutations to Pax3 and other Pax-family genes in both mice and humans result in numerous tissue-specific morphological defects, little is known about the cellular processes that Pax genes regulate. We show that extopic Pax3 expression in two distinct phenotypically mesenchymal mammalian cell lines induces the formation of multi-layered condensed cell aggregates with epithelial characteristics. For one of these lines, we showed further that Pax3-induced cell aggregation is accompanied by specific morphological changes, including a significant reduction in cell size, altered cell shape and dramatic alterations to both membrane and cytoskeleton architecture. In addition to mediating a phenotypic mesenchymal-to-epithelial transition, Pax3 also establishes the conditions in these cells for a subsequent hepatocyte growth factor/scatter factor(HGF/SF)-induced phenotypic epithelial-to-mesenchymal transition. Thus, our data show a novel morphogenetic activity for Pax3 which, when absent in vivo,is predicted to give rise to the observed structural defects in somites and the neural tube during embryonic development.
Collapse
Affiliation(s)
- O'Neil Wiggan
- Department of Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, M5S 1A8 Canada
| | | | | |
Collapse
|
54
|
Monaghan H, Bubb VJ, Sirimujalin R, Millward-Sadler SJ, Salter DM. Adenomatous polyposis coli (APC), beta-catenin, and cadherin are expressed in human bone and cartilage. Histopathology 2001; 39:611-9. [PMID: 11903580 DOI: 10.1046/j.1365-2559.2001.01287.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
AIMS Members of the cadherin and catenin families are involved in chondrogenesis and catenin gene mutations have been detected in malignant tumours of bone. This study was undertaken to assess in detail expression of cadherin, beta-catenin and the associated tumour suppressor gene product APC in bone and cartilage at different stages of human skeletal maturity and in non-neoplastic and neoplastic osteoarticular disease. METHODS AND RESULTS Immunohistochemical staining of formalin-fixed paraffin-embedded normal and osteoarthritic adult articular cartilage, fetal growth plate and a series of tumours of bone and cartilage was undertaken with a panel of antibodies against APC, beta-catenin, and pan-cadherin. This study demonstrated expression of APC, beta-catenin and cadherin in normal and diseased bone and cartilage. APC was present both in osteoblasts and osteoclasts but not in osteocytes. Although only weak APC staining of occasional growth plate hypertrophic chondrocytes and normal articular chondrocytes was seen, APC staining was increased in osteoarthritic articular cartilage. beta-catenin and pan-cadherin staining was strongly positive in osteoclasts and osteoblasts, with expression being lost when bone cells differentiated into osteocytes. Expression of APC, beta-catenin and pan-cadherin in bone tumours was similar to that of non-neoplastic adult tissues. CONCLUSIONS These findings suggest previously unrecognized roles for APC in regulation of function of chondrocytes, osteoblasts and osteoclasts and support the view that catenin-cadherin interactions are important in regulation of bone cell activity. Abnormalities of expression or function of these molecules may be important in formation of bone tumours and their clinical behaviour.
Collapse
Affiliation(s)
- H Monaghan
- Department of Pathology, Edinburgh University Medical School, Teviot Place, Edinburgh EH8 9AG, UK.
| | | | | | | | | |
Collapse
|
55
|
Delannoy P, Lemonnier J, Haÿ E, Modrowski D, Marie PJ. Protein kinase C-dependent upregulation of N-cadherin expression by phorbol ester in human calvaria osteoblasts. Exp Cell Res 2001; 269:154-61. [PMID: 11525648 DOI: 10.1006/excr.2001.5301] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Cell-cell adhesion mediated by cadherins is believed to play an essential role in the control of cell differentiation and tissue formation. Our recent studies indicate that N-cadherin is involved in human osteoblast differentiation. However, the signalling molecules that regulate cadherins in osteoblasts are not known. We tested the possibility that N-cadherin expression and function may be regulated by direct activation of protein kinase C (PKC) in human osteoblasts. Treatment of immortalized human neonatal calvaria (IHNC) cells with phorbol 12,13-dibutyrate (100 nM) transiently increased PKC activity. RT-PCR analysis showed that transient treatment with phorbol ester transiently increased N-cadherin mRNA levels at 4-12 h. Western blot analysis showed that N-cadherin protein levels were increased by phorbol ester at 24-48 h, and this was confirmed by immunocytochemical analysis. In contrast, E-cadherin expression was not affected. Transient treatment of IHNC cells with phorbol ester increased cell-cell aggregation, which was suppressed by neutralizing N-cadherin antibody, showing that the increased N-cadherin induced by phorbol ester was functional. Finally, phorbol ester dose-dependently increased alkaline phosphatase activity, an early marker of osteoblast differentiation. This effect was comparable to the promoting effect of BMP-2, a potent activator of osteoblast differentiation. These data show that direct activation of PKC by phorbol ester increases N-cadherin expression and function, and promotes ALP activity in human calvaria osteoblasts, which provides a signaling mechanism by which N-cadherin is regulated and suggests a role for PKC in N-cadherin-mediated control of human osteoblast differentiation.
Collapse
Affiliation(s)
- P Delannoy
- INSERM U 349 affiliated CNRS, Lariboisière Hospital, Paris, France
| | | | | | | | | |
Collapse
|
56
|
Lemonnier J, Haÿ E, Delannoy P, Lomri A, Modrowski D, Caverzasio J, Marie PJ. Role of N-cadherin and protein kinase C in osteoblast gene activation induced by the S252W fibroblast growth factor receptor 2 mutation in Apert craniosynostosis. J Bone Miner Res 2001; 16:832-45. [PMID: 11341328 DOI: 10.1359/jbmr.2001.16.5.832] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Apert (Ap) syndrome is characterized by premature cranial suture ossification caused by fibroblast growth factor receptor 2 (FGFR-2) mutations. We studied the role of cadherins and signaling events in the phenotypic alterations induced by the Ap FGFR-2 S252W mutation in mutant immortalized fetal human calvaria osteoblasts. The FGFR-2 mutation caused increased expression of the osteoblast markers alkaline phosphatase (ALP), type 1 collagen (COLIA1), and osteocalcin (OC) in long-term culture. The mutation also increased cell-cell aggregation, which was suppressed by specific neutralizing anti-N- and anti-E-cadherin antibodies. Mutant osteoblasts showed increased N- and E-cadherin, but not N-cell adhesion molecule (N-CAM) messenger RNA (mRNA) and protein levels. This was confirmed in vivo by the abundant immunoreactive N- and E-cadherins in preosteoblasts in the Ap suture whereas N-CAM and alpha- and beta-catenins were unaffected. Neutralizing anti-N-cadherin antibody or N-cadherin antisense (AS) oligonucleotides but not anti-E-cadherin antibody or AS reduced ALP activity as well as ALP, COLIA1, and OC mRNA overexpression in mutant osteoblasts. Analysis of signal transduction revealed increased phospholipase Cgamma (PLCgamma) and protein kinase Calpha (PKCalpha) phosphorylation and increased PKC activity in mutant cells in basal conditions. Inhibition of PKC by calphostin C or the PKCalpha-specific inhibitor Gö6976 suppressed the increased N-cadherin mRNA and protein levels as well as the overexpression of ALP, COLIA1, and OC mRNA in mutant cells. Thus, N-cadherin plays a role in the activation of osteoblast differentiation marker genes in mutant osteoblasts and PKCalpha signaling appears to be involved in the increased N-cadherin and osteoblast gene expression induced by the S252W FGFR-2 mutation in human osteoblasts.
Collapse
Affiliation(s)
- J Lemonnier
- Institut National de la Santé et de la Recherche Médicale U 349, Centre National de la Recherche Scientifique, Lariboisière Hospital, Paris, France
| | | | | | | | | | | | | |
Collapse
|
57
|
Debiais F, Lemonnier J, Hay E, Delannoy P, Caverzasio J, Marie PJ. Fibroblast growth factor-2 (FGF-2) increases N-cadherin expression through protein kinase C and Src-kinase pathways in human calvaria osteoblasts. J Cell Biochem 2001; 81:68-81. [PMID: 11180398 DOI: 10.1002/1097-4644(20010401)81:1<68::aid-jcb1024>3.0.co;2-s] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Fibroblast growth factors (FGFs) are important factors regulating osteogenesis. However, the early mechanisms and signaling pathways involved in FGF actions in osteoblasts are unknown. We investigated the effects of FGF-2 on cell-cell adhesion and cadherin expression and the underlying signaling pathways in immortalized human neonatal calvaria (IHNC) cells. These cells express E- and N-cadherins, as shown by immunocytochemical and Western blot analyses. rhFGF-2 increased cell-cell adhesion at 24-72 h, as measured in a cell aggregation assay, and this effect was blocked by specific neutralizing anti-N-cadherin, but not anti-E-cadherin antibodies. Accordingly, ELISA and Western blot analyses showed that rhFGF-2 (10-100 ng/ml) dose dependently increased N-cadherin but not E-cadherin protein levels. RT-PCR analysis showed that rhFGF-2 transiently increased N-cadherin mRNA levels in IHNC cells. The RNA polymerase II inhibitor 5,6-dichloro-1-beta-D-ribofuranosyl benzimidazole prevented the rhFGF-2-induced up-regulation of N-cadherin mRNA, suggesting that transcription is necessary for this effect. Analysis of signaling molecules showed evidence that PLCgamma-PKC, Src, Erk 1/2 and p38 MAPK pathways are activated by rhFGF-2 in IHNC cells. The selective PKC inhibitors calphostin C, Ro-31-8220, Gö6976 and Gö6983 abrogated the stimulatory effect of rhFGF-2 on N-cadherin mRNA levels. The src-family tyrosine kinase inhibitor PP1 also blocked rhFGF-2-promoted N-cadherin expression. In contrast, the p38 MAP kinase inhibitor SB 203580 or the MEK inhibitor PD98059 had no effect on rhFGF-2-induced N-cadherin mRNA levels. Our data indicate that FGF-2 increases N-cadherin expression and function in human calvaria osteoblasts via activation of PKC and src-kinase pathways. This study identifies N-cadherin as a previously unrecognized target gene for FGF-2 signaling pathway that regulates cell-cell adhesion in human osteoblasts.
Collapse
Affiliation(s)
- F Debiais
- INSERM Unit 349 Affiliated CNRS, Lariboisiere Hospital, 2 rue Ambroise Paré, 75475 Paris Cedex 10, France
| | | | | | | | | | | |
Collapse
|
58
|
Hunter I, McGregor D, Robins SP. Caspase-dependent cleavage of cadherins and catenins during osteoblast apoptosis. J Bone Miner Res 2001; 16:466-77. [PMID: 11277264 DOI: 10.1359/jbmr.2001.16.3.466] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
As transmembrane, Ca2+-dependent cell-cell adhesion molecules, cadherins play a central role in tissue morphogenesis and homeostasis. Stable adhesion is dependent on interactions of the cytoplasmic domain of the cadherins with a group of intracellular proteins, the catenins. In the present study, we have detected the expression of alpha-, beta-, and gamma-catenins in human osteoblasts, which assemble with cadherins to form two distinct complexes containing cadherin and alpha-catenin, with either beta- or gamma-catenin. In osteoblasts undergoing apoptosis, proteolytic cleavage of N-cadherin and beta- and gamma- catenins but not alpha-catenin was associated with the activation of caspase-3 and prevented by the caspase inhibitor Z-VAD-fmk. The pattern of cadherin/catenin cleavage detected in apoptotic osteoblasts was reproduced in vitro by recombinant caspase-3. The presence of a 90-kDa extracellular domain fragment of N-cadherin in conditioned medium from apoptotic cells indicates that additional extracellular or membrane-associated proteases also are activated. Disruption of N-cadherin-mediated cell-cell adhesion with function-blocking antibodies induced osteoblast apoptosis, activation of caspases, and cleavage of beta-catenin. These findings provide compelling evidence that N-cadherin-mediated cell-cell adhesion promotes osteoblast survival and suggest that the underlying mechanism may involve activation of beta-catenin signaling.
Collapse
Affiliation(s)
- I Hunter
- Matrix Biochemistry Group, Rowett Research Institute, Aberdeen, Scotland
| | | | | |
Collapse
|
59
|
Kawaguchi J, Kii I, Sugiyama Y, Takeshita S, Kudo A. The transition of cadherin expression in osteoblast differentiation from mesenchymal cells: consistent expression of cadherin-11 in osteoblast lineage. J Bone Miner Res 2001; 16:260-9. [PMID: 11204426 DOI: 10.1359/jbmr.2001.16.2.260] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Osteoblasts are derived originally from pluripotent mesenchymal stem cells on migration into the bone matrix. To elucidate the contribution of classical cadherins in this differentiation pathway, we developed a new protocol for their analysis and studied their specific expressions in various cell lines of the mesenchymal lineage, including osteoblasts. N-cadherin was expressed constitutively in all cell lines examined except an osteocyte-like cell line whereas cadherin-11 was expressed selectively in preosteoblast and preadipocyte cell lines. P-cadherin also was expressed in primary cultures of calvarial cells and mature osteoblasts at a relatively low level compared with N-cadherin and cadherin-11. M-cadherin was expressed only in a premyoblast cell line. We observed the transition of cadherin expression from M-cadherin to cadherin-11 in the premyoblast cell line when osteogenic differentiation was induced by treatment with bone morphogenetic protein 2 (BMP-2), while the expression of N-cadherin remained unchanged. In contrast, when a preadipocyte cell line, which shows a similar pattern of cadherin expression to osteoblasts, was induced to undergo adipogenic differentiation, the expression of N-cadherin and cadherin-11 was decreased. These observations characterize the cadherin expression profile of mesenchymal lineage cells, especially osteoblasts, which regularly express cadherin-11. Cadherin-11 may affect cell sorting, alignment, and separation through differentiation.
Collapse
Affiliation(s)
- J Kawaguchi
- Department of Life Science, Tokyo Institute of Technology, Yokohama, Japan
| | | | | | | | | |
Collapse
|
60
|
Abstract
We have previously indicated that human osteoblasts express a repertoire of cadherins and that perturbation of cadherin-mediated cell-cell interaction reduces bone morphogenetic protein 2 (BMP-2) stimulation of alkaline phosphatase activity. To test whether inhibition of cadherin function interferes with osteoblast function, we expressed a truncated N-cadherin mutant (NCaddeltaC) with dominant negative action in MC3T3-E1 osteoblastic cells. In stably transfected clones, calcium-dependent cell-cell adhesion was decreased by 50%. Analysis of matrix protein expression during a 4-week culture period revealed that bone sialoprotein, osteocalcin, and type I collagen were substantially inhibited with time in culture, whereas osteopontin transiently increased. Basal alkaline phosphatase activity declined in cells expressing NCaddeltaC, relative to control cells, after 3 weeks in culture, and their cell proliferation rate was reduced moderately (17%). Finally, 45Ca uptake, an index of matrix mineralization, was decreased by 35% in NCaddeltaC-expressing cells compared with control cultures after 4 weeks in medium containing ascorbic acid and beta-glycerophosphate. Similarly, BMP-2 stimulation of alkaline phosphatase activity and bone sialoprotein and osteopontin expression also were curtailed in NCaddeltaC cells. Therefore, expression of dominant negative cadherin results in decreased cell-cell adhesion associated with altered bone matrix protein expression and decreased matrix mineralization. Cadherin-mediated cell-cell adhesion is involved in regulating the function of bone-forming cells.
Collapse
Affiliation(s)
- S L Cheng
- Department of Medicine, Washington University School of Medicine, Barnes-Jewish Hospital, St. Louis, Missouri 63110, USA
| | | | | | | |
Collapse
|
61
|
Lecanda F, Cheng SL, Shin CS, Davidson MK, Warlow P, Avioli LV, Civitelli R. Differential regulation of cadherins by dexamethasone in human osteoblastic cells. J Cell Biochem 2000; 77:499-506. [PMID: 10760957 DOI: 10.1002/(sici)1097-4644(20000601)77:3<499::aid-jcb14>3.0.co;2-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Human osteoblasts express a repertoire of cadherins, including N-cadherin (N-cad), cadherin-11 (C11), and cadherin-4 (C4). We have previously shown that direct cell-cell adhesion via cadherins is critical for BMP-2-induced osteoblast differentiation. In this study, we have analyzed the regulation of cadherin expression in normal human trabecular bone osteoblasts (HOB), and osteoprogenitor marrow stromal cells (BMC), during exposure to dexamethasone, another inducer of human bone cell differentiation. Dexamethasone inhibited the expression of both C11 and N-cad mRNA in both BMC and HOB, although the effect was much more pronounced on N-cad than on C11. This action of the steroid was dose dependent, was maximal at 10(-7) M concentration, and occurred as early as after 1 day of incubation. By contrast, expression of C4 mRNA and protein was strongly induced by dexamethasone in BMC and was stimulated in HOB. This stimulatory effect lasted for at least 2 weeks of incubation. A cadherin inhibitor, HAV-containing decapeptide only partially ( approximately 50%) prevented dexamethasone-induced stimulation of alkaline phosphatase activity by BMC, which instead was not altered by incubation with a neutralizing antibody against C4. Therefore, the pattern of cadherin regulation by dexamethasone radically differs form that observed with BMP-2. Dexamethasone effects on certain osteoblast differentiated features, such as induction of alkaline phosphatase activity are not strictly dependent on cadherin function.
Collapse
Affiliation(s)
- F Lecanda
- Division of Bone and Mineral Diseases, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | | | | | | | | | |
Collapse
|
62
|
Relative abundance of different cadherins defines differentiation of mesenchymal precursors into osteogenic, myogenic, or adipogenic pathways. J Cell Biochem 2000. [DOI: 10.1002/1097-4644(20000915)78:4<566::aid-jcb6>3.0.co;2-k] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|