51
|
Different levels of the Tripartite motif protein, Anomalies in sensory axon patterning (Asap), regulate distinct axonal projections of Drosophila sensory neurons. Proc Natl Acad Sci U S A 2011; 108:19389-94. [PMID: 22084112 DOI: 10.1073/pnas.1109843108] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The axonal projection pattern of sensory neurons typically is regulated by environmental signals, but how different sensory afferents can establish distinct projections in the same environment remains largely unknown. Drosophila class IV dendrite arborization (C4da) sensory neurons project subtype-specific axonal branches in the ventral nerve cord, and we show that the Tripartite motif protein, Anomalies in sensory axon patterning (Asap) is a critical determinant of the axonal projection patterns of different C4da neurons. Asap is highly expressed in C4da neurons with both ipsilateral and contralateral axonal projections, but the Asap level is low in neurons that have only ipsilateral projections. Mutations in asap cause a specific loss of contralateral projections, whereas overexpression of Asap induces ectopic contralateral projections in C4da neurons. We also show by biochemical and genetic analysis that Asap regulates Netrin signaling, at least in part by linking the Netrin receptor Frazzled to the downstream effector Pico. In the absence of Asap, the sensory afferent connectivity within the ventral nerve cord is disrupted, resulting in specific larval behavioral deficits. These results indicate that different levels of Asap determine distinct patterns of axonal projections of C4da neurons by modulating Netrin signaling and that the Asap-mediated axonal projection is critical for assembly of a functional sensory circuit.
Collapse
|
52
|
Sürmeli G, Akay T, Ippolito GC, Tucker PW, Jessell TM. Patterns of spinal sensory-motor connectivity prescribed by a dorsoventral positional template. Cell 2011; 147:653-65. [PMID: 22036571 PMCID: PMC3238499 DOI: 10.1016/j.cell.2011.10.012] [Citation(s) in RCA: 127] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2011] [Revised: 09/30/2011] [Accepted: 10/12/2011] [Indexed: 11/22/2022]
Abstract
Sensory-motor circuits in the spinal cord are constructed with a fine specificity that coordinates motor behavior, but the mechanisms that direct sensory connections with their motor neuron partners remain unclear. The dorsoventral settling position of motor pools in the spinal cord is known to match the distal-to-proximal position of their muscle targets in the limb, but the significance of invariant motor neuron positioning is unknown. An analysis of sensory-motor connectivity patterns in FoxP1 mutant mice, where motor neuron position has been scrambled, shows that the final pattern of sensory-motor connections is initiated by the projection of sensory axons to discrete dorsoventral domains of the spinal cord without regard for motor neuron subtype or, indeed, the presence of motor neurons. By implication, the clustering and dorsoventral settling position of motor neuron pools serve as a determinant of the pattern of sensory input specificity and thus motor coordination.
Collapse
Affiliation(s)
- Gülşen Sürmeli
- Kavli Institute for Brain Science, Department of Neuroscience, Columbia University, New York, NY 10032, USA
| | | | | | | | | |
Collapse
|
53
|
Abstract
In this issue of Neuron, Wu et al. describe a combinatorial code of repulsive Sema-2a and attractive Sema-2b signaling that mediates mechanosensory axonal guidance, fasciculation, and synaptic target selection within the CNS of Drosophila. Their work exemplifies how a detailed, multilevel molecular-genetic analysis (from molecules to behavior) provides fundamental insights into neural circuit development.
Collapse
Affiliation(s)
- Brett Berke
- Molecular, Cellular, and Developmental Biology Department, Yale University, POB 208103, New Haven, CT 06520-8103, USA
| | | |
Collapse
|
54
|
Wu Z, Sweeney LB, Ayoob JC, Chak K, Andreone BJ, Ohyama T, Kerr R, Luo L, Zlatic M, Kolodkin AL. A combinatorial semaphorin code instructs the initial steps of sensory circuit assembly in the Drosophila CNS. Neuron 2011; 70:281-98. [PMID: 21521614 DOI: 10.1016/j.neuron.2011.02.050] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/09/2011] [Indexed: 01/19/2023]
Abstract
Longitudinal axon fascicles within the Drosophila embryonic CNS provide connections between body segments and are required for coordinated neural signaling along the anterior-posterior axis. We show here that establishment of select CNS longitudinal tracts and formation of precise mechanosensory afferent innervation to the same CNS region are coordinately regulated by the secreted semaphorins Sema-2a and Sema-2b. Both Sema-2a and Sema-2b utilize the same neuronal receptor, plexin B (PlexB), but serve distinct guidance functions. Localized Sema-2b attraction promotes the initial assembly of a subset of CNS longitudinal projections and subsequent targeting of chordotonal sensory afferent axons to these same longitudinal connectives, whereas broader Sema-2a repulsion serves to prevent aberrant innervation. In the absence of Sema-2b or PlexB, chordotonal afferent connectivity within the CNS is severely disrupted, resulting in specific larval behavioral deficits. These results reveal that distinct semaphorin-mediated guidance functions converge at PlexB and are critical for functional neural circuit assembly.
Collapse
Affiliation(s)
- Zhuhao Wu
- The Solomon H. Snyder Department of Neuroscience, The Johns Hopkins University School of Medicine, Howard Hughes Medical Institute, Baltimore, MD 21205, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
55
|
Haugen M, Flannery E, Tomchaney M, Mori A, Behura SK, Severson DW, Duman-Scheel M. Semaphorin-1a is required for Aedes aegypti embryonic nerve cord development. PLoS One 2011; 6:e21694. [PMID: 21738767 PMCID: PMC3124551 DOI: 10.1371/journal.pone.0021694] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2011] [Accepted: 06/08/2011] [Indexed: 12/30/2022] Open
Abstract
Although mosquito genome projects have uncovered orthologues of many known developmental regulatory genes, extremely little is known about mosquito development. In this study, the role of semaphorin-1a (sema1a) was investigated during vector mosquito embryonic ventral nerve cord development. Expression of sema1a and the plexin A (plexA) receptor are detected in the embryonic ventral nerve cords of Aedes aegypti (dengue vector) and Anopheles gambiae (malaria vector), suggesting that Sema1a signaling may regulate mosquito nervous system development. Analysis of sema1a function was investigated through siRNA-mediated knockdown in A. aegypti embryos. Knockdown of sema1a during A. aegypti development results in a number of nerve cord phenotypes, including thinning, breakage, and occasional fusion of the longitudinal connectives, thin or absent commissures, and general distortion of the nerve cord. Although analysis of Drosophila melanogaster sema1a loss-of-function mutants uncovered many similar phenotypes, aspects of the longitudinal phenotypes differed between D. melanogaster and A. aegypti. The results of this investigation suggest that Sema1a is required for development of the insect ventral nerve cord, but that the developmental roles of this guidance molecule have diverged in dipteran insects.
Collapse
Affiliation(s)
- Morgan Haugen
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, South Bend, Indiana, United States of America
| | - Ellen Flannery
- Department of Biological Sciences and Eck Institute for Global Health, University of Notre Dame, Notre Dame, Indiana, United States of America
| | - Michael Tomchaney
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, South Bend, Indiana, United States of America
- Department of Biological Sciences and Eck Institute for Global Health, University of Notre Dame, Notre Dame, Indiana, United States of America
| | - Akio Mori
- Department of Biological Sciences and Eck Institute for Global Health, University of Notre Dame, Notre Dame, Indiana, United States of America
| | - Susanta K. Behura
- Department of Biological Sciences and Eck Institute for Global Health, University of Notre Dame, Notre Dame, Indiana, United States of America
| | - David W. Severson
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, South Bend, Indiana, United States of America
- Department of Biological Sciences and Eck Institute for Global Health, University of Notre Dame, Notre Dame, Indiana, United States of America
| | - Molly Duman-Scheel
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, South Bend, Indiana, United States of America
- Department of Biological Sciences and Eck Institute for Global Health, University of Notre Dame, Notre Dame, Indiana, United States of America
- * E-mail:
| |
Collapse
|
56
|
Neufeld SQ, Hibbert AD, Chen BE. Opposing roles of PlexinA and PlexinB in axonal branch and varicosity formation. Mol Brain 2011; 4:15. [PMID: 21489263 PMCID: PMC3094289 DOI: 10.1186/1756-6606-4-15] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2011] [Accepted: 04/13/2011] [Indexed: 01/01/2023] Open
Abstract
Establishing precise synaptic connectivity during development is crucial for neural circuit function. However, very few molecules have been identified that are involved in determining where and how many synapses form. The Plexin cell-surface molecules are a conserved family of axon guidance receptors that mediate axon fasciculation and repulsion during neural development, and later in development PlexinA receptors are involved in eliminating axonal branches and synapse numbers. Here we investigate the roles of PlexinA and PlexinB receptors in axonal branch and varicosity formation in Drosophila. We knocked down PlexinA or PlexinB expression using RNAi in identified mechanosensory neurons and analyzed axonal branching patterns and varicosity formations. Reducing PlexinA expression increased the axonal arbor complexity by increasing the number of branches and varicosities along the axon. In contrast, knocking down PlexinB expression decreased morphological complexity by decreasing the number of branches and the overall size of the axonal arbor, but did not reduce the number of varicosities. Our results demonstrate opposing roles for PlexinA and PlexinB in local wiring within a target region, where PlexinA functions to suppress excessive axonal branches and synapses and PlexinB facilitates axonal growth.
Collapse
Affiliation(s)
- Shay Q Neufeld
- Research Institute of the McGill University Health Centre, Centre for Research in Neuroscience, Montréal, Québec, Canada
| | | | | |
Collapse
|
57
|
O'Kane CJ. Drosophila as a model organism for the study of neuropsychiatric disorders. Curr Top Behav Neurosci 2011; 7:37-60. [PMID: 21225410 DOI: 10.1007/7854_2010_110] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
The fruitfly Drosophila offers a model system in which powerful genetic tools can be applied to understanding the neurobiological bases of a range of complex behaviors. The Drosophila and human lineages diverged several hundred million years ago, and despite their obvious differences, flies and humans share many fundamental cellular and neurobiological processes. The similarities include fundamental mechanisms of neuronal signaling, a conserved underlying brain architecture and the main classes of neurotransmitter system. Drosophila also have a sophisticated behavioral repertoire that includes extensive abilities to adapt to experience and other circumstances, and is therefore susceptible to the same kinds of insults that can cause neuropsychiatric disorders in humans. Given the different physiologies, lifestyles, and cognitive abilities of flies and humans, many higher order behavioral features of the human disorders cannot be modeled readily in flies. However, an increasing understanding of the genetics of human neuropsychiatric disorders is suggesting parallels with underlying neurobiological mechanisms in flies, thus providing important insights into the possible mechanisms of these poorly understood disorders.
Collapse
Affiliation(s)
- Cahir J O'Kane
- Department of Genetics, University of Cambridge, Downing Street, Cambridge, CB2 3EH, UK,
| |
Collapse
|
58
|
Wegman LJ, Ainsley JA, Johnson WA. Developmental timing of a sensory-mediated larval surfacing behavior correlates with cessation of feeding and determination of final adult size. Dev Biol 2010; 345:170-9. [PMID: 20630480 DOI: 10.1016/j.ydbio.2010.07.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2010] [Revised: 06/29/2010] [Accepted: 07/05/2010] [Indexed: 11/17/2022]
Abstract
Controlled organismal growth to an appropriate adult size requires a regulated balance between nutrient resources, feeding behavior and growth rate. Defects can result in decreased survival and/or reproductive capability. Since Drosophila adults do not grow larger after eclosion, timing of feeding cessation during the third and final larval instar is critical to final size. We demonstrate that larval food exit is preceded by a period of increased larval surfacing behavior termed the Intermediate Surfacing Transition (IST) that correlates with the end of larval feeding. This behavioral transition occurred during the larval Terminal Growth Period (TGP), a period of constant feeding and exponential growth of the animal. IST behavior was dependent upon function of a subset of peripheral sensory neurons expressing the Degenerin/Epithelial sodium channel (DEG/ENaC) subunit, Pickpocket1(PPK1). PPK1 neuron inactivation or loss of PPK1 function caused an absence of IST behavior. Transgenic PPK1 neuron hyperactivation caused premature IST behavior with no significant change in timing of larval food exit resulting in decreased final adult size. These results suggest a peripheral sensory mechanism functioning to alter the relationship between the animal and its environment thereby contributing to the length of the larval TGP and determination of final adult size.
Collapse
Affiliation(s)
- Lauren J Wegman
- University of Iowa, Roy J. and Lucille A. Carver College of Medicine, Department of Molecular Physiology and Biophysics, Iowa City, IA 52242, USA
| | | | | |
Collapse
|
59
|
Abstract
The glia that reside at the midline of the Drosophila CNS are an important embryonic signaling center and also wrap the axons that cross the CNS. The development of the midline glia (MG) is characterized by migration, ensheathment, subdivision of axon commissures, apoptosis, and the extension of glial processes. All of these events are characterized by cell-cell contact between MG and adjacent neurons. Cell adhesion and signaling proteins that mediate different aspects of MG development and MG-neuron interactions have been identified. This provides a foundation for ultimately obtaining an integrated picture of how the MG assemble into a characteristic axonal support structure in the CNS.
Collapse
Affiliation(s)
- Stephen T Crews
- Department of Biochemistry and Biophysics, Program in Molecular Biology and Biotechnology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
60
|
Brierley DJ, Blanc E, Reddy OV, VijayRaghavan K, Williams DW. Dendritic targeting in the leg neuropil of Drosophila: the role of midline signalling molecules in generating a myotopic map. PLoS Biol 2009; 7:e1000199. [PMID: 19771147 PMCID: PMC2737123 DOI: 10.1371/journal.pbio.1000199] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2009] [Accepted: 08/12/2009] [Indexed: 01/19/2023] Open
Abstract
Neural maps are emergent, highly ordered structures that are essential for organizing and presenting synaptic information. Within the embryonic nervous system of Drosophila motoneuron dendrites are organized topographically as a myotopic map that reflects their pattern of innervation in the muscle field. Here we reveal that this fundamental organizational principle exists in adult Drosophila, where the dendrites of leg motoneurons also generate a myotopic map. A single postembryonic neuroblast sequentially generates different leg motoneuron subtypes, starting with those innervating proximal targets and medial neuropil regions and producing progeny that innervate distal muscle targets and lateral neuropil later in the lineage. Thus the cellular distinctions in peripheral targets and central dendritic domains, which make up the myotopic map, are linked to the birth-order of these motoneurons. Our developmental analysis of dendrite growth reveals that this myotopic map is generated by targeting. We demonstrate that the medio-lateral positioning of motoneuron dendrites in the leg neuropil is controlled by the midline signalling systems Slit-Robo and Netrin-Fra. These results reveal that dendritic targeting plays a major role in the formation of myotopic maps and suggests that the coordinate spatial control of both pre- and postsynaptic elements by global neuropilar signals may be an important mechanism for establishing the specificity of synaptic connections.
Collapse
Affiliation(s)
- David J. Brierley
- Medical Research Council (MRC) Centre for Developmental Neurobiology, King's College London, London, United Kingdom
| | - Eric Blanc
- Medical Research Council (MRC) Centre for Developmental Neurobiology, King's College London, London, United Kingdom
| | - O. Venkateswara Reddy
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India
| | - K. VijayRaghavan
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India
| | - Darren W. Williams
- Medical Research Council (MRC) Centre for Developmental Neurobiology, King's College London, London, United Kingdom
| |
Collapse
|
61
|
Mauss A, Tripodi M, Evers JF, Landgraf M. Midline signalling systems direct the formation of a neural map by dendritic targeting in the Drosophila motor system. PLoS Biol 2009; 7:e1000200. [PMID: 19771146 PMCID: PMC2736389 DOI: 10.1371/journal.pbio.1000200] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2009] [Accepted: 08/12/2009] [Indexed: 12/30/2022] Open
Abstract
A fundamental strategy for organising connections in the nervous system is the formation of neural maps. Map formation has been most intensively studied in sensory systems where the central arrangement of axon terminals reflects the distribution of sensory neuron cell bodies in the periphery or the sensory modality. This straightforward link between anatomy and function has facilitated tremendous progress in identifying cellular and molecular mechanisms that underpin map development. Much less is known about the way in which networks that underlie locomotion are organised. We recently showed that in the Drosophila embryo, dendrites of motorneurons form a neural map, being arranged topographically in the antero-posterior axis to represent the distribution of their target muscles in the periphery. However, the way in which a dendritic myotopic map forms has not been resolved and whether postsynaptic dendrites are involved in establishing sets of connections has been relatively little explored. In this study, we show that motorneurons also form a myotopic map in a second neuropile axis, with respect to the ventral midline, and they achieve this by targeting their dendrites to distinct medio-lateral territories. We demonstrate that this map is "hard-wired"; that is, it forms in the absence of excitatory synaptic inputs or when presynaptic terminals have been displaced. We show that the midline signalling systems Slit/Robo and Netrin/Frazzled are the main molecular mechanisms that underlie dendritic targeting with respect to the midline. Robo and Frazzled are required cell-autonomously in motorneurons and the balance of their opposite actions determines the dendritic target territory. A quantitative analysis shows that dendritic morphology emerges as guidance cue receptors determine the distribution of the available dendrites, whose total length and branching frequency are specified by other cell intrinsic programmes. Our results suggest that the formation of dendritic myotopic maps in response to midline guidance cues may be a conserved strategy for organising connections in motor systems. We further propose that sets of connections may be specified, at least to a degree, by global patterning systems that deliver pre- and postsynaptic partner terminals to common "meeting regions."
Collapse
Affiliation(s)
- Alex Mauss
- Department of Zoology, University of Cambridge, Cambridge, United Kingdom
| | - Marco Tripodi
- Friedrich Miescher Institut and Biozentrum, Department of Cell Biology, University of Basel, Basel, Switzerland
| | - Jan Felix Evers
- Department of Zoology, University of Cambridge, Cambridge, United Kingdom
| | - Matthias Landgraf
- Department of Zoology, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|