51
|
Genome-wide changes in lncRNA, splicing, and regional gene expression patterns in autism. Nature 2016; 540:423-427. [PMID: 27919067 DOI: 10.1038/nature20612] [Citation(s) in RCA: 464] [Impact Index Per Article: 58.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 11/07/2016] [Indexed: 12/11/2022]
Abstract
Autism spectrum disorder (ASD) involves substantial genetic contributions. These contributions are profoundly heterogeneous but may converge on common pathways that are not yet well understood. Here, through post-mortem genome-wide transcriptome analysis of the largest cohort of samples analysed so far, to our knowledge, we interrogate the noncoding transcriptome, alternative splicing, and upstream molecular regulators to broaden our understanding of molecular convergence in ASD. Our analysis reveals ASD-associated dysregulation of primate-specific long noncoding RNAs (lncRNAs), downregulation of the alternative splicing of activity-dependent neuron-specific exons, and attenuation of normal differences in gene expression between the frontal and temporal lobes. Our data suggest that SOX5, a transcription factor involved in neuron fate specification, contributes to this reduction in regional differences. We further demonstrate that a genetically defined subtype of ASD, chromosome 15q11.2-13.1 duplication syndrome (dup15q), shares the core transcriptomic signature observed in idiopathic ASD. Co-expression network analysis reveals that individuals with ASD show age-related changes in the trajectory of microglial and synaptic function over the first two decades, and suggests that genetic risk for ASD may influence changes in regional cortical gene expression. Our findings illustrate how diverse genetic perturbations can lead to phenotypic convergence at multiple biological levels in a complex neuropsychiatric disorder.
Collapse
|
52
|
Tan S, Cardoso-Moreira M, Shi W, Zhang D, Huang J, Mao Y, Jia H, Zhang Y, Chen C, Shao Y, Leng L, Liu Z, Huang X, Long M, Zhang YE. LTR-mediated retroposition as a mechanism of RNA-based duplication in metazoans. Genome Res 2016; 26:1663-1675. [PMID: 27934698 PMCID: PMC5131818 DOI: 10.1101/gr.204925.116] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 10/18/2016] [Indexed: 01/09/2023]
Abstract
In a broad range of taxa, genes can duplicate through an RNA intermediate in a process mediated by retrotransposons (retroposition). In mammals, L1 retrotransposons drive retroposition, but the elements responsible for retroposition in other animals have yet to be identified. Here, we examined young retrocopies from various animals that still retain the sequence features indicative of the underlying retroposition mechanism. In Drosophila melanogaster, we identified and de novo assembled 15 polymorphic retrocopies and found that all retroposed loci are chimeras of internal retrocopies flanked by discontinuous LTR retrotransposons. At the fusion points between the mRNAs and the LTR retrotransposons, we identified shared short similar sequences that suggest the involvement of microsimilarity-dependent template switches. By expanding our approach to mosquito, zebrafish, chicken, and mammals, we identified in all these species recently originated retrocopies with a similar chimeric structure and shared microsimilarities at the fusion points. We also identified several retrocopies that combine the sequences of two or more parental genes, demonstrating LTR-retroposition as a novel mechanism of exon shuffling. Finally, we found that LTR-mediated retrocopies are immediately cotranscribed with their flanking LTR retrotransposons. Transcriptional profiling coupled with sequence analyses revealed that the sense-strand transcription of the retrocopies often lead to the origination of in-frame proteins relative to the parental genes. Overall, our data show that LTR-mediated retroposition is highly conserved across a wide range of animal taxa; combined with previous work from plants and yeast, it represents an ancient and ongoing mechanism continuously shaping gene content evolution in eukaryotes.
Collapse
Affiliation(s)
- Shengjun Tan
- Key Laboratory of Zoological Systematics and Evolution and State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | | | - Wenwen Shi
- Key Laboratory of Zoological Systematics and Evolution and State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Dan Zhang
- Key Laboratory of Zoological Systematics and Evolution and State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiawei Huang
- Key Laboratory of Zoological Systematics and Evolution and State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanan Mao
- Key Laboratory of Zoological Systematics and Evolution and State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Hangxing Jia
- Key Laboratory of Zoological Systematics and Evolution and State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yaqiong Zhang
- Key Laboratory of Zoological Systematics and Evolution and State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Chunyan Chen
- Key Laboratory of Zoological Systematics and Evolution and State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yi Shao
- Key Laboratory of Zoological Systematics and Evolution and State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Liang Leng
- Key Laboratory of Zoological Systematics and Evolution and State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhonghua Liu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xun Huang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Manyuan Long
- Department of Ecology and Evolution, The University of Chicago, Chicago, Illinois 60637, USA
| | - Yong E Zhang
- Key Laboratory of Zoological Systematics and Evolution and State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
53
|
Lindsay SJ, Xu Y, Lisgo SN, Harkin LF, Copp AJ, Gerrelli D, Clowry GJ, Talbot A, Keogh MJ, Coxhead J, Santibanez-Koref M, Chinnery PF. HDBR Expression: A Unique Resource for Global and Individual Gene Expression Studies during Early Human Brain Development. Front Neuroanat 2016; 10:86. [PMID: 27833533 PMCID: PMC5080337 DOI: 10.3389/fnana.2016.00086] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 10/12/2016] [Indexed: 12/21/2022] Open
Affiliation(s)
- Susan J Lindsay
- Institute of Genetic Medicine, Newcastle University Newcastle upon Tyne, UK
| | - Yaobo Xu
- Institute of Genetic Medicine, Newcastle University Newcastle upon Tyne, UK
| | - Steven N Lisgo
- Institute of Genetic Medicine, Newcastle University Newcastle upon Tyne, UK
| | - Lauren F Harkin
- Institute of Genetic Medicine, Newcastle UniversityNewcastle upon Tyne, UK; Institute of Neuroscience, Newcastle UniversityNewcastle upon Tyne, UK
| | - Andrew J Copp
- Institute of Child Health, University College London London, UK
| | - Dianne Gerrelli
- Institute of Child Health, University College London London, UK
| | - Gavin J Clowry
- Institute of Neuroscience, Newcastle University Newcastle upon Tyne, UK
| | - Aysha Talbot
- Institute of Genetic Medicine, Newcastle University Newcastle upon Tyne, UK
| | - Michael J Keogh
- Institute of Genetic Medicine, Newcastle University Newcastle upon Tyne, UK
| | - Jonathan Coxhead
- Institute of Genetic Medicine, Newcastle University Newcastle upon Tyne, UK
| | | | - Patrick F Chinnery
- Institute of Genetic Medicine, Newcastle University Newcastle upon Tyne, UK
| |
Collapse
|
54
|
Wang P, Zhao D, Rockowitz S, Zheng D. Divergence and rewiring of regulatory networks for neural development between human and other species. NEUROGENESIS 2016; 3:e1231495. [PMID: 27900343 DOI: 10.1080/23262133.2016.1231495] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Revised: 07/11/2016] [Accepted: 08/27/2016] [Indexed: 10/21/2022]
Abstract
Neural and brain development in human and other mammalian species are largely similar, but distinct features exist at the levels of macrostructure and underlying genetic control. Comparative studies of epigenetic regulation and transcription factor (TF) binding in humans, chimpanzees, rodents, and other species have found large differences in gene regulatory networks. A recent analysis of the cistromes of REST/NRSF, a critical transcriptional regulator for the nervous system, demonstrated that REST binding to syntenic genomic regions (i.e., conserved binding) represents only a small percentage of the total binding events in human and mouse embryonic stem cells. While conserved binding is significantly associated with functional features (e.g., co-factor recruitment) and enriched at genes important for neural development and function, >3000 genes, including many related to brain and neural functions, either contain extra REST-bound sites (e.g., NRXN1) or are targeted by REST only (e.g. PSEN2) in humans. Surprisingly, several genes known to have critical roles in learning and memory, or brain disorders (e.g., APP and HTT) exhibit characteristics of human specific REST regulation. These findings indicate that more systematic studies are needed to better understand the divergent wiring of regulatory networks in humans, mice, and other mammals and their functional implications.
Collapse
Affiliation(s)
- Ping Wang
- Department of Neurology, Albert Einstein College of Medicine , Bronx, New York, NY, USA
| | - Dejian Zhao
- Department of Genetics, Albert Einstein College of Medicine , Bronx, New York, NY, USA
| | - Shira Rockowitz
- Department of Neuroscience, Albert Einstein College of Medicine , Bronx, New York, NY, USA
| | - Deyou Zheng
- Department of Neurology, Albert Einstein College of Medicine, Bronx, New York, NY, USA; Department of Genetics, Albert Einstein College of Medicine, Bronx, New York, NY, USA; Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York, NY, USA
| |
Collapse
|
55
|
Kirsch L, Chechik G. On Expression Patterns and Developmental Origin of Human Brain Regions. PLoS Comput Biol 2016; 12:e1005064. [PMID: 27564987 PMCID: PMC5001727 DOI: 10.1371/journal.pcbi.1005064] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2015] [Accepted: 07/16/2016] [Indexed: 11/19/2022] Open
Abstract
Anatomical substructures of the human brain have characteristic cell-types, connectivity and local circuitry, which are reflected in area-specific transcriptome signatures, but the principles governing area-specific transcription and their relation to brain development are still being studied. In adult rodents, areal transcriptome patterns agree with the embryonic origin of brain regions, but the processes and genes that preserve an embryonic signature in regional expression profiles were not quantified. Furthermore, it is not clear how embryonic-origin signatures of adult-brain expression interplay with changes in expression patterns during development. Here we first quantify which genes have regional expression-patterns related to the developmental origin of brain regions, using genome-wide mRNA expression from post-mortem adult human brains. We find that almost all human genes (92%) exhibit an expression pattern that agrees with developmental brain-region ontology, but that this agreement changes at multiple phases during development. Agreement is particularly strong in neuron-specific genes, but also in genes that are not spatially correlated with neuron-specific or glia-specific markers. Surprisingly, agreement is also stronger in early-evolved genes. We further find that pairs of similar genes having high agreement to developmental region ontology tend to be more strongly correlated or anti-correlated, and that the strength of spatial correlation changes more strongly in gene pairs with stronger embryonic signatures. These results suggest that transcription regulation of most genes in the adult human brain is spatially tuned in a way that changes through life, but in agreement with development-determined brain regions.
Collapse
Affiliation(s)
- Lior Kirsch
- The Gonda Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat Gan, Israel
| | - Gal Chechik
- The Gonda Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat Gan, Israel
| |
Collapse
|
56
|
Yin H, Ma L, Wang G, Li M, Zhang Z. Old genes experience stronger translational selection than young genes. Gene 2016; 590:29-34. [PMID: 27259662 DOI: 10.1016/j.gene.2016.05.041] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Revised: 05/27/2016] [Accepted: 05/29/2016] [Indexed: 12/12/2022]
Abstract
Selection on synonymous codon usage for translation efficiency and/or accuracy has been identified as a widespread mechanism in many living organisms. However, it remains unknown whether translational selection associates closely with gene age and acts differentially on genes with different evolutionary ages. To address this issue, here we investigate the strength of translational selection acting on different aged genes in human. Our results show that old genes present stronger translational selection than young genes, demonstrating that translational selection correlates positively with gene age. We further explore the difference of translational selection in duplicates vs. singletons and in housekeeping vs. tissue-specific genes. We find that translational selection acts comparably in old singletons and old duplicates and stronger translational selection in old genes is contributed primarily by housekeeping genes. For young genes, contrastingly, singletons experience stronger translational selection than duplicates, presumably due to redundant function of duplicated genes during their early evolutionary stage. Taken together, our results indicate that translational selection acting on a gene would not be constant during all stages of evolution, associating closely with gene age.
Collapse
Affiliation(s)
- Hongyan Yin
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics (BIG), Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lina Ma
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics (BIG), Chinese Academy of Sciences, Beijing 100101, China
| | - Guangyu Wang
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics (BIG), Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mengwei Li
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics (BIG), Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhang Zhang
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics (BIG), Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
57
|
França GS, Vibranovski MD, Galante PAF. Host gene constraints and genomic context impact the expression and evolution of human microRNAs. Nat Commun 2016; 7:11438. [PMID: 27109497 PMCID: PMC4848552 DOI: 10.1038/ncomms11438] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Accepted: 03/25/2016] [Indexed: 12/16/2022] Open
Abstract
Increasing evidence has shown that recent miRNAs tend to emerge within coding genes. Here we conjecture that human miRNA evolution is tightly influenced by the genomic context, especially by host genes. Our findings show a preferential emergence of intragenic miRNAs within old genes. We found that miRNAs within old host genes are significantly more broadly expressed than those within young ones. Young miRNAs within old genes are more broadly expressed than their intergenic counterparts, suggesting that young miRNAs have an initial advantage by residing in old genes, and benefit from their hosts' expression control and from the exposure to diverse cellular contexts and target genes. Our results demonstrate that host genes may provide stronger expression constraints to intragenic miRNAs in the long run. We also report associated functional implications, highlighting the genomic context and host genes as driving factors for the expression and evolution of human miRNAs. Recent miRNAs tend to emerge within coding genes. Here, by analysing miRNA expression data from six species and comparing genomes from 13 species, the authors report that host genes may provide stronger expression constraints to intragenic miRNAs in the long run.
Collapse
Affiliation(s)
- Gustavo S França
- Centro de Oncologia Molecular, Hospital Sírio-Libanês, Rua Daher Cutait 69, 01308-060 São Paulo, Brazil.,Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes 748, 05508-000 São Paulo, Brazil
| | - Maria D Vibranovski
- Departamento de Genética e Biologia Evolutiva, Universidade de São Paulo, Rua do Matao 277, 05508-090 São Paulo, Brazil
| | - Pedro A F Galante
- Centro de Oncologia Molecular, Hospital Sírio-Libanês, Rua Daher Cutait 69, 01308-060 São Paulo, Brazil
| |
Collapse
|
58
|
Berto S, Perdomo-Sabogal A, Gerighausen D, Qin J, Nowick K. A Consensus Network of Gene Regulatory Factors in the Human Frontal Lobe. Front Genet 2016; 7:31. [PMID: 27014338 PMCID: PMC4782181 DOI: 10.3389/fgene.2016.00031] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 02/18/2016] [Indexed: 01/29/2023] Open
Abstract
Cognitive abilities, such as memory, learning, language, problem solving, and planning, involve the frontal lobe and other brain areas. Not much is known yet about the molecular basis of cognitive abilities, but it seems clear that cognitive abilities are determined by the interplay of many genes. One approach for analyzing the genetic networks involved in cognitive functions is to study the coexpression networks of genes with known importance for proper cognitive functions, such as genes that have been associated with cognitive disorders like intellectual disability (ID) or autism spectrum disorders (ASD). Because many of these genes are gene regulatory factors (GRFs) we aimed to provide insights into the gene regulatory networks active in the human frontal lobe. Using genome wide human frontal lobe expression data from 10 independent data sets, we first derived 10 individual coexpression networks for all GRFs including their potential target genes. We observed a high level of variability among these 10 independently derived networks, pointing out that relying on results from a single study can only provide limited biological insights. To instead focus on the most confident information from these 10 networks we developed a method for integrating such independently derived networks into a consensus network. This consensus network revealed robust GRF interactions that are conserved across the frontal lobes of different healthy human individuals. Within this network, we detected a strong central module that is enriched for 166 GRFs known to be involved in brain development and/or cognitive disorders. Interestingly, several hubs of the consensus network encode for GRFs that have not yet been associated with brain functions. Their central role in the network suggests them as excellent new candidates for playing an essential role in the regulatory network of the human frontal lobe, which should be investigated in future studies.
Collapse
Affiliation(s)
- Stefano Berto
- Bioinformatics Group, Department of Computer Science, and Interdisciplinary Center for Bioinformatics, University LeipzigLeipzig, Germany; Paul-Flechsig Institute for Brain Research, University of LeipzigLeipzig, Germany; Department of Neuroscience, University of Texas Southwestern Medical CenterDallas, TX, USA
| | - Alvaro Perdomo-Sabogal
- Bioinformatics Group, Department of Computer Science, and Interdisciplinary Center for Bioinformatics, University Leipzig Leipzig, Germany
| | - Daniel Gerighausen
- Bioinformatics Group, Department of Computer Science, and Interdisciplinary Center for Bioinformatics, University Leipzig Leipzig, Germany
| | - Jing Qin
- Department of Mathematics and Computer Sciences, University of Southern DenmarkOdense, Denmark; Institute for Theoretical Chemistry, University of ViennaVienna, Austria
| | - Katja Nowick
- Bioinformatics Group, Department of Computer Science, and Interdisciplinary Center for Bioinformatics, University LeipzigLeipzig, Germany; Paul-Flechsig Institute for Brain Research, University of LeipzigLeipzig, Germany
| |
Collapse
|
59
|
Perdomo-Sabogal A, Nowick K, Piccini I, Sudbrak R, Lehrach H, Yaspo ML, Warnatz HJ, Querfurth R. Human Lineage-Specific Transcriptional Regulation through GA-Binding Protein Transcription Factor Alpha (GABPa). Mol Biol Evol 2016; 33:1231-44. [PMID: 26814189 PMCID: PMC4839217 DOI: 10.1093/molbev/msw007] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
A substantial fraction of phenotypic differences between closely related species are likely caused by differences in gene regulation. While this has already been postulated over 30 years ago, only few examples of evolutionary changes in gene regulation have been verified. Here, we identified and investigated binding sites of the transcription factor GA-binding protein alpha (GABPa) aiming to discover cis-regulatory adaptations on the human lineage. By performing chromatin immunoprecipitation-sequencing experiments in a human cell line, we found 11,619 putative GABPa binding sites. Through sequence comparisons of the human GABPa binding regions with orthologous sequences from 34 mammals, we identified substitutions that have resulted in 224 putative human-specific GABPa binding sites. To experimentally assess the transcriptional impact of those substitutions, we selected four promoters for promoter-reporter gene assays using human and African green monkey cells. We compared the activities of wild-type promoters to mutated forms, where we have introduced one or more substitutions to mimic the ancestral state devoid of the GABPa consensus binding sequence. Similarly, we introduced the human-specific substitutions into chimpanzee and macaque promoter backgrounds. Our results demonstrate that the identified substitutions are functional, both in human and nonhuman promoters. In addition, we performed GABPa knock-down experiments and found 1,215 genes as strong candidates for primary targets. Further analyses of our data sets link GABPa to cognitive disorders, diabetes, KRAB zinc finger (KRAB-ZNF), and human-specific genes. Thus, we propose that differences in GABPa binding sites played important roles in the evolution of human-specific phenotypes.
Collapse
Affiliation(s)
- Alvaro Perdomo-Sabogal
- Bioinformatics Group, Department of Computer Science, and Interdisciplinary Center for Bioinformatics, University Leipzig, Leipzig, Germany Paul-Flechsig Institute for Brain Research, University of Leipzig, Leipzig, Germany
| | - Katja Nowick
- Bioinformatics Group, Department of Computer Science, and Interdisciplinary Center for Bioinformatics, University Leipzig, Leipzig, Germany Paul-Flechsig Institute for Brain Research, University of Leipzig, Leipzig, Germany
| | - Ilaria Piccini
- Institute of Genetics of Heart Diseases (IfGH), Department of Cardiovascular Medicine, University Hospital Münster, 48149 Münster, Germany Department of Vertebrate Genomics, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Ralf Sudbrak
- European Centre for Public Heath Genomics, UNU-MERIT, Unsiversity Maastricht,PO Box 616, 6200 MD Maastricht, The Netherlands Department of Vertebrate Genomics, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Hans Lehrach
- Department of Vertebrate Genomics, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Marie-Laure Yaspo
- Department of Vertebrate Genomics, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Hans-Jörg Warnatz
- Department of Vertebrate Genomics, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Robert Querfurth
- Department of Vertebrate Genomics, Max Planck Institute for Molecular Genetics, Berlin, Germany
| |
Collapse
|
60
|
Hirbo J, Eidem H, Rokas A, Abbot P. Integrating Diverse Types of Genomic Data to Identify Genes that Underlie Adverse Pregnancy Phenotypes. PLoS One 2015; 10:e0144155. [PMID: 26641094 PMCID: PMC4671692 DOI: 10.1371/journal.pone.0144155] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Accepted: 11/14/2015] [Indexed: 11/18/2022] Open
Abstract
Progress in understanding complex genetic diseases has been bolstered by synthetic approaches that overlay diverse data types and analyses to identify functionally important genes. Pre-term birth (PTB), a major complication of pregnancy, is a leading cause of infant mortality worldwide. A major obstacle in addressing PTB is that the mechanisms controlling parturition and birth timing remain poorly understood. Integrative approaches that overlay datasets derived from comparative genomics with function-derived ones have potential to advance our understanding of the genetics of birth timing, and thus provide insights into the genes that may contribute to PTB. We intersected data from fast evolving coding and non-coding gene regions in the human and primate lineage with data from genes expressed in the placenta, from genes that show enriched expression only in the placenta, as well as from genes that are differentially expressed in four distinct PTB clinical subtypes. A large fraction of genes that are expressed in placenta, and differentially expressed in PTB clinical subtypes (23–34%) are fast evolving, and are associated with functions that include adhesion neurodevelopmental and immune processes. Functional categories of genes that express fast evolution in coding regions differ from those linked to fast evolution in non-coding regions. Finally, there is a surprising lack of overlap between fast evolving genes that are differentially expressed in four PTB clinical subtypes. Integrative approaches, especially those that incorporate evolutionary perspectives, can be successful in identifying potential genetic contributions to complex genetic diseases, such as PTB.
Collapse
Affiliation(s)
- Jibril Hirbo
- Department of Biological Sciences, Vanderbilt University, Box 35164 Station B, Nashville, TN, 37235–1634, United States of America
| | - Haley Eidem
- Department of Biological Sciences, Vanderbilt University, Box 35164 Station B, Nashville, TN, 37235–1634, United States of America
| | - Antonis Rokas
- Department of Biological Sciences, Vanderbilt University, Box 35164 Station B, Nashville, TN, 37235–1634, United States of America
| | - Patrick Abbot
- Department of Biological Sciences, Vanderbilt University, Box 35164 Station B, Nashville, TN, 37235–1634, United States of America
- * E-mail:
| |
Collapse
|
61
|
Abstract
Neural oscillations at distinct frequencies are increasingly being related to a number of basic and higher cognitive faculties. Oscillations enable the construction of coherently organized neuronal assemblies through establishing transitory temporal correlations. By exploring the elementary operations of the language faculty-labeling, concatenation, cyclic transfer-alongside neural dynamics, a new model of linguistic computation is proposed. It is argued that the universality of language, and the true biological source of Universal Grammar, is not to be found purely in the genome as has long been suggested, but more specifically within the extraordinarily preserved nature of mammalian brain rhythms employed in the computation of linguistic structures. Computational-representational theories are used as a guide in investigating the neurobiological foundations of the human "cognome"-the set of computations performed by the nervous system-and new directions are suggested for how the dynamics of the brain (the "dynome") operate and execute linguistic operations. The extent to which brain rhythms are the suitable neuronal processes which can capture the computational properties of the human language faculty is considered against a backdrop of existing cartographic research into the localization of linguistic interpretation. Particular focus is placed on labeling, the operation elsewhere argued to be species-specific. A Basic Label model of the human cognome-dynome is proposed, leading to clear, causally-addressable empirical predictions, to be investigated by a suggested research program, Dynamic Cognomics. In addition, a distinction between minimal and maximal degrees of explanation is introduced to differentiate between the depth of analysis provided by cartographic, rhythmic, neurochemical, and other approaches to computation.
Collapse
Affiliation(s)
- Elliot Murphy
- Division of Psychology and Language Sciences, University College LondonLondon, UK
| |
Collapse
|
62
|
Zhang W, Landback P, Gschwend AR, Shen B, Long M. New genes drive the evolution of gene interaction networks in the human and mouse genomes. Genome Biol 2015; 16:202. [PMID: 26424194 PMCID: PMC4590697 DOI: 10.1186/s13059-015-0772-4] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 09/09/2015] [Indexed: 01/08/2023] Open
Abstract
Background The origin of new genes with novel functions creates genetic and phenotypic diversity in organisms. To acquire functional roles, new genes must integrate into ancestral gene-gene interaction (GGI) networks. The mechanisms by which new genes are integrated into ancestral networks, and their evolutionary significance, are yet to be characterized. Herein, we present a study investigating the rates and patterns of new gene-driven evolution of GGI networks in the human and mouse genomes. Results We examine the network topological and functional evolution of new genes that originated at various stages in the human and mouse lineages by constructing and analyzing three different GGI datasets. We find a large number of new genes integrated into GGI networks throughout vertebrate evolution. These genes experienced a gradual integration process into GGI networks, starting on the network periphery and gradually becoming highly connected hubs, and acquiring pleiotropic and essential functions. We identify a few human lineage-specific hub genes that have evolved brain development-related functions. Finally, we explore the possible underlying mechanisms driving the GGI network evolution and the observed patterns of new gene integration process. Conclusions Our results unveil a remarkable network topological integration process of new genes: over 5000 new genes were integrated into the ancestral GGI networks of human and mouse; new genes gradually acquire increasing number of gene partners; some human-specific genes evolved into hub structure with critical phenotypic effects. Our data cast new conceptual insights into the evolution of genetic networks. Electronic supplementary material The online version of this article (doi:10.1186/s13059-015-0772-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Wenyu Zhang
- Center for Systems Biology, Soochow University, Suzhou, Jiangsu, 215006, China. .,Department of Ecology and Evolution, The University of Chicago, Chicago, IL, 60637, USA.
| | - Patrick Landback
- Committee on Genetics, The University of Chicago, Chicago, IL, 60637, USA.
| | - Andrea R Gschwend
- Department of Ecology and Evolution, The University of Chicago, Chicago, IL, 60637, USA.
| | - Bairong Shen
- Center for Systems Biology, Soochow University, Suzhou, Jiangsu, 215006, China. .,Department of Bioinformatics, Medical College, Soochow University, Suzhou, Jiangsu, 215123, China.
| | - Manyuan Long
- Department of Ecology and Evolution, The University of Chicago, Chicago, IL, 60637, USA. .,Committee on Genetics, The University of Chicago, Chicago, IL, 60637, USA.
| |
Collapse
|
63
|
Comparative human and rat neurospheres reveal species differences in chemical effects on neurodevelopmental key events. Arch Toxicol 2015. [DOI: 10.1007/s00204-015-1568-8] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
64
|
Wu DD, Ye LQ, Li Y, Sun YB, Shao Y, Chen C, Zhu Z, Zhong L, Wang L, Irwin DM, Zhang YE, Zhang YP. Integrative analyses of RNA editing, alternative splicing, and expression of young genes in human brain transcriptome by deep RNA sequencing. J Mol Cell Biol 2015; 7:314-25. [DOI: 10.1093/jmcb/mjv043] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Accepted: 04/16/2015] [Indexed: 12/31/2022] Open
|
65
|
Douet V, Chang L, Cloak C, Ernst T. Genetic influences on brain developmental trajectories on neuroimaging studies: from infancy to young adulthood. Brain Imaging Behav 2015; 8:234-50. [PMID: 24077983 DOI: 10.1007/s11682-013-9260-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Human brain development has been studied intensively with neuroimaging. However, little is known about how genes influence developmental brain trajectories, even though a significant number of genes (about 10,000, or approximately one-third) in the human genome are expressed primarily in the brain and during brain development. Interestingly, in addition to showing differential expression among tissues, many genes are differentially expressed across the ages (e.g., antagonistic pleiotropy). Age-specific gene expression plays an important role in several critical events in brain development, including neuronal cell migration, synaptogenesis and neurotransmitter receptor specificity, as well as in aging and neurodegenerative disorders (e.g., Alzheimer disease or amyotrophic lateral sclerosis). In addition, the majority of psychiatric and mental disorders are polygenic, and many have onsets during childhood and adolescence. In this review, we summarize the major findings from neuroimaging studies that link genetics with brain development, from infancy to young adulthood. Specifically, we focus on the heritability of brain structures across the ages, age-related genetic influences on brain development and sex-specific developmental trajectories.
Collapse
Affiliation(s)
- Vanessa Douet
- Department of Medicine, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI, 96813, USA,
| | | | | | | |
Collapse
|
66
|
Molecular underpinnings of prefrontal cortex development in rodents provide insights into the etiology of neurodevelopmental disorders. Mol Psychiatry 2015; 20:795-809. [PMID: 25450230 PMCID: PMC4486649 DOI: 10.1038/mp.2014.147] [Citation(s) in RCA: 108] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Revised: 09/12/2014] [Accepted: 09/17/2014] [Indexed: 12/20/2022]
Abstract
The prefrontal cortex (PFC), seat of the highest-order cognitive functions, constitutes a conglomerate of highly specialized brain areas and has been implicated to have a role in the onset and installation of various neurodevelopmental disorders. The development of a properly functioning PFC is directed by transcription factors, guidance cues and other regulatory molecules and requires the intricate and temporal orchestration of a number of developmental processes. Disturbance or failure of any of these processes causing neurodevelopmental abnormalities within the PFC may contribute to several of the cognitive deficits seen in patients with neurodevelopmental disorders. In this review, we elaborate on the specific processes underlying prefrontal development, such as induction and patterning of the prefrontal area, proliferation, migration and axonal guidance of medial prefrontal progenitors, and their eventual efferent and afferent connections. We furthermore integrate for the first time the available knowledge from genome-wide studies that have revealed genes linked to neurodevelopmental disorders with experimental molecular evidence in rodents. The integrated data suggest that the pathogenic variants in the neurodevelopmental disorder-associated genes induce prefrontal cytoarchitectonical impairments. This enhances our understanding of the molecular mechanisms of prefrontal (mis)development underlying the four major neurodevelopmental disorders in humans, that is, intellectual disability, autism spectrum disorders, attention deficit hyperactivity disorder and schizophrenia, and may thus provide clues for the development of novel therapies.
Collapse
|
67
|
Murphy E. Labels, cognomes, and cyclic computation: an ethological perspective. Front Psychol 2015; 6:715. [PMID: 26089809 PMCID: PMC4453271 DOI: 10.3389/fpsyg.2015.00715] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Accepted: 05/13/2015] [Indexed: 01/08/2023] Open
Abstract
For the past two decades, it has widely been assumed by linguists that there is a single computational operation, Merge, which is unique to language, distinguishing it from other cognitive domains. The intention of this paper is to progress the discussion of language evolution in two ways: (i) survey what the ethological record reveals about the uniqueness of the human computational system, and (ii) explore how syntactic theories account for what ethology may determine to be human-specific. It is shown that the operation Label, not Merge, constitutes the evolutionary novelty which distinguishes human language from non-human computational systems; a proposal lending weight to a Weak Continuity Hypothesis and leading to the formation of what is termed Computational Ethology. Some directions for future ethological research are suggested.
Collapse
Affiliation(s)
- Elliot Murphy
- Division of Psychology and Language Sciences, University College London , London, UK
| |
Collapse
|
68
|
Glinsky GV. Transposable Elements and DNA Methylation Create in Embryonic Stem Cells Human-Specific Regulatory Sequences Associated with Distal Enhancers and Noncoding RNAs. Genome Biol Evol 2015; 7:1432-54. [PMID: 25956794 PMCID: PMC4494056 DOI: 10.1093/gbe/evv081] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Despite significant progress in the structural and functional characterization of the human genome, understanding of the mechanisms underlying the genetic basis of human phenotypic uniqueness remains limited. Here, I report that transposable element-derived sequences, most notably LTR7/HERV-H, LTR5_Hs, and L1HS, harbor 99.8% of the candidate human-specific regulatory loci (HSRL) with putative transcription factor-binding sites in the genome of human embryonic stem cells (hESC). A total of 4,094 candidate HSRL display selective and site-specific binding of critical regulators (NANOG [Nanog homeobox], POU5F1 [POU class 5 homeobox 1], CCCTC-binding factor [CTCF], Lamin B1), and are preferentially located within the matrix of transcriptionally active DNA segments that are hypermethylated in hESC. hESC-specific NANOG-binding sites are enriched near the protein-coding genes regulating brain size, pluripotency long noncoding RNAs, hESC enhancers, and 5-hydroxymethylcytosine-harboring regions immediately adjacent to binding sites. Sequences of only 4.3% of hESC-specific NANOG-binding sites are present in Neanderthals’ genome, suggesting that a majority of these regulatory elements emerged in Modern Humans. Comparisons of estimated creation rates of novel TF-binding sites revealed that there was 49.7-fold acceleration of creation rates of NANOG-binding sites in genomes of Chimpanzees compared with the mouse genomes and further 5.7-fold acceleration in genomes of Modern Humans compared with the Chimpanzees genomes. Preliminary estimates suggest that emergence of one novel NANOG-binding site detectable in hESC required 466 years of evolution. Pathway analysis of coding genes that have hESC-specific NANOG-binding sites within gene bodies or near gene boundaries revealed their association with physiological development and functions of nervous and cardiovascular systems, embryonic development, behavior, as well as development of a diverse spectrum of pathological conditions such as cancer, diseases of cardiovascular and reproductive systems, metabolic diseases, multiple neurological and psychological disorders. A proximity placement model is proposed explaining how a 33–47% excess of NANOG, CTCF, and POU5F1 proteins immobilized on a DNA scaffold may play a functional role at distal regulatory elements.
Collapse
Affiliation(s)
- Gennadi V Glinsky
- Institute of Engineering in Medicine, University of California, San Diego The Stanford University School of Medicine, Department of Surgery, Stanford, California
| |
Collapse
|
69
|
Mathewson I. Did human hairlessness allow natural photobiomodulation 2 million years ago and enable photobiomodulation therapy today? This can explain the rapid expansion of our genus’s brain. Med Hypotheses 2015; 84:421-8. [DOI: 10.1016/j.mehy.2015.01.032] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Revised: 12/19/2014] [Accepted: 01/21/2015] [Indexed: 12/26/2022]
|
70
|
Liu Y, Zhao D, Dong R, Yang X, Zhang Y, Tammimies K, Uddin M, Scherer SW, Gai Z. De novo exon 1 deletion ofAUTS2gene in a patient with autism spectrum disorder and developmental delay: A case report and a brief literature review. Am J Med Genet A 2015; 167:1381-5. [PMID: 25851617 DOI: 10.1002/ajmg.a.37050] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2014] [Accepted: 02/20/2015] [Indexed: 01/08/2023]
Affiliation(s)
- Yi Liu
- Pediatric Research Institute; Qilu Children's Hospital of Shandong University; Ji'nan China
| | - Dongmei Zhao
- Pediatric Health Institute; Qilu Children's Hospital of Shandong University; Ji'nan China
| | - Rui Dong
- Pediatric Research Institute; Qilu Children's Hospital of Shandong University; Ji'nan China
| | - Xiaomeng Yang
- Pediatric Research Institute; Qilu Children's Hospital of Shandong University; Ji'nan China
| | - Yanqing Zhang
- Pediatric Health Institute; Qilu Children's Hospital of Shandong University; Ji'nan China
| | - Kristiina Tammimies
- The Centre for Applied Genomics; The Hospital for Sick Children; Toronto Canada
| | - Mohammed Uddin
- The Centre for Applied Genomics; The Hospital for Sick Children; Toronto Canada
| | - Stephen W Scherer
- The Centre for Applied Genomics; The Hospital for Sick Children; Toronto Canada
- McLaughlin Centre and Department of Molecular Genetics; University of Toronto; Toronto Canada
| | - Zhongtao Gai
- Pediatric Research Institute; Qilu Children's Hospital of Shandong University; Ji'nan China
- Pediatric Health Institute; Qilu Children's Hospital of Shandong University; Ji'nan China
| |
Collapse
|
71
|
Costantini TW, Dang X, Yurchyshyna MV, Coimbra R, Eliceiri BP, Baird A. A Human-Specific α7-Nicotinic Acetylcholine Receptor Gene in Human Leukocytes: Identification, Regulation and the Consequences of CHRFAM7A Expression. Mol Med 2015; 21:323-36. [PMID: 25860877 DOI: 10.2119/molmed.2015.00018] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Accepted: 04/02/2015] [Indexed: 12/30/2022] Open
Abstract
The human genome contains a variant form of the α7-nicotinic acetylcholine receptor (α7nAChR) gene that is uniquely human. This CHRFAM7A gene arose during human speciation and recent data suggests that its expression alters ligand tropism of the normally homopentameric human α7-AChR ligand-gated cell surface ion channel that is found on the surface of many different cell types. To understand its possible significance in regulating inflammation in humans, we investigated its expression in normal human leukocytes and leukocyte cell lines, compared CHRFAM7A expression to that of the CHRNA7 gene, mapped its promoter and characterized the effects of stable CHRFAM7A overexpression. We report here that CHRFAM7A is highly expressed in human leukocytes but that the levels of both CHRFAM7A and CHRNA7 mRNAs were independent and varied widely. To this end, mapping of the CHRFAM7A promoter in its 5'-untranslated region (UTR) identified a unique 1-kb sequence that independently regulates CHRFAM7A gene expression. Because overexpression of CHRFAM7A in THP1 cells altered the cell phenotype and modified the expression of genes associated with focal adhesion (for example, FAK, P13K, Akt, rho, GEF, Elk1, CycD), leukocyte transepithelial migration (Nox, ITG, MMPs, PKC) and cancer (kit, kitL, ras, cFos cyclinD1, Frizzled and GPCR), we conclude that CHRFAM7A is biologically active. Most surprisingly however, stable CHRFAM7A overexpression in THP1 cells upregulated CHRNA7, which, in turn, led to increased binding of the specific α7nAChR ligand, bungarotoxin, on the THP1 cell surface. Taken together, these data confirm the close association between CHRFAM7A and CHRNA7 expression, establish a biological consequence to CHRFAM7A expression in human leukocytes and support the possibility that this human-specific gene might contribute to, and/or gauge, a human-specific response to inflammation.
Collapse
Affiliation(s)
- Todd W Costantini
- Department of Surgery, University of California San Diego Health Sciences, San Diego, California, United States of America
| | - Xitong Dang
- Department of Surgery, University of California San Diego Health Sciences, San Diego, California, United States of America.,Cardiovascular Research Center, Luzhou Medical College, Luzhou, Sichuan, China
| | - Maryana V Yurchyshyna
- Department of Surgery, University of California San Diego Health Sciences, San Diego, California, United States of America
| | - Raul Coimbra
- Department of Surgery, University of California San Diego Health Sciences, San Diego, California, United States of America
| | - Brian P Eliceiri
- Department of Surgery, University of California San Diego Health Sciences, San Diego, California, United States of America
| | - Andrew Baird
- Department of Surgery, University of California San Diego Health Sciences, San Diego, California, United States of America
| |
Collapse
|
72
|
Mukherjee S, Panda A, Ghosh TC. Elucidating evolutionary features and functional implications of orphan genes in Leishmania major. INFECTION GENETICS AND EVOLUTION 2015; 32:330-7. [PMID: 25843649 DOI: 10.1016/j.meegid.2015.03.031] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Revised: 03/25/2015] [Accepted: 03/26/2015] [Indexed: 11/28/2022]
Abstract
Orphan genes are protein coding genes that lack recognizable homologs in other organisms. These genes were reported to comprise a considerable fraction of coding regions in all sequenced genomes and thought to be allied with organism's lineage-specific traits. However, their evolutionary persistence and functional significance still remain elusive. Due to lack of homologs with the host genome and for their probable lineage-specific functional roles, orphan gene product of pathogenic protozoan might be considered as the possible therapeutic targets. Leishmania major is an important parasitic protozoan of the genus Leishmania that is associated with the disease cutaneous leishmaniasis. Therefore, evolutionary and functional characterization of orphan genes in this organism may help in understanding the factors prevailing pathogen evolution and parasitic adaptation. In this study, we systematically identified orphan genes of L. major and employed several in silico analyses for understanding their evolutionary and functional attributes. To trace the signatures of molecular evolution, we compared their evolutionary rate with non-orphan genes. In agreement with prior observations, here we noticed that orphan genes evolve at a higher rate as compared to non-orphan genes. Lower sequence conservation of orphan genes was previously attributed solely due to their younger gene age. However, here we observed that together with gene age, a number of genomic (like expression level, GC content, variation in codon usage) and proteomic factors (like protein length, intrinsic disorder content, hydropathicity) could independently modulate their evolutionary rate. We considered the interplay of all these factors and analyzed their relative contribution on protein evolutionary rate by regression analysis. On the functional level, we observed that orphan genes are associated with regulatory, growth factor and transport related processes. Moreover, these genes were found to be enriched with various types of interaction and trafficking motifs, implying their possible involvement in host-parasite interactions. Thus, our comprehensive analysis of L. major orphan genes provided evidence for their extensive roles in host-pathogen interactions and virulence.
Collapse
Affiliation(s)
- Sumit Mukherjee
- Bioinformatics Centre, Bose Institute, P 1/12, C.I.T. Scheme VII M, Kolkata 700 054, West Bengal, India; Department of Physical Sciences, Indian Institute of Science Education and Research-Kolkata, Mohanpur 741246, Nadia, West Bengal, India
| | - Arup Panda
- Bioinformatics Centre, Bose Institute, P 1/12, C.I.T. Scheme VII M, Kolkata 700 054, West Bengal, India
| | - Tapash Chandra Ghosh
- Bioinformatics Centre, Bose Institute, P 1/12, C.I.T. Scheme VII M, Kolkata 700 054, West Bengal, India.
| |
Collapse
|
73
|
Jin J, He K, Tang X, Li Z, Lv L, Zhao Y, Luo J, Gao G. An Arabidopsis Transcriptional Regulatory Map Reveals Distinct Functional and Evolutionary Features of Novel Transcription Factors. Mol Biol Evol 2015; 32:1767-73. [PMID: 25750178 PMCID: PMC4476157 DOI: 10.1093/molbev/msv058] [Citation(s) in RCA: 103] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Transcription factors (TFs) play key roles in both development and stress responses. By integrating into and rewiring original systems, novel TFs contribute significantly to the evolution of transcriptional regulatory networks. Here, we report a high-confidence transcriptional regulatory map covering 388 TFs from 47 families in Arabidopsis. Systematic analysis of this map revealed the architectural heterogeneity of developmental and stress response subnetworks and identified three types of novel network motifs that are absent from unicellular organisms and essential for multicellular development. Moreover, TFs of novel families that emerged during plant landing present higher binding specificities and are preferentially wired into developmental processes and these novel network motifs. Further unveiled connection between the binding specificity and wiring preference of TFs explains the wiring preferences of novel-family TFs. These results reveal distinct functional and evolutionary features of novel TFs, suggesting a plausible mechanism for their contribution to the evolution of multicellular organisms.
Collapse
Affiliation(s)
- Jinpu Jin
- State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Center for Bioinformatics, Peking University, Beijing, P.R. China
| | - Kun He
- Monsanto Biotechnology R&D Center, Beijing, P.R. China
| | - Xing Tang
- State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Center for Bioinformatics, Peking University, Beijing, P.R. China
| | - Zhe Li
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, P.R. China
| | - Le Lv
- Monsanto Biotechnology R&D Center, Beijing, P.R. China
| | - Yi Zhao
- State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Center for Bioinformatics, Peking University, Beijing, P.R. China
| | - Jingchu Luo
- State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Center for Bioinformatics, Peking University, Beijing, P.R. China
| | - Ge Gao
- State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Center for Bioinformatics, Peking University, Beijing, P.R. China
| |
Collapse
|
74
|
Liu HQ, Li Y, Irwin DM, Zhang YP, Wu DD. Integrative analysis of young genes, positively selected genes and lncRNAs in the development of Drosophila melanogaster. BMC Evol Biol 2014; 14:241. [PMID: 25470998 PMCID: PMC4258281 DOI: 10.1186/s12862-014-0241-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Accepted: 11/10/2014] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Young genes and genes under positive selection commonly contribute to adaptive phenotypic evolution. Early developmental stages are very important for establishing phenotypes, which might be helpful for studying the evolutionary patterns of these rapidly evolving genes. RESULTS Here, we performed a weighted gene co-expression network analysis to identify modules of co-expressed genes at different stages of Drosophila melanogaster development. We found that young genes, including duplicated, orphan, and young lncRNA genes, are significantly enriched among modules associated with specific developmental stages. In addition, genes undergoing rapid amino acid sequence evolution driven by positive selection showed a similar proportion of essentiality with other genes, and enrichment in modules for specific developmental stages. CONCLUSIONS Our integrative analysis revealed important roles for the origin of new genes and rapid amino acid sequence evolution in development that may account for specific phenotype evolution in Drosophila melanogaster.
Collapse
Affiliation(s)
| | | | | | - Ya-Ping Zhang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.
| | | |
Collapse
|
75
|
Zhang YE, Long M. New genes contribute to genetic and phenotypic novelties in human evolution. Curr Opin Genet Dev 2014; 29:90-6. [PMID: 25218862 PMCID: PMC4631527 DOI: 10.1016/j.gde.2014.08.013] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Revised: 08/26/2014] [Accepted: 08/27/2014] [Indexed: 12/31/2022]
Abstract
New genes in human genomes have been found relevant in evolution and biology of humans. It was conservatively estimated that the human genome encodes more than 300 human-specific genes and 1000 primate-specific genes. These new arrivals appear to be implicated in brain function and male reproduction. Surprisingly, increasing evidence indicates that they may also bring negative pleiotropic effects, while assuming various possible biological functions as sources of phenotypic novelties, suggesting a non-progressive route for functional evolution. Similar to these fixed new genes, polymorphic new genes were found to contribute to functional evolution within species, for example, with respect to digestion or disease resistance, revealing that new genes can acquire new or diverged functions in its initial stage as prototypic genes. These progresses have provided new opportunities to explore the genetic basis of human biology and human evolutionary history in a new dimension.
Collapse
Affiliation(s)
- Yong E Zhang
- Key Laboratory of Zoological Systematics and Evolution & State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.
| | - Manyuan Long
- Department of Ecology and Evolution, The University of Chicago, Chicago, USA.
| |
Collapse
|
76
|
Usui N, Co M, Konopka G. Decoding the molecular evolution of human cognition using comparative genomics. BRAIN, BEHAVIOR AND EVOLUTION 2014; 84:103-16. [PMID: 25247723 DOI: 10.1159/000365182] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Identification of genetic and molecular factors responsible for the specialized cognitive abilities of humans is expected to provide important insights into the mechanisms responsible for disorders of cognition such as autism, schizophrenia and Alzheimer's disease. Here, we discuss the use of comparative genomics for identifying salient genes and gene networks that may underlie cognition. We focus on the comparison of human and non-human primate brain gene expression and the utility of building gene coexpression networks for prioritizing hundreds of genes that differ in expression among the species queried. We also discuss the importance of and methods for functional studies of the individual genes identified. Together, this integration of comparative genomics with cellular and animal models should provide improved systems for developing effective therapeutics for disorders of cognition.
Collapse
Affiliation(s)
- Noriyoshi Usui
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, Tex., USA
| | | | | |
Collapse
|
77
|
Somel M, Rohlfs R, Liu X. Transcriptomic insights into human brain evolution: acceleration, neutrality, heterochrony. Curr Opin Genet Dev 2014; 29:110-9. [PMID: 25233113 DOI: 10.1016/j.gde.2014.09.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Revised: 08/31/2014] [Accepted: 09/01/2014] [Indexed: 01/09/2023]
Abstract
Primate brain transcriptome comparisons within the last 12 years have yielded interesting but contradictory observations on how the transcriptome evolves, and its adaptive role in human cognitive evolution. Since the human-chimpanzee common ancestor, the human prefrontal cortex transcriptome seems to have evolved more than that of the chimpanzee. But at the same time, most expression differences among species, especially those observed in adults, appear as consequences of neutral evolution at cis-regulatory sites. Adaptive expression changes in the human brain may be rare events involving timing shifts, or heterochrony, in specific neurodevelopmental processes. Disentangling adaptive and neutral expression changes, and associating these with human-specific features of the brain require improved methods, comparisons across more species, and further work on comparative development.
Collapse
Affiliation(s)
- Mehmet Somel
- Department of Biology, Middle East Technical University, Ankara, Turkey.
| | - Rori Rohlfs
- Department of Integrative Biology, University of California, Berkeley, CA, USA
| | - Xiling Liu
- Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Shanghai, China
| |
Collapse
|
78
|
Perdomo-Sabogal A, Kanton S, Walter MBC, Nowick K. The role of gene regulatory factors in the evolutionary history of humans. Curr Opin Genet Dev 2014; 29:60-7. [PMID: 25215414 DOI: 10.1016/j.gde.2014.08.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Revised: 08/05/2014] [Accepted: 08/22/2014] [Indexed: 01/01/2023]
Abstract
Deciphering the molecular basis of how modern human phenotypes have evolved is one of the most fascinating challenges in biology. Here, we will focus on the roles of gene regulatory factors (GRFs), in particular transcription factors (TFs) and long non-coding RNAs (lncRNAs) during human evolution. We will present examples of TFs and lncRNAs that have changed or show signs of positive selection in humans compared to chimpanzees, in modern humans compared to archaic humans, or within modern human populations. On the basis of current knowledge about the functions of these GRF genes, we speculate that they have been involved in speciation as well as in shaping phenotypes such as brain functions, skeletal morphology, and metabolic processes.
Collapse
Affiliation(s)
- Alvaro Perdomo-Sabogal
- TFome Research Group, Bioinformatics Group, Interdisciplinary Center of Bioinformatics, Department of Computer Science, University of Leipzig, Härtelstrasse 16-18, D-04107 Leipzig, Germany; Paul-Flechsig-Institute for Brain Research, University of Leipzig, Jahnallee 59, D-04109 Leipzig, Germany
| | - Sabina Kanton
- TFome Research Group, Bioinformatics Group, Interdisciplinary Center of Bioinformatics, Department of Computer Science, University of Leipzig, Härtelstrasse 16-18, D-04107 Leipzig, Germany; Paul-Flechsig-Institute for Brain Research, University of Leipzig, Jahnallee 59, D-04109 Leipzig, Germany
| | - Maria Beatriz C Walter
- TFome Research Group, Bioinformatics Group, Interdisciplinary Center of Bioinformatics, Department of Computer Science, University of Leipzig, Härtelstrasse 16-18, D-04107 Leipzig, Germany; Paul-Flechsig-Institute for Brain Research, University of Leipzig, Jahnallee 59, D-04109 Leipzig, Germany
| | - Katja Nowick
- TFome Research Group, Bioinformatics Group, Interdisciplinary Center of Bioinformatics, Department of Computer Science, University of Leipzig, Härtelstrasse 16-18, D-04107 Leipzig, Germany; Paul-Flechsig-Institute for Brain Research, University of Leipzig, Jahnallee 59, D-04109 Leipzig, Germany.
| |
Collapse
|
79
|
Abstract
Cryptococcus neoformans is the leading cause of fungal meningitis worldwide. Previous studies have characterized the cryptococcal transcriptome under various stress conditions, but a comprehensive profile of the C. neoformans transcriptome in the human host has not been attempted. Here, we extracted RNA from yeast cells taken directly from the cerebrospinal fluid (CSF) of two AIDS patients with cryptococcal meningitis prior to antifungal therapy. The patients were infected with strains of C. neoformans var. grubii of molecular type VNI and VNII. Using RNA-seq, we compared the transcriptional profiles of these strains under three environmental conditions (in vivo CSF, ex vivo CSF, and yeast extract-peptone-dextrose [YPD]). Although we identified a number of differentially expressed genes, single nucleotide variants, and novel genes that were unique to each strain, the overall expression patterns of the two strains were similar under the same environmental conditions. Specifically, yeast cells obtained directly from each patient’s CSF were more metabolically active than cells that were incubated ex vivo in CSF. Compared with growth in YPD, some genes were identified as significantly upregulated in both in vivo and ex vivo CSF, and they were associated with genes previously recognized for contributing to pathogenicity. For example, genes with known stress response functions, such as RIM101, ENA1, and CFO1, were regulated similarly in the two clinical strains. Conversely, many genes that were differentially regulated between the two strains appeared to be transporters. These findings establish a platform for further studies of how this yeast survives and produces disease. Cryptococcus neoformans, an environmental, opportunistic yeast, is annually responsible for an estimated million cases of meningitis and over 600,000 deaths, mostly among HIV-infected patients in sub-Saharan Africa and Asia. Using RNA-seq, we analyzed the gene expression of two strains of C. neoformans obtained from the cerebrospinal fluid (CSF) of infected patients, thus creating a comprehensive snapshot of the yeasts’ genetic responses within the human body. By comparing the gene expression of each clinical strain under three conditions (in vivo CSF, ex vivo CSF, and laboratory culture), we identified genes and pathways that were uniquely regulated by exposure to CSF and likely crucial for the survival of C. neoformans in the central nervous system. Further analyses revealed genetic diversity between the strains, providing evidence for cryptococcal evolution and strain specificity. This ability to characterize transcription in vivo enables the elucidation of specific genetic responses that promote disease production and progression.
Collapse
|
80
|
Abstract
To understand the emergence of human higher cognition, we must understand its biological substrate--the cerebral cortex, which considers itself the crowning achievement of evolution. Here, we describe how advances in developmental neurobiology, coupled with those in genetics, including adaptive protein evolution via gene duplications and the emergence of novel regulatory elements, can provide insights into the evolutionary mechanisms culminating in the human cerebrum. Given that the massive expansion of the cortical surface and elaboration of its connections in humans originates from developmental events, understanding the genetic regulation of cell number, neuronal migration to proper layers, columns, and regions, and ultimately their differentiation into specific phenotypes, is critical. The pre- and postnatal environment also interacts with the cellular substrate to yield a basic network that is refined via selection and elimination of synaptic connections, a process that is prolonged in humans. This knowledge provides essential insight into the pathogenesis of human-specific neuropsychiatric disorders.
Collapse
Affiliation(s)
- Daniel H Geschwind
- Program in Neurogenetics, Department of Neurology, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
| | | |
Collapse
|
81
|
Abstract
During the course of evolution, genomes acquire novel genetic elements as sources of functional and phenotypic diversity, including new genes that originated in recent evolution. In the past few years, substantial progress has been made in understanding the evolution and phenotypic effects of new genes. In particular, an emerging picture is that new genes, despite being present in the genomes of only a subset of species, can rapidly evolve indispensable roles in fundamental biological processes, including development, reproduction, brain function and behaviour. The molecular underpinnings of how new genes can develop these roles are starting to be characterized. These recent discoveries yield fresh insights into our broad understanding of biological diversity at refined resolution.
Collapse
|
82
|
Zhang C, Wang J, Marowsky NC, Long M, Wing RA, Fan C. High occurrence of functional new chimeric genes in survey of rice chromosome 3 short arm genome sequences. Genome Biol Evol 2013; 5:1038-48. [PMID: 23651622 PMCID: PMC3673630 DOI: 10.1093/gbe/evt071] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
In an effort to identify newly evolved genes in rice, we searched the genomes of Asian-cultivated rice Oryza sativa ssp. japonica and its wild progenitors, looking for lineage-specific genes. Using genome pairwise comparison of approximately 20-Mb DNA sequences from the chromosome 3 short arm (Chr3s) in six rice species, O. sativa, O. nivara, O. rufipogon, O. glaberrima, O. barthii, and O. punctata, combined with synonymous substitution rate tests and other evidence, we were able to identify potential recently duplicated genes, which evolved within the last 1 Myr. We identified 28 functional O. sativa genes, which likely originated after O. sativa diverged from O. glaberrima. These genes account for around 1% (28/3,176) of all annotated genes on O. sativa's Chr3s. Among the 28 new genes, two recently duplicated segments contained eight genes. Fourteen of the 28 new genes consist of chimeric gene structure derived from one or multiple parental genes and flanking targeting sequences. Although the majority of these 28 new genes were formed by single or segmental DNA-based gene duplication and recombination, we found two genes that were likely originated partially through exon shuffling. Sequence divergence tests between new genes and their putative progenitors indicated that new genes were most likely evolving under natural selection. We showed all 28 new genes appeared to be functional, as suggested by Ka/Ks analysis and the presence of RNA-seq, cDNA, expressed sequence tag, massively parallel signature sequencing, and/or small RNA data. The high rate of new gene origination and of chimeric gene formation in rice may demonstrate rice's broad diversification, domestication, its environmental adaptation, and the role of new genes in rice speciation.
Collapse
Affiliation(s)
- Chengjun Zhang
- Department of Ecology and Evolution, University of Chicago, USA
| | | | | | | | | | | |
Collapse
|
83
|
PaGenBase: a pattern gene database for the global and dynamic understanding of gene function. PLoS One 2013; 8:e80747. [PMID: 24312499 PMCID: PMC3846610 DOI: 10.1371/journal.pone.0080747] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Accepted: 10/07/2013] [Indexed: 11/30/2022] Open
Abstract
Pattern genes are a group of genes that have a modularized expression behavior under serial physiological conditions. The identification of pattern genes will provide a path toward a global and dynamic understanding of gene functions and their roles in particular biological processes or events, such as development and pathogenesis. In this study, we present PaGenBase, a novel repository for the collection of tissue- and time-specific pattern genes, including specific genes, selective genes, housekeeping genes and repressed genes. The PaGenBase database is now freely accessible at http://bioinf.xmu.edu.cn/PaGenBase/. In the current version (PaGenBase 1.0), the database contains 906,599 pattern genes derived from the literature or from data mining of more than 1,145,277 gene expression profiles in 1,062 distinct samples collected from 11 model organisms. Four statistical parameters were used to quantitatively evaluate the pattern genes. Moreover, three methods (quick search, advanced search and browse) were designed for rapid and customized data retrieval. The potential applications of PaGenBase are also briefly described. In summary, PaGenBase will serve as a resource for the global and dynamic understanding of gene function and will facilitate high-level investigations in a variety of fields, including the study of development, pathogenesis and novel drug discovery.
Collapse
|
84
|
Shi L, Lin Q, Su B. Human-specific hypomethylation of CENPJ, a key brain size regulator. Mol Biol Evol 2013; 31:594-604. [PMID: 24288161 DOI: 10.1093/molbev/mst231] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Both the enlarged brain and concurrent highly developed cognitive skills are often seen as distinctive characteristics that set humans apart from other primates. Despite this obvious differentiation, the genetic mechanisms that underlie such human-specific traits are not clearly understood. In particular, whether epigenetic regulations may play a key role in human brain evolution remain elusive. In this study, we used bisulfite sequencing to compare the methylation patterns of four known genes that regulate brain size (ASPM, CDK5RAP2, CENPJ, and MCPH1) in the prefrontal cortex among several primate species spanning the major lineages of primates (i.e., humans, great apes, lesser apes, and Old World monkeys). The results showed a human-specific hypomethylation in the 5' UTR of CENPJ in the brain, where methylation levels among humans are only about one-third of those found among nonhuman primates. Similar methylation patterns were also detected in liver, kidney, and heart tissues, although the between-species differences were much less pronounced than those in the brain. Further in vitro methylation assays indicated that the methylation status of the CENPJ promoter could influence its expression. We also detected a large difference in CENPJ expression in the human and nonhuman primate brains of both adult individuals and throughout the major stages of fetal brain development. The hypomethylation and comparatively high expression of CENPJ in the central nervous system of humans suggest that a human-specific--and likely heritable--epigenetic modification likely occurred during human evolution, potentially leading to a much larger neural progenitor pool during human brain development, which may have eventually contributed to the dramatically enlarged brain and highly developed cognitive abilities associated with humans.
Collapse
Affiliation(s)
- Lei Shi
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | | | | |
Collapse
|
85
|
Abstract
Genes are perpetually added to and deleted from genomes during evolution. Thus, it is important to understand how new genes are formed and how they evolve to be critical components of the genetic systems that determine the biological diversity of life. Two decades of effort have shed light on the process of new gene origination and have contributed to an emerging comprehensive picture of how new genes are added to genomes, ranging from the mechanisms that generate new gene structures to the presence of new genes in different organisms to the rates and patterns of new gene origination and the roles of new genes in phenotypic evolution. We review each of these aspects of new gene evolution, summarizing the main evidence for the origination and importance of new genes in evolution. We highlight findings showing that new genes rapidly change existing genetic systems that govern various molecular, cellular, and phenotypic functions.
Collapse
Affiliation(s)
- Manyuan Long
- Department of Ecology and Evolution, The University of Chicago, Chicago, Illinois 60637;
| | | | | | | |
Collapse
|
86
|
Zhang Q. The role of mRNA-based duplication in the evolution of the primate genome. FEBS Lett 2013; 587:3500-7. [DOI: 10.1016/j.febslet.2013.08.042] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Revised: 08/24/2013] [Accepted: 08/30/2013] [Indexed: 12/28/2022]
|
87
|
Wissler L, Gadau J, Simola DF, Helmkampf M, Bornberg-Bauer E. Mechanisms and dynamics of orphan gene emergence in insect genomes. Genome Biol Evol 2013; 5:439-55. [PMID: 23348040 PMCID: PMC3590893 DOI: 10.1093/gbe/evt009] [Citation(s) in RCA: 101] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Orphan genes are defined as genes that lack detectable similarity to genes in other species and therefore no clear signals of common descent (i.e., homology) can be inferred. Orphans are an enigmatic portion of the genome because their origin and function are mostly unknown and they typically make up 10% to 30% of all genes in a genome. Several case studies demonstrated that orphans can contribute to lineage-specific adaptation. Here, we study orphan genes by comparing 30 arthropod genomes, focusing in particular on seven recently sequenced ant genomes. This setup allows analyzing a major metazoan taxon and a comparison between social Hymenoptera (ants and bees) and nonsocial Diptera (flies and mosquitoes). First, we find that recently split lineages undergo accelerated genomic reorganization, including the rapid gain of many orphan genes. Second, between the two insect orders Hymenoptera and Diptera, orphan genes are more abundant and emerge more rapidly in Hymenoptera, in particular, in leaf-cutter ants. With respect to intragenomic localization, we find that ant orphan genes show little clustering, which suggests that orphan genes in ants are scattered uniformly over the genome and between nonorphan genes. Finally, our results indicate that the genetic mechanisms creating orphan genes—such as gene duplication, frame-shift fixation, creation of overlapping genes, horizontal gene transfer, and exaptation of transposable elements—act at different rates in insects, primates, and plants. In Formicidae, the majority of orphan genes has their origin in intergenic regions, pointing to a high rate of de novo gene formation or generalized gene loss, and support a recently proposed dynamic model of frequent gene birth and death.
Collapse
Affiliation(s)
- Lothar Wissler
- Institute for Evolution and Biodiversity, University of Muenster, Muenster, Germany
| | | | | | | | | |
Collapse
|
88
|
Oksenberg N, Ahituv N. The role of AUTS2 in neurodevelopment and human evolution. Trends Genet 2013; 29:600-8. [PMID: 24008202 DOI: 10.1016/j.tig.2013.08.001] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Revised: 08/05/2013] [Accepted: 08/06/2013] [Indexed: 12/31/2022]
Abstract
The autism susceptibility candidate 2 (AUTS2) gene is associated with multiple neurological diseases, including autism, and has been implicated as an important gene in human-specific evolution. Recent functional analysis of this gene has revealed a potential role in neuronal development. Here, we review the literature regarding AUTS2, including its discovery, expression, association with autism and other neurological and non-neurological traits, implication in human evolution, function, regulation, and genetic pathways. Through progress in clinical genomic analysis, the medical importance of this gene is becoming more apparent, as highlighted in this review, but more work needs to be done to discover the precise function and the genetic pathways associated with AUTS2.
Collapse
Affiliation(s)
- Nir Oksenberg
- Department of Bioengineering and Therapeutic Sciences, and Institute for Human Genetics, University of California, San Francisco (UCSF), 1550 4th Street, San Francisco, CA 94158, USA
| | | |
Collapse
|
89
|
Divergent evolutionary and expression patterns between lineage specific new duplicate genes and their parental paralogs in Arabidopsis thaliana. PLoS One 2013; 8:e72362. [PMID: 24009676 PMCID: PMC3756979 DOI: 10.1371/journal.pone.0072362] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Accepted: 07/11/2013] [Indexed: 12/14/2022] Open
Abstract
Gene duplication is an important mechanism for the origination of functional novelties in organisms. We performed a comparative genome analysis to systematically estimate recent lineage specific gene duplication events in Arabidopsis thaliana and further investigate whether and how these new duplicate genes (NDGs) play a functional role in the evolution and adaption of A. thaliana. We accomplished this using syntenic relationship among four closely related species, A. thaliana, A. lyrata, Capsella rubella and Brassica rapa. We identified 100 NDGs, showing clear origination patterns, whose parental genes are located in syntenic regions and/or have clear orthologs in at least one of three outgroup species. All 100 NDGs were transcribed and under functional constraints, while 24% of the NDGs have differential expression patterns compared to their parental genes. We explored the underlying evolutionary forces of these paralogous pairs through conducting neutrality tests with sequence divergence and polymorphism data. Evolution of about 15% of NDGs appeared to be driven by natural selection. Moreover, we found that 3 NDGs not only altered their expression patterns when compared with parental genes, but also evolved under positive selection. We investigated the underlying mechanisms driving the differential expression of NDGs and their parents, and found a number of NDGs had different cis-elements and methylation patterns from their parental genes. Overall, we demonstrated that NDGs acquired divergent cis-elements and methylation patterns and may experience sub-functionalization or neo-functionalization influencing the evolution and adaption of A. thaliana.
Collapse
|
90
|
Zhang S, Wang XJ. Promote Connections of Young Computational Biologists in China. GENOMICS, PROTEOMICS & BIOINFORMATICS 2013; 11:253-6. [PMID: 23835348 PMCID: PMC4357815 DOI: 10.1016/j.gpb.2013.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Revised: 06/23/2013] [Accepted: 07/01/2013] [Indexed: 02/01/2023]
Affiliation(s)
- Shihua Zhang
- National Center for Mathematics and Interdisciplinary Sciences, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, China
- Corresponding authors.
| | - Xiu-Jie Wang
- Center for Molecular Systems Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- Corresponding authors.
| |
Collapse
|
91
|
Fan Y, Huang ZY, Cao CC, Chen CS, Chen YX, Fan DD, He J, Hou HL, Hu L, Hu XT, Jiang XT, Lai R, Lang YS, Liang B, Liao SG, Mu D, Ma YY, Niu YY, Sun XQ, Xia JQ, Xiao J, Xiong ZQ, Xu L, Yang L, Zhang Y, Zhao W, Zhao XD, Zheng YT, Zhou JM, Zhu YB, Zhang GJ, Wang J, Yao YG. Genome of the Chinese tree shrew. Nat Commun 2013; 4:1426. [PMID: 23385571 DOI: 10.1038/ncomms2416] [Citation(s) in RCA: 257] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2012] [Accepted: 12/20/2012] [Indexed: 02/08/2023] Open
Abstract
Chinese tree shrews (Tupaia belangeri chinensis) possess many features valuable in animals used as experimental models in biomedical research. Currently, there are numerous attempts to employ tree shrews as models for a variety of human disorders: depression, myopia, hepatitis B and C virus infections, and hepatocellular carcinoma, to name a few. Here we present a publicly available annotated genome sequence for the Chinese tree shrew. Phylogenomic analysis of the tree shrew and other mammalians highly support its close affinity to primates. By characterizing key factors and signalling pathways in nervous and immune systems, we demonstrate that tree shrews possess both shared common and unique features, and provide a genetic basis for the use of this animal as a potential model for biomedical research.
Collapse
Affiliation(s)
- Yu Fan
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan 650223, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
92
|
Genetic insights into the functional elements of language. Hum Genet 2013; 132:959-86. [PMID: 23749164 DOI: 10.1007/s00439-013-1317-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Accepted: 05/22/2013] [Indexed: 12/11/2022]
Abstract
Language disorders cover a wide range of conditions with heterologous and overlapping phenotypes and complex etiologies harboring both genetic and environmental influences. Genetic approaches including the identification of genes linked to speech and language phenotypes and the characterization of normal and aberrant functions of these genes have, in recent years, unraveled complex details of molecular and cognitive mechanisms and provided valuable insight into the biological foundations of language. Consistent with this approach, we have reviewed the functional aspects of allelic variants of genes which are currently known to be either causally associated with disorders of speech and language or impact upon the spectrum of normal language ability. We have also reviewed candidate genes associated with heritable speech and language disorders. In addition, we have evaluated language phenotypes and associated genetic components in developmental syndromes that, together with a spectrum of altered language abilities, manifest various phenotypes and offer details of multifactorial determinants of language function. Data from this review have revealed a predominance of regulatory networks involved in the control of differentiation and functioning of neurons, neuronal tracks and connections among brain structures associated with both cognitive and language faculties. Our findings, furthermore, have highlighted several multifactorial determinants in overlapping speech and language phenotypes. Collectively this analysis has revealed an interconnected developmental network and a close association of the language faculty with cognitive functions, a finding that has the potential to provide insight into linguistic hypotheses defining in particular, the contribution of genetic elements to and the modular nature of the language faculty.
Collapse
|
93
|
Shariati SAM, De Strooper B. Redundancy and divergence in the amyloid precursor protein family. FEBS Lett 2013; 587:2036-45. [PMID: 23707420 DOI: 10.1016/j.febslet.2013.05.026] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Accepted: 05/08/2013] [Indexed: 11/30/2022]
Abstract
Gene duplication provides genetic material required for functional diversification. An interesting example is the amyloid precursor protein (APP) protein family. The APP gene family has experienced both expansion and contraction during evolution. The three mammalian members have been studied quite extensively in combined knock out models. The underlying assumption is that APP, amyloid precursor like protein 1 and 2 (APLP1, APLP2) are functionally redundant. This assumption is primarily supported by the similarities in biochemical processing of APP and APLPs and on the fact that the different APP genes appear to genetically interact at the level of the phenotype in combined knockout mice. However, unique features in each member of the APP family possibly contribute to specification of their function. In the current review, we discuss the evolution and the biology of the APP protein family with special attention to the distinct properties of each homologue. We propose that the functions of APP, APLP1 and APLP2 have diverged after duplication to contribute distinctly to different neuronal events. Our analysis reveals that APLP2 is significantly diverged from APP and APLP1.
Collapse
Affiliation(s)
- S Ali M Shariati
- KU Leuven, Center for Human Genetics and Leuven Institute for Neurodegenerative Diseases (LIND), 3000 Leuven, Belgium
| | | |
Collapse
|
94
|
Abstract
The evolution of higher cognitive functions in humans is thought to be due, at least in part, to the molecular evolution of gene expression patterns specific to the human brain. In this article, we explore recent and past findings using comparative genomics in human and non-human primate brain to identify these novel human patterns. We suggest additional directions and lines of experimentation that should be taken to improve our understanding of these changes on the human lineage. Finally, we attempt to put into context these genomic changes with biological phenotypes and diseases in humans.
Collapse
Affiliation(s)
- Guang-Zhong Wang
- Department of Neuroscience; UT Southwestern Medical Center; Dallas, TX USA
| | | |
Collapse
|
95
|
Wu DD, Zhang YP. Evolution and function of de novo originated genes. Mol Phylogenet Evol 2013; 67:541-5. [DOI: 10.1016/j.ympev.2013.02.013] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2012] [Revised: 02/10/2013] [Accepted: 02/13/2013] [Indexed: 01/08/2023]
|
96
|
Guo YL. Gene family evolution in green plants with emphasis on the origination and evolution of Arabidopsis thaliana genes. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2013; 73:941-51. [PMID: 23216999 DOI: 10.1111/tpj.12089] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2012] [Revised: 11/01/2012] [Accepted: 11/23/2012] [Indexed: 05/04/2023]
Abstract
Gene family size variation is an important mechanism that shapes the natural variation for adaptation in various species. Despite its importance, the pattern of gene family size variation in green plants is still not well understood. In particular, the evolutionary pattern of genes and gene families remains unknown in the model plant Arabidopsis thaliana in the context of green plants. In this study, eight representative genomes of green plants are sampled to study gene family evolution and characterize the origination of A. thaliana genes, respectively. Four important insights gained are that: (i) the rate of gene gains and losses is about 0.001359 per gene every million years, similar to the rate in yeast, Drosophila, and mammals; (ii) some gene families evolved rapidly with extreme expansions or contractions, and 2745 gene families present in all the eight species represent the 'core' proteome of green plants; (iii) 70% of A. thaliana genes could be traced back to 450 million years ago; and (iv) intriguingly, A. thaliana genes with early origination are under stronger purifying selection and more conserved. In summary, the present study provides genome-wide insights into evolutionary history and mechanisms of genes and gene families in green plants and especially in A. thaliana.
Collapse
Affiliation(s)
- Ya-Long Guo
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.
| |
Collapse
|
97
|
Weiss KM. Little orphan's nanny: where do genes come from and who takes care of them? Evol Anthropol 2013; 22:4-8. [PMID: 23436644 DOI: 10.1002/evan.21327] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Kenneth M Weiss
- Pennsylvania State University, University Park, PA 16802, USA.
| |
Collapse
|
98
|
Zhou T, Hu Z, Zhou Z, Guo X, Sha J. Genome-wide analysis of human hotspot intersected genes highlights the roles of meiotic recombination in evolution and disease. BMC Genomics 2013; 14:67. [PMID: 23368819 PMCID: PMC3620679 DOI: 10.1186/1471-2164-14-67] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2012] [Accepted: 01/29/2013] [Indexed: 11/21/2022] Open
Abstract
Background Meiotic recombination events are not randomly located, but rather cluster at hotspot regions. Recently, the fine-scale mapping of genome-wide human recombination hotspots was performed. Here, we systematically analyzed the evolutionary and disease-associated features of hotspots that overlapped with protein-coding genes. Results In this study, we defined hotspot intersected genes as HI genes. We found that HI genes were prone to be located in the extracellular part and were functionally enriched in cell-to-cell communication. Tissue-specific genes and secreted protein encoding genes were overrepresented in HI genes, while housekeeping genes were underrepresented. Compared to slowly evolving housekeeping genes and random genes with lower recombination rates, HI genes evolved faster. The fact that brain and blood specific genes were overrepresented in HI genes indicates that they may be involved in the evolution of human intelligence and the immune system. We also found that genes related to disease were enriched in HI genes, especially genes with disease-associated chromosomal rearrangements. Hotspot sequence motifs were overrepresented in common sequences of HI genes and genes with disease-associated chromosomal rearrangements. We further listed repeat elements that were enriched both in hotspots and genes with disease-associated chromosomal rearrangements. Conclusion HI genes are evolving and may be involved in the generation of key features of human during evolution. Disease-associated genes may be by-products of meiotic recombination. In addition, hotspot sequence motifs and repeat elements showed the connection between meiotic recombination and genes with disease-associated chromosomal rearrangements at the sequence level. Our study will enable us to better understand the evolutionary and biological significance of human meiotic recombination.
Collapse
Affiliation(s)
- Tao Zhou
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, 140 Hanzhong Road, Nanjing, Jiangsu Province 210029, People's Republic of China
| | | | | | | | | |
Collapse
|
99
|
Abstract
What evolutionary events led to the emergence of human cognition? Although the genetic differences separating modern humans from both non-human primates (for example, chimpanzees) and archaic hominins (Neanderthals and Denisovans) are known, linking human-specific mutations to the cognitive phenotype remains a challenge. One strategy is to focus on human-specific changes at the level of intermediate phenotypes, such as gene expression and metabolism, in conjunction with evolutionary changes in gene regulation involving transcription factors, microRNA and proximal regulatory elements. In this Review we show how this strategy has yielded some of the first hints about the mechanisms of human cognition.
Collapse
|
100
|
Oksenberg N, Stevison L, Wall JD, Ahituv N. Function and regulation of AUTS2, a gene implicated in autism and human evolution. PLoS Genet 2013; 9:e1003221. [PMID: 23349641 PMCID: PMC3547868 DOI: 10.1371/journal.pgen.1003221] [Citation(s) in RCA: 128] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2012] [Accepted: 11/20/2012] [Indexed: 12/13/2022] Open
Abstract
Nucleotide changes in the AUTS2 locus, some of which affect only noncoding regions, are associated with autism and other neurological disorders, including attention deficit hyperactivity disorder, epilepsy, dyslexia, motor delay, language delay, visual impairment, microcephaly, and alcohol consumption. In addition, AUTS2 contains the most significantly accelerated genomic region differentiating humans from Neanderthals, which is primarily composed of noncoding variants. However, the function and regulation of this gene remain largely unknown. To characterize auts2 function, we knocked it down in zebrafish, leading to a smaller head size, neuronal reduction, and decreased mobility. To characterize AUTS2 regulatory elements, we tested sequences for enhancer activity in zebrafish and mice. We identified 23 functional zebrafish enhancers, 10 of which were active in the brain. Our mouse enhancer assays characterized three mouse brain enhancers that overlap an ASD-associated deletion and four mouse enhancers that reside in regions implicated in human evolution, two of which are active in the brain. Combined, our results show that AUTS2 is important for neurodevelopment and expose candidate enhancer sequences in which nucleotide variation could lead to neurological disease and human-specific traits.
Collapse
Affiliation(s)
- Nir Oksenberg
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, California, United States of America
- Institute for Human Genetics, University of California San Francisco, San Francisco, California, United States of America
| | - Laurie Stevison
- Institute for Human Genetics, University of California San Francisco, San Francisco, California, United States of America
| | - Jeffrey D. Wall
- Institute for Human Genetics, University of California San Francisco, San Francisco, California, United States of America
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, California, United States of America
| | - Nadav Ahituv
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, California, United States of America
- Institute for Human Genetics, University of California San Francisco, San Francisco, California, United States of America
| |
Collapse
|