51
|
Liu Z, Fu S, He X, Liu X, Shi C, Dai L, Wang B, Chai Y, Liu Y, Zhang W. Estimates of Genomic Heritability and the Marker-Derived Gene for Re(Production) Traits in Xinggao Sheep. Genes (Basel) 2023; 14:genes14030579. [PMID: 36980850 PMCID: PMC10048694 DOI: 10.3390/genes14030579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 02/21/2023] [Accepted: 02/23/2023] [Indexed: 03/02/2023] Open
Abstract
Xinggao sheep are a breed of Chinese domestic sheep that are adapted to the extremely cold climatic features of the Hinggan League in China. The economically vital reproductive trait of ewes (litter size, LS) and productive traits of lambs (birth weight, BWT; weaning weight, WWT; and average daily gain, ADG) are expressed in females and later in life after most of the selection decisions have been made. This study estimated the genetic parameters for four traits to explore the genetic mechanisms underlying the variation, and we performed genome-wide association study (GWAS) tests on a small sample size to identify novel marker trait associations (MTAs) associated with prolificacy and growth. We detected two suggestive significant single-nucleotide polymorphisms (SNPs) associated with LS and eight significant SNPs for BWT, WWT, and ADG. These candidate loci and genes also provide valuable information for further fine-mapping of QTLs and improvement of reproductive and productive traits in sheep.
Collapse
Affiliation(s)
- Zaixia Liu
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China
- Inner Mongolia Engineering Research Center of Genomic Big Data for Agriculture, Hohhot 010018, China
| | - Shaoyin Fu
- Institute of Animal Husbandry, Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Hohhot 010031, China
| | - Xiaolong He
- Institute of Animal Husbandry, Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Hohhot 010031, China
| | - Xuewen Liu
- College of Agronomy, Animal Husbandry and Bioengineering, Xing’an Vocational and Technical College, Ulanhot 137400, China
| | - Caixia Shi
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Lingli Dai
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China
- Inner Mongolia Engineering Research Center of Genomic Big Data for Agriculture, Hohhot 010018, China
- Veterinary Research Institute, Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Hohhot 010031, China
| | - Biao Wang
- Institute of Animal Husbandry, Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Hohhot 010031, China
| | - Yuan Chai
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Yongbin Liu
- School of Life Science, Inner Mongolia University, Hohhot 010021, China
- Correspondence: (Y.L.); (W.Z.)
| | - Wenguang Zhang
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China
- Inner Mongolia Engineering Research Center of Genomic Big Data for Agriculture, Hohhot 010018, China
- Correspondence: (Y.L.); (W.Z.)
| |
Collapse
|
52
|
Romanov MN, Abdelmanova AS, Fisinin VI, Gladyr EA, Volkova NA, Koshkina OA, Rodionov AN, Vetokh AN, Gusev IV, Anshakov DV, Stanishevskaya OI, Dotsev AV, Griffin DK, Zinovieva NA. Selective footprints and genes relevant to cold adaptation and other phenotypic traits are unscrambled in the genomes of divergently selected chicken breeds. J Anim Sci Biotechnol 2023; 14:35. [PMID: 36829208 PMCID: PMC9951459 DOI: 10.1186/s40104-022-00813-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 11/27/2022] [Indexed: 02/26/2023] Open
Abstract
BACKGROUND The genomes of worldwide poultry breeds divergently selected for performance and other phenotypic traits may also be affected by, and formed due to, past and current admixture events. Adaptation to diverse environments, including acclimation to harsh climatic conditions, has also left selection footprints in breed genomes. RESULTS Using the Chicken 50K_CobbCons SNP chip, we genotyped four divergently selected breeds: two aboriginal, cold tolerant Ushanka and Orloff Mille Fleur, one egg-type Russian White subjected to artificial selection for cold tolerance, and one meat-type White Cornish. Signals of selective sweeps were determined in the studied breeds using three methods: (1) assessment of runs of homozygosity islands, (2) FST based population differential analysis, and (3) haplotype differentiation analysis. Genomic regions of true selection signatures were identified by two or more methods or in two or more breeds. In these regions, we detected 540 prioritized candidate genes supplemented them with those that occurred in one breed using one statistic and were suggested in other studies. Amongst them, SOX5, ME3, ZNF536, WWP1, RIPK2, OSGIN2, DECR1, TPO, PPARGC1A, BDNF, MSTN, and beta-keratin genes can be especially mentioned as candidates for cold adaptation. Epigenetic factors may be involved in regulating some of these important genes (e.g., TPO and BDNF). CONCLUSION Based on a genome-wide scan, our findings can help dissect the genetic architecture underlying various phenotypic traits in chicken breeds. These include genes representing the sine qua non for adaptation to harsh environments. Cold tolerance in acclimated chicken breeds may be developed following one of few specific gene expression mechanisms or more than one overlapping response known in cold-exposed individuals, and this warrants further investigation.
Collapse
Affiliation(s)
- Michael N. Romanov
- L.K. Ernst Federal Research Centre for Animal Husbandry, Dubrovitsy, Podolsk, Moscow Region Russia ,grid.9759.20000 0001 2232 2818School of Biosciences, University of Kent, Canterbury, UK
| | - Alexandra S. Abdelmanova
- L.K. Ernst Federal Research Centre for Animal Husbandry, Dubrovitsy, Podolsk, Moscow Region Russia
| | - Vladimir I. Fisinin
- grid.4886.20000 0001 2192 9124Federal State Budget Scientific Institution Federal Research Centre “All-Russian Poultry Research and Technological Institute” of the Russian Academy of Sciences, Sergiev Posad, Moscow Region Russia
| | - Elena A. Gladyr
- L.K. Ernst Federal Research Centre for Animal Husbandry, Dubrovitsy, Podolsk, Moscow Region Russia
| | - Natalia A. Volkova
- L.K. Ernst Federal Research Centre for Animal Husbandry, Dubrovitsy, Podolsk, Moscow Region Russia
| | - Olga A. Koshkina
- L.K. Ernst Federal Research Centre for Animal Husbandry, Dubrovitsy, Podolsk, Moscow Region Russia
| | - Andrey N. Rodionov
- L.K. Ernst Federal Research Centre for Animal Husbandry, Dubrovitsy, Podolsk, Moscow Region Russia
| | - Anastasia N. Vetokh
- L.K. Ernst Federal Research Centre for Animal Husbandry, Dubrovitsy, Podolsk, Moscow Region Russia
| | - Igor V. Gusev
- L.K. Ernst Federal Research Centre for Animal Husbandry, Dubrovitsy, Podolsk, Moscow Region Russia
| | - Dmitry V. Anshakov
- grid.4886.20000 0001 2192 9124Breeding and Genetic Centre “Zagorsk Experimental Breeding Farm” – Branch of the Federal Research Centre “All-Russian Poultry Research and Technological Institute” of the Russian Academy of Sciences, Sergiev Posad, Moscow Region Russia
| | - Olga I. Stanishevskaya
- grid.473314.6Russian Research Institute of Farm Animal Genetics and Breeding – Branch of the L.K. Ernst Federal Research Centre for Animal Husbandry, St. Petersburg, Russia
| | - Arsen V. Dotsev
- L.K. Ernst Federal Research Centre for Animal Husbandry, Dubrovitsy, Podolsk, Moscow Region Russia
| | - Darren K. Griffin
- grid.9759.20000 0001 2232 2818School of Biosciences, University of Kent, Canterbury, UK
| | - Natalia A. Zinovieva
- L.K. Ernst Federal Research Centre for Animal Husbandry, Dubrovitsy, Podolsk, Moscow Region Russia
| |
Collapse
|
53
|
Cheng H, Zhang Z, Wen J, Lenstra JA, Heller R, Cai Y, Guo Y, Li M, Li R, Li W, He S, Wang J, Shao J, Song Y, Zhang L, Billah M, Wang X, Liu M, Jiang Y. Long divergent haplotypes introgressed from wild sheep are associated with distinct morphological and adaptive characteristics in domestic sheep. PLoS Genet 2023; 19:e1010615. [PMID: 36821549 PMCID: PMC9949681 DOI: 10.1371/journal.pgen.1010615] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 01/13/2023] [Indexed: 02/24/2023] Open
Abstract
The worldwide sheep population comprises more than 1000 breeds. Together, these exhibit a considerable morphological diversity, which has not been extensively investigated at the molecular level. Here, we analyze whole-genome sequencing individuals of 1,098 domestic sheep from 154 breeds, and 69 wild sheep from seven Ovis species. On average, we detected 6.8%, 1.0% and 0.2% introgressed sequence in domestic sheep originating from Iranian mouflon, urial and argali, respectively, with rare introgressions from other wild species. Interestingly, several introgressed haplotypes contributed to the morphological differentiations across sheep breeds, such as a RXFP2 haplotype from Iranian mouflon conferring the spiral horn trait, a MSRB3 haplotype from argali strongly associated with ear morphology, and a VPS13B haplotype probably originating from urial and mouflon possibly associated with facial traits. Our results reveal that introgression events from wild Ovis species contributed to the high rate of morphological differentiation in sheep breeds, but also to individual variation within breeds. We propose that long divergent haplotypes are a ubiquitous source of phenotypic variation that allows adaptation to a variable environment, and that these remain intact in the receiving population probably due to reduced recombination.
Collapse
Affiliation(s)
- Hong Cheng
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Zhuangbiao Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Jiayue Wen
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Johannes A. Lenstra
- Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Rasmus Heller
- Section for Computational and RNA Biology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Yudong Cai
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Yingwei Guo
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Ming Li
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Ran Li
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Wenrong Li
- Key Laboratory of Ruminant Genetics, Breeding & Reproduction, Ministry of Agriculture, China
- Key Laboratory of Animal Biotechnology of Xinjiang, Institute of Biotechnology, Xinjiang Academy of Animal Science, Urumqi, Xinjiang, China
| | - Sangang He
- Key Laboratory of Ruminant Genetics, Breeding & Reproduction, Ministry of Agriculture, China
- Key Laboratory of Animal Biotechnology of Xinjiang, Institute of Biotechnology, Xinjiang Academy of Animal Science, Urumqi, Xinjiang, China
| | - Jintao Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Junjie Shao
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Yuxuan Song
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Lei Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Masum Billah
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Xihong Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Mingjun Liu
- Key Laboratory of Ruminant Genetics, Breeding & Reproduction, Ministry of Agriculture, China
- Key Laboratory of Animal Biotechnology of Xinjiang, Institute of Biotechnology, Xinjiang Academy of Animal Science, Urumqi, Xinjiang, China
- * E-mail: (ML); (YJ)
| | - Yu Jiang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
- * E-mail: (ML); (YJ)
| |
Collapse
|
54
|
Saleh AA, Xue L, Zhao Y. Screening Indels from the whole genome to identify the candidates and their association with economic traits in several goat breeds. Funct Integr Genomics 2023; 23:58. [PMID: 36757519 DOI: 10.1007/s10142-023-00981-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 01/20/2023] [Accepted: 01/25/2023] [Indexed: 02/10/2023]
Abstract
In the present study, the re-sequencing of our previous whole-genome sequencing (WGS) for selected individuals of Dazu-black goat (DBG) and Inner-Mongolia Cashmere goat (IMCG) breeds was used to detect and compare the differentiation in Indels depending on the reference genome of goat. Then, three selected candidate Indels rs668795676, rs657996810, and rs669452874 of the three genes SUFU, SYCP2L and GLIPR1L1, respectively, have been chosen, based on the results of prior GWAS across the genome, and examined for their association with body weight and dimensions (body height, body length, heart girth, chest width, cannon circumference, and chest depth) by kompetitive allele specific PCR assay for 342 goats from the three studied goat breeds (DBG, n = 203; ♂99, ♀104), IMCG (n = 65; 15♂, 50♀), and Hechuan white goat (HWG, n = 74; 34♂, 40♀) breeds. The analysis of 192.747 Gb WGS revealed an average 334,151 Indels in the whole genome of DBG and IMCG breeds. Chromosome 1 had a maximum number of mutations (Indels) of 58,497 and 55,527 for IMCG and DBG, respectively, while chromosome 25 had the least number of mutations of 15,680 and 16,103 for IMCG and DBG, respectively. The majority of Indels were either Ins or Del of short fragments of 1-5 bp, which covered 79.06 and 71.78% of the total number of Indels mutations in IMCG and DBG, respectively. Comparing the differences of Indels between the studied goat breeds revealed 100 and 110 unique Indels for IMCG and DBG, respectively. The Indels loci in the intron region were unique for both studied goat breeds which were related to 30 and 38 candidate genes in IMCG and DBG, respectively, including SUFU, SYCP2L, and GLIPR1L1 genes. Concerning rs669452874 locus, body height and body length of Del/Del genotype in DBG were significantly higher (P < 0.05) than that of Ins/Del genotype, while body height and body length of Del/Del genotype in IMCG were significantly higher (P < 0.01) than those of Ins/Ins genotype, whereas body height and body length and heart girth of Del/Del genotype in HWG were significantly higher (P < 0.01) than those of the Ins/Del and Ins/Ins genotypes. Thus, Del/Del genotype of rs669452874 locus can be used as a candidate molecular marker related to the body dimensions in the studied goat breeds.
Collapse
Affiliation(s)
- Ahmed A Saleh
- Animal and Fish Production Department, Faculty of Agriculture (Alshatby), Alexandria University, Alexandria City, 11865, Egypt.
| | - Lei Xue
- College of Animal Science and Technology, Chongqing Key Laboratory of Forage & Herbivore, Chongqing Engineering Research Centre for Herbivores Resource Protection and Utilization, Southwest University, Chongqing, 400715, People's Republic of China
| | - Yongju Zhao
- College of Animal Science and Technology, Chongqing Key Laboratory of Forage & Herbivore, Chongqing Engineering Research Centre for Herbivores Resource Protection and Utilization, Southwest University, Chongqing, 400715, People's Republic of China
| |
Collapse
|
55
|
Bedhiaf-Romdhani S, Baazaoui I, Dodds KG, Brauning R, Anderson RM, Van Stijn TC, McCulloch AF, McEwan JC. Efficiency of genotyping by sequencing in inferring genomic relatedness and molecular insights into fat tail selection in Tunisian sheep. Anim Genet 2023; 54:389-397. [PMID: 36727208 DOI: 10.1111/age.13296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 12/14/2022] [Accepted: 01/12/2023] [Indexed: 02/03/2023]
Abstract
In developing countries, the use of simple and cost-efficient molecular technology is crucial for genetic characterization of local animal resources and better development of conservation strategies. The genotyping by sequencing (GBS) technique, also called restriction enzyme- reduced representational sequencing, is an efficient, cost-effective method for simultaneous discovery and genotyping of many markers. In the present study, we applied a two-enzyme GBS protocol (PstI/MspI) to discover and genotype SNP markers among 197 Tunisian sheep samples. A total of 100 333 bi-allelic SNPs were discovered and genotyped with an SNP call rate of 0.69 and mean sample depth 3.33. The genomic relatedness between 183 samples grouped the samples perfectly to their populations and pointed out a high genetic relatedness of inbred subpopulation reflecting the current adopted reproductive strategies. The genome-wide association study contrasting fat vs. thin-tailed breeds detected 41 significant variants including a peak positioned on OAR20. We identified FOXC1, GMDS, VEGFA, OXCT1, VRTN and BMP2 as the most promising for sheep tail-type trait. The GBS data have been useful to assess the population structure and improve our understanding of the genomic architecture of distinctive characteristics shaped by selection pressure in local sheep breeds. This study successfully investigates a cost-efficient method to discover genotypes, assign populations and understand insights into sheep adaptation to arid area. GBS could be of potential utility in livestock species in developing/emerging countries.
Collapse
Affiliation(s)
- Sonia Bedhiaf-Romdhani
- Laboratoire des Productions Animales et Fourragères, INRA-Tunisie, Université de Carthage, Tunis, Tunisia
| | - Imen Baazaoui
- Faculty of Sciences of Bizerte, University of Carthage, Bizerte, Tunisia
| | - Ken G Dodds
- AgResearch Limited, Invermay Agricultural Centre, Mosgiel, New Zealand
| | - Rudiger Brauning
- AgResearch Limited, Invermay Agricultural Centre, Mosgiel, New Zealand
| | - Rayna M Anderson
- AgResearch Limited, Invermay Agricultural Centre, Mosgiel, New Zealand
| | | | - Alan F McCulloch
- AgResearch Limited, Invermay Agricultural Centre, Mosgiel, New Zealand
| | - John Colin McEwan
- AgResearch Limited, Invermay Agricultural Centre, Mosgiel, New Zealand
| |
Collapse
|
56
|
Seasonal Adaptation: Geographic Photoperiod-Temperature Patterns Explain Genetic Variation in the Common Vole Tsh Receptor. Genes (Basel) 2023; 14:genes14020292. [PMID: 36833219 PMCID: PMC9957289 DOI: 10.3390/genes14020292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/14/2023] [Accepted: 01/18/2023] [Indexed: 01/26/2023] Open
Abstract
The vertebrate photoperiodic neuroendocrine system uses the photoperiod as a proxy to time the annual rhythms in reproduction. The thyrotropin receptor (TSHR) is a key protein in the mammalian seasonal reproduction pathway. Its abundance and function can tune sensitivity to the photoperiod. To investigate seasonal adaptation in mammals, the hinge region and the first part of the transmembrane domain of the Tshr gene were sequenced for 278 common vole (Microtus arvalis) specimens from 15 localities in Western Europe and 28 localities in Eastern Europe. Forty-nine single nucleotide polymorphisms (SNPs; twenty-two intronic and twenty-seven exonic) were found, with a weak or lack of correlation with pairwise geographical distance, latitude, longitude, and altitude. By applying a temperature threshold to the local photoperiod-temperature ellipsoid, we obtained a predicted critical photoperiod (pCPP) as a proxy for the spring onset of local primary food production (grass). The obtained pCPP explains the distribution of the genetic variation in Tshr in Western Europe through highly significant correlations with five intronic and seven exonic SNPs. The relationship between pCPP and SNPs was lacking in Eastern Europe. Thus, Tshr, which plays a pivotal role in the sensitivity of the mammalian photoperiodic neuroendocrine system, was targeted by natural selection in Western European vole populations, resulting in the optimized timing of seasonal reproduction.
Collapse
|
57
|
Granero A, Anaya G, Alcalde MJ. Morphostructural Differences between the Historical Genetic Lines of the Spanish Merino Sheep. Animals (Basel) 2023; 13:ani13020313. [PMID: 36670853 PMCID: PMC9855035 DOI: 10.3390/ani13020313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/06/2023] [Accepted: 01/13/2023] [Indexed: 01/18/2023] Open
Abstract
The Merino breed, which originates from Spain, is the most emblematic livestock breed in the world, since it is the first with a worldwide extension and has had an important impact on the genetic origin of several of the main current sheep populations. For this reason, it is of vital importance to typify the historical genetic lines of the original Spanish Merino breed and thereby ensure the conservation of its variability. In the present study, we used 337 purebred animals (males and females) registered in the Genealogical Book of the Native Merino Breed. All the animals were descendants of herds from six ancestral genetic lines (Maesso, Egea, Granda, López-Montenegro, Hidalgo, and Donoso). Significant differences were found in all the morphometric traits and indexes between the different genetic lines. Using discriminant analysis, 84% of the animals were classified correctly into their historical genetic lines. Furthermore, the distances between the lines, calculated by a cluster test, showed that Hidalgo, Maesso, and Donoso had the most clearly defined lines, while the Granda, López-Montenegro, and Egea lines were more similar to each other. All this demonstrates the rich genetic variability existing in the genuine gene pool of the Merino sheep breed.
Collapse
Affiliation(s)
- Antonio Granero
- Asociación Nacional de Criadores de Ganado Merino (ACME), 28028 Madrid, Spain
| | - Gabriel Anaya
- Department of Genetics, University of Córdoba, CN IV, KM 396, 17071 Córdoba, Spain
| | - María J. Alcalde
- Agronomy Department, University of Sevilla, 41013 Sevilla, Spain
- Correspondence:
| |
Collapse
|
58
|
Gaspar D, Usié A, Leão C, Guimarães S, Pires AE, Matos C, Ramos AM, Ginja C. Genome-wide assessment of the population structure and genetic diversity of four Portuguese native sheep breeds. Front Genet 2023; 14:1109490. [PMID: 36713074 PMCID: PMC9880275 DOI: 10.3389/fgene.2023.1109490] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Accepted: 01/02/2023] [Indexed: 01/15/2023] Open
Abstract
As the effects of global warming become increasingly complex and difficult to manage, the conservation and sustainable use of locally adapted sheep breeds are gaining ground. Portuguese native sheep breeds are important reservoirs of genetic diversity, highly adapted to harsh environments and reared in low input production systems. Genomic data that would describe the breeds in detail and accelerate the selection of more resilient animals to be able to cope with climatic challenges are still lacking. Here, we sequenced the genomes of 37 animals from four Portuguese native sheep breeds (Campaniça, Bordaleira Serra da Estrela, Merino Branco and Merino Preto) and 19 crossbred sheep to make inferences on their genomic diversity and population structure. Mean genomic diversities were very similar across these breeds (.30 ≤ Ho ≤ .34; .30 ≤ He ≤ .35; 1.7 × 10-3 ≤ π ≤ 3.1 × 10-3) and the levels of inbreeding were negligible (.005 ≤ FIS ≤ .038). The Principal Components, Bayesian clustering and Treemix analyses split the Portuguese breeds in two main groups which are consistent with historical records: one comprising Campaniça and Serra da Estrela together with other European and transboundary dairy breeds; and another of the well-differentiated multi-purpose Merino and Merino-related breeds. Runs of homozygosity analyses yielded 1,690 ROH segments covering an average of 2.27 Gb across the genome in all individuals. The overall genome covered by ROH segments varied from 27,75 Mb in Serra da Estrela to 61,29 Mb in Campaniça. The phylogenetic analysis of sheep mitogenomes grouped the Portuguese native breeds within sub-haplogroup B1a along with two animals of the Akkaraman breed from Turkey. This result provides additional support to a direct influence of Southwest Asian sheep in local breeds from the Iberian Peninsula. Our study is a first step pertaining to the genomic characterization of Portuguese sheep breeds and the results emphasize the potential of genomic data as a valid tool to guide conservation efforts in locally adapted sheep breeds. In addition, the genomic data we generated can be used to identify markers for breed assignment and traceability of certified breed-products.
Collapse
Affiliation(s)
- Daniel Gaspar
- Centro de Biotecnologia Agrícola e Agro-Alimentar do Alentejo (CEBAL), Instituto Politécnico de Beja (IPBeja), Beja, Portugal,BIOPOIS/CIBIO-InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Vairão, Portugal,*Correspondence: Daniel Gaspar, ; Catarina Ginja,
| | - Ana Usié
- Centro de Biotecnologia Agrícola e Agro-Alimentar do Alentejo (CEBAL), Instituto Politécnico de Beja (IPBeja), Beja, Portugal,MED—Mediterranean Institute for Agriculture, Environment and Development, Évora, Portugal
| | - Célia Leão
- Centro de Biotecnologia Agrícola e Agro-Alimentar do Alentejo (CEBAL), Instituto Politécnico de Beja (IPBeja), Beja, Portugal,MED—Mediterranean Institute for Agriculture, Environment and Development, Évora, Portugal
| | - Sílvia Guimarães
- BIOPOIS/CIBIO-InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Vairão, Portugal
| | - Ana Elisabete Pires
- BIOPOIS/CIBIO-InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Vairão, Portugal,Faculdade de Medicina Veterinária, Universidade Lusófona, Lisboa, Portugal
| | | | - António Marcos Ramos
- Centro de Biotecnologia Agrícola e Agro-Alimentar do Alentejo (CEBAL), Instituto Politécnico de Beja (IPBeja), Beja, Portugal,MED—Mediterranean Institute for Agriculture, Environment and Development, Évora, Portugal
| | - Catarina Ginja
- BIOPOIS/CIBIO-InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Vairão, Portugal,*Correspondence: Daniel Gaspar, ; Catarina Ginja,
| |
Collapse
|
59
|
Dzomba EF, Van Der Nest MA, Mthembu JNT, Soma P, Snyman MA, Chimonyo M, Muchadeyi FC. Selection signature analysis and genome-wide divergence of South African Merino breeds from their founders. Front Genet 2023; 13:932272. [PMID: 36685923 PMCID: PMC9847500 DOI: 10.3389/fgene.2022.932272] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 11/22/2022] [Indexed: 01/05/2023] Open
Abstract
Merino sheep are a breed of choice across the world, popularly kept for their wool and mutton value. They are often reared as a pure breed or used in crossbreeding and are a common component in synthetic breed development. This study evaluated genetic diversity, population structure, and breed divergence in 279 animals of Merino and Merino-based sheep breeds in South Africa using the Illumina Ovine SNP 50K BeadChip. The sheep breeds analysed included the three Merino-derived breeds of Dohne Merino (n = 50); Meatmaster (n = 47); and Afrino (n = 52) and five presumed ancestral populations of Merinos (Merino (n = 46); South African Merino (n = 10); and South African Mutton Merino (n = 8)); and the non-Merino founding breeds of Damara (n = 20); Ronderib Afrikaner (n = 17); and Nguni (n = 29). Highest genetic diversity values were observed in the Dohne Merino (DM), with H o = 0.39 ± 0.01, followed by the Meatmaster and South African Merino (SAM), with H o = 0.37 ± 0.03. The level of inbreeding ranged from 0.0 ± 0.02 (DM) to 0.27 ± 0.05 (Nguni). Analysis of molecular variance (AMOVA) showed high within-population variance (>80%) across all population categories. The first principal component (PC1) separated the Merino, South African Mutton Merino (SAMM), DM, and Afrino (AFR) from the Meatmaster, Damara, Nguni, and Ronderib Afrikaner (RDA). PC2 aligned each Merino-derived breed with its presumed ancestors and separated the SAMM from the Merino and SAM. The iHS analysis yielded selection sweeps across the AFR (12 sweeps), Meatmaster (four sweeps), and DM (29 sweeps). Hair/wool trait genes such as FGF12; metabolic genes of ICA1, NXPH1, and GPR171; and immune response genes of IL22, IL26, IFNAR1, and IL10RB were reported. Other genes include HMGA, which was observed as selection signatures in other populations; WNT5A, important in the development of the skeleton and mammary glands; ANTXR2, associated with adaptation to variation in climatic conditions; and BMP2, which has been reported as strongly selected in both fat-tailed and thin-tailed sheep. The DM vs. SAMM shared all six sweep regions on chromosomes 1, 10, and 11 with AFR vs. SAMM. Genes such as FGF12 on OAR 1:191.3-194.7 Mb and MAP2K4 on OAR 11:28.6-31.3 Mb were observed. The selection sweep on chromosome 10 region 28.6-30.3 Mb harbouring the RXFP2 for polledness was shared between the DM vs. Merino, the Meatmaster vs. Merino, and the Meatmaster vs. Nguni. The DM vs. Merino and the Meatmaster vs. Merino also shared an Rsb-based selection sweep on chromosome 1 region 268.5-269.9 Mb associated with the Calpain gene, CAPN7. The study demonstrated some genetic similarities between the Merino and Merino-derived breeds emanating from common founding populations and some divergence driven by breed-specific selection goals. Overall, information regarding the evolution of these composite breeds from their founding population will guide future breed improvement programs and management and conservation efforts.
Collapse
Affiliation(s)
- E. F. Dzomba
- Discipline of Genetics, School of Life Sciences, University of KwaZulu-Natal, Durban, South Africa,*Correspondence: E. F. Dzomba,
| | - M. A. Van Der Nest
- Agricultural Research Council Biotechnology Platform, Private Bag X5 Onderstepoort, Pretoria, South Africa
| | - J. N. T. Mthembu
- Discipline of Genetics, School of Life Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - P Soma
- Agricultural Research Council, Animal Production and Improvement, Pretoria, South Africa
| | - M. A. Snyman
- Grootfontein Agricultural Development Institute, Middelburg, South Africa
| | - M. Chimonyo
- Discipline of Animal and Poultry Science, School of Agricultural, Earth and Environmental Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - F. C. Muchadeyi
- Agricultural Research Council Biotechnology Platform, Private Bag X5 Onderstepoort, Pretoria, South Africa
| |
Collapse
|
60
|
Stegemiller MR, Redden RR, Notter DR, Taylor T, Taylor JB, Cockett NE, Heaton MP, Kalbfleisch TS, Murdoch BM. Using whole genome sequence to compare variant callers and breed differences of US sheep. Front Genet 2023; 13:1060882. [PMID: 36685812 PMCID: PMC9846548 DOI: 10.3389/fgene.2022.1060882] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 11/22/2022] [Indexed: 01/06/2023] Open
Abstract
As whole genome sequence (WGS) data sets have become abundant and widely available, so has the need for variant detection and scoring. The aim of this study was to compare the accuracy of commonly used variant calling programs, Freebayes and GATK HaplotypeCaller (GATK-HC), and to use U.S. sheep WGS data sets to identify novel breed-associated SNPs. Sequence data from 145 sheep consisting of 14 U.S. breeds were filtered and biallelic single nucleotide polymorphisms (SNPs) were retained for genotyping analyses. Genotypes from both programs were compared to each other and to genotypes from bead arrays. The SNPs from WGS were compared to the bead array data with breed heterozygosity, principal component analysis and identifying breed associated SNPs to analyze genetic diversity. The average sequence read depth was 2.78 reads greater with 6.11% more SNPs being identified in Freebayes compared to GATK-HC. The genotype concordance of the variant callers to bead array data was 96.0% and 95.5% for Freebayes and GATK-HC, respectively. Genotyping with WGS identified 10.5 million SNPs from all 145 sheep. This resulted in an 8% increase in measured heterozygosity and greater breed separation in the principal component analysis compared to the bead array analysis. There were 1,849 SNPs identified in only the Romanov sheep where all 10 rams were homozygous for one allele and the remaining 135 sheep from 13 breeds were homozygous for the opposite allele. Both variant calling programs had greater than 95% concordance of SNPs with bead array data, and either was suitably accurate for ovine WGS data sets. The use of WGS SNPs improved the resolution of PCA analysis and was critical for identifying Romanov breed-associated SNPs. Subsets of such SNPs could be used to estimate germplasm composition in animals without pedigree information.
Collapse
Affiliation(s)
- Morgan R. Stegemiller
- Department of Animal, Veterinary and Food Sciences, University of Idaho, Moscow, ID, United States
| | - Reid R. Redden
- Texas A&M AgriLife Research and Extension, Texas A&M University, San Angelo, TX, United States
| | - David R. Notter
- School of Animal Sciences, Virginia Tech, Blacksburg, VA, United States
| | - Todd Taylor
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI, United States
| | - J. Bret Taylor
- United States Sheep Experiment Station, United States Department of Agriculture, Agricultural Research Service, Dubois, ID, United States
| | - Noelle E. Cockett
- Department of Animal, Dairy and Veterinary Sciences, Utah State University, Logan, UT, United States
| | - Michael P. Heaton
- USDA, ARS, U.S. Meat Animal Research Center, Clay Center, NE, United States
| | - Theodore S. Kalbfleisch
- Gluck Equine Research Center, College of Agriculture, Food, and Environment, University of Kentucky, Lexington, KY, United States,*Correspondence: Theodore S. Kalbfleisch, ; Brenda M. Murdoch,
| | - Brenda M. Murdoch
- Department of Animal, Veterinary and Food Sciences, University of Idaho, Moscow, ID, United States,*Correspondence: Theodore S. Kalbfleisch, ; Brenda M. Murdoch,
| |
Collapse
|
61
|
Guo Y, Bai F, Wang J, Fu S, Zhang Y, Liu X, Zhang Z, Shao J, Li R, Wang F, Zhang L, Zheng H, Wang X, Liu Y, Jiang Y. Design and characterization of a high-resolution multiple-SNP capture array by target sequencing for sheep. J Anim Sci 2023; 101:skac383. [PMID: 36402741 PMCID: PMC9833038 DOI: 10.1093/jas/skac383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 11/16/2022] [Indexed: 11/21/2022] Open
Abstract
The efficiency of molecular breeding largely depends on inexpensive genotyping arrays. In this study, we aimed to develop an ovine high-resolution multiple-single-nucleotide polymorphism (SNP) capture array, based on genotyping by target sequencing (GBTS) system with capture-in-solution (liquid chip) technology. All the markers were from 40K captured regions, including genes located within selective sweep regions, breed-specific regions, quantitative trait loci (QTL), and the potential functional SNPs on the sheep genome. The results showed that a total of 210K high-quality SNPs were identified in the 40K regions, indicating a high average capture ratio (99.7%) for the target genomic regions. Using genotyped data (n = 317) from liquid chip technology, we further performed genome-wide association studies (GWAS) to detect the genetic loci affecting sheep hair types and teat number. A single significant association signal for hair types was identified on 6.7-7.1 Mb of chromosome 25. The IRF2BP2 gene (chr25: 7,067,974-7,071,785), which is located within this genomic region, has been previously known to be involved in hair/wool traits in sheep. The results further showed a new candidate region around 26.4 Mb of chromosome 13, between the ARHGAP21 and KIAA1217 genes, that was significantly related to teat number in sheep. The haplotype patterns of this region also showed differences in animals with 2, 3, or 4 teats. Advances in using the high-accuracy and low-cost liquid chip are expected to accelerate sheep genomic and breeding studies in the coming years.
Collapse
Affiliation(s)
- Yingwei Guo
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Fengting Bai
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Jintao Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Shaoyin Fu
- Institute of Animal Science, Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Hohhot 010031, China
| | - Yu Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Xiaoyi Liu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Zhuangbiao Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Junjie Shao
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Ran Li
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Fei Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Lei Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Huiling Zheng
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Xihong Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Yongbin Liu
- School of Life Science, Inner Mongolia University, Hohhot 010070, China
| | - Yu Jiang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| |
Collapse
|
62
|
Taheri S, Saedi N, Zerehdaran S, Javadmanesh A. Identification of selection signatures in Capra hircus and Capra aegagrus in Iran. Anim Sci J 2023; 94:e13864. [PMID: 37560768 DOI: 10.1111/asj.13864] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 04/09/2023] [Accepted: 05/17/2023] [Indexed: 08/11/2023]
Abstract
Identification of selection signatures may provide a better understanding of domestication process and candidate genes contributing to this process. In this study, two populations of domestic and wild goats from Iran were analyzed to identify selection signatures. RSB, iHS, and XP-EHH statistics were used in order to identify robust selection signatures in the goat genome. Genotype data of domestic and wild goats from the NextGen project was used. The data was related to 18 Capra aegagrus (wild goat) and 20 Capra hircus (domestic goat) from Iran. The iHS method indicated 675 and 441 selection signatures in C. aegagrus and C. hircus, respectively. RSB and XP-EHH methods showed about 370 and 447 selection signatures in C. aegagrus and C. hircus, respectively. These selection signatures were mainly associated with milk production, fleece trait, mammary epithelial cells, reproduction, and immune system.
Collapse
Affiliation(s)
- Sadegh Taheri
- Department of Animal Science, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Naghmeh Saedi
- Centre for Quantitative Genetics and Genomics, Aarhus University, Tjele, Denmark
| | - Saeed Zerehdaran
- Department of Animal Science, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Ali Javadmanesh
- Department of Animal Science, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
| |
Collapse
|
63
|
Machová K, Marina H, Arranz JJ, Pelayo R, Rychtářová J, Milerski M, Vostrý L, Suárez-Vega A. Genetic diversity of two native sheep breeds by genome-wide analysis of single nucleotide polymorphisms. Animal 2023; 17:100690. [PMID: 36566708 DOI: 10.1016/j.animal.2022.100690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 11/22/2022] [Accepted: 11/24/2022] [Indexed: 12/05/2022] Open
Abstract
Wallachian and Sumava sheep are autochthonous breeds that have undergone a significant bottleneck effect and subsequent restoration efforts. The first objective of this study was to evaluate the degree of genetic variability of both breeds and, therefore, the current management of the breeding. The second was to determine whether these two breeds still retain their genetic uniqueness in relation to each other and other breeds, despite regenerative interventions. Our data consisted of 48 individuals of Sumava and 37 individuals of Wallachian sheep. The comparison data contained 25 other breeds (primarily European) from the HapMap dataset generated by the International Sheep Genomics Consortium. When comparing all 27 breeds, the Czech breeds clustered with 15 other breeds and formed a single branch with them according to Nei's distances. At the same time, however, the clusters of both breeds were integral and easily distinguishable from the others when displayed with principal component analysis (PCA). Population substructure analysis did not show any common genetic ancestry of the Czech national breeds and breeds used for regeneration or, eventually, breeds whose ancestral population was used for regeneration. The average values of FST were higher in Wallachian sheep (FST = 0.14) than in Sumava sheep (FST = 0.08). The linkage disequilibrium (LD) extension per autosome was higher in Wallachian than in Sumava sheep. Consequently, the Ne estimates five generations ago were 68 for Sumava versus 34 for Wallachian sheep. Both native Czech breeds exhibit a wide range of inbreeding based on the excess of homozygosity (FHOM) among individuals, from -0.04 to 0.16 in Sumava and from -0.13 to 0.12 in Wallachian. Average inbreeding based on runs of homozygosity was 0.21 in Sumava and 0.27 in Wallachian. Most detected runs of homozygosity (ROH) were less than 5 Mb long for both breeds. ROH segments longer than 15 Mb were absent in Wallachian sheep. Concerning putative selection signatures, a total of 471 candidate genes in Wallachian sheep within 11 hotspots and 653 genes within 13 hotspots in Sumava sheep were identified. Czech breeds appear to be well differentiated from each other and other European breeds. Their genetic diversity is low, especially in the case of the Wallachian breed. Sumava is not so threatened by low diversity but has a larger share of the non-native gene pool.
Collapse
Affiliation(s)
- Karolína Machová
- Department of Genetics and Breeding, Czech University of Life Sciences (CZU), Prague, Czech Republic, Faculty of Agrobiology, Food and Natural Resources, Kamýcká 129, 165 00 Praha, Suchdol, Czech Republic.
| | - Héctor Marina
- Department of Animal Production, University of Leon, Leon, Spain, Veterinary Faculty, Campus de Vegazana, s/n, 24071 Leon, Spain
| | - Juan Jose Arranz
- Department of Animal Production, University of Leon, Leon, Spain, Veterinary Faculty, Campus de Vegazana, s/n, 24071 Leon, Spain
| | - Rocío Pelayo
- Department of Animal Production, University of Leon, Leon, Spain, Veterinary Faculty, Campus de Vegazana, s/n, 24071 Leon, Spain
| | - Jana Rychtářová
- Institute of Animal Science, Prague, Czech republic, Přátelství 815, 104 00 Praha, Uhříněves, Czech Republic
| | - Michal Milerski
- Institute of Animal Science, Prague, Czech republic, Přátelství 815, 104 00 Praha, Uhříněves, Czech Republic
| | - Luboš Vostrý
- Department of Genetics and Breeding, Czech University of Life Sciences (CZU), Prague, Czech Republic, Faculty of Agrobiology, Food and Natural Resources, Kamýcká 129, 165 00 Praha, Suchdol, Czech Republic
| | - Aroa Suárez-Vega
- Department of Animal Production, University of Leon, Leon, Spain, Veterinary Faculty, Campus de Vegazana, s/n, 24071 Leon, Spain
| |
Collapse
|
64
|
Chessari G, Criscione A, Tolone M, Bordonaro S, Rizzuto I, Riggio S, Macaluso V, Moscarelli A, Portolano B, Sardina MT, Mastrangelo S. High-density SNP markers elucidate the genetic divergence and population structure of Noticiana sheep breed in the Mediterranean context. Front Vet Sci 2023; 10:1127354. [PMID: 37205231 PMCID: PMC10185747 DOI: 10.3389/fvets.2023.1127354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 04/13/2023] [Indexed: 05/21/2023] Open
Abstract
Among livestock species, sheep have played an early major role in the Mediterranean area. Italy has a long history of sheep breeding and, despite a dramatic contraction in numbers, still raise several local populations that may represent a unique source of genetic diversity. The Noticiana is a breed of the south-eastern part of Sicily appreciated both for its dairy products and for its resistance to harsh environment. In this study, the high-density Illumina Ovine SNP600K BeadChip array was used for the first genome-wide characterization of 48 individuals of Noticiana sheep to investigate its diversity, the genome structure and the relationship within the context of worldwide and Italian breeds. Moreover, the runs of homozygosity (ROH) pattern and the pairwise FST-outliers were examined. Noticiana reported moderate levels of genetic diversity. The high percentage of short and medium length ROH segments (93% under 4 Mb) is indicative of a within breed relatedness dating back to ancient times, despite the absence of management for the mating plans and the reduced population size. In the worldwide context, the Southern Italian, Spanish and Albanian breeds overlapped in a macro cluster which also included the Noticiana sheep. The results highlighted ancestral genetic components of Noticiana shared with Comisana breed, and showed the clear separation from the other Italian sheep. This is likely the consequence of the combined effects of genetic drift, small population size and reproductive isolation. ROH islands and FST-outliers approaches in Noticiana identified genes and QTLs involved in milk and meat production, as well as related to the local adaptation, and therefore are consistent with the phenotypic traits of the studied breed. Although a wider sampling could be useful to deepen the genomic survey on Noticiana, these results represent a crucial starting point for the characterization of an important local genetic resource, with a view of supporting the local economy and preserving the biodiversity of the sheep species.
Collapse
Affiliation(s)
- Giorgio Chessari
- Dipartimento Agricoltura, Alimentazione e Ambiente, University of Catania, Catania, Italy
| | - Andrea Criscione
- Dipartimento Agricoltura, Alimentazione e Ambiente, University of Catania, Catania, Italy
| | - Marco Tolone
- Dipartimento Scienze Agrarie, Alimentari e Forestali, University of Palermo, Palermo, Italy
| | - Salvatore Bordonaro
- Dipartimento Agricoltura, Alimentazione e Ambiente, University of Catania, Catania, Italy
| | - Ilaria Rizzuto
- Dipartimento Scienze Agrarie, Alimentari e Forestali, University of Palermo, Palermo, Italy
| | - Silvia Riggio
- Dipartimento Scienze Agrarie, Alimentari e Forestali, University of Palermo, Palermo, Italy
| | - Vito Macaluso
- Dipartimento Scienze Agrarie, Alimentari e Forestali, University of Palermo, Palermo, Italy
| | - Angelo Moscarelli
- Dipartimento Scienze Agrarie, Alimentari e Forestali, University of Palermo, Palermo, Italy
| | - Baldassare Portolano
- Dipartimento Scienze Agrarie, Alimentari e Forestali, University of Palermo, Palermo, Italy
| | - Maria Teresa Sardina
- Dipartimento Scienze Agrarie, Alimentari e Forestali, University of Palermo, Palermo, Italy
| | - Salvatore Mastrangelo
- Dipartimento Scienze Agrarie, Alimentari e Forestali, University of Palermo, Palermo, Italy
- *Correspondence: Salvatore Mastrangelo,
| |
Collapse
|
65
|
Chalbi S, Dettori ML, Djemali M, Vacca GM, Petretto E, Pazzola M, Bedhiaf-Romdhani S. Haplotype structure of MSTN, IGF1, and BMP2 genes in Tunisian goats (Capra hircus) and their association with morphometric traits. Trop Anim Health Prod 2022; 55:2. [PMID: 36474048 DOI: 10.1007/s11250-022-03403-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 11/16/2022] [Indexed: 12/12/2022]
Abstract
The aim of the present study was to evaluate variability and haplotype structure of twenty-eight single nucleotide polymorphisms (SNPs) at myostatin (MSTN), insulin-like growth factor 1 (IGF1), and bone morphogenetic protein 2 (BMP2) genes. Association between the polymorphic SNPs and morphometric traits was performed on a population of 263 Tunisian goats. The SNPs analyzed were all polymorphic (except one), and the three genes had different haplotype structures. Significant association of SNPs at MSTN with head length was highlighted in the Tunisian goats. The variability at IGF1 gene was associated with body length, ear length, tail length, and chest depth. For BMP2, significant association was revealed with chest depth. Significant association was also detected between linkage disequilibrium (LD) block 2 at IGF1 with body length. These findings might play a potential role in gene-assisted programs.
Collapse
Affiliation(s)
- Sarra Chalbi
- National Agronomic Institute of Tunisia, 43 Avenue Charles Nicolle, 1082, Tunis, Mahrajène, Tunisia.,Laboratoire Des Productions Animales Et Fourragères, Institut National de La Recherche Agronomique de Tunisie, Université de Carthage, Carthage, Tunisia
| | - Maria Luisa Dettori
- Dipartimento Di Medicina Veterinaria, Università Degli Studi Di Sassari, Sassari, Italy
| | - M'Naouer Djemali
- National Agronomic Institute of Tunisia, 43 Avenue Charles Nicolle, 1082, Tunis, Mahrajène, Tunisia
| | | | - Elena Petretto
- Dipartimento Di Medicina Veterinaria, Università Degli Studi Di Sassari, Sassari, Italy
| | - Michele Pazzola
- Dipartimento Di Medicina Veterinaria, Università Degli Studi Di Sassari, Sassari, Italy
| | - Sonia Bedhiaf-Romdhani
- Laboratoire Des Productions Animales Et Fourragères, Institut National de La Recherche Agronomique de Tunisie, Université de Carthage, Carthage, Tunisia.
| |
Collapse
|
66
|
Ashraf B, Hunter DC, Bérénos C, Ellis PA, Johnston SE, Pilkington JG, Pemberton JM, Slate J. Genomic prediction in the wild: A case study in Soay sheep. Mol Ecol 2022; 31:6541-6555. [PMID: 34719074 DOI: 10.1111/mec.16262] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 10/13/2021] [Accepted: 10/25/2021] [Indexed: 01/13/2023]
Abstract
Genomic prediction, the technique whereby an individual's genetic component of their phenotype is estimated from its genome, has revolutionised animal and plant breeding and medical genetics. However, despite being first introduced nearly two decades ago, it has hardly been adopted by the evolutionary genetics community studying wild organisms. Here, genomic prediction is performed on eight traits in a wild population of Soay sheep. The population has been the focus of a >30 year evolutionary ecology study and there is already considerable understanding of the genetic architecture of the focal Mendelian and quantitative traits. We show that the accuracy of genomic prediction is high for all traits, but especially those with loci of large effect segregating. Five different methods are compared, and the two methods that can accommodate zero-effect and large-effect loci in the same model tend to perform best. If the accuracy of genomic prediction is similar in other wild populations, then there is a real opportunity for pedigree-free molecular quantitative genetics research to be enabled in many more wild populations; currently the literature is dominated by studies that have required decades of field data collection to generate sufficiently deep pedigrees. Finally, some of the potential applications of genomic prediction in wild populations are discussed.
Collapse
Affiliation(s)
- Bilal Ashraf
- School of Biosciences, University of Sheffield, Sheffield, UK.,Department of Anthropology, Durham University, Durham, UK
| | - Darren C Hunter
- School of Biosciences, University of Sheffield, Sheffield, UK.,School of Biology, University of St Andrews, St Andrews, UK
| | - Camillo Bérénos
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh, UK
| | - Philip A Ellis
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh, UK
| | - Susan E Johnston
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh, UK
| | - Jill G Pilkington
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh, UK
| | | | - Jon Slate
- School of Biosciences, University of Sheffield, Sheffield, UK
| |
Collapse
|
67
|
Kalds P, Huang S, Chen Y, Wang X. Ovine HOXB13: expanding the gene repertoire of sheep tail patterning and implications in genetic improvement. Commun Biol 2022; 5:1196. [DOI: 10.1038/s42003-022-04199-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 10/31/2022] [Indexed: 11/09/2022] Open
|
68
|
Genetic Characterization and Alternative Preservation Ways of Locally Adapted Sheep Breeds: Cases of Private and Public Sheep Sectors in Tunisia and Italy. BIOLOGY 2022; 11:biology11111623. [PMID: 36358324 PMCID: PMC9687707 DOI: 10.3390/biology11111623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 10/31/2022] [Accepted: 11/03/2022] [Indexed: 11/09/2022]
Abstract
Simple Summary The genetic characterization of native sheep breeds from the Tunisian-Italian Mediterranean corridor, the earliest westward introduction route of sheep breeding from the domestication center, was carried out using microsatellite markers in order to compare the genetic diversity level between both Mediterranean sides’ local sheep breeds, and to investigate their level of risk for conservation purposes. Sampling concerned both private and public/institutional farms of all the native Tunisian breeds in the case of the southern Mediterranean side, and one center Italian and the Venetian native breeds from the northern side. The results revealed that the genetic diversity level of the Tunisian native breeds was higher than that of the Italian ones, with a lower inbreeding level. The comparison between private and public farms in terms of genetic diversity, consanguinity, and conservation decisions highlighted the superiority of the public/institutional breeding management strategies over private ones in both Tunisian and Italian cases. The present study illustrated the efficiency of genomic characterization in making genetic diversity evaluations and preservation decisions of native and well-adapted sheep breeds in both developing and developed countries’ rearing conditions. Abstract Non-commercialized sheep breeds known as local or native breeds are well adapted to their environmental constraints and constitute precious genetic resources that need prioritization for genetic diversity characterization and preservation. The aim of the present study was to assess the genetic diversity level and the related preservation decisions of very old and traditional native Mediterranean sheep breeds from Tunisia and Italy using 17 microsatellite markers. In total, 975 sheep were sampled from five Tunisian, one Center Italian, and four Venetian native breeds. Both private and publicly available farms were considered for each breed for breeding strategies’ comparison purposes. The microsatellite set used was highly informative (PIC = 0.80 ± 0.08), with a total of 383 alleles. Moderate genetic differentiation was revealed between the native sheep of the two Mediterranean sides (global overall loci FST = 0.081). The genetic diversity level was higher in the case of the Tunisian native breeds compared to the Italian ones, as evidenced by higher mean allelic richness, higher expected and observed heterozygosities, and lower inbreeding levels. Priority for conservation suggestions was carried out for each private or public breed population based on the contribution of each population to the diversity of the whole data. The four Venetian breeds, already undergoing conservation, the Tunisian dairy breed, and the very ancient Maghrebian breed, would be favored for conservation. In conclusion, our results highlighted the importance of the analyzed Mediterranean native sheep breeds as valuable inherited genetic reservoirs and supported previous conservation decisions made for the threatened breeds.
Collapse
|
69
|
Estimates of genomic heritability and genome-wide association studies for blood parameters in Akkaraman sheep. Sci Rep 2022; 12:18477. [PMID: 36323871 PMCID: PMC9630504 DOI: 10.1038/s41598-022-22966-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 10/21/2022] [Indexed: 11/06/2022] Open
Abstract
The aim of this study was to estimate genomic heritability and the impact that genetic backgrounds have on blood parameters in Akkaraman sheep by conducting genome-wide association studies and regional heritability mapping analysis. Genomic heritability estimates for blood parameters ranged from 0.00 to 0.55, indicating that measured phenotypes have a low to moderate heritability. A total of 7 genome- and 13 chromosome-wide significant SNPs were associated with phenotypic changes in 15 blood parameters tested. Accordingly, SCN7A, SCN9A, MYADM-like, CCDC67, ITGA9, MGAT5, SLC19A1, AMPH, NTRK2, MSRA, SLC35F3, SIRT6, CREB3L3, and NAV3 genes as well as three undefined regions (LOC101117887, LOC106991526 and LOC105608461) were suggested as candidates. Most of the identified genes were involved in basic biological processes that are essential to immune system function and cellular growth; specific functions include cellular transport, histone deacetylation, cell differentiation, erythropoiesis, and endocytosis. The top significant SNP for HCT, MCH, and MCHC was found within a genomic region mainly populated by the MYADM-like gene family. This region was previously suggested to be under historical selection pressure in many sheep breeds from various parts of the world. These results have implications on animal breeding program studies due to the effect that the genetic background has on blood parameters, which underlying many productive and wellness related traits.
Collapse
|
70
|
Wanjala G, Kusuma Astuti P, Bagi Z, Kichamu N, Strausz P, Kusza S. A review on the potential effects of environmental and economic factors on sheep genetic diversity: Consequences of climate change. Saudi J Biol Sci 2022; 30:103505. [DOI: 10.1016/j.sjbs.2022.103505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 10/17/2022] [Accepted: 11/11/2022] [Indexed: 11/18/2022] Open
|
71
|
Senczuk G, Di Civita M, Rillo L, Macciocchi A, Occidente M, Saralli G, D’Onofrio V, Galli T, Persichilli C, Di Giovannantonio C, Pilla F, Matassino D. The ancestral origin of the critically endangered Quadricorna sheep as revealed by genome-wide analysis. PLoS One 2022; 17:e0275989. [PMID: 36288337 PMCID: PMC9605034 DOI: 10.1371/journal.pone.0275989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 09/27/2022] [Indexed: 11/18/2022] Open
Abstract
Livestock European diffusion followed different human migration waves from the Fertile Crescent. In sheep, at least two diffusion waves have shaped the current breeds' biodiversity generating a complex genetic pattern composed by either primitive or fine-wool selected breeds. Among primitive breeds, aside from sharing common ancestral genomic components, they also show several traits such as the policeraty, large horns in the ram, short tail, and a moulting fleece, considered as ancestral. Although most of the primitive breeds characterized by these traits are confined on the very edge of Northern Europe, several residual populations are also scattered in the Mediterranean region. In fact, although in Italy a large number of local breeds are already extinct, others are listed as critically endangered, and among these there is the Quadricorna breed which is a four-horned sheep characterized by several ancestral traits. In this context we genotyped 47 individuals belonging to the Quadricorna sheep breed, a relict and endangered breed, from Central and Southern Italy. In doing so we used the Illumina OvineSNP50K array in order to explore its genetic diversity and to compare it with other 33 primitive traits-related, Mediterranean and Middle-East breeds, with the specific aim to reconstruct its origin. After retaining 35,680 SNPs following data filtering, the overall genomic architecture has been explored by using genetic diversity indices, Principal Component Analysis (PCA) and admixture analysis, while the genetic relationships and migration events have been inferred using a neighbor-joining tree based on Reynolds' distances and by the maximum likelihood tree as implemented in treemix. Multiple convergent evidence from all our population genetics analyses, indicated that the two Quadricorna populations differ from all the other Italian breeds, while they resulted to be very close to the Middle Eastern and primitive European breeds. In addition, the genetic diversity indices highlighted values comparable with those of most of the other analyzed breeds, despite the two populations exhibit slightly different genetic indices suggesting different levels of genomic inbreeding and drift (FIS and FROH). The admixture analysis does not suggest any signal of recent gene exchange with other Italian local breeds, highlighting a rather ancestral purity of the two populations, while on the other hand the treemix analysis seems to suggest an ancient admixture with other primitive European breeds. Finally, all these evidences seem to trace back the residual Quadricorna sheep to an early Neolithic spread, probably following a Mediterranean route and that urgent conservation actions are needed in order to keep the breed and all related cultural products alive.
Collapse
Affiliation(s)
- Gabriele Senczuk
- Department of Agriculture Environment and Food Science, University of Molise, Campobasso, Italy
- * E-mail:
| | - Marika Di Civita
- Department of Agriculture Environment and Food Science, University of Molise, Campobasso, Italy
| | - Luigina Rillo
- Consortium for Experimentation, Dissemination and Application of Innovative Biotechniques, (ConSDABI), Benevento, Italy
| | - Alessandra Macciocchi
- Agenzia Regionale per lo Sviluppo e l’Innovazione dell’Agricoltura del Lazio (ARSIAL), Roma, Italy
| | - Mariaconsiglia Occidente
- Consortium for Experimentation, Dissemination and Application of Innovative Biotechniques, (ConSDABI), Benevento, Italy
| | - Giorgio Saralli
- Istituto Zooprofilattico Sperimentale del Lazio e della Toscana M. Aleandri (IZSLT), Roma, Italy
| | - Valentina D’Onofrio
- Istituto Zooprofilattico Sperimentale del Lazio e della Toscana M. Aleandri (IZSLT), Roma, Italy
| | - Tiziana Galli
- Istituto Zooprofilattico Sperimentale del Lazio e della Toscana M. Aleandri (IZSLT), Roma, Italy
| | - Christian Persichilli
- Department of Agriculture Environment and Food Science, University of Molise, Campobasso, Italy
| | | | - Fabio Pilla
- Department of Agriculture Environment and Food Science, University of Molise, Campobasso, Italy
| | - Donato Matassino
- Consortium for Experimentation, Dissemination and Application of Innovative Biotechniques, (ConSDABI), Benevento, Italy
| |
Collapse
|
72
|
Li X, Yuan L, Wang W, Zhang D, Zhao Y, Chen J, Xu D, Zhao L, Li F, Zhang X. Whole genome re-sequencing reveals artificial and natural selection for milk traits in East Friesian sheep. Front Vet Sci 2022; 9:1034211. [PMID: 36330154 PMCID: PMC9623881 DOI: 10.3389/fvets.2022.1034211] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 09/30/2022] [Indexed: 08/23/2023] Open
Abstract
The East Friesian sheep is one of the important high-yielding dairy sheep breeds, but still little is known about their genetic and genomic variation during domestication. Therefore, we analyzed the genomic data of 46 sheep with the aim of identifying candidate genes that are closely related to milk production traits. Our genomic data consisted of 20 East Friesian sheep and 26 Asian Mouflon wild sheep. Finally, a total of 32590241 SNPs were identified, of which 0.61% (198277) SNPs were located in exonic regions. After further screening, 122 shared genomic regions in the top 1% of F ST and top 1% of Nucleotide diversity ratio were obtained. After genome annotation, these 122 candidate genomic regions were found to contain a total of 184 candidate genes. Finally, the results of KEGG enrichment analysis showed four significantly enriched pathways (P < 0.05): beta-Alanine metabolism (SMOX, HIBCH), Pathways in cancer (GLI2, AR, TXNRD3, TRAF3, FGF16), Non-homologous end-joining (MRE11), Epstein-Barr virus infection (TRAF3, PSMD13, SIN3A). Finally, we identified four important KEGG enrichment pathways and 10 candidate genes that are closely related to milk production in East Friesian sheep. These results provide valuable candidate genes for the study of milk production traits in East Friesian sheep and lay an important foundation for the study of milk production traits.
Collapse
Affiliation(s)
- Xiaolong Li
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Lvfeng Yuan
- Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Weimin Wang
- The State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Deyin Zhang
- The State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Yuan Zhao
- The State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Jiangbo Chen
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Dan Xu
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Liming Zhao
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Fadi Li
- The State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Xiaoxue Zhang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| |
Collapse
|
73
|
Zhang W, Li X, Jiang Y, Zhou M, Liu L, Su S, Xu C, Li X, Wang C. Genetic architecture and selection of Anhui autochthonous pig population revealed by whole genome resequencing. Front Genet 2022; 13:1022261. [PMID: 36324508 PMCID: PMC9618877 DOI: 10.3389/fgene.2022.1022261] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 09/28/2022] [Indexed: 11/29/2022] Open
Abstract
The genetic resources among pigs in Anhui Province are diverse, but their value and potential have yet to be discovered. To illustrate the genetic diversity and population structure of the Anhui pigs population, we resequenced the genome of 150 pigs from six representative Anhui pigs populations and analyzed this data together with the sequencing data from 40 Asian wild boars and commercial pigs. Our results showed that Anhui pigs were divided into two distinct types based on ancestral descent: Wannan Spotted pig (WSP) and Wannan Black pig (WBP) origins from the same ancestor and the other four populations origins from another ancestor. We also identified several potential selective sweep regions associated with domestication characteristics among Anhui pigs, including reproduction-associated genes (CABS1, INSL6, MAP3K12, IGF1R, INSR, LIMK2, PATZ1, MAPK1), lipid- and meat-related genes (SNX19, MSTN, MC5R, PRKG1, CREBBP, ADCY9), and ear size genes (MSRB3 and SOX5). Therefore, these findings expand the catalogue and how these genetic differences among pigs and this newly generated data will be a valuable resource for future genetic studies and for improving genome-assisted breeding of pigs and other domesticated animals.
Collapse
|
74
|
Assessing Genetic Diversity and Searching for Selection Signatures by Comparison between the Indigenous Livni and Duroc Breeds in Local Livestock of the Central Region of Russia. DIVERSITY 2022. [DOI: 10.3390/d14100859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Indigenous pig breeds are mainly associated with the adaptive capacity that is necessary to respond adequately to climate change, food security, and livelihood needs, and natural resources conservation. Livni pigs are an indigenous fat-type breed farmed in a single farm in the Orel region and located in the Central European part of the Russian Federation. To determine the genomic regions and genes that are affected by artificial selection, we conducted the comparative study of two pig breeds with different breeding histories and breeding objectives, i.e., the native fat-type Livni and meat-type Duroc breeds using the Porcine GGP HD BeadChip, which contains ~80,000 SNPs. To check the Livni pigs for possible admixture, the Landrace and the Large White breeds were included into the study of genetic diversity as these breeds participated in the formation of the Livni pigs. We observed the highest level of genetic diversity in Livni pigs compared to commercial breeds (UHE = 0.409 vs. 0.319–0.359, p < 0.001; AR = 1.995 vs. 1.894–1.964, p < 0.001). A slight excess of heterozygotes was found in all of the breeds. We identified 291 candidate genes, which were localized within the regions under putative selection, including 22 and 228 genes, which were specific for Livni and Duroc breeds, respectively, and 41 genes common for both breeds. A detailed analysis of the molecular functions identified the genes, which were related to the formation of meat and fat traits, and adaptation to environmental stress, including extreme temperatures, which were different between breeds. Our research results are useful for conservation and sustainable breeding of Livni breed, which shows a high level of genetic diversity. This makes Livni one of the valuable national pig genetic resources.
Collapse
|
75
|
de Souza TC, de Souza TC, da Cruz VAR, Mourão GB, Pedrosa VB, Rovadoscki GA, Coutinho LL, de Camargo GMF, Costa RB, de Carvalho GGP, Pinto LFB. Estimates of heritability and candidate genes for primal cuts and dressing percentage in Santa Ines sheep. Livest Sci 2022. [DOI: 10.1016/j.livsci.2022.105048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
76
|
Liu Y, Fu Y, Yang Y, Yi G, Lian J, Xie B, Yao Y, Chen M, Niu Y, Liu L, Wang L, Zhang Y, Fan X, Tang Y, Yuan P, Zhu M, Li Q, Zhang S, Chen Y, Wang B, He J, Lu D, Liachko I, Sullivan ST, Pang B, Chen Y, He X, Li K, Tang Z. Integration of multi-omics data reveals cis-regulatory variants that are associated with phenotypic differentiation of eastern from western pigs. GENETICS SELECTION EVOLUTION 2022; 54:62. [PMID: 36104777 PMCID: PMC9476355 DOI: 10.1186/s12711-022-00754-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 09/02/2022] [Indexed: 11/10/2022]
Abstract
Abstract
Background
The genetic mechanisms that underlie phenotypic differentiation in breeding animals have important implications in evolutionary biology and agriculture. However, the contribution of cis-regulatory variants to pig phenotypes is poorly understood. Therefore, our aim was to elucidate the molecular mechanisms by which non-coding variants cause phenotypic differences in pigs by combining evolutionary biology analyses and functional genomics.
Results
We obtained a high-resolution phased chromosome-scale reference genome with a contig N50 of 18.03 Mb for the Luchuan pig breed (a representative eastern breed) and profiled potential selective sweeps in eastern and western pigs by resequencing the genomes of 234 pigs. Multi-tissue transcriptome and chromatin accessibility analyses of these regions suggest that tissue-specific selection pressure is mediated by promoters and distal cis-regulatory elements. Promoter variants that are associated with increased expression of the lysozyme (LYZ) gene in the small intestine might enhance the immunity of the gastrointestinal tract and roughage tolerance in pigs. In skeletal muscle, an enhancer-modulating single-nucleotide polymorphism that is associated with up-regulation of the expression of the troponin C1, slow skeletal and cardiac type (TNNC1) gene might increase the proportion of slow muscle fibers and affect meat quality.
Conclusions
Our work sheds light on the molecular mechanisms by which non-coding variants shape phenotypic differences in pigs and provides valuable resources and novel perspectives to dissect the role of gene regulatory evolution in animal domestication and breeding.
Collapse
|
77
|
Chen Y, Li R, Sun J, Li C, Xiao H, Chen S. Genome-Wide Population Structure and Selection Signatures of Yunling Goat Based on RAD-seq. Animals (Basel) 2022; 12:ani12182401. [PMID: 36139261 PMCID: PMC9495202 DOI: 10.3390/ani12182401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/07/2022] [Accepted: 09/10/2022] [Indexed: 12/04/2022] Open
Abstract
Simple Summary Goats are important domestic animals that provide meat, milk, fur, and other products for humans. The demand for these products has increased in recent years. Disease resistance among goat breeds is different, but the genetic basis of the differences in resistance to diseases is still unclear and needs to be further studied. In this study, many genes and pathways related to immunity and diseases were identified to be under positive selection between Yunling and Nubian goats using RAD-seq technology. This study on the selection signatures of Yunling goats provides the scientific basis and technical support for the breeding of domestic goats for disease resistance, which has important social and economic significance. Abstract Animal diseases impose a huge burden on the countries where diseases are endemic. Conventional control strategies of vaccines and veterinary drugs are to control diseases from a pharmaceutical perspective. Another alternative approach is using pre-existing genetic disease resistance or tolerance. We know that the Yunling goat is an excellent local breed from Yunnan, southwestern China, which has characteristics of strong disease resistance and remarkable adaptability. However, genetic information about the selection signatures of Yunling goats is limited. We reasoned that the genes underlying the observed difference in disease resistance might be identified by investigating selection signatures between two different goat breeds. Herein, we selected the Nubian goat as the reference group to perform the population structure and selection signature analysis by using RAD-seq technology. The results showed that two goat breeds were divided into two clusters, but there also existed gene flow. We used Fst (F-statistics) and π (pi/θπ) methods to carry out selection signature analysis. Eight selected regions and 91 candidate genes were identified, in which some genes such as DOK2, TIMM17A, MAVS, and DOCK8 related to disease and immunity and some genes such as SPEFI, CDC25B, and MIR103 were associated with reproduction. Four GO (Gene Ontology) terms (GO:0010591, GO:001601, GO:0038023, and GO:0017166) were associated with cell migration, signal transduction, and immune responses. The KEGG (Kyoto Encyclopedia of Genes and Genomes) signaling pathways were mainly associated with immune responses, inflammatory responses, and stress reactions. This study preliminarily revealed the genetic basis of strong disease resistance and adaptability of Yunling goats. It provides a theoretical basis for the subsequent genetic breeding of disease resistance of goats.
Collapse
Affiliation(s)
- Yuming Chen
- School of Ecology and Environmental Science, Yunnan University, Kunming 650500, China; (Y.C.); (R.L.); (C.L.); (H.X.)
- School of Life Sciences, Yunnan University, Kunming 650500, China;
| | - Rong Li
- School of Ecology and Environmental Science, Yunnan University, Kunming 650500, China; (Y.C.); (R.L.); (C.L.); (H.X.)
- College of Life Science, Yunnan Normal University, Kunming 650500, China
| | - Jianshu Sun
- School of Life Sciences, Yunnan University, Kunming 650500, China;
| | - Chunqing Li
- School of Ecology and Environmental Science, Yunnan University, Kunming 650500, China; (Y.C.); (R.L.); (C.L.); (H.X.)
| | - Heng Xiao
- School of Ecology and Environmental Science, Yunnan University, Kunming 650500, China; (Y.C.); (R.L.); (C.L.); (H.X.)
| | - Shanyuan Chen
- School of Ecology and Environmental Science, Yunnan University, Kunming 650500, China; (Y.C.); (R.L.); (C.L.); (H.X.)
- Correspondence: ; Tel.: +86-18687122260
| |
Collapse
|
78
|
Genetic Diversity and Selection Signatures in Jianchang Black Goats Revealed by Whole-Genome Sequencing Data. Animals (Basel) 2022; 12:ani12182365. [PMID: 36139225 PMCID: PMC9495118 DOI: 10.3390/ani12182365] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 08/28/2022] [Accepted: 09/07/2022] [Indexed: 11/17/2022] Open
Abstract
Understanding the genetic composition of indigenous goats is essential to promote the scientific conservation and sustainable utilization of these breeds. The Jianchang Black (JC) goat, a Chinese native breed, is solid black and exhibits crude feed tolerance, but is characterized by a low growth rate and small body size. Based on the whole-genome sequencing data for 30 JC, 41 Jintang Black (JT), and 40 Yunshang Black (YS) goats, and 21 Bezoar ibexes, here, we investigated the genetic composition of JC goats by conducting analyses of the population structure, runs of homozygosity (ROH), genomic inbreeding, and selection signature. Our results revealed that JT and YS showed a close genetic relationship with a non-negligible amount of gene flows but were genetically distant from JC, apart from Bezoars. An average of 2039 ROHs were present in the autosomal genome per individual. The ROH-based inbreeding estimates in JC goats generally showed moderate values ranging from 0.134 to 0.264, mainly due to rapid declines in the effective population size during recent generations. The annotated genes (e.g., IL2, IL7, and KIT) overlapping with ROH islands were significantly enriched in immune-related biological processes. Further, we found 61 genes (e.g., STIM1, MYO9A, and KHDRBS2) under positive selection in JC goats via three complementary approaches, which may underly genetic adaptations to local environmental conditions. Our findings provided references for the conservation and sustainable utilization of JC goats.
Collapse
|
79
|
Kalds P, Zhou S, Gao Y, Cai B, Huang S, Chen Y, Wang X. Genetics of the phenotypic evolution in sheep: a molecular look at diversity-driving genes. Genet Sel Evol 2022; 54:61. [PMID: 36085023 PMCID: PMC9463822 DOI: 10.1186/s12711-022-00753-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 08/29/2022] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND After domestication, the evolution of phenotypically-varied sheep breeds has generated rich biodiversity. This wide phenotypic variation arises as a result of hidden genomic changes that range from a single nucleotide to several thousands of nucleotides. Thus, it is of interest and significance to reveal and understand the genomic changes underlying the phenotypic variation of sheep breeds in order to drive selection towards economically important traits. REVIEW Various traits contribute to the emergence of variation in sheep phenotypic characteristics, including coat color, horns, tail, wool, ears, udder, vertebrae, among others. The genes that determine most of these phenotypic traits have been investigated, which has generated knowledge regarding the genetic determinism of several agriculturally-relevant traits in sheep. In this review, we discuss the genomic knowledge that has emerged in the past few decades regarding the phenotypic traits in sheep, and our ultimate aim is to encourage its practical application in sheep breeding. In addition, in order to expand the current understanding of the sheep genome, we shed light on research gaps that require further investigation. CONCLUSIONS Although significant research efforts have been conducted in the past few decades, several aspects of the sheep genome remain unexplored. For the full utilization of the current knowledge of the sheep genome, a wide practical application is still required in order to boost sheep productive performance and contribute to the generation of improved sheep breeds. The accumulated knowledge on the sheep genome will help advance and strengthen sheep breeding programs to face future challenges in the sector, such as climate change, global human population growth, and the increasing demand for products of animal origin.
Collapse
Affiliation(s)
- Peter Kalds
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100 China
- Department of Animal and Poultry Production, Faculty of Environmental Agricultural Sciences, Arish University, El-Arish, 45511 Egypt
| | - Shiwei Zhou
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100 China
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100 China
| | - Yawei Gao
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100 China
| | - Bei Cai
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100 China
| | - Shuhong Huang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100 China
| | - Yulin Chen
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100 China
- International Joint Agriculture Research Center for Animal Bio-Breeding, Ministry of Agriculture and Rural Affairs, Yangling, 712100 China
| | - Xiaolong Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100 China
- International Joint Agriculture Research Center for Animal Bio-Breeding, Ministry of Agriculture and Rural Affairs, Yangling, 712100 China
| |
Collapse
|
80
|
Seven Shades of Grey: A Follow-Up Study on the Molecular Basis of Coat Colour in Indicine Grey Cattle Using Genome-Wide SNP Data. Genes (Basel) 2022; 13:genes13091601. [PMID: 36140768 PMCID: PMC9498432 DOI: 10.3390/genes13091601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 08/31/2022] [Accepted: 08/31/2022] [Indexed: 11/17/2022] Open
Abstract
Shades of grey and brown are a dominant component in mammal coat colours, representing a fundamental trait involved in a great number of processes including cryptism, sexual selection and signalling. The genetic mechanisms of the grey colouration in mammals are very complex and controlled by hundreds of genes whose effects and interactions are still largely unclear. In this study, we adopted a robust multi-cohort Fst outlier approach based on pairwise contrasts between seven grey indicine cattle breeds and both taurine and indicine non-grey cattle breeds in order to find genomic regions potentially related to the grey colouration. On the basis of three main drawn settings, built in order to control both the effect of the sample size and the genetic structure, we have identified some signals common to those obtained in a previous work employing only taurine cattle. In particular, using the top 1% Fst approach, we detected a candidate region (22.6–23.8 megabases) on chromosome 14 in which genes related to pigmentation have been already documented. In addition, when we constructed a phylogenetic tree using the significant markers identified in this study and including also the genotyping data at these loci of both the grey taurine and the extinct wild auroch, we found a topological repartition consistent with breed colour pattern rather than with the known bovine evolutionary history. Thus, on the basis of this evidence, together with the geographical distribution of the current taurine grey cattle, an ancestral indicine origin for the grey phenotype would seem to be a conceivable interpretation. In this context, a higher thermo-tolerance and less UV-induced damage of the grey phenotype might have favoured the retention of advantageous genes into the taurine genome during the post-Neolithic human-mediated cattle expansions.
Collapse
|
81
|
McManus CM, Lucci CM, Maranhão AQ, Pimentel D, Pimentel F, Rezende Paiva S. Response to heat stress for small ruminants: Physiological and genetic aspects. Livest Sci 2022. [DOI: 10.1016/j.livsci.2022.105028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
82
|
Moradi MH, Mahmodi R, Farahani AHK, Karimi MO. Genome-wide evaluation of copy gain and loss variations in three Afghan sheep breeds. Sci Rep 2022; 12:14286. [PMID: 35996004 PMCID: PMC9395407 DOI: 10.1038/s41598-022-18571-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 08/16/2022] [Indexed: 11/23/2022] Open
Abstract
Copy number variation (CNV) is one of the main sources of variation between different individuals that has recently attracted much researcher interest as a major source for heritable variation in complex traits. The aim of this study was to identify CNVs in Afghan indigenous sheep consisting of three Arab, Baluchi, and Gadik breeds using genomic arrays containing 53,862 single nucleotide polymorphism (SNP) markers. Data were analyzed using the Hidden Markov Model (HMM) of PennCNV software. In this study, out of 45 sheep studied, 97.8% (44 animals) have shown CNVs. In total, 411 CNVs were observed for autosomal chromosomes and the entire sequence length of around 144 Mb was identified across the genome. The average number of CNVs per each sheep was 9.13. The identified CNVs for Arab, Baluchi, and Gadik breeds were 306, 62, and 43, respectively. After merging overlapped regions, a total of 376 copy number variation regions (CNVR) were identified, which are 286, 50, and 40 for Arab, Baluchi, and Gadik breeds, respectively. Bioinformatics analysis was performed to identify the genes and QTLs reported in these regions and the biochemical pathways involved by these genes. The results showed that many of these CNVRs overlapped with the genes or QTLs that are associated with various pathways such as immune system development, growth, reproduction, and environmental adaptions. Furthermore, to determine a genome-wide pattern of selection signatures in Afghan sheep breeds, the unbiased estimates of FST was calculated and the results indicated that 37 of the 376 CNVRs (~ 10%) have been also under selection signature, most of those overlapped with the genes influencing production, reproduction and immune system. Finally, the statistical methods used in this study was applied in an external dataset including 96 individuals of the Iranian sheep breed. The results indicated that 20 of the 114 CNVRs (18%) identified in Iranian sheep breed were also identified in our study, most of those overlapped with the genes influencing production, reproduction and immune system. Overall, this is the first attempts to develop the genomic map of loss and gain variation in the genome of Afghan indigenous sheep breeds, and may be important to shed some light on the genomic regions associated with some economically important traits in these breeds.
Collapse
Affiliation(s)
- Mohammad Hossein Moradi
- Department of Animal Science, Faculty of Agriculture and Natural Resources, Arak University, Arak, 38156-8-8349, Iran.
| | - Roqiah Mahmodi
- Department of Animal Science, Faculty of Agriculture and Natural Resources, Arak University, Arak, 38156-8-8349, Iran
| | | | - Mohammad Osman Karimi
- Department of Animal Science, Faculty of Agriculture and Natural Resources, Herat University, Herat, Afghanistan
| |
Collapse
|
83
|
Ben Sassi-Zaidy Y, Mohamed-Brahmi A, Chaouch M, Maretto F, Cendron F, Charfi-Cheikhrouha F, Ben Abderrazak S, Djemali M, Cassandro M. Historical Westward Migration Phases of Ovis aries Inferred from the Population Structure and the Phylogeography of Occidental Mediterranean Native Sheep Breeds. Genes (Basel) 2022; 13:genes13081421. [PMID: 36011332 PMCID: PMC9408117 DOI: 10.3390/genes13081421] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/22/2022] [Accepted: 08/04/2022] [Indexed: 01/18/2023] Open
Abstract
In this study, the genetic relationship and the population structure of western Mediterranean basin native sheep breeds are investigated, analyzing Maghrebian, Central Italian, and Venetian sheep with a highly informative microsatellite markers panel. The phylogeographical analysis, between breeds’ differentiation level (Wright’s fixation index), gene flow, ancestral relatedness measured by molecular coancestry, genetic distances, divergence times estimates and structure analyses, were revealed based on the assessment of 975 genotyped animals. The results unveiled the past introduction and migration history of sheep in the occidental Mediterranean basin since the early Neolithic. Our findings provided a scenario of three westward sheep migration phases fitting properly to the westward Neolithic expansion argued by zooarcheological, historical and human genetic studies.
Collapse
Affiliation(s)
- Yousra Ben Sassi-Zaidy
- Laboratory of Diversity, Management and Conservation of Biological Systems, LR18ES06, Faculty of Sciences of Tunis, University of Tunis El Manar, Tunis 2092, Tunisia
- Department of Agronomy, Animal, Food, Natural Resources and Environment, University of Padova, 35020 Legnaro Padova, Italy
- Laboratory of Animal Genetic and Feed Resources Research, Department of Animal Science, Institut National Agronomique de Tunis (INAT), University of Carthage, Tunis-Mahragène Tunis 2078, Tunisia
- Correspondence: (Y.B.S.-Z.); (F.C.); Tel.: +39-049-8272871 (F.C.); Fax: +39-049-8272633 (F.C.)
| | - Aziza Mohamed-Brahmi
- Laboratory of Agricultural Production Systems Sustainability in the North Western Region of Tunisia, Department of Animal Production, Ecole Supérieure d’Agriculture du Kef Boulifa, University of Jendouba, Le Kef 7119, Tunisia
| | - Melek Chaouch
- Laboratory of Medical Parasitology, Biotechnology and Biomolecules (LR11IPT06), Institut Pasteur de Tunis, Tunis 1002, Tunisia
- Laboratory of Bioinformatics, Biomathematics and Biostatistics (LR16IPT09), Institut Pasteur de Tunis, Tunis 1002, Tunisia
| | - Fabio Maretto
- Department of Agronomy, Animal, Food, Natural Resources and Environment, University of Padova, 35020 Legnaro Padova, Italy
| | - Filippo Cendron
- Department of Agronomy, Animal, Food, Natural Resources and Environment, University of Padova, 35020 Legnaro Padova, Italy
- Correspondence: (Y.B.S.-Z.); (F.C.); Tel.: +39-049-8272871 (F.C.); Fax: +39-049-8272633 (F.C.)
| | - Faouzia Charfi-Cheikhrouha
- Laboratory of Diversity, Management and Conservation of Biological Systems, LR18ES06, Faculty of Sciences of Tunis, University of Tunis El Manar, Tunis 2092, Tunisia
| | - Souha Ben Abderrazak
- Laboratory of Medical Parasitology, Biotechnology and Biomolecules (LR11IPT06), Institut Pasteur de Tunis, Tunis 1002, Tunisia
| | - Mnaour Djemali
- Laboratory of Animal Genetic and Feed Resources Research, Department of Animal Science, Institut National Agronomique de Tunis (INAT), University of Carthage, Tunis-Mahragène Tunis 2078, Tunisia
| | - Martino Cassandro
- Department of Agronomy, Animal, Food, Natural Resources and Environment, University of Padova, 35020 Legnaro Padova, Italy
| |
Collapse
|
84
|
New Insight into the Genome-Wide Diversity and Admixture of Six Colombian Sheep Populations. Genes (Basel) 2022; 13:genes13081415. [PMID: 36011325 PMCID: PMC9407362 DOI: 10.3390/genes13081415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/31/2022] [Accepted: 08/05/2022] [Indexed: 11/17/2022] Open
Abstract
Creole sheep represent a strategic genetic resource for populations living in marginal areas under financial restrictions on the American continent. Six Colombian sheep breeds (two wool (BCL-Boyacá and NCL-Nariño, 12 and 14 samples) and four hair (OPCE-Ethiopian, 54 samples; OPCS-Sudan, 74 samples; OPCP-Pelibeuy, 59 samples; OPCW-Wayúu, 24 samples) were genotyped using the Illumina Ovine SNP50 BeadChip. Data was also included from international 44 breeds from International Sheep Genomics Consortium (ISGC) and from data published in previous a previous work on the Caribbean and African breeds. Although geographically separated, wool (NCL, BCL) and hair types (OPCE, OPCS, OPCW) presented little genetic differentiation (FST 0.05) at a global level but several groups of animals separated suggesting local clustering due to geographical isolation. The OPCP underwent a recent crossing with Mexican Pelibuey, explaining its differentiation. Findings in this work such as the proximity to West African Djallonké (WAD) and Barbados Black Belly (BBB), suggest different introductions of African type animals from the Caribbean region on a pre-existing genetic basis formed by animals deriving from the first importations coming from Europe in colonial times. As expected, Colombian wool breeds showed, in particular in Admixture software results, a greater genomic component in common with European breeds and in particular with Iberian ones (Churra). This study provides a basis for future research into the genetic diversity within and between the Colombian sheep breeds analysed, and scientific data for policy decisions on Farm Animal Genetic Resources (FAnGR).
Collapse
|
85
|
Andersson L, Purugganan M. Molecular genetic variation of animals and plants under domestication. Proc Natl Acad Sci U S A 2022; 119:e2122150119. [PMID: 35858409 PMCID: PMC9335317 DOI: 10.1073/pnas.2122150119] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Domesticated plants and animals played crucial roles as models for evolutionary change by means of natural selection and for establishing the rules of inheritance, originally proposed by Charles Darwin and Gregor Mendel, respectively. Here, we review progress that has been made during the last 35 y in unraveling the molecular genetic variation underlying the stunning phenotypic diversity in crops and domesticated animals that inspired Mendel and Darwin. We notice that numerous domestication genes, crucial for the domestication process, have been identified in plants, whereas animal domestication appears to have a polygenic background with no obvious "domestication genes" involved. Although model organisms, such as Drosophila and Arabidopsis, have replaced domesticated species as models for basic research, the latter are still outstanding models for evolutionary research because phenotypic change in these species represents an evolutionary process over thousands of years. A consequence of this is that some alleles contributing to phenotypic diversity have evolved by accumulating multiple changes in the same gene. The continued molecular characterization of crops and farm animals with ever sharper tools is essential for future food security.
Collapse
Affiliation(s)
- Leif Andersson
- Department of Medical Biochemistry and Microbiology, Uppsala University, SE-751 23 Uppsala, Sweden
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX 77843-4458
- Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, SE-75007 Uppsala, Sweden
| | - Michael Purugganan
- Center for Genomics and Systems Biology, New York University, New York, NY 10003
- Center for Genomics and Systems Biology, New York University Abu Dhabi, Abu Dhabi, 129188, United Arab Emirates
| |
Collapse
|
86
|
Analysis on the desert adaptability of indigenous sheep in the southern edge of Taklimakan Desert. Sci Rep 2022; 12:12264. [PMID: 35851076 PMCID: PMC9293982 DOI: 10.1038/s41598-022-15986-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 07/04/2022] [Indexed: 11/25/2022] Open
Abstract
The southern margin of the Taklimakan Desert is characterized by low rainfall, heavy sandstorms, sparse vegetation and harsh ecological environment. The indigenous sheep in this area are rich in resources, with the advantages of perennial estrus and good resistance to stress in most sheep. Exploring the molecular markers of livestock adaptability in this environment will provide the molecular basis for breeding research to cope with extreme future changes in the desert environment. In this study, we analyzed the population genetic structure and linkage imbalance of five sheep breeds with three different agricultural geographic characteristics using four complementary genomic selection signals: fixation index (FST), cross-population extended haplotype homozygosity (xp-EHH), Rsb (extended haplotype homozygosity between-populations) and iHS (integrated haplotype homozygosity score). We used Illumina Ovine SNP 50K Genotyping BeadChip Array, and gene annotation and enrichment analysis were performed on selected regions of the obtained genome. The ovary of Qira Black sheep (Follicular phase, Luteal phase, 30th day of pregnancy, 45th day of pregnancy) was collected, and the differentially expressed genes were screened by transcriptomic sequencing. Genome-wide selective sweep results and transcriptome data were combined for association analysis to obtain candidate genes associated with perennial estrus and stable reproduction. In order to verify the significance of the results, 15 resulting genes were randomly selected for fluorescence quantitative analysis. The results showed that Dolang sheep and Qira Black sheep evolved from Kazak sheep. Linkage disequilibrium analysis showed that the decay rate of sheep breeds in the Taklimakan Desert was higher than that in Yili grassland. The signals of FST, xp-EHH, Rsb and iHS detected 526, 332, 308 and 408 genes, respectively, under the threshold of 1% and 17 overlapping genes under the threshold of 5%. A total of 29 genes were detected in association analysis of whole-genome and transcriptome data. This study reveals the genetic mechanism of perennial estrus and environmental adaptability of indigenous sheep breeds in the Taklimakan Desert. It provides a theoretical basis for the conservation and exploitation of genetic resources of indigenous sheep breeds in extreme desert environment. This provides a new perspective for the quick adaptation of sheep and other mammals to extreme environments and future climate changes.
Collapse
|
87
|
Drzaic I, Curik I, Lukic B, Shihabi M, Li MH, Kantanen J, Mastrangelo S, Ciani E, Lenstra JA, Cubric-Curik V. High-Density Genomic Characterization of Native Croatian Sheep Breeds. Front Genet 2022; 13:940736. [PMID: 35910220 PMCID: PMC9337876 DOI: 10.3389/fgene.2022.940736] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 06/16/2022] [Indexed: 11/13/2022] Open
Abstract
A recent comprehensive genomic analysis based on 50K SNP profiles has shown that the regional Balkan sheep populations have considerable genetic overlap but are distinctly different from surrounding breeds. All eight Croatian sheep breeds were represented by a small number of individuals per breed. Here, we genotyped 220 individuals representing the native Croatian sheep breeds (Istrian Sheep, Krk Island Sheep, Cres Island Sheep, Rab Island Sheep, Lika Pramenka, Pag Island Sheep, Dalmatian Pramenka, Dubrovnik Sheep) and mouflon using the Ovine Infinium® HD SNP BeadChip (606,006 SNPs). In addition, we included publicly available Balkan Pramenka and other Mediterranean sheep breeds. Our analyses revealed the complex population structure of Croatian sheep breeds and their origin and geographic barriers (island versus mainland). Migration patterns confirmed the historical establishment of breeds and the pathways of gene flow. Inbreeding coefficients (FROH>2 Mb) between sheep populations ranged from 0.025 to 0.070, with lower inbreeding coefficients observed in Dalmatian Pramenka and Pag Island Sheep and higher inbreeding in Dubrovnik sheep. The estimated effective population size ranged from 61 to 1039 for Krk Island Sheep and Dalmatian Pramenka, respectively. Higher inbreeding levels and lower effective population size indicate the need for improved conservation management to maintain genetic diversity in some breeds. Our results will contribute to breeding and conservation strategies of native Croatian sheep breeds.
Collapse
Affiliation(s)
- Ivana Drzaic
- Department of Animal Science, University of Zagreb Faculty of Agriculture, Zagreb, Croatia
- *Correspondence: Ivana Drzaic, ; Vlatka Cubric-Curik,
| | - Ino Curik
- Department of Animal Science, University of Zagreb Faculty of Agriculture, Zagreb, Croatia
| | - Boris Lukic
- Department of Animal Production and Biotechnology, Faculty of Agrobiotechnical Sciences Osijek, Chair for Domestic Animal Breeding and Genetics, J. J. Strossmayer University of Osijek, Osijek, Croatia
| | - Mario Shihabi
- Department of Animal Science, University of Zagreb Faculty of Agriculture, Zagreb, Croatia
| | - Meng-Hua Li
- College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Juha Kantanen
- Production Systems, Natural Resources Institute Finland (Luke), Jokioinen, Finland
| | - Salvatore Mastrangelo
- Dipartimento di Scienze Agrarie, Alimentari e Forestali, University of Palermo, Palermo, Italy
| | - Elena Ciani
- Dipartimento di Bioscienze, Biotecnologie e Biofarmaceutica, Universita Degli Studi di Bari “Aldo Moro”, Bari, Italy
| | | | - Vlatka Cubric-Curik
- Department of Animal Science, University of Zagreb Faculty of Agriculture, Zagreb, Croatia
- *Correspondence: Ivana Drzaic, ; Vlatka Cubric-Curik,
| |
Collapse
|
88
|
Consortium VG, Nijman IJ, Rosen BD, Bardou P, Faraut T, Cumer T, Daly KG, Zheng Z, Cai Y, Asadollahpour H, Kul BÇ, Zhang WY, Guangxin E, Ayin A, Baird H, Bakhtin M, Bâlteanu VA, Barfield D, Berger B, Blichfeldt T, Boink G, Bugiwati SRA, Cai Z, Carolan S, Clark E, Cubric-Curik V, Dagong MIA, Dorji T, Drew L, Guo J, Hallsson J, Horvat S, Kantanen J, Kawaguchi F, Kazymbet P, Khayatzadeh N, Kim N, Shah MK, Liao Y, Martínez A, Masangkay JS, Masaoka M, Mazza R, McEwan J, Milanesi M, Faruque MO, Nomura Y, Ouchene-Khelifi NA, Pereira F, Sahana G, Salavati M, Sasazaki S, Da Silva A, Simčič M, Sölkner J, Sutherland A, Tigchelaar J, Zhang H, Consortium E, Ajmone-Marsan P, Bradley DG, Colli L, Drögemüller C, Jiang Y, Lei C, Mannen H, Pompanon F, Tosser-Klopp G, Lenstra JA. Geographical contrasts of Y-chromosomal haplogroups from wild and domestic goats reveal ancient migrations and recent introgressions. Mol Ecol 2022; 31:4364-4380. [PMID: 35751552 DOI: 10.1111/mec.16579] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 06/12/2022] [Accepted: 06/20/2022] [Indexed: 11/29/2022]
Abstract
By their paternal transmission, Y-chromosomal haplotypes are sensitive markers of population history and male-mediated introgression. Previous studies identified biallelic single-nucleotide variants in the SRY, ZFY, DDX3Y genes, which in domestic goats identified four major Y-chromosomal haplotypes Y1A, Y1B, Y2A and Y2B with a marked geographic partitioning. Here, we extracted goat Y-chromosomal variants from whole-genome sequences of 386 domestic goats (75 breeds) and 7 wild goat species, which were generated by the VarGoats goat genome project. Phylogenetic analyses indicated domestic haplogroups corresponding to Y1B, Y2A and Y2B, respectively, whereas Y1A is split into Y1AA and Y1AB. All five haplogroups were detected in 26 ancient DNA samples from southeast Europe or Asia. Haplotypes from present-day bezoars are not shared with domestic goats and are attached to deep nodes of the trees and networks. Haplogroup distributions for 186 domestic breeds indicate ancient paternal population bottlenecks and expansions during the migrations into northern Europe, eastern and southern Asia and Africa south of the Sahara. In addition, sharing of haplogroups indicates male-mediated introgressions, most notably an early gene flow from Asian goats into Madagascar and the crossbreeding that in the 19th century resulted in the popular Boer and Anglo-Nubian breeds. More recent introgressions are those from European goats into the native Korean goat population and from Boer goat into Uganda, Kenya, Tanzania, Malawi and Zimbabwe. This study illustrates the power of the Y-chromosomal variants for reconstructing the history of domestic species with a wide geographic range.
Collapse
Affiliation(s)
| | - Isaäc J Nijman
- Utrecht Univ., Netherlands.,Univ. Medical Center Utrecht, Utrecht Univ, The Netherlands
| | | | - Philippe Bardou
- GenPhySE, Univ. Toulouse, INRA, INPT, ENVT, Castanet Tolosan, France
| | - Thomas Faraut
- GenPhySE, Univ. Toulouse, INRA, INPT, ENVT, Castanet Tolosan, France
| | - Tristan Cumer
- Université Grenoble Alpes, Université Savoie Mont Blanc, CNRS, LECA, Grenoble, France
| | | | - Zhuqing Zheng
- College of Animal Science & Technology, Northwest A&F Univ., Yangling, China
| | - Yudong Cai
- College of Animal Science & Technology, Northwest A&F Univ., Yangling, China
| | | | | | | | | | | | - Hayley Baird
- AgResearch, Invermay Agricultural Centre, Mosgiel, New Zealand
| | | | - Valentin A Bâlteanu
- Inst. of Life SciencesUniv. Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, Cluj-Napoca, Romania
| | | | - Beate Berger
- Univ. Natural Resources and Life Sciences Vienna (BOKU)
| | - Thor Blichfeldt
- Norwegian Association of Sheep and Goat Breeders, Aas, Norway
| | - Geert Boink
- Stichting Zeldzame Huisdierrassen, Wageningen, The Netherlands
| | | | | | | | | | | | | | - Tashi Dorji
- International Centre for Integrated Mountain Development, Kathmandu, Nepal
| | | | | | | | - Simon Horvat
- Univ. Ljubljana, Biotechnical Faculty, Ljubljana, Slovenia
| | - Juha Kantanen
- Natural Resources Institute Finland (Luke), Jokioinen, Finland
| | | | | | | | - Namshin Kim
- Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, South Korea
| | | | - Yuying Liao
- Guangxi Key Laboratory of Livestock Genetic Improvement, Guangxi, China
| | | | | | | | - Raffaele Mazza
- Laboratorio Genetica e Servizi, Agrotis srl, Cremona, Italy
| | - John McEwan
- AgResearch, Invermay Agricultural Centre, Mosgiel, New Zealand
| | | | | | | | | | - Filipe Pereira
- IDENTIFICA Genetic Testing Maia & Centre for Functional Ecology, Porto, Portugal
| | | | | | | | | | - Mojca Simčič
- Univ. Ljubljana, Biotechnical Faculty, Ljubljana, Slovenia
| | | | | | | | | | | | - Paolo Ajmone-Marsan
- Univ. Cattolica del S. Cuore di Piacenza and BioDNA Biodiversity and Ancient DNA Res. Centre, Piacenza, Italy.,UCSC PRONUTRIGEN Nutrigenomics Res. Centre, Piacenza, Italy
| | | | - Licia Colli
- Univ. Cattolica del S. Cuore di Piacenza and BioDNA Biodiversity and Ancient DNA Res. Centre, Piacenza, Italy.,UCSC BioDNA Biodiversity and Ancient DNA Res. Centre, Piacenza, Italy
| | | | - Yu Jiang
- College of Animal Science & Technology, Northwest A&F Univ., Yangling, China
| | - Chuzhao Lei
- College of Animal Science & Technology, Northwest A&F Univ., Yangling, China
| | | | - François Pompanon
- Université Grenoble Alpes, Université Savoie Mont Blanc, CNRS, LECA, Grenoble, France
| | | | | |
Collapse
|
89
|
Li R, Chen S, Li C, Xiao H, Costa V, Bhuiyan MSA, Baig M, Beja-Pereira A. Whole-Genome Analysis Deciphers Population Structure and Genetic Introgression Among Bovine Species. Front Genet 2022; 13:847492. [PMID: 35711941 PMCID: PMC9197319 DOI: 10.3389/fgene.2022.847492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Accepted: 04/13/2022] [Indexed: 11/13/2022] Open
Abstract
It is known that throughout history and presently, taurine (Bos taurus) and indicine/zebu (Bos indicus) cattle were crossed with other bovine species (e.g., gayal, gaur, banteng, yak, wisent, and bison). Information on the role of interspecific hybridization to facilitate faster adaptation of the newly arrived domestic species to new environments is poorly known. Herein, we collected 266 samples of bovine species of the taurine, zebu, yak, and gaur from West Europe, Southwest China, Indian subcontinent, and Southeast Asia to conduct the principal component analysis (PCA), admixture, gene flow, and selection signature analyses by using SNPs distributed across the bovine autosomes. The results showed that the genetic relationships between the zebu, yak, and gaur mirrored their geographical origins. Three ancestral components of the European taurine, East Asian taurine, and Indian zebu were found in domestic cattle, and the bidirectional genetic introgression between the Diqing cattle and Zhongdian yak was also detected. Simultaneously, the introgressed genes from the Zhongdian yak to the Diqing cattle were mainly enriched with immune-related pathways, and the ENPEP, FLT1, and PIK3CA genes related to the adaptation of high-altitude hypoxia were detected. Additionally, we found the genetic components of the Zhongdian yak had introgressed into Tibetan cattle. The 30 selected genes were detected in Tibetan cattle, which were significantly enriched in the chemokine signaling pathway. Interestingly, some genes (CDC42, SLC39A2, and EPAS1) associated with hypoxia response were discovered, in which CDC42 and SLC39A2 played important roles in angiogenesis and erythropoiesis, and heart function, respectively. This result showed that genetic introgression was one of the important ways for the environmental adaptation of domestic cattle.
Collapse
Affiliation(s)
- Rong Li
- School of Ecology and Environmental Science, Yunnan University, Kunming, China.,College of Life Science, Yunnan Normal University, Kunming, China
| | - Shanyuan Chen
- School of Ecology and Environmental Science, Yunnan University, Kunming, China
| | - Chunqing Li
- School of Ecology and Environmental Science, Yunnan University, Kunming, China
| | - Heng Xiao
- School of Ecology and Environmental Science, Yunnan University, Kunming, China
| | - Vânia Costa
- Centro de Investigação em Biodiversidade e Recursos Genéticos (CIBIO-InBIO), Universidade do Porto, Vairão, Portugal
| | | | - Mumtaz Baig
- Department of Zoology, Government Vidarbha Institute of Science and Humanities, Amravati, India
| | - Albano Beja-Pereira
- Centro de Investigação em Biodiversidade e Recursos Genéticos (CIBIO-InBIO), Universidade do Porto, Vairão, Portugal.,Ambiente e Ordenamento do Território (DGAOT), Faculdade de Ciências, Universidade do Porto, Porto, Portugal.,Sustainable Agrifood Production Research Centre (GreenUPorto), University of Porto, Vairão, Portugal
| |
Collapse
|
90
|
Analysis of the Genetic Diversity and Population Structure of Four Senegalese Sheep Breeds Using Medium-Density Single-Nucleotide Polymorphisms. Animals (Basel) 2022; 12:ani12121512. [PMID: 35739849 PMCID: PMC9219475 DOI: 10.3390/ani12121512] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/23/2022] [Accepted: 06/02/2022] [Indexed: 11/26/2022] Open
Abstract
Simple Summary This paper reported genetic parameters of four Senegalese sheep breeds, in relation to inbreeding, diversity and genetic proximity. The results provide informations on genetic conservation and adaptability of the breeds in the Senegalese context. Abstract In Senegal, sheep breeds have adapted to their environment and play a key socio-economic role. This study aimed to explore the genetic diversity and structure of four Senegalese sheep breeds (Peul-peul, Djallonke, Touabire, and Ladoum) and their relationships with global sheep breeds. To that end, forty-seven sheep were genotyped using the OvineSNP50 BeadChip, and these genotypic data were analysed with those of 73 sheep breeds representative of worldwide ovine diversity (2729 animals). The average observed heterozygosity (Ho) ranged from 0.293 in Djallonke sheep to 0.339 in Touabire sheep. The estimated Fis values were low, ranging from 0.019 for Ladoum to 0.034 for Peul-peul sheep. The estimated Fst values were low (0.003–0.044) among the trypanosusceptible breeds (Peul-peul, Touabire, and Ladoum) but high between the previous breeds and the trypanotolerant Djallonke breed (0.075–0.116), indicating better genetic conservation of the Djallonke sheep. A principal component analysis revealed clustering of the Senegalese sheep breeds according to their geographic distribution. However, owing to genetic improvement practices, the introgression of Touabire sheep blood seems to have reshaped the genetic landscape of the trypanosusceptible sheep breeds in Senegal. The Senegalese sheep breeds showed lower genetic diversity than their presumed ancestral sheep breeds of the Middle East. They also presented some relatedness with Caribbean sheep breeds, which reveals their contribution to the global genetic diversity and to the development of Caribbean sheep breeds.
Collapse
|
91
|
Zhumadillayev N, Dossybayev K, Khamzina A, Kapasuly T, Khamzina Z, Tlevlesov N. SNP Genotyping Characterizes the Genome Composition of the New Baisary Fat-Tailed Sheep Breed. Animals (Basel) 2022; 12:ani12111468. [PMID: 35681932 PMCID: PMC9179407 DOI: 10.3390/ani12111468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 05/27/2022] [Accepted: 05/30/2022] [Indexed: 12/04/2022] Open
Abstract
Lamb meat has become increasingly popular in several nations during the last few decades, especially in Kazakhstan. Due to the rising demand for lamb meat, our sheep breeders developed a new fat-tailed sheep and named the breed Baisary. Animals of the Baisary breed are characterized by a large physique, strong constitution, stretched body, deep and wide chest, medium or large-sized fat tail, long legs (height at the withers of adult rams 85–100 cm, sheep 75–90 cm), long lanceolate ears and strong hooves. Lambs of the Baisary breed surpass their peers of the original parent breeds by 15–20% in live weight at the weaning period. To characterize the genetic structure of Baisary sheep and compare it with the ancestral breeds, we genotyped 247 individuals from five sheep breeds with Ovine SNP50K. The estimated private allelic richness ranged from 0.0030 to 0.0047, with the minimum and maximum provided by the Gissar (Giss1) and Kazakh meat-wool breeds, respectively. The highest and lowest FIS values, meanwhile, were observed in the Afghan fat-tailed population and Baisary sheep, respectively. The calculated inbreeding coefficient showed that Edilbay and Baisary sheep have excess heterozygosity. According to principal components analysis, Baisary are close to Gissar populations, the Afghan fat-tailed breed and Edilbay sheep. These results were consistent with the Admixture and phylogenetic analysis. Overall, our results indicated that Baisary sheep differ genetically from their progenitors.
Collapse
Affiliation(s)
- Narzhan Zhumadillayev
- Test Center, Kazakh Scientific Research Institute of Animal Husbandry and Forage Production, Zhandosov, 51, Almaty 050035, Kazakhstan; (N.Z.); (Z.K.); (N.T.)
| | - Kairat Dossybayev
- Laboratory of Genetics and Cytogenetics, RSE “Institute of Genetics and Physiology” CS MES RK, Al-Farabi Avenue, 93, Almaty 050060, Kazakhstan;
- Department of Molecular Biology and Genetics, Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University, Almaty 050040, Kazakhstan
- Correspondence:
| | - Aigerim Khamzina
- Green Biotechnology and Cell Engineering Laboratory, Kazakh National Agrarian Research University, Almaty 050010, Kazakhstan;
| | - Tilek Kapasuly
- Laboratory of Genetics and Cytogenetics, RSE “Institute of Genetics and Physiology” CS MES RK, Al-Farabi Avenue, 93, Almaty 050060, Kazakhstan;
| | - Zhangylsyn Khamzina
- Test Center, Kazakh Scientific Research Institute of Animal Husbandry and Forage Production, Zhandosov, 51, Almaty 050035, Kazakhstan; (N.Z.); (Z.K.); (N.T.)
- Department of Molecular Biology and Genetics, Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University, Almaty 050040, Kazakhstan
| | - Nurlan Tlevlesov
- Test Center, Kazakh Scientific Research Institute of Animal Husbandry and Forage Production, Zhandosov, 51, Almaty 050035, Kazakhstan; (N.Z.); (Z.K.); (N.T.)
| |
Collapse
|
92
|
Mészárosová M, Mészáros G, Moravčíková N, Pavlík I, Margetín M, Kasarda R. Within- and between-Breed Selection Signatures in the Original and Improved Valachian Sheep. Animals (Basel) 2022; 12:ani12111346. [PMID: 35681809 PMCID: PMC9179888 DOI: 10.3390/ani12111346] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 05/13/2022] [Accepted: 05/23/2022] [Indexed: 11/16/2022] Open
Abstract
This study explored the genomic diversity and selection signatures in two Slovakian national breeds, the Original Valachian and the Improved Valachian sheep. As they are an important animal genetic resource within the country, but with decreasing population size, our aim is to identify potentially valuable genomic regions. A total of 97 sheep (18 male and 79 female) from the Original Valachian, and 69 sheep (25 male and 44 female) from the Improved Valachian populations were genotyped using the GeneSeek GGP Ovine 50 K chip. The inbreeding levels were assessed with runs of homozygosity (ROH). The selection signatures within breeds were identified based on the top 1% of most homozygous regions within the breed, the so-called ROH islands. The selection signatures between breeds were assessed based on variance in linkage disequilibrium. Overall, we have identified selection signatures with quantitative trait loci (QTL) and genes pointing towards all three production purposes of the Valachian sheep, milk, meat, and wool, including their quality characteristics. Another group with apparent large importance was the various traits related to health and resistance to parasites, which is well in line with the sturdy nature of this breed.
Collapse
Affiliation(s)
- Mária Mészárosová
- Faculty of Agrobiology and Food Resources, Institute of Nutrition and Genomics, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 94976 Nitra, Slovakia; (M.M.); (R.K.)
| | - Gábor Mészáros
- Department of Sustainable Agricultural Systems, Division of Livestock Sciences, University of Natural Resources and Life Sciences, Vienna, Gregor-Mendel-Straße 33, 1180 Vienna, Austria;
| | - Nina Moravčíková
- Faculty of Agrobiology and Food Resources, Institute of Nutrition and Genomics, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 94976 Nitra, Slovakia; (M.M.); (R.K.)
- Correspondence:
| | - Ivan Pavlík
- Research Institute of Animal Production—NPPC Slovakia, Hlohovecká 2, 95141 Nitra—Lužianky, Slovakia;
| | - Milan Margetín
- Faculty of Agrobiology and Food Resources, Institute of Animal Science, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 94976 Nitra, Slovakia;
| | - Radovan Kasarda
- Faculty of Agrobiology and Food Resources, Institute of Nutrition and Genomics, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 94976 Nitra, Slovakia; (M.M.); (R.K.)
| |
Collapse
|
93
|
Genomic Population Structure of the Main Historical Genetic Lines of Spanish Merino Sheep. Animals (Basel) 2022; 12:ani12101327. [PMID: 35625173 PMCID: PMC9138057 DOI: 10.3390/ani12101327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 05/18/2022] [Accepted: 05/18/2022] [Indexed: 11/26/2022] Open
Abstract
Simple Summary Historical documentation shows that the Spanish Merino sheep was selected over many centuries due to the quality of wool, following which it was used to originate all other Merino breeds around the world, mainly by crossbreeding with local breeds. Today, the historical genetic lines that originated the Spanish Merino are still preserved in several closed herds in which they have been bred for nearly 200 years, maintaining their original genetic purity. Our study demonstrates, using a genomic approach, the exceptional genetic richness and variability of these lines, which are clearly differentiated from modern Merino breeds, and must therefore be protected to safeguard the large genetic pool they represent. Abstract According to historiographical documentation, the Romans first began to select Merino sheep in the Iberian Peninsula during the first century, with the aim of obtaining a breed appreciated for the quality of its wool. This process continued locally during the Middle Ages, when Spanish sheep were protected, and their export to foreign countries was banned. It was during the 16th century when individual Merino sheep were allowed to spread around the world to be used to improve the wool quality of local breeds. However, the wool crisis of the 1960s shifted the selection criteria of the Merino breed towards meat production at the expenses of wool. Consequently, individuals that display the genetic and phenotypic characteristics of those sheep originally bred in the kingdom of Spain in the Middle Ages are extremely difficult to find in commercial herds. In this study, we characterized the genetic basis of 403 individuals from the main historical Spanish Merino genetic lines (Granda, Hidalgo, Lopez-Montenegro, Maeso, Donoso and Egea), which were bred in isolation over the last 200 years, using a genomic approach based on genotyping data from the Axiom™ Ovine 50K SNP Genotyping Array. Our analysis included measuring population structure, genomic differentiation indexes, runs of homozygosity (ROH) patterns, and an analysis of molecular variance (AMOVA). The results showed large genetic differences between the historical lines, even though they belong to the same breed. In addition, ROH analysis showed differences due to increased inbreeding among the ancient generations compared with the modern Merino lines, confirming the breed’s ancestral and closed origin. However, our results also showed a high variability and richness within the Spanish historical Merino lines from a genetic viewpoint. This fact, together with their great ability to produce high-quality wool, suggests that ancestral Merino lines from Spain should be considered a valuable genetic population to be maintained as a resource for the improvement of wool-producing sheep breeds all around the world.
Collapse
|
94
|
Wilson CS, Petersen JL, Blackburn HD, Lewis RM. Assessing Population Structure and Genetic Diversity in U.S. Suffolk Sheep to Define a Framework for Genomic Selection. J Hered 2022; 113:431-443. [PMID: 35575262 DOI: 10.1093/jhered/esac026] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 05/13/2022] [Indexed: 11/13/2022] Open
Abstract
Long-term sustainability of breeds depends on having sufficient genetic diversity for adaptability to change, whether driven by climatic conditions or by priorities in breeding programs. Genetic diversity in Suffolk sheep in the U.S. was evaluated in four ways: 1) using genetic relationships from pedigree data [(n=64,310 animals recorded in the U.S. National Sheep Improvement Program (NSIP)]; 2) using molecular data (n=304 Suffolk genotyped with the OvineHD BeadChip); 3) comparing Australian (n=109) and Irish (n=55) Suffolk sheep to those in the U.S. using molecular data; and 4) assessing genetic relationships (connectedness) among active Suffolk flocks (n=18) in NSIP. By characterizing genetic diversity, a goal was to define the structure of a reference population for use for genomic selection strategies in this breed. Pedigree-based mean inbreeding level for the most recent year of available data was 5.5%. Ten animals defined 22.8% of the current gene pool. The effective population size (Ne) ranged from 27.5 to 244.2 based on pedigree and was 79.5 based on molecular data. Expected (HE) and observed (HO) heterozygosity were 0.317 and 0.306, respectively. Model-based population structure included 7 subpopulations. From Principal Component Analysis, countries separated into distinct populations. Within the U.S. population, flocks formed genetically disconnected clusters. A decline in genetic diversity over time was observed from both pedigree and genomic-based derived measures with evidence of population substructure as measured by FST. Using these measures of genetic diversity, a framework for establishing a genomic reference population in U.S. Suffolk sheep engaged in NSIP was proposed.
Collapse
Affiliation(s)
- Carrie S Wilson
- USDA, ARS, National Animal Germplasm Program, Fort Collins, CO.,Colorado State University, Dept. of Animal Science, Fort Collins, CO
| | | | | | - Ronald M Lewis
- University of Nebraska-Lincoln, Dept. of Animal Science, Lincoln, NE
| |
Collapse
|
95
|
Capturing Genetic Diversity and Selection Signatures of the Endangered Kosovar Balusha Sheep Breed. Genes (Basel) 2022; 13:genes13050866. [PMID: 35627251 PMCID: PMC9140571 DOI: 10.3390/genes13050866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/23/2022] [Accepted: 05/09/2022] [Indexed: 11/17/2022] Open
Abstract
There is a growing concern about the loss of animal genetic resources. The aim of this study was to analyze the genetic diversity and potential peculiarity of the endangered Kosovar sheep breed Balusha. For this purpose, a dataset consisting of medium-density SNP chip genotypes (39,879 SNPs) from 45 Balusha sheep was generated and compared with SNP chip genotypes from 29 individuals of a second Kosovar breed, Bardhoka. Publicly available SNP genotypes from 39 individuals of the relatively closely located sheep breeds Istrian Pramenka and Ruda were additionally included in the analyses. Analysis of heterozygosity, allelic richness and effective population size was used to assess the genetic diversity. Inbreeding was evaluated using two different methods (FIS, FROH). The standardized FST (di) and cross-population extended haplotype homozygosity (XPEHH) methods were used to detect signatures of selection. We observed the lowest heterozygosity (HO = 0.351) and effective population size (Ne5 = 25, Ne50 = 228) for the Balusha breed. The mean allelic richness levels (1.780–1.876) across all analyzed breeds were similar and also comparable with those in worldwide breeds. FROH estimates (0.023–0.077) were highest for the Balusha population, although evidence of decreased inbreeding was observed in FIS results for the Balusha breed. Two Gene Ontology (GO) TERMs were strongly enriched for Balusha, and involved genes belonging to the melanogenesis and T cell receptor signaling pathways, respectively. This could result from selection for the special coat color pattern of Balusha (black head) and resistance to certain infectious diseases. The analyzed diversity parameters highlight the urgency to preserve the local Kosovar Balusha sheep as it is clearly distinguished from other sheep of Southeastern Europe, has the lowest diversity level and may harbor valuable genetic variants, e.g., for resistance to infectious diseases.
Collapse
|
96
|
Hunter DC, Ashraf B, Bérénos C, Ellis PA, Johnston SE, Wilson AJ, Pilkington JG, Pemberton JM, Slate J. Using genomic prediction to detect microevolutionary change of a quantitative trait. Proc Biol Sci 2022; 289:20220330. [PMID: 35538786 PMCID: PMC9091855 DOI: 10.1098/rspb.2022.0330] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Accepted: 04/12/2022] [Indexed: 12/31/2022] Open
Abstract
Detecting microevolutionary responses to natural selection by observing temporal changes in individual breeding values is challenging. The collection of suitable datasets can take many years and disentangling the contributions of the environment and genetics to phenotypic change is not trivial. Furthermore, pedigree-based methods of obtaining individual breeding values have known biases. Here, we apply a genomic prediction approach to estimate breeding values of adult weight in a 35-year dataset of Soay sheep (Ovis aries). Comparisons are made with a traditional pedigree-based approach. During the study period, adult body weight decreased, but the underlying genetic component of body weight increased, at a rate that is unlikely to be attributable to genetic drift. Thus cryptic microevolution of greater adult body weight has probably occurred. Genomic and pedigree-based approaches gave largely consistent results. Thus, using genomic prediction to study microevolution in wild populations can remove the requirement for pedigree data, potentially opening up new study systems for similar research.
Collapse
Affiliation(s)
- D. C. Hunter
- School of Biosciences, University of Sheffield, Sheffield S10 2TN, UK
- School of Biology, University of St Andrews, St Andrews KY16 9ST, UK
| | - B. Ashraf
- School of Biosciences, University of Sheffield, Sheffield S10 2TN, UK
- Department of Anthropology, Durham University, Durham DH1 3LE, UK
| | - C. Bérénos
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh EH9 3FL, UK
| | - P. A. Ellis
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh EH9 3FL, UK
| | - S. E. Johnston
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh EH9 3FL, UK
| | - A. J. Wilson
- Centre of Ecology and Conservation, College of Life and Environmental Sciences, University of Exeter, Penryn TR10 9FE, UK
| | - J. G. Pilkington
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh EH9 3FL, UK
| | - J. M. Pemberton
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh EH9 3FL, UK
| | - J. Slate
- School of Biosciences, University of Sheffield, Sheffield S10 2TN, UK
| |
Collapse
|
97
|
Oliveira RD, Mousel MR, Gonzalez MV, Durfee CJ, Davenport KM, Murdoch BM, Taylor JB, Neibergs HL, White SN. A high-density genome-wide association with absolute blood monocyte count in domestic sheep identifies novel loci. PLoS One 2022; 17:e0266748. [PMID: 35522671 PMCID: PMC9075649 DOI: 10.1371/journal.pone.0266748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 03/27/2022] [Indexed: 11/20/2022] Open
Abstract
Monocytes are a core component of the immune system that arise from bone marrow and differentiate into cells responsible for phagocytosis and antigen presentation. Their derivatives are often responsible for the initiation of the adaptive immune response. Monocytes and macrophages are central in both controlling and propagating infectious diseases such as infection by Coxiella burnetii and small ruminant lentivirus in sheep. Genotypes from 513 Rambouillet, Polypay, and Columbia sheep (Ovis aries) were generated using the Ovine SNP50 BeadChip. Of these sheep, 222 animals were subsequently genotyped with the Ovine Infinium® HD SNP BeadChip to increase SNP coverage. Data from the 222 HD genotyped sheep were combined with the data from an additional 258 unique sheep to form a 480-sheep reference panel; this panel was used to impute the low-density genotypes to the HD genotyping density. Then, a genome-wide association analysis was conducted to identify loci associated with absolute monocyte counts from blood. The analysis used a single-locus mixed linear model implementing EMMAX with age and ten principal components as fixed effects. Two genome-wide significant peaks (p < 5x10-7) were identified on chromosomes 9 and 1, and ten genome-wide suggestive peaks (p < 1x10-5) were identified on chromosomes 1, 2, 3, 4, 9, 10, 15, and 16. The identified loci were within or near genes including KCNK9, involved into cytokine production, LY6D, a member of a superfamily of genes, some of which subset monocyte lineages, and HMGN1, which encodes a chromatin regulator associated with myeloid cell differentiation. Further investigation of these loci is being conducted to understand their contributions to monocyte counts. Investigating the genetic basis of monocyte lineages and numbers may in turn provide information about pathogens of veterinary importance and elucidate fundamental immunology.
Collapse
Affiliation(s)
- Ryan D. Oliveira
- Department of Veterinary Microbiology & Pathology, Washington State University, Pullman, Washington, United States of America
| | - Michelle R. Mousel
- USDA-ARS Animal Disease Research, Pullman, Washington, United States of America
- Allen School for Global Animal Health, Washington State University, Pullman, Washington, United States of America
| | - Michael V. Gonzalez
- Center for Applied Genomics, Children’s Hospital of Philadelphia, Philadelphia, PA, United States of America
| | - Codie J. Durfee
- USDA-ARS Animal Disease Research, Pullman, Washington, United States of America
| | - Kimberly M. Davenport
- Department of Animal, Veterinary, and Food Science, University of Idaho, Moscow, ID, United States of America
| | - Brenda M. Murdoch
- Department of Animal, Veterinary, and Food Science, University of Idaho, Moscow, ID, United States of America
- Center for Reproductive Biology, Washington State University, Pullman, WA, United States of America
| | - J. Bret Taylor
- USDA-ARS Range Sheep Production Efficiency Research, Dubois, Idaho, United States of America
| | - Holly L. Neibergs
- Department of Animal Sciences, Washington State University, Pullman, WA, United States of America
| | - Stephen N. White
- Department of Veterinary Microbiology & Pathology, Washington State University, Pullman, Washington, United States of America
- USDA-ARS Animal Disease Research, Pullman, Washington, United States of America
- Center for Reproductive Biology, Washington State University, Pullman, WA, United States of America
- * E-mail:
| |
Collapse
|
98
|
Liu Z, Tan X, Wang J, Jin Q, Meng X, Cai Z, Cui X, Wang K. Whole genome sequencing of Luxi Black Head sheep for screening selection signatures associated with important traits. Anim Biosci 2022; 35:1340-1350. [PMID: 35507856 PMCID: PMC9449392 DOI: 10.5713/ab.21.0533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Accepted: 03/21/2022] [Indexed: 11/27/2022] Open
Abstract
Objective Luxi Black Head sheep (LBH) is the first crossbreed specialized for meat production and was developed by crossbreeding Black Head Dorper sheep (DP) and Small Tailed Han sheep (STH) in the farming areas of northern China. Research on the genomic variations and selection signatures of LBH caused by continuous artificial selection is of great significance for identifying the genetic mechanisms of important traits of sheep and for the continuous breeding of LBH. Methods We explored the genetic relationships of LBH, DP, and several Mongolian sheep breeds by constructing phylogenetic tree, principal component analysis and linkage disequilibrium analysis. In addition, we analysed 29 whole genomes of sheep. The genome-wide selection signatures have been scanned with four methods: heterozygosity (HP), fixation index (FST), cross-population extended haplotype homozygosity (XP-EHH) and the nucleotide diversity (θπ) ratio. Results The genetic relationships analysis showed that LBH appeared to be an independent cluster closer to DP. The candidate signatures of positive selection in sheep genome revealed candidate genes for developmental process (HoxA gene cluster, BCL2L11, TSHR), immunity (CXCL6, CXCL1, SKAP2, PTK6, MST1R), growth (PDGFD, FGF18, SRF, SOCS2), and reproduction (BCAS3, TRIM24, ASTL, FNDC3A). Moreover, two signalling pathways closely related to reproduction, the thyroid hormone signalling pathway and the oxytocin signalling pathway, were detected. Conclusion The selective sweep analysis of LBH genome revealed candidate genes and signalling pathways associated with developmental process, immunity, growth, and reproduction. Our findings provide a valuable resource for sheep breeding and insight into the mechanisms of artificial selection.
Collapse
|
99
|
Malatji DP. Breeding of African sheep reared under low-input/output smallholder production systems for trypanotolerance. Vet World 2022; 15:1031-1043. [PMID: 35698514 PMCID: PMC9178589 DOI: 10.14202/vetworld.2022.1031-1043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 03/11/2022] [Indexed: 11/30/2022] Open
Abstract
Trypanosomiasis is a disease caused by unicellular protozoan parasites. Small ruminants succumb to trypanosomiasis in areas of high tsetse fly challenge, resulting in serious economic loss often to farmers in low-input smallholder systems. At present, trypanosomiasis is treated with trypanocidal drugs, but access to these can be limited, and increasing parasite resistance raises questions about their efficacy. The development of trypanotolerance in small ruminant flocks through targeted breeding strategies is considered a sustainable and economical option for controlling African trypanosomiasis. Recently, quantitative trait loci (QTLs) associated with trypanotolerance traits in sheep have been reported. The results of these studies form the basis for more studies to identify QTLs associated with trypanosomiasis resistance, particularly in African livestock species. For example, signatures of positive selection for trypanotolerance have been identified using genome-wide single-nucleotide polymorphism data. However, there are several challenges in performing genetic analyses using data from low-input smallholder systems, including a lack of recorded pedigree and production records and the need for large sample sizes when flock sizes are often fewer than 50 animals. Breeding strategies to improve trypanotolerance should also preserve existing genetic diversity as well as minimize excessive genetic introgression by trypanosusceptible breeds. This review discusses the possibilities of breeding for trypanosome tolerance/resistance in low-input/low-output small ruminant production systems. Potential challenges are outlined, and potential available genetic resources are described as a foundation for future work.
Collapse
Affiliation(s)
- Dikeledi P. Malatji
- Department of Agriculture and Animal Health, College of Agriculture and Environmental Sciences, University of South Africa, Johannesburg, Gauteng Province, South Africa
| |
Collapse
|
100
|
Rekik E, Ahbara AM, Abate Z, Goshme S, Getachew T, Haile A, Rischkowsky B, Mwacharo JM. Genomic analysis of 10 years of artificial selection in community‐based breeding programs in two Ethiopian indigenous sheep breeds. Anim Genet 2022; 53:447-451. [PMID: 35428998 PMCID: PMC10138745 DOI: 10.1111/age.13190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 02/25/2022] [Accepted: 03/01/2022] [Indexed: 11/30/2022]
Abstract
In recent times, community-based breeding programs (CBBPs) have been advocated as the best strategy for genetic improvement of local breeds in smallholder farms in developing countries. Since 2009, CBBPs have been implemented for Ethiopian Bonga and Menz sheep to improve growth rates resulting in significant genetic gains in 6-month weights. With the hypothesis that selection could be impacting their genomes, we systematically screened for possible genome changes in the two breeds by analyzing 600K BeadChip genotype data of 151 individuals (with the highest breeding values for 6-month weights) from CBBP flocks against 98 individuals from non-CBBP flocks. We observed no differences in genetic diversity and demographic dynamics between CBBP and non-CBBP flocks. Selection signature analysis employing ROH, logistic regression genome-wide association study , FST , XP-EHH and iHS revealed 5 (Bonga) and 11 (Menz) overlapping regions under selection, that co-localized with QTLs for production (body size/weight, growth, milk yield), meat/milk quality, and health/parasite resistance, suggesting that the decade-long selection has likely started to impact their genomes. However, genome-wide genetic differentiation between the CBBP and non-CBBP flocks is not yet clearly evident.
Collapse
Affiliation(s)
- Emna Rekik
- Small Ruminant Genomics International Centre for Agricultural Research in the Dry areas (ICARDA) Addis Ababa Ethiopia
| | - Abulgasim M. Ahbara
- Small Ruminant Genomics International Centre for Agricultural Research in the Dry areas (ICARDA) Addis Ababa Ethiopia
- Department of Zoology Faculty of Sciences Misurata University Misurata Libya
| | - Zelalem Abate
- Animal Sciences Case Team Bonga Agricultural Research Center Bonga Ethiopia
| | - Shenkute Goshme
- Debre‐Birhan Agricultural Research Center Debre‐Birhan Ethiopia
| | - Tesfaye Getachew
- Small Ruminant Genomics International Centre for Agricultural Research in the Dry areas (ICARDA) Addis Ababa Ethiopia
| | - Aynalem Haile
- Small Ruminant Genomics International Centre for Agricultural Research in the Dry areas (ICARDA) Addis Ababa Ethiopia
| | - Barbara Rischkowsky
- Small Ruminant Genomics International Centre for Agricultural Research in the Dry areas (ICARDA) Addis Ababa Ethiopia
| | - Joram M. Mwacharo
- Small Ruminant Genomics International Centre for Agricultural Research in the Dry areas (ICARDA) Addis Ababa Ethiopia
- Animal and Veterinary Sciences Scotland Rural College and Centre for Tropical Livestock Genetics and Health (CTLGH) The Roslin Institute Building Easter Bush Midlothian UK
| |
Collapse
|