51
|
Hu C, Wang S, Huang B, Liu H, Xu L, Zhigang Hu, Liu Y. The complete mitochondrial genome sequence of Scolopendra mutilans L. Koch, 1878 (Scolopendromorpha, Scolopendridae), with a comparative analysis of other centipede genomes. Zookeys 2020; 925:73-88. [PMID: 32390741 PMCID: PMC7197263 DOI: 10.3897/zookeys.925.47820] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 02/20/2020] [Indexed: 02/07/2023] Open
Abstract
Scolopendramutilans L. Koch, 1878 is an important Chinese animal with thousands of years of medicinal history. However, the genomic information of this species is limited, which hinders its further application. Here, the complete mitochondrial genome (mitogenome) of S.mutilans was sequenced and assembled by next-generation sequencing. The genome is 15,011 bp in length, consisting of 13 protein-coding genes (PCGs), 14 tRNA genes, and two rRNA genes. Most PCGs start with the ATN initiation codon, and all PCGs have the conventional stop codons TAA and TAG. The S.mutilans mitogenome revealed nine simple sequence repeats (SSRs), and an obviously lower GC content compared with other seven centipede mitogenomes previously sequenced. After analysis of homologous regions between the eight centipede mitogenomes, the S.mutilans mitogenome further showed clear genomic rearrangements. The phylogenetic analysis of eight centipedes using 13 conserved PCG genes was finally performed. The phylogenetic reconstructions showed Scutigeromorpha as a separate group, and Scolopendromorpha in a sister-group relationship with Lithobiomorpha and Geophilomorpha. Collectively, the S.mutilans mitogenome provided new genomic resources, which will improve its medicinal research and applications in the future.
Collapse
Affiliation(s)
| | | | | | | | | | - Zhigang Hu
- College of Pharmacy.,Hubei University of Chinese Medicine, No. 1 Huangjiahu West Road, Hongshan District, Wuhan, China
| | | |
Collapse
|
52
|
Leite DJ, Baudouin-Gonzalez L, Iwasaki-Yokozawa S, Lozano-Fernandez J, Turetzek N, Akiyama-Oda Y, Prpic NM, Pisani D, Oda H, Sharma PP, McGregor AP. Homeobox Gene Duplication and Divergence in Arachnids. Mol Biol Evol 2020; 35:2240-2253. [PMID: 29924328 PMCID: PMC6107062 DOI: 10.1093/molbev/msy125] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Homeobox genes are key toolkit genes that regulate the development of metazoans and changes in their regulation and copy number have contributed to the evolution of phenotypic diversity. We recently identified a whole genome duplication (WGD) event that occurred in an ancestor of spiders and scorpions (Arachnopulmonata), and that many homeobox genes, including two Hox clusters, appear to have been retained in arachnopulmonates. To better understand the consequences of this ancient WGD and the evolution of arachnid homeobox genes, we have characterized and compared the homeobox repertoires in a range of arachnids. We found that many families and clusters of these genes are duplicated in all studied arachnopulmonates (Parasteatoda tepidariorum, Pholcus phalangioides, Centruroides sculpturatus, and Mesobuthus martensii) compared with nonarachnopulmonate arachnids (Phalangium opilio, Neobisium carcinoides, Hesperochernes sp., and Ixodes scapularis). To assess divergence in the roles of homeobox ohnologs, we analyzed the expression of P. tepidariorum homeobox genes during embryogenesis and found pervasive changes in the level and timing of their expression. Furthermore, we compared the spatial expression of a subset of P. tepidariorum ohnologs with their single copy orthologs in P. opilio embryos. We found evidence for likely subfunctionlization and neofunctionalization of these genes in the spider. Overall our results show a high level of retention of homeobox genes in spiders and scorpions post-WGD, which is likely to have made a major contribution to their developmental evolution and diversification through pervasive subfunctionlization and neofunctionalization, and paralleling the outcomes of WGD in vertebrates.
Collapse
Affiliation(s)
- Daniel J Leite
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, United Kingdom
| | - Luís Baudouin-Gonzalez
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, United Kingdom
| | | | - Jesus Lozano-Fernandez
- School of Earth Sciences, University of Bristol, Life Sciences Building, Bristol, United Kingdom.,School of Biological Sciences, University of Bristol, Life Sciences Building, Bristol, United Kingdom
| | - Natascha Turetzek
- Department of Cellular Neurobiology, Johann-Friedrich-Blumenbach Institute for Zoology and Anthropology, Georg-August-University, Göttingen, Germany
| | - Yasuko Akiyama-Oda
- JT Biohistory Research Hall, Takatsuki, Osaka, Japan.,Microbiology and Infection Control, Osaka Medical College, Takatsuki, Osaka, Japan
| | - Nikola-Michael Prpic
- Department of Cellular Neurobiology, Johann-Friedrich-Blumenbach Institute for Zoology and Anthropology, Georg-August-University, Göttingen, Germany
| | - Davide Pisani
- School of Earth Sciences, University of Bristol, Life Sciences Building, Bristol, United Kingdom.,School of Biological Sciences, University of Bristol, Life Sciences Building, Bristol, United Kingdom
| | - Hiroki Oda
- JT Biohistory Research Hall, Takatsuki, Osaka, Japan.,Department of Biological Sciences, Graduate School of Science, Osaka University, Osaka, Japan
| | - Prashant P Sharma
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI, USA
| | - Alistair P McGregor
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, United Kingdom
| |
Collapse
|
53
|
Zhou Y, Liang Y, Yan Q, Zhang L, Chen D, Ruan L, Kong Y, Shi H, Chen M, Chen J. The draft genome of horseshoe crab Tachypleus tridentatus reveals its evolutionary scenario and well-developed innate immunity. BMC Genomics 2020; 21:137. [PMID: 32041526 PMCID: PMC7011531 DOI: 10.1186/s12864-020-6488-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2019] [Accepted: 01/13/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Horseshoe crabs are ancient marine arthropods with a long evolutionary history extending back approximately 450 million years, which may benefit from their innate immune systems. However, the genetic mechanisms underlying their abilities of distinguishing and defending against invading microbes are still unclear. RESULTS Here, we describe the 2.06 Gbp genome assembly of Tachypleus tridentatus with 24,222 predicted protein-coding genes. Comparative genomics shows that T. tridentatus and the Atlantic horseshoe crab Limulus polyphemus have the most orthologues shared among two species, including genes involved in the immune-related JAK-STAT signalling pathway. Divergence time dating results show that the last common ancestor of Asian horseshoe crabs (including T. tridentatus and C. rotundicauda) and L. polyphemus appeared approximately 130 Mya (121-141), and the split of the two Asian horseshoe crabs was dated to approximately 63 Mya (57-69). Hox gene analysis suggests two clusters in both horseshoe crab assemblies. Surprisingly, selective analysis of immune-related gene families revealed the high expansion of conserved pattern recognition receptors. Genes involved in the IMD and JAK-STAT signal transduction pathways also exhibited a certain degree of expansion in both genomes. Intact coagulation cascade-related genes were present in the T. tridentatus genome with a higher number of coagulation factor genes. Moreover, most reported antibacterial peptides have been identified in T. tridentatus with their potentially effective antimicrobial sites. CONCLUSIONS The draft genome of T. tridentatus would provide important evidence for further clarifying the taxonomy and evolutionary relationship of Chelicerata. The expansion of conserved immune signalling pathway genes, coagulation factors and intact antimicrobial peptides in T. tridentatus constitutes its robust and effective innate immunity for self-defence in marine environments with an enormous number of invading pathogens and may affect the quality of the adaptive properties with regard to complicated marine environments.
Collapse
Affiliation(s)
- Yan Zhou
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, 200438, China.
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, Chinese National Human Genome Center at Shanghai, Shanghai, 201203, China.
| | - Yuan Liang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Qing Yan
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, Chinese National Human Genome Center at Shanghai, Shanghai, 201203, China
| | - Liang Zhang
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, Chinese National Human Genome Center at Shanghai, Shanghai, 201203, China
| | - Dianbao Chen
- Institute of Oceanography, Minjiang University, Fuzhou, 350108, China
| | - Lingwei Ruan
- State Key Laboratory Breeding Base of Marine Genetic Resources, Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources, Third Institute of Oceanography, Ministry of Natural Resources, 184 University Road, Xiamen, 361005, China
| | - Yuan Kong
- Institute of Oceanography, Minjiang University, Fuzhou, 350108, China
| | - Hong Shi
- State Key Laboratory Breeding Base of Marine Genetic Resources, Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources, Third Institute of Oceanography, Ministry of Natural Resources, 184 University Road, Xiamen, 361005, China
| | - Mingliang Chen
- State Key Laboratory Breeding Base of Marine Genetic Resources, Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources, Third Institute of Oceanography, Ministry of Natural Resources, 184 University Road, Xiamen, 361005, China.
| | - Jianming Chen
- Institute of Oceanography, Minjiang University, Fuzhou, 350108, China.
- Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, China.
| |
Collapse
|
54
|
Wang XR, Kurtti TJ, Oliver JD, Munderloh UG. The identification of tick autophagy-related genes in Ixodes scapularis responding to amino acid starvation. Ticks Tick Borne Dis 2020; 11:101402. [PMID: 32035896 DOI: 10.1016/j.ttbdis.2020.101402] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 01/04/2020] [Accepted: 01/27/2020] [Indexed: 12/25/2022]
Abstract
Ticks are obligate hematophagous arthropods and must tolerate starvation during off-host periods. Macroautophagy (hereafter autophagy) is a well-conserved self-eating mechanism of cell survival and is essential for recycling cellular contents during periods of starvation, stress, and injury in organisms. Although the genome sequence of Ixodes scapularis (Say) is available, the characteristics and functions of autophagy-related gene families remain largely unknown. To advance our understanding of autophagy in I. scapularis, we used comprehensive genomic approaches to identify Atg genes. Homologues of 14 Atg genes were identified, and their protein motif compositions were predicted. Phylogenetic analysis indicated that ATGs in I. scapularis were evolutionarily closely related to their homologues in Haemaphysalis longicornis and Rhipicephalus microplus ticks. Expression patterns of Atg genes differed across tick developmental stages. Immunofluorescence results by monodansylcadaverine (MDC) staining indicated that autophagy was activated after amino acid starvation treatments in I. scapularis embryo-derived cell lines ISE6 and IDE8. Subsequently, the expression of key Atg genes involved in autophagy pathway in both cell lines were examined. In ISE6 cells, the expression levels of three Atg genes (Atg4B, Atg6 and Atg8A) increased significantly after amino acid starvation; similarly, four Atg genes (Atg4A, Atg4B, Atg6 and Atg8B) were upregulated in IDE8 cells in response to starvation. In parallel, the MDC and lysotracker staining results indicated that autophagy was triggered after amino acid starvation treatments in R. microplus embryo-derived cell line BME26. Our observations showed that Atg family genes are highly conserved in ticks and function in autophagy pathway induced by amino acid starvation. These results also provide valuable insight for further autophagy-related research as a new strategy for blocking the transmission of tick-borne pathogens.
Collapse
Affiliation(s)
- Xin-Ru Wang
- Department of Entomology, University of Minnesota, St. Paul, MN, USA.
| | - Timothy J Kurtti
- Department of Entomology, University of Minnesota, St. Paul, MN, USA
| | - Jonathan D Oliver
- School of Public Health, Division of Environmental Health Sciences, University of Minnesota, Minneapolis, MN, USA
| | | |
Collapse
|
55
|
Manni M, Simao FA, Robertson HM, Gabaglio MA, Waterhouse RM, Misof B, Niehuis O, Szucsich NU, Zdobnov EM. The Genome of the Blind Soil-Dwelling and Ancestrally Wingless Dipluran Campodea augens: A Key Reference Hexapod for Studying the Emergence of Insect Innovations. Genome Biol Evol 2020; 12:3534-3549. [PMID: 31778187 PMCID: PMC6938034 DOI: 10.1093/gbe/evz260] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/26/2019] [Indexed: 12/13/2022] Open
Abstract
The dipluran two-pronged bristletail Campodea augens is a blind ancestrally wingless hexapod with the remarkable capacity to regenerate lost body appendages such as its long antennae. As sister group to Insecta (sensu stricto), Diplura are key to understanding the early evolution of hexapods and the origin and evolution of insects. Here we report the 1.2-Gb draft genome of C. augens and results from comparative genomic analyses with other arthropods. In C. augens, we uncovered the largest chemosensory gene repertoire of ionotropic receptors in the animal kingdom, a massive expansion that might compensate for the loss of vision. We found a paucity of photoreceptor genes mirroring at the genomic level the secondary loss of an ancestral external photoreceptor organ. Expansions of detoxification and carbohydrate metabolism gene families might reflect adaptations for foraging behavior, and duplicated apoptotic genes might underlie its high regenerative potential. The C. augens genome represents one of the key references for studying the emergence of genomic innovations in insects, the most diverse animal group, and opens up novel opportunities to study the under-explored biology of diplurans.
Collapse
Affiliation(s)
- Mosè Manni
- Department of Genetic Medicine and Development, Swiss Institute of Bioinformatics, University of Geneva Medical School, Switzerland
| | - Felipe A Simao
- Department of Genetic Medicine and Development, Swiss Institute of Bioinformatics, University of Geneva Medical School, Switzerland
| | - Hugh M Robertson
- Department of Entomology, University of Illinois at Urbana-Champaign
| | - Marco A Gabaglio
- Department of Genetic Medicine and Development, Swiss Institute of Bioinformatics, University of Geneva Medical School, Switzerland
| | - Robert M Waterhouse
- Department of Ecology and Evolution, Swiss Institute of Bioinformatics, University of Lausanne, Switzerland
| | - Bernhard Misof
- Center for Molecular Biodiversity Research, Zoological Research Museum Alexander Koenig, Bonn, Germany
| | - Oliver Niehuis
- Department of Evolutionary Biology and Ecology, Albert Ludwig University, Institute of Biology I (Zoology), Freiburg, Germany
| | | | - Evgeny M Zdobnov
- Department of Genetic Medicine and Development, Swiss Institute of Bioinformatics, University of Geneva Medical School, Switzerland
| |
Collapse
|
56
|
Xu B, Shi Y, Wu Y, Meng Y, Jin Y. Role of RNA secondary structures in regulating Dscam alternative splicing. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2019; 1862:194381. [DOI: 10.1016/j.bbagrm.2019.04.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 04/21/2019] [Accepted: 04/22/2019] [Indexed: 12/19/2022]
|
57
|
Wang P, Zhao Q, Qiu Z, Bi S, Wang W, Wu M, Chen A, Xia D, He X, Tang S, Li M, Zhang G, Shen X. The silkworm (Bombyx mori) neuropeptide orcokinin is involved in the regulation of pigmentation. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2019; 114:103229. [PMID: 31449846 DOI: 10.1016/j.ibmb.2019.103229] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Revised: 08/14/2019] [Accepted: 08/21/2019] [Indexed: 06/10/2023]
Abstract
The natural colorful cuticles of insects play important roles in many physiological processes. Pigmentation is a physiological process with a complex regulatory network whose regulatory mechanism remains unclear. Bombyx mori pigmentation mutants are ideal materials for research on pigmentation mechanisms. The purple quail-like (q-lp) and brown quail-like (q-lb) mutants originated from plain silkworm breeds 932VR and 0223JH respectively exhibit similar cuticle pigmentation to that of the quail mutant. The q-lp mutant also presents a developmental abnormality. In this study, genes controlling q-lp and q-lb mutants were located on chromosome 8 by positional cloning. Then the neuropeptide gene orcokinin (OK) was identified to be the major gene responsible for two quail-like mutants. The B. mori orcokinin gene (BommoOK) produces two transcripts, BommoOKA and BommoOKB, by alternative splicing. The CRISPR/Cas9 system and orcokinin peptides injection were used for further functional verification. We show a novel function of BommoOKA in inhibiting pigmentation, and one mature peptide of orcokinin A, OKA_type2, is the key factor in pigmentation inhibition. These results provide a reference for studying the function of orcokinin and are of theoretical importance for studying the regulatory mechanism of pigmentation.
Collapse
Affiliation(s)
- Pingyang Wang
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, 212018, China; Guangxi Zhuang Autonomous Region Research Academy of Sericultural Science, Guangxi, Nanning, 530007, China
| | - Qiaoling Zhao
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, 212018, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericulture Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu, 212018, China.
| | - Zhiyong Qiu
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, 212018, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericulture Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu, 212018, China
| | - Simin Bi
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, 212018, China
| | - Wenbo Wang
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, 212018, China
| | - Meina Wu
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, 212018, China
| | - Anli Chen
- The Sericultural and Apicultural Research Institute, Yunnan Academy of Agricultural Sciences, Mengzi, Yunnan, 661101, China
| | - Dingguo Xia
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, 212018, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericulture Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu, 212018, China
| | - Xiaobai He
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, 212018, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericulture Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu, 212018, China
| | - Shunming Tang
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, 212018, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericulture Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu, 212018, China
| | - Muwang Li
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, 212018, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericulture Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu, 212018, China
| | - Guozheng Zhang
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, 212018, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericulture Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu, 212018, China
| | - Xingjia Shen
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, 212018, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericulture Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu, 212018, China.
| |
Collapse
|
58
|
Wilbrandt J, Misof B, Panfilio KA, Niehuis O. Repertoire-wide gene structure analyses: a case study comparing automatically predicted and manually annotated gene models. BMC Genomics 2019; 20:753. [PMID: 31623555 PMCID: PMC6798390 DOI: 10.1186/s12864-019-6064-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 08/27/2019] [Indexed: 02/06/2023] Open
Abstract
Background The location and modular structure of eukaryotic protein-coding genes in genomic sequences can be automatically predicted by gene annotation algorithms. These predictions are often used for comparative studies on gene structure, gene repertoires, and genome evolution. However, automatic annotation algorithms do not yet correctly identify all genes within a genome, and manual annotation is often necessary to obtain accurate gene models and gene sets. As manual annotation is time-consuming, only a fraction of the gene models in a genome is typically manually annotated, and this fraction often differs between species. To assess the impact of manual annotation efforts on genome-wide analyses of gene structural properties, we compared the structural properties of protein-coding genes in seven diverse insect species sequenced by the i5k initiative. Results Our results show that the subset of genes chosen for manual annotation by a research community (3.5–7% of gene models) may have structural properties (e.g., lengths and exon counts) that are not necessarily representative for a species’ gene set as a whole. Nonetheless, the structural properties of automatically generated gene models are only altered marginally (if at all) through manual annotation. Major correlative trends, for example a negative correlation between genome size and exonic proportion, can be inferred from either the automatically predicted or manually annotated gene models alike. Vice versa, some previously reported trends did not appear in either the automatic or manually annotated gene sets, pointing towards insect-specific gene structural peculiarities. Conclusions In our analysis of gene structural properties, automatically predicted gene models proved to be sufficiently reliable to recover the same gene-repertoire-wide correlative trends that we found when focusing on manually annotated gene models only. We acknowledge that analyses on the individual gene level clearly benefit from manual curation. However, as genome sequencing and annotation projects often differ in the extent of their manual annotation and curation efforts, our results indicate that comparative studies analyzing gene structural properties in these genomes can nonetheless be justifiable and informative. Electronic supplementary material The online version of this article (10.1186/s12864-019-6064-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jeanne Wilbrandt
- Center for molecular Biodiversity Research, Zoological Research Museum Alexander Koenig (ZFMK), Adenauerallee 160, 53113, Bonn, Germany. .,Present address: Hoffmann Research Group, Leibniz Institute on Aging - Fritz Lipmann Institute, Beutenbergstraße 11, 07745, Jena, Germany.
| | - Bernhard Misof
- Center for molecular Biodiversity Research, Zoological Research Museum Alexander Koenig (ZFMK), Adenauerallee 160, 53113, Bonn, Germany
| | - Kristen A Panfilio
- School of Life Sciences, University of Warwick, Gibbet Hill Campus, Coventry, CV4 7AL, UK
| | - Oliver Niehuis
- Evolutionary Biology and Ecology, Institute of Biology I (Zoology), Albert Ludwig University, Hauptstr. 1, 79104, Freiburg, Germany
| |
Collapse
|
59
|
Miller SW, Movsesyan A, Zhang S, Fernández R, Posakony JW. Evolutionary emergence of Hairless as a novel component of the Notch signaling pathway. eLife 2019; 8:48115. [PMID: 31545167 PMCID: PMC6777938 DOI: 10.7554/elife.48115] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 09/23/2019] [Indexed: 11/30/2022] Open
Abstract
Suppressor of Hairless [Su(H)], the transcription factor at the end of the Notch pathway in Drosophila, utilizes the Hairless protein to recruit two co-repressors, Groucho (Gro) and C-terminal Binding Protein (CtBP), indirectly. Hairless is present only in the Pancrustacea, raising the question of how Su(H) in other protostomes gains repressive function. We show that Su(H) from a wide array of arthropods, molluscs, and annelids includes motifs that directly bind Gro and CtBP; thus, direct co-repressor recruitment is ancestral in the protostomes. How did Hairless come to replace this ancestral paradigm? Our discovery of a protein (S-CAP) in Myriapods and Chelicerates that contains a motif similar to the Su(H)-binding domain in Hairless has revealed a likely evolutionary connection between Hairless and Metastasis-associated (MTA) protein, a component of the NuRD complex. Sequence comparison and widely conserved microsynteny suggest that S-CAP and Hairless arose from a tandem duplication of an ancestral MTA gene.
Collapse
Affiliation(s)
- Steven W Miller
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, United States
| | - Artem Movsesyan
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, United States
| | - Sui Zhang
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, United States
| | - Rosa Fernández
- Bioinformatics and Genomics Unit, Center for Genomic Regulation, Barcelona, Spain
| | - James W Posakony
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, United States
| |
Collapse
|
60
|
Panara V, Budd GE, Janssen R. Phylogenetic analysis and embryonic expression of panarthropod Dmrt genes. Front Zool 2019; 16:23. [PMID: 31303887 PMCID: PMC6604209 DOI: 10.1186/s12983-019-0322-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 06/03/2019] [Indexed: 02/08/2023] Open
Abstract
Background One set of the developmentally important Doublesex and Male-abnormal-3 Related Transcription factors (Dmrt) is subject of intense research, because of their role in sex-determination and sexual differentiation. This likely non-monophyletic group of Dmrt genes is represented by the Drosophila melanogaster gene Doublesex (Dsx), the Caenorhabditis elegans Male-abnormal-3 (Mab-3) gene, and vertebrate Dmrt1 genes. However, other members of the Dmrt family are much less well studied, and in arthropods, including the model organism Drosophila melanogaster, data on these genes are virtually absent with respect to their embryonic expression and function. Results Here we investigate the complete set of Dmrt genes in members of all main groups of Arthropoda and a member of Onychophora, extending our data to Panarthropoda as a whole. We confirm the presence of at least four families of Dmrt genes (including Dsx-like genes) in Panarthropoda and study their expression profiles during embryogenesis. Our work shows that the expression patterns of Dmrt11E, Dmrt93B, and Dmrt99B orthologs are highly conserved among panarthropods. Embryonic expression of Dsx-like genes, however, is more derived, likely as a result of neo-functionalization after duplication. Conclusions Our data suggest deep homology of most of the panarthropod Dmrt genes with respect to their function that likely dates back to their last common ancestor. The function of Dsx and Dsx-like genes which are critical for sexual differentiation in animals, however, appears to be much less conserved. Electronic supplementary material The online version of this article (10.1186/s12983-019-0322-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Virginia Panara
- 1Department of Earth Sciences, Palaeobiology, Uppsala University, Villavägen 16, Uppsala, Sweden.,Present address: Department for Immunology, Genetic and Pathology, Rudbeckslaboratoriet, Dag Hammarskjölds väg 20, Uppsala, Sweden
| | - Graham E Budd
- 1Department of Earth Sciences, Palaeobiology, Uppsala University, Villavägen 16, Uppsala, Sweden
| | - Ralf Janssen
- 1Department of Earth Sciences, Palaeobiology, Uppsala University, Villavägen 16, Uppsala, Sweden
| |
Collapse
|
61
|
Ohdera A, Ames CL, Dikow RB, Kayal E, Chiodin M, Busby B, La S, Pirro S, Collins AG, Medina M, Ryan JF. Box, stalked, and upside-down? Draft genomes from diverse jellyfish (Cnidaria, Acraspeda) lineages: Alatina alata (Cubozoa), Calvadosia cruxmelitensis (Staurozoa), and Cassiopea xamachana (Scyphozoa). Gigascience 2019; 8:giz069. [PMID: 31257419 PMCID: PMC6599738 DOI: 10.1093/gigascience/giz069] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 03/27/2019] [Accepted: 05/21/2019] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Anthozoa, Endocnidozoa, and Medusozoa are the 3 major clades of Cnidaria. Medusozoa is further divided into 4 clades, Hydrozoa, Staurozoa, Cubozoa, and Scyphozoa-the latter 3 lineages make up the clade Acraspeda. Acraspeda encompasses extraordinary diversity in terms of life history, numerous nuisance species, taxa with complex eyes rivaling other animals, and some of the most venomous organisms on the planet. Genomes have recently become available within Scyphozoa and Cubozoa, but there are currently no published genomes within Staurozoa and Cubozoa. FINDINGS Here we present 3 new draft genomes of Calvadosia cruxmelitensis (Staurozoa), Alatina alata (Cubozoa), and Cassiopea xamachana (Scyphozoa) for which we provide a preliminary orthology analysis that includes an inventory of their respective venom-related genes. Additionally, we identify synteny between POU and Hox genes that had previously been reported in a hydrozoan, suggesting this linkage is highly conserved, possibly dating back to at least the last common ancestor of Medusozoa, yet likely independent of vertebrate POU-Hox linkages. CONCLUSIONS These draft genomes provide a valuable resource for studying the evolutionary history and biology of these extraordinary animals, and for identifying genomic features underlying venom, vision, and life history traits in Acraspeda.
Collapse
Affiliation(s)
- Aki Ohdera
- Department of Biology, Pennsylvania State University, 326 Mueller, University Park, PA, 16801, USA
| | - Cheryl L Ames
- Department of Invertebrate Zoology, National Museum of Natural History, Smithsonian Institution, 10th Street & Constitution Avenue NW, Washington DC, 20560, USA
- National Center for Biotechnology Information, 8600 Rockville Pike MSC 3830, Bethesda, MD, 20894, USA
| | - Rebecca B Dikow
- Data Science Lab, Office of the Chief Information Officer, Smithsonian Institution, 10th Street & Constitution Avenue NW, Washington DC, 20560, USA
| | - Ehsan Kayal
- Department of Invertebrate Zoology, National Museum of Natural History, Smithsonian Institution, 10th Street & Constitution Avenue NW, Washington DC, 20560, USA
- UPMC, CNRS, FR2424, ABiMS, Station Biologique, Place Georges Teissier, 29680 Roscoff, France
| | - Marta Chiodin
- Whitney Laboratory for Marine Bioscience, University of Florida, 9505 Ocean Shore Boulevard, St. Augustine, FL, 32080, USA
- Department of Biology, University of Florida, 220 Bartram Hall, Gainesville, FL, 32611, USA
| | - Ben Busby
- National Center for Biotechnology Information, 8600 Rockville Pike MSC 3830, Bethesda, MD, 20894, USA
| | - Sean La
- National Center for Biotechnology Information, 8600 Rockville Pike MSC 3830, Bethesda, MD, 20894, USA
- Department of Mathematics, Simon Fraser University, 8888 University Drive, Barnaby, British Columbia, BC, V5A 1S6, Canada
| | - Stacy Pirro
- Iridian Genomes, Inc., 6213 Swords Way, Bethesda, MD, 20817, USA
| | - Allen G Collins
- Department of Invertebrate Zoology, National Museum of Natural History, Smithsonian Institution, 10th Street & Constitution Avenue NW, Washington DC, 20560, USA
- National Systematics Laboratory of NOAA's Fisheries Service, 1315 East-West Highway, Silver Spring, MD, 20910, USA
| | - Mónica Medina
- Department of Biology, Pennsylvania State University, 326 Mueller, University Park, PA, 16801, USA
| | - Joseph F Ryan
- Whitney Laboratory for Marine Bioscience, University of Florida, 9505 Ocean Shore Boulevard, St. Augustine, FL, 32080, USA
- Department of Biology, University of Florida, 220 Bartram Hall, Gainesville, FL, 32611, USA
| |
Collapse
|
62
|
de Mendoza A, Pflueger J, Lister R. Capture of a functionally active methyl-CpG binding domain by an arthropod retrotransposon family. Genome Res 2019; 29:1277-1286. [PMID: 31239280 PMCID: PMC6673714 DOI: 10.1101/gr.243774.118] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 06/20/2019] [Indexed: 12/30/2022]
Abstract
The repressive capacity of cytosine DNA methylation is mediated by recruitment of silencing complexes by methyl-CpG binding domain (MBD) proteins. Despite MBD proteins being associated with silencing, we discovered that a family of arthropod Copia retrotransposons have incorporated a host-derived MBD. We functionally show how retrotransposon-encoded MBDs preferentially bind to CpG-dense methylated regions, which correspond to transposable element regions of the host genome, in the myriapod Strigamia maritima Consistently, young MBD-encoding Copia retrotransposons (CopiaMBD) accumulate in regions with higher CpG densities than other LTR-retrotransposons also present in the genome. This would suggest that retrotransposons use MBDs to integrate into heterochromatic regions in Strigamia, avoiding potentially harmful insertions into host genes. In contrast, CopiaMBD insertions in the spider Stegodyphus dumicola genome disproportionately accumulate in methylated gene bodies compared with other spider LTR-retrotransposons. Given that transposons are not actively targeted by DNA methylation in the spider genome, this distribution bias would also support a role for MBDs in the integration process. Together, these data show that retrotransposons can co-opt host-derived epigenome readers, potentially harnessing the host epigenome landscape to advantageously tune the retrotransposition process.
Collapse
Affiliation(s)
- Alex de Mendoza
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Perth, Western Australia, 6009, Australia.,Harry Perkins Institute of Medical Research, Perth, Western Australia, 6009, Australia
| | - Jahnvi Pflueger
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Perth, Western Australia, 6009, Australia.,Harry Perkins Institute of Medical Research, Perth, Western Australia, 6009, Australia
| | - Ryan Lister
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Perth, Western Australia, 6009, Australia.,Harry Perkins Institute of Medical Research, Perth, Western Australia, 6009, Australia
| |
Collapse
|
63
|
|
64
|
Eliash N, Thangarajan S, Goldenberg I, Sela N, Kupervaser M, Barlev J, Altman Y, Knyazer A, Kamer Y, Zaidman I, Rafaeli A, Soroker V. Varroa chemosensory proteins: some are conserved across Arthropoda but others are arachnid specific. INSECT MOLECULAR BIOLOGY 2019; 28:321-341. [PMID: 30444567 DOI: 10.1111/imb.12553] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The tight synchronization between the life cycle of the obligatory parasitic mite Varroa destructor (Varroa) and its host, the honeybee, is mediated by honeybee chemical stimuli. These stimuli are mainly perceived by a pit organ located on the distal part of the mite's foreleg. In the present study, we searched for Varroa chemosensory molecular components by comparing transcriptomic and proteomic profiles between forelegs from different physiological stages, and rear legs. In general, a comparative transcriptomic analysis showed a clear separation of the expression profiles between the rear legs and the three groups of forelegs (phoretic, reproductive and tray-collected mites). Most of the differentially expressed transcripts and proteins in the mite's foreleg were previously uncharacterized. Using a conserved domain approach, we identified 45 transcripts with known chemosensory domains belonging to seven chemosensory protein families, of which 14 were significantly upregulated in the mite's forelegs when compared to rear legs. These are soluble and membrane bound proteins, including the somewhat ignored receptors of degenerin/epithelial Na+ channels and transient receptor potentials. Phylogenetic clustering and expression profiles of the putative chemosensory proteins suggest their role in chemosensation and shed light on the evolution of these proteins in Chelicerata.
Collapse
Affiliation(s)
- N Eliash
- Institute of Plant Protection, Agricultural Research Organization, The Volcani Center, Rishon LeZion, Israel
- Institute of Agroecology and Plant Health, Robert H. Smith Faculty of Agriculture, Food and Environment, Hebrew University of Jerusalem, Rehovot, Israel
| | - S Thangarajan
- Institute of Plant Protection, Agricultural Research Organization, The Volcani Center, Rishon LeZion, Israel
| | - I Goldenberg
- Institute of Plant Protection, Agricultural Research Organization, The Volcani Center, Rishon LeZion, Israel
| | - N Sela
- Institute of Plant Protection, Agricultural Research Organization, The Volcani Center, Rishon LeZion, Israel
| | - M Kupervaser
- The De Botton Protein Profiling institute of the Nancy and Stephen Grand Israel National Center for Personalized Medicine, Weizmann Institute of Science, Rehovot, Israel
| | - J Barlev
- The De Botton Protein Profiling institute of the Nancy and Stephen Grand Israel National Center for Personalized Medicine, Weizmann Institute of Science, Rehovot, Israel
| | - Y Altman
- Institute of Plant Protection, Agricultural Research Organization, The Volcani Center, Rishon LeZion, Israel
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - A Knyazer
- Institute of Plant Protection, Agricultural Research Organization, The Volcani Center, Rishon LeZion, Israel
| | - Y Kamer
- Institute of Plant Protection, Agricultural Research Organization, The Volcani Center, Rishon LeZion, Israel
| | - I Zaidman
- Institute of Plant Protection, Agricultural Research Organization, The Volcani Center, Rishon LeZion, Israel
| | - A Rafaeli
- Department of Food Quality and Safety, Institute of Postharvest and Food Sciences, Agricultural Research Organization, Volcani Center, Rishon LeZion, Israel
| | - V Soroker
- Institute of Plant Protection, Agricultural Research Organization, The Volcani Center, Rishon LeZion, Israel
| |
Collapse
|
65
|
Skelly J, Pushparajan C, Duncan EJ, Dearden PK. Evolution of the Torso activation cassette, a pathway required for terminal patterning and moulting. INSECT MOLECULAR BIOLOGY 2019; 28:392-408. [PMID: 30548465 DOI: 10.1111/imb.12560] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Embryonic terminal patterning and moulting are critical developmental processes in insects. In Drosophila and Tribolium both of these processes are regulated by the Torso-activation cassette (TAC). The TAC consists of a common receptor, Torso, ligands Trunk and prothoracicotropic hormone (PTTH), and the spatially restricted protein Torso-like, with combinations of these elements acting mechanistically to activate the receptor in different developmental contexts. In order to trace the evolutionary history of the TAC we determined the presence or absence of TAC components in the genomes of arthropods. Our analyses reveal that Torso, Trunk and PTTH are evolutionarily labile components of the TAC with multiple individual or combined losses occurring in the arthropod lineages leading to and within the insects. These losses are often correlated, with both ligands and receptor missing from the genome of the same species. We determine that the PTTH gene evolved in the common ancestor of Hemiptera and Holometabola, and is missing from the genomes of a number of species with experimentally demonstrated PTTH activity, implying another molecule may be involved in ecdysis in these species. In contrast, the torso-like gene is a common component of pancrustacean genomes.
Collapse
Affiliation(s)
- J Skelly
- Laboratory for Evolution and Development, Genomics Aotearoa, Biochemistry Department, University of Otago, Dunedin, Aotearoa-New Zealand
| | - C Pushparajan
- Laboratory for Evolution and Development, Genomics Aotearoa, Biochemistry Department, University of Otago, Dunedin, Aotearoa-New Zealand
| | - E J Duncan
- School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - P K Dearden
- Laboratory for Evolution and Development, Genomics Aotearoa, Biochemistry Department, University of Otago, Dunedin, Aotearoa-New Zealand
| |
Collapse
|
66
|
Zhang X, Yuan J, Zhang X, Liu C, Li F, Xiang J. Genome-Wide Identification and Expression Profiles of Myosin Genes in the Pacific White Shrimp, Litopenaeus vannamei. Front Physiol 2019; 10:610. [PMID: 31178751 PMCID: PMC6537884 DOI: 10.3389/fphys.2019.00610] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 04/29/2019] [Indexed: 12/18/2022] Open
Abstract
As the main structural protein of muscle fiber, myosin is essential for multiple cellular processes or functions, especially for muscle composition and development. Although the shrimp possess a well-developed muscular system, the knowledge about the myosin family in shrimp is far from understood. In this study, we performed comprehensive analysis on the myosin genes in the genome of the Pacific white shrimp, Litopenaeus vannamei. A total of 29 myosin genes were identified, which were classified into 14 subfamilies. Among them, Myo2 subfamily was significantly expanded in the penaeid shrimp genome. Most of the Myo2 subfamily genes were primarily expressed in abdominal muscle, which suggested that Myo2 subfamily genes might be responsible for the well-developed muscular system of the penaeid shrimp. In situ hybridization detection showed that the slow-type muscle myosin gene was mainly localized in pleopod muscle and superficial ventral muscle of the shrimp. This study provides valuable insights into the evolutionary and functional characterization of myosin genes in shrimps, which provides clues for us to understand the well-developed muscular system of shrimp.
Collapse
Affiliation(s)
- Xiaoxi Zhang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Jianbo Yuan
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Xiaojun Zhang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Chengzhang Liu
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Fuhua Li
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Jianhai Xiang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| |
Collapse
|
67
|
Asano T, Seto Y, Hashimoto K, Kurushima H. Mini-review an insect-specific system for terrestrialization: Laccase-mediated cuticle formation. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2019; 108:61-70. [PMID: 30904465 DOI: 10.1016/j.ibmb.2019.03.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 03/14/2019] [Accepted: 03/14/2019] [Indexed: 06/09/2023]
Abstract
Insects are often regarded as the most successful group of animals in the terrestrial environment. Their success can be represented by their huge biomass and large impact on ecosystems. Among the factors suggested to be responsible for their success, we focus on the possibility that the cuticle might have affected the process of insects' evolution. The cuticle of insects, like that of other arthropods, is composed mainly of chitin and structural cuticle proteins. However, insects seem to have evolved a specific system for cuticle formation. Oxidation reaction of catecholamines catalyzed by a copper enzyme, laccase, is the key step in the metabolic pathway for hardening of the insect cuticle. Molecular phylogenetic analysis indicates that laccase functioning in cuticle sclerotization has evolved only in insects. In this review, we discuss a theory on how the insect-specific "laccase" function has been advantageous for establishing their current ecological position as terrestrial animals.
Collapse
Affiliation(s)
- Tsunaki Asano
- Department of Biological Sciences, Tokyo Metropolitan University, Tokyo, 192-0397, Japan.
| | - Yosuke Seto
- Department of Biological Sciences, Tokyo Metropolitan University, Tokyo, 192-0397, Japan
| | - Kosei Hashimoto
- Department of Biological Sciences, Tokyo Metropolitan University, Tokyo, 192-0397, Japan
| | - Hiroaki Kurushima
- Department of Biological Sciences, Tokyo Metropolitan University, Tokyo, 192-0397, Japan
| |
Collapse
|
68
|
Treffkorn S, Mayer G. Expression of NK genes that are not part of the NK cluster in the onychophoran Euperipatoides rowelli (Peripatopsidae). BMC DEVELOPMENTAL BIOLOGY 2019; 19:7. [PMID: 30987579 PMCID: PMC6466738 DOI: 10.1186/s12861-019-0185-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 03/12/2019] [Indexed: 12/25/2022]
Abstract
Background NK genes are a group of homeobox transcription factors that are involved in various molecular pathways across bilaterians. They are typically divided into two subgroups, the NK cluster (NKC) and NK-linked genes (NKL). While the NKC genes have been studied in various bilaterians, corresponding data of many NKL genes are missing to date. To further investigate the ancestral roles of NK family genes, we analyzed the expression patterns of NKL genes in the onychophoran Euperipatoides rowelli. Results The NKL gene complement of E. rowelli comprises eight genes, including BarH, Bari, Emx, Hhex, Nedx, NK2.1, vax and NK2.2, of which only NK2.2 was studied previously. Our data for the remaining seven NKL genes revealed expression in different structures associated with the developing nervous system in embryos of E. rowelli. While NK2.1 and vax are expressed in distinct medial regions of the developing protocerebrum early in development, BarH, Bari, Emx, Hhex and Nedx are expressed in late developmental stages, after all major structures of the nervous system have been established. Furthermore, BarH and Nedx are expressed in distinct mesodermal domains in the developing limbs. Conclusions Comparison of our expression data to those of other bilaterians revealed similar patterns of NK2.1, vax, BarH and Emx in various aspects of neural development, such as the formation of anterior neurosecretory cells mediated by a conserved molecular mechanism including NK2.1 and vax, and the development of the central and peripheral nervous system involving BarH and Emx. A conserved role in neural development has also been reported from NK2.2, suggesting that the NKL genes might have been primarily involved in neural development in the last common ancestor of bilaterians or at least nephrozoans (all bilaterians excluding xenacoelomorphs). The lack of comparative data for many of the remaining NKL genes, including Bari, Hhex and Nedx currently hampers further evolutionary conclusions. Hence, future studies should focus on the expression of these genes in other bilaterians, which would provide a basis for comparative studies and might help to better understand the role of NK genes in the diversification of bilaterians. Electronic supplementary material The online version of this article (10.1186/s12861-019-0185-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sandra Treffkorn
- Department of Zoology, Institute of Biology, University of Kassel, Kassel, Germany.
| | - Georg Mayer
- Department of Zoology, Institute of Biology, University of Kassel, Kassel, Germany
| |
Collapse
|
69
|
Wides R. The Natural History of Teneurins: A Billion Years of Evolution in Three Key Steps. Front Neurosci 2019; 13:109. [PMID: 30930727 PMCID: PMC6428715 DOI: 10.3389/fnins.2019.00109] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 01/29/2019] [Indexed: 12/14/2022] Open
Abstract
The entire evolutionary history of the animal gene family, Teneurin, can be summed up in three key steps, plus three salient footnotes. In a shared ancestor of all bilaterians, the first step began with gene fusions that created a protein with an amino-terminal intracellular domain bridged via a single transmembrane helix to extracellular EGF-like domains. This first step was completed with a further gene fusion: an additional carboxy-terminal stretch of about 2000 amino acids (aa) was adopted, as-a-whole, from bacteria. The 2000 aa structure in Teneurin was recently solved in three dimensions. The 2000 aa region appears in a number of bacteria, yet was co-opted solely into Teneurin, and into no other eukaryotic proteins. Outside of bilaterian animals, no Teneurins exist, with a “Monosiga brevicollis caveat” brought below, as ‘the third footnote.” Subsequent to the “urTeneurin’s” genesis-by-fusions, all bilaterians bore a single Teneurin gene, always encoding an extraordinarily conserved Type II transmembrane protein with invariant domain content and order. The second key step was a duplication that led to an exception to singleton Teneurin genomes. A pair of Teneurin paralogs, Ten-a and Ten-m, are found in representatives of all four Arthropod sub-phyla, in: insects, crustaceans, myriapods, and chelicerates. In contrast, in every other protostome species’ genome, including those of all non-Arthropod ecdysozoan phyla, only a single Teneurin gene occurs. The closest, sister, phylum of arthropods, the Onychophorans (velvet worms), bear a singleton Teneurin. Ten-a and Ten-m therefore arose from a duplication in an urArthropod only after Arthropods split from Onychophorans, but before the splits that led to the four Arthropod sub-phyla. The third key step was a quadruplication of Teneurins at the root of vertebrate radiation. Four Teneurin paralogs (Teneurins 1 through 4) arose first by a duplication of a single chordate gene likely leading to one 1/4–type gene, and one 2/3-type gene: the two copies found in extant jawless vertebrates. Relatively soon thereafter, a second duplication round yielded the -1, -2, -3, and -4 paralog types now found in all jawed vertebrates, from sharks to humans. It is possible to assert that these duplication events correlate well to the Ohno hypothesized 2R (two round) vertebrate whole genome duplication (WGD), as refined in more recent treatments. The quadruplication can therefore be placed at approximately 400 Myr ago. Echinoderms, hemichordates, cephalochordates, and urochordates have only a single copy of Teneurin in their genomes. These deuterostomes and non-vertebrate chordates provide the anchor showing that the quadruplication happened at the root of vertebrates. A first footnote must be brought concerning some of the ‘invertebrate’ relatives of vertebrates, among Deuterostomes. A family of genes that encode 7000 aa proteins was derived from, but is distinct from, the Teneurin family. This distinct family arose early in deuterostomes, yet persists today only in hemichordate and cephalochordate genomes. They are named here TRIPs (Teneurin-related immense proteins). As a second of three ‘footnotes’: a limited number of species exist with additional Teneurin gene copies. However, these further duplications of Teneurins occur for paralog types (a, m, or 1–4) only in specific lineages within Arthropods or Vertebrates. All examples are paralog duplications that evidently arose in association with lineage specific WGDs. The increased Teneurin paralog numbers correlate with WGDs known and published in bony fish, Xenopus, plus select Chelicerates lineages and Crustaceans. The third footnote, alluded to above, is that a Teneurin occurs in one unicellular species: Monosiga brevicollis. Teneurins are solely a metazoan, bilaterian-specific family, to the exclusion of the Kingdoms of prokaryotes, plants, fungi, and protists. The single exception occurs among the unicellular, opisthokont, closest relatives of metazoans, the choanoflagellates. There is a Teneurin in Monosiga brevicollis, one species of the two fully sequenced choanoflagellate species. In contrast, outside of triploblast-bilaterians, there are no Teneurins in any diploblast genomes, including even sponges – those metazoans closest to choanoflagellates. Perhaps the ‘birth’ of the original Teneurin occurred in a shared ancestor of M. brevicollis and metazoans, then was lost in M. brevicollis’ sister species, and was serially and repeatedly lost in all diploblast metazoans. Alternatively, and as favored above, it first arose in the ‘urBilaterian,’ then was subsequently acquired from some bilaterian via horizontal transfer by a single choanoflagellate clade. The functional partnership of Teneurins and Latrophilins was discovered in rodents through the LPH1-TENM2 interaction. Recent work extends this to further members of each family. Surveying when the interacting domains of Teneurins and Latrophilins co-exist within different organisms can give an indication of how widespread their functional cooperation might be, across bilaterians. Paralog number for the two families is relatively correlated among bilaterians, and paralog numbers underwent co-increase in the WGDs mentioned above. With co-increasing paralog numbers, the possible combinatorial pairs grow factorially. This should have a significant impact for increasing nervous system complexity. The 3 key events in the ‘natural history’ of the Teneurins and their Latrophilin partners coincide with the ascendance of particularly successful metazoan clades: bilaterians; arthropods; and vertebrates. Perhaps we can attribute some of this success to the unique Teneurin family, and to its partnership with Latrophilins.
Collapse
Affiliation(s)
- Ron Wides
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| |
Collapse
|
70
|
Junqueira Alves C, Yotoko K, Zou H, Friedel RH. Origin and evolution of plexins, semaphorins, and Met receptor tyrosine kinases. Sci Rep 2019; 9:1970. [PMID: 30760850 PMCID: PMC6374515 DOI: 10.1038/s41598-019-38512-y] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 12/28/2018] [Indexed: 12/20/2022] Open
Abstract
The transition from unicellular to multicellular organisms poses the question as to when genes that regulate cell-cell interactions emerged during evolution. The receptor and ligand pairing of plexins and semaphorins regulates cellular interactions in a wide range of developmental and physiological contexts. We surveyed here genomes of unicellular eukaryotes and of non-bilaterian and bilaterian Metazoa and performed phylogenetic analyses to gain insight into the evolution of plexin and semaphorin families. Remarkably, we detected plexins and semaphorins in unicellular choanoflagellates, indicating their evolutionary origin in a common ancestor of Choanoflagellida and Metazoa. The plexin domain structure is conserved throughout all clades; in contrast, semaphorins are structurally diverse. Choanoflagellate semaphorins are transmembrane proteins with multiple fibronectin type III domains following the N-terminal Sema domain (termed Sema-FN). Other previously not yet described semaphorin classes include semaphorins of Ctenophora with tandem immunoglobulin domains (Sema-IG) and secreted semaphorins of Echinoderamata (Sema-SP, Sema-SI). Our study also identified Met receptor tyrosine kinases (RTKs), which carry a truncated plexin extracellular domain, in several bilaterian clades, indicating evolutionary origin in a common ancestor of Bilateria. In addition, a novel type of Met-like RTK with a complete plexin extracellular domain was detected in Lophotrochozoa and Echinodermata (termed Met-LP RTK). Our findings are consistent with an ancient function of plexins and semaphorins in regulating cytoskeletal dynamics and cell adhesion that predates their role as axon guidance molecules.
Collapse
Affiliation(s)
- Chrystian Junqueira Alves
- Fishberg Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, 10029, USA
| | - Karla Yotoko
- Biology Department, Universidade Federal de Viçosa, Viçosa, Minas Gerais, 36570-900, Brazil
| | - Hongyan Zou
- Fishberg Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, 10029, USA.,Department of Neurosurgery, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, 10029, USA
| | - Roland H Friedel
- Fishberg Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, 10029, USA. .,Department of Neurosurgery, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, 10029, USA.
| |
Collapse
|
71
|
Jin Y, Li H. Revisiting Dscam diversity: lessons from clustered protocadherins. Cell Mol Life Sci 2019; 76:667-680. [PMID: 30343321 PMCID: PMC11105660 DOI: 10.1007/s00018-018-2951-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 10/13/2018] [Accepted: 10/15/2018] [Indexed: 12/14/2022]
Abstract
The complexity of neuronal wiring relies on the extraordinary recognition diversity of cell surface molecules. Drosophila Dscam1 and vertebrate clustered protocadherins (Pcdhs) are two classic examples of the striking diversity from a complex genomic locus, wherein the former encodes more than 10,000 distinct isoforms via alternative splicing, while the latter employs alternative promoters to attain isoform diversity. These structurally unrelated families show remarkably striking molecular parallels and even similar functions. Recent studies revealed a novel Dscam gene family with tandemly arrayed 5' cassettes in Chelicerata (e.g., the scorpion Mesobuthus martensii and the tick Ixodes scapularis), similar to vertebrate clustered Pcdhs. Likewise, octopus shows a more remarkable expansion of the Pcdh isoform repertoire than human. These discoveries of Dscam and Pcdh diversification reshape the evolutionary landscape of recognition molecule diversity and provide a greater understanding of convergent molecular strategies for isoform diversity. This article reviews new insights into the evolution, regulatory mechanisms, and functions of Dscam and Pcdh isoform diversity. In particular, the convergence of clustered Dscams and Pcdhs is highlighted.
Collapse
Affiliation(s)
- Yongfeng Jin
- Institute of Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang (ZJ), People's Republic of China.
| | - Hao Li
- Institute of Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang (ZJ), People's Republic of China
| |
Collapse
|
72
|
Xiu C, Xiao Y, Zhang S, Bao H, Liu Z, Zhang Y. Niemann-Pick proteins type C2 are identified as olfactory related genes of Pardosa pseudoannulata by transcriptome and expression profile analysis. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2019; 29:320-329. [PMID: 30669056 DOI: 10.1016/j.cbd.2019.01.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 11/26/2018] [Accepted: 01/09/2019] [Indexed: 01/24/2023]
Abstract
In arthropods, the large majority of studies on olfaction have been mainly focused on insects, whereas little on Arachnida, even though olfaction is very important in arachnid behavior. Pardosa pseudoannulata is one of the most common wandering spiders in rice fields, as the important natural enemy against a range of pests. However, little is known about the potential chemosensory proteins involved in olfactory behavior of these spiders. Niemann-Pick proteins type C2 (NPC2) as a new class of binding and transport proteins for semiochemicals in arthropods especially ticks and mites has received more attention in recent years. In this study, six NPC2s namely PpseNPC1-6 were newly identified in the appendages of P. pseudoannulata based on transcriptome data. A phylogenetic analysis indicated that all of P. pseudoannulata NPC2s were clustered together forming one clade with high posterior probability values. In addition, the sequences shared the same subclade with the NPC2 sequences of ticks and scorpion. The motif-patterns indicated that PpseNPC2-5 had the common pattern with the two-spotted spider mite Tetranychus urticae and the ant Trachymyrmex cornetzi. Furthermore, quantitative real-time PCR (qPCR) measurements were conducted to evaluate the expression profile of these genes in various tissues of P. pseudoannulata. It was found that most NPC2s (PpseNPC2-1, PpseNPC2-2, PpseNPC2-5 and PpseNPC2-6) were highly expressed in adult pedipalps and chelicerae. Owing to the functional olfactory organs in Chelicerata of pedipalps, our results supported a putative role of NPC2s as new odorant carriers in P. pseudoannulata.
Collapse
Affiliation(s)
- Chunli Xiu
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Weigang 1, Nanjing 210095, China; State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yong Xiao
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Weigang 1, Nanjing 210095, China; State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Song Zhang
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Weigang 1, Nanjing 210095, China
| | - Haibo Bao
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Weigang 1, Nanjing 210095, China
| | - Zewen Liu
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Weigang 1, Nanjing 210095, China.
| | - Yongjun Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| |
Collapse
|
73
|
Robertson HM. Molecular Evolution of the Major Arthropod Chemoreceptor Gene Families. ANNUAL REVIEW OF ENTOMOLOGY 2019; 64:227-242. [PMID: 30312552 DOI: 10.1146/annurev-ento-020117-043322] [Citation(s) in RCA: 137] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
The evolutionary origins of the three major families of chemoreceptors in arthropods-the odorant receptor (OR), gustatory receptor (GR), and ionotropic receptor (IR) families-occurred at the base of the Insecta, Animalia, and Protostomia, respectively. Comparison of receptor family sizes across arthropods reveals a generally positive correlation with their widely disparate complexity of chemical ecology. Closely related species reveal the ongoing processes of gene family evolution, including gene duplication, divergence, pseudogenization, and loss, that mediate these larger patterns. Sets of paralogous receptors within species reveal positive selection on amino acids in regions likely to contribute to ligand binding and specificity. Ligands of many ORs and some GRs and IRs have been identified; however, ligand identification for many more chemoreceptors is needed, as are structures for the OR/GR superfamily, to improve our understanding of the molecular evolution of these ecologically important receptors in arthropods.
Collapse
Affiliation(s)
- Hugh M Robertson
- Department of Entomology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA;
| |
Collapse
|
74
|
Evolutionary dynamics of origin and loss in the deep history of phospholipase D toxin genes. BMC Evol Biol 2018; 18:194. [PMID: 30563447 PMCID: PMC6299612 DOI: 10.1186/s12862-018-1302-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 11/20/2018] [Indexed: 11/10/2022] Open
Abstract
Background Venom-expressed sphingomyelinase D/phospholipase D (SMase D/PLD) enzymes evolved from the ubiquitous glycerophosphoryl diester phosphodiesterases (GDPD). Expression of GDPD-like SMaseD/PLD toxins in both arachnids and bacteria has inspired consideration of the relative contributions of lateral gene transfer and convergent recruitment in the evolutionary history of this lineage. Previous work recognized two distinct lineages, a SicTox-like (ST-like) clade including the arachnid toxins, and an Actinobacterial-toxin like (AT-like) clade including the bacterial toxins and numerous fungal homologs. Results Here we expand taxon sampling by homology detection to discover new GDPD-like SMase D/PLD homologs. The ST-like clade now includes homologs in a wider variety of arthropods along with a sister group in Cnidaria; the AT-like clade now includes additional fungal phyla and proteobacterial homologs; and we report a third clade expressed in diverse aquatic metazoan taxa, a few single-celled eukaryotes, and a few aquatic proteobacteria. GDPD-like SMaseD/PLDs have an ancient presence in chelicerates within the ST-like family and ctenophores within the Aquatic family. A rooted phylogenetic tree shows that the three clades derived from a basal paraphyletic group of proteobacterial GDPD-like SMase D/PLDs, some of which are on mobile genetic elements. GDPD-like SMase D/PLDs share a signature C-terminal motif and a shortened βα1 loop, features that distinguish them from GDPDs. The three major clades also have active site loop signatures that distinguish them from GDPDs and from each other. Analysis of molecular phylogenies with respect to organismal relationships reveals a dynamic evolutionary history including both lateral gene transfer and gene duplication/loss. Conclusions The GDPD-like SMaseD/PLD enzymes derive from a single ancient ancestor, likely proteobacterial, and radiated into diverse organismal lineages at least in part through lateral gene transfer. Electronic supplementary material The online version of this article (10.1186/s12862-018-1302-2) contains supplementary material, which is available to authorized users.
Collapse
|
75
|
Dong X, Chaisiri K, Xia D, Armstrong SD, Fang Y, Donnelly MJ, Kadowaki T, McGarry JW, Darby AC, Makepeace BL. Genomes of trombidid mites reveal novel predicted allergens and laterally transferred genes associated with secondary metabolism. Gigascience 2018; 7:5160133. [PMID: 30445460 PMCID: PMC6275457 DOI: 10.1093/gigascience/giy127] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 10/18/2018] [Indexed: 12/21/2022] Open
Abstract
Background Trombidid mites have a unique life cycle in which only the larval stage is ectoparasitic. In the superfamily Trombiculoidea ("chiggers"), the larvae feed preferentially on vertebrates, including humans. Species in the genus Leptotrombidium are vectors of a potentially fatal bacterial infection, scrub typhus, that affects 1 million people annually. Moreover, chiggers can cause pruritic dermatitis (trombiculiasis) in humans and domesticated animals. In the Trombidioidea (velvet mites), the larvae feed on other arthropods and are potential biological control agents for agricultural pests. Here, we present the first trombidid mites genomes, obtained both for a chigger, Leptotrombidium deliense, and for a velvet mite, Dinothrombium tinctorium. Results Sequencing was performed using Illumina technology. A 180 Mb draft assembly for D. tinctorium was generated from two paired-end and one mate-pair library using a single adult specimen. For L. deliense, a lower-coverage draft assembly (117 Mb) was obtained using pooled, engorged larvae with a single paired-end library. Remarkably, both genomes exhibited evidence of ancient lateral gene transfer from soil-derived bacteria or fungi. The transferred genes confer functions that are rare in animals, including terpene and carotenoid synthesis. Thirty-seven allergenic protein families were predicted in the L. deliense genome, of which nine were unique. Preliminary proteomic analyses identified several of these putative allergens in larvae. Conclusions Trombidid mite genomes appear to be more dynamic than those of other acariform mites. A priority for future research is to determine the biological function of terpene synthesis in this taxon and its potential for exploitation in disease control.
Collapse
Affiliation(s)
- Xiaofeng Dong
- Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, United Kingdom.,Department of Biological Sciences, Xi'an Jiaotong-Liverpool University, Suzhou 215123, China.,School of Life Sciences, Jiangsu Normal University, Xuzhou 221116, China.,Institute of Infection & Global Health, University of Liverpool, L3 5RF, United Kingdom
| | - Kittipong Chaisiri
- Institute of Infection & Global Health, University of Liverpool, L3 5RF, United Kingdom.,Faculty of Tropical Medicine, Mahidol University, Ratchathewi Bangkok 10400, Thailand
| | - Dong Xia
- Institute of Infection & Global Health, University of Liverpool, L3 5RF, United Kingdom.,The Royal Veterinary College, London NW1 0TU, United Kingdom
| | - Stuart D Armstrong
- Institute of Infection & Global Health, University of Liverpool, L3 5RF, United Kingdom
| | - Yongxiang Fang
- Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, United Kingdom
| | - Martin J Donnelly
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool L3 5QA, United Kingdom
| | - Tatsuhiko Kadowaki
- Department of Biological Sciences, Xi'an Jiaotong-Liverpool University, Suzhou 215123, China
| | - John W McGarry
- Institute of Veterinary Science, University of Liverpool, Liverpool L3 5RP, United Kingdom
| | - Alistair C Darby
- Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, United Kingdom
| | - Benjamin L Makepeace
- Institute of Infection & Global Health, University of Liverpool, L3 5RF, United Kingdom
| |
Collapse
|
76
|
Vizueta J, Rozas J, Sánchez-Gracia A. Comparative Genomics Reveals Thousands of Novel Chemosensory Genes and Massive Changes in Chemoreceptor Repertories across Chelicerates. Genome Biol Evol 2018; 10:1221-1236. [PMID: 29788250 PMCID: PMC5952958 DOI: 10.1093/gbe/evy081] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/17/2018] [Indexed: 12/15/2022] Open
Abstract
Chemoreception is a widespread biological function that is essential for the survival, reproduction, and social communication of animals. Though the molecular mechanisms underlying chemoreception are relatively well known in insects, they are poorly studied in the other major arthropod lineages. Current availability of a number of chelicerate genomes constitutes a great opportunity to better characterize gene families involved in this important function in a lineage that emerged and colonized land independently of insects. At the same time, that offers new opportunities and challenges for the study of this interesting animal branch in many translational research areas. Here, we have performed a comprehensive comparative genomics study that explicitly considers the high fragmentation of available draft genomes and that for the first time included complete genome data that cover most of the chelicerate diversity. Our exhaustive searches exposed thousands of previously uncharacterized chemosensory sequences, most of them encoding members of the gustatory and ionotropic receptor families. The phylogenetic and gene turnover analyses of these sequences indicated that the whole-genome duplication events proposed for this subphylum would not explain the differences in the number of chemoreceptors observed across species. A constant and prolonged gene birth and death process, altered by episodic bursts of gene duplication yielding lineage-specific expansions, has contributed significantly to the extant chemosensory diversity in this group of animals. This study also provides valuable insights into the origin and functional diversification of other relevant chemosensory gene families different from receptors, such as odorant-binding proteins and other related molecules.
Collapse
Affiliation(s)
- Joel Vizueta
- Departament de Genètica, Microbiologia i Estadística and Institut de Recerca de la Biodiversitat (IRBio), Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
| | - Julio Rozas
- Departament de Genètica, Microbiologia i Estadística and Institut de Recerca de la Biodiversitat (IRBio), Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
| | - Alejandro Sánchez-Gracia
- Departament de Genètica, Microbiologia i Estadística and Institut de Recerca de la Biodiversitat (IRBio), Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
| |
Collapse
|
77
|
Ramos-Vicente D, Ji J, Gratacòs-Batlle E, Gou G, Reig-Viader R, Luís J, Burguera D, Navas-Perez E, García-Fernández J, Fuentes-Prior P, Escriva H, Roher N, Soto D, Bayés À. Metazoan evolution of glutamate receptors reveals unreported phylogenetic groups and divergent lineage-specific events. eLife 2018; 7:e35774. [PMID: 30465522 PMCID: PMC6307864 DOI: 10.7554/elife.35774] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 11/20/2018] [Indexed: 01/28/2023] Open
Abstract
Glutamate receptors are divided in two unrelated families: ionotropic (iGluR), driving synaptic transmission, and metabotropic (mGluR), which modulate synaptic strength. The present classification of GluRs is based on vertebrate proteins and has remained unchanged for over two decades. Here we report an exhaustive phylogenetic study of GluRs in metazoans. Importantly, we demonstrate that GluRs have followed different evolutionary histories in separated animal lineages. Our analysis reveals that the present organization of iGluRs into six classes does not capture the full complexity of their evolution. Instead, we propose an organization into four subfamilies and ten classes, four of which have never been previously described. Furthermore, we report a sister class to mGluR classes I-III, class IV. We show that many unreported proteins are expressed in the nervous system, and that new Epsilon receptors form functional ligand-gated ion channels. We propose an updated classification of glutamate receptors that includes our findings.
Collapse
Affiliation(s)
- David Ramos-Vicente
- Molecular Physiology of the Synapse LaboratoryBiomedical Research Institute Sant PauBarcelonaSpain
- Universitat Autònoma de BarcelonaBarcelonaSpain
| | - Jie Ji
- Institute of Biotechnology and Biomedicine, Department of Cell Biology, Animal Physiology and ImmunologyUniversitat Autònoma de BarcelonaBarcelonaSpain
| | - Esther Gratacòs-Batlle
- Neurophysiology Laboratory, Department of Biomedicine, Medical School, August Pi i Sunyer Biomedical Research Institute, Institute of NeurosciencesUniversitat de BarcelonaBarcelonaSpain
| | - Gemma Gou
- Molecular Physiology of the Synapse LaboratoryBiomedical Research Institute Sant PauBarcelonaSpain
- Universitat Autònoma de BarcelonaBarcelonaSpain
| | - Rita Reig-Viader
- Molecular Physiology of the Synapse LaboratoryBiomedical Research Institute Sant PauBarcelonaSpain
- Universitat Autònoma de BarcelonaBarcelonaSpain
| | - Javier Luís
- Molecular Physiology of the Synapse LaboratoryBiomedical Research Institute Sant PauBarcelonaSpain
- Universitat Autònoma de BarcelonaBarcelonaSpain
| | - Demian Burguera
- Department of Genetics, School of Biology, Institut de BiomedicinaUniversity of BarcelonaBarcelonaSpain
| | - Enrique Navas-Perez
- Department of Genetics, School of Biology, Institut de BiomedicinaUniversity of BarcelonaBarcelonaSpain
| | - Jordi García-Fernández
- Department of Genetics, School of Biology, Institut de BiomedicinaUniversity of BarcelonaBarcelonaSpain
| | - Pablo Fuentes-Prior
- Molecular Bases of DiseaseBiomedical Research Institute Sant Pau, Hospital de la Santa Creu i Sant PauBarcelonaSpain
| | - Hector Escriva
- Sorbonne Université, CNRS, Biologie Intégrative des Organismes MarinsBanyuls-sur-MerFrance
| | - Nerea Roher
- Institute of Biotechnology and Biomedicine, Department of Cell Biology, Animal Physiology and ImmunologyUniversitat Autònoma de BarcelonaBarcelonaSpain
| | - David Soto
- Neurophysiology Laboratory, Department of Biomedicine, Medical School, August Pi i Sunyer Biomedical Research Institute, Institute of NeurosciencesUniversitat de BarcelonaBarcelonaSpain
| | - Àlex Bayés
- Molecular Physiology of the Synapse LaboratoryBiomedical Research Institute Sant PauBarcelonaSpain
- Universitat Autònoma de BarcelonaBarcelonaSpain
| |
Collapse
|
78
|
Stollewerk A. Evolutionary development and morphological modifications of the brain: an interview with Angelika Stollewerk. BMC Biol 2018; 16:117. [PMID: 30382858 PMCID: PMC6211559 DOI: 10.1186/s12915-018-0590-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 10/09/2018] [Indexed: 11/24/2022] Open
Abstract
Angelika Stollewerk is a Reader at Queen Mary University of London, where her lab uses a diverse range of species to study the evolution of the arthropod nervous system. Angelika spoke to us about social spiders, the future of evo-devo, and open peer review.
Collapse
Affiliation(s)
- Angelika Stollewerk
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London, E1 4NS, UK.
| |
Collapse
|
79
|
Qu Z, Bendena WG, Tobe SS, Hui JHL. Juvenile hormone and sesquiterpenoids in arthropods: Biosynthesis, signaling, and role of MicroRNA. J Steroid Biochem Mol Biol 2018; 184:69-76. [PMID: 29355708 DOI: 10.1016/j.jsbmb.2018.01.013] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Revised: 01/03/2018] [Accepted: 01/16/2018] [Indexed: 12/21/2022]
Abstract
Arthropod molting and reproduction are precisely controlled by the levels of sesquiterpenoids, a class of C15 hormones derived from three isoprene units. The two major functional arthropod sesquiterpenoids are juvenile hormone (JH) and methyl farnesoate (MF). In hemimetabolous insects (such as the aphids, bugs, and cockroaches) and holometabolous insects (such as beetles, bees, butterflies, and flies), dramatic decrease in the titers of JH and/or MF promote metamorphosis from larvae to adults either directly or through an intermediate pupal stage, respectively. JH is absent in crustaceans (lobster, shrimp, crab) and other arthropods (chelicerates such as ticks, mites, spiders, scorpions and myriapods such as millipede and centipedes). In some crustaceans, molting and reproduction is dependent on changing levels of MF. The regulation of sesquiterpenoid production is thus crucial in the life cycle of arthropods. Dynamic and complex mechanisms have evolved to regulate sesquiterpenoid production. Noncoding RNAs such as the microRNAs are primary regulators. This article provides an overview of microRNAs that are known to regulate sesquiterpenoid production in arthropods.
Collapse
Affiliation(s)
- Zhe Qu
- School of Life Sciences, Simon F.S. Li Marine Science Laboratory, Partner State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong
| | | | - Stephen S Tobe
- Department of Cell and Systems Biology, University of Toronto, Canada.
| | - Jerome H L Hui
- School of Life Sciences, Simon F.S. Li Marine Science Laboratory, Partner State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong.
| |
Collapse
|
80
|
Ferrier DEK. Horizons in evolutionary genomics: an interview with David Ferrier. BMC Biol 2018; 16:124. [PMID: 30382837 PMCID: PMC6211512 DOI: 10.1186/s12915-018-0587-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 10/09/2018] [Indexed: 11/24/2022] Open
Abstract
David Ferrier is a Reader at the University of St Andrews and Deputy Director of the Scottish Oceans Institute, where his lab studies how the diversity of form in the animal kingdom evolved, with an emphasis on using comparative genomics. In this interview, David shares his thoughts on how to escape the ‘straitjacket’ of traditional model systems, transparency in peer review, and the past and future of genome sequencing.
Collapse
Affiliation(s)
- David E K Ferrier
- The Scottish Oceans Institute, Gatty Marine Laboratory, School of Biology, University of St. Andrews, St. Andrews, UK.
| |
Collapse
|
81
|
Oliphant A, Alexander JL, Swain MT, Webster SG, Wilcockson DC. Transcriptomic analysis of crustacean neuropeptide signaling during the moult cycle in the green shore crab, Carcinus maenas. BMC Genomics 2018; 19:711. [PMID: 30257651 PMCID: PMC6158917 DOI: 10.1186/s12864-018-5057-3] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 09/06/2018] [Indexed: 11/10/2022] Open
Abstract
Background Ecdysis is an innate behaviour programme by which all arthropods moult their exoskeletons. The complex suite of interacting neuropeptides that orchestrate ecdysis is well studied in insects, but details of the crustacean ecdysis cassette are fragmented and our understanding of this process is comparatively crude, preventing a meaningful evolutionary comparison. To begin to address this issue we identified transcripts coding for neuropeptides and their putative receptors in the central nervous system (CNS) and Y-organs (YO) within the crab, Carcinus maenas, and mapped their expression profiles across accurately defined stages of the moult cycle using RNA-sequencing. We also studied gene expression within the epidermally-derived YO, the only defined role for which is the synthesis of ecdysteroid moulting hormones, to elucidate peptides and G protein-coupled receptors (GPCRs) that might have a function in ecdysis. Results Transcriptome mining of the CNS transcriptome yielded neuropeptide transcripts representing 47 neuropeptide families and 66 putative GPCRs. Neuropeptide transcripts that were differentially expressed across the moult cycle included carcikinin, crustacean hyperglycemic hormone-2, and crustacean cardioactive peptide, whilst a single putative neuropeptide receptor, proctolin R1, was differentially expressed. Carcikinin mRNA in particular exhibited dramatic increases in expression pre-moult, suggesting a role in ecdysis regulation. Crustacean hyperglycemic hormone-2 mRNA expression was elevated post- and pre-moult whilst that for crustacean cardioactive peptide, which regulates insect ecdysis and plays a role in stereotyped motor activity during crustacean ecdysis, was elevated in pre-moult. In the YO, several putative neuropeptide receptor transcripts were differentially expressed across the moult cycle, as was the mRNA for the neuropeptide, neuroparsin-1. Whilst differential gene expression of putative neuropeptide receptors was expected, the discovery and differential expression of neuropeptide transcripts was surprising. Analysis of GPCR transcript expression between YO and epidermis revealed 11 to be upregulated in the YO and thus are now candidates for peptide control of ecdysis. Conclusions The data presented represent a comprehensive survey of the deduced C. maenas neuropeptidome and putative GPCRs. Importantly, we have described the differential expression profiles of these transcripts across accurately staged moult cycles in tissues key to the ecdysis programme. This study provides important avenues for the future exploration of functionality of receptor-ligand pairs in crustaceans. Electronic supplementary material The online version of this article (10.1186/s12864-018-5057-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Andrew Oliphant
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, Ceredigion, SY23 3DA, UK
| | - Jodi L Alexander
- School of Biological Sciences, Bangor University, Bangor, Gwynedd, LL57 2UW, UK
| | - Martin T Swain
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, Ceredigion, SY23 3DA, UK
| | - Simon G Webster
- School of Biological Sciences, Bangor University, Bangor, Gwynedd, LL57 2UW, UK
| | - David C Wilcockson
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, Ceredigion, SY23 3DA, UK.
| |
Collapse
|
82
|
Kozma MT, Schmidt M, Ngo-Vu H, Sparks SD, Senatore A, Derby CD. Chemoreceptor proteins in the Caribbean spiny lobster, Panulirus argus: Expression of Ionotropic Receptors, Gustatory Receptors, and TRP channels in two chemosensory organs and brain. PLoS One 2018; 13:e0203935. [PMID: 30240423 PMCID: PMC6150509 DOI: 10.1371/journal.pone.0203935] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2018] [Accepted: 08/30/2018] [Indexed: 12/22/2022] Open
Abstract
The spiny lobster, Panulirus argus, has two classes of chemosensilla representing “olfaction” and “distributed chemoreception,” as is typical for decapod crustaceans. Olfactory sensilla are found exclusively on antennular lateral flagella and are innervated only by olfactory receptor neurons (ORNs) that project into olfactory lobes organized into glomeruli in the brain. Distributed chemoreceptor sensilla are found on all body surfaces including the antennular lateral flagella (LF) and walking leg dactyls (dactyls), and are innervated by both chemoreceptor neurons (CRNs) and mechanoreceptor neurons that project into somatotopically organized neuropils. Here, we examined expression of three classes of chemosensory genes in transcriptomes of the LF (with ORNs and CRNs), dactyls (with only CRNs), and brain of P. argus: Ionotropic Receptors (IRs), which are related to ionotropic glutamate receptors and found in all protostomes including crustaceans; Gustatory Receptors (GRs), which are ionotropic receptors that are abundantly expressed in insects but more restricted in crustaceans; and Transient Receptor Potential (TRP) channels, a diverse set of sensor-channels that include several chemosensors in diverse animals. We identified 108 IRs, one GR, and 18 homologues representing all seven subfamilies of TRP channels. The number of IRs expressed in the LF is far greater than in dactyls, possibly reflecting the contribution of receptor proteins associated with the ORNs beyond those associated with CRNs. We found co-receptor IRs (IR8a, IR25a, IR76b, IR93a) and conserved IRs (IR21a, IR40a) in addition to the numerous divergent IRs in the LF, dactyl, and brain. Immunocytochemistry showed that IR25a is expressed in ORNs, CRNs, and a specific type of cell located in the brain near the olfactory lobes. While the function of IRs, TRP channels, and the GR was not explored, our results suggest that P. argus has an abundance of diverse putative chemoreceptor proteins that it may use in chemoreception.
Collapse
Affiliation(s)
- Mihika T. Kozma
- Neuroscience Institute, Georgia State University, Atlanta, Georgia, United States of America
- * E-mail:
| | - Manfred Schmidt
- Neuroscience Institute, Georgia State University, Atlanta, Georgia, United States of America
| | - Hanh Ngo-Vu
- Neuroscience Institute, Georgia State University, Atlanta, Georgia, United States of America
| | - Shea D. Sparks
- Neuroscience Institute, Georgia State University, Atlanta, Georgia, United States of America
| | - Adriano Senatore
- Department of Biology, University of Toronto Mississauga, Ontario, Canada
| | - Charles D. Derby
- Neuroscience Institute, Georgia State University, Atlanta, Georgia, United States of America
| |
Collapse
|
83
|
Santos MM, Ruivo R, Capitão A, Fonseca E, Castro LFC. Identifying the gaps: Resources and perspectives on the use of nuclear receptor based-assays to improve hazard assessment of emerging contaminants. JOURNAL OF HAZARDOUS MATERIALS 2018; 358:508-511. [PMID: 29731175 DOI: 10.1016/j.jhazmat.2018.04.076] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 04/25/2018] [Accepted: 04/28/2018] [Indexed: 06/08/2023]
Abstract
Biological control of key processes, such as development and reproduction, is largely ascribed to a superfamily of ligand-dependent and independent transcription factors named Nuclear Receptors (NRs). Given their ability to accommodate ligands, NRs are prime targets of man-made compounds that mimic or antagonise the action of endogenous ligands. Accordingly, NRs occupy a prominent role in OECD and EPA guidelines for testing and assessment of Endocrine disrupting chemicals (EDCs). Although NR assays are already a key instrument in the OECD Conceptual Framework for Testing and Assessment of EDCs, the focus is mostly on vertebrate NRs. Here, we address the chief knowledge gaps in the field. More specifically, we (1) verify the growing availability of genomes/transcriptome projects, (2) highlight gaps in the identification and characterization of metazoan NR and in the establishment of (3) life cycle and (4) toxicity testing protocols. An overall bias towards vertebrates and selected invertebrate groups, notably Arthropoda, Annelida and Mollusca, was observed. Hence, if we aim to improve risk assessment of EDCs and emerging pollutants at an ecosystems scale, and understand their mode of action (MOA), we must establish a framework to include a broad phylogenetic sampling of Metazoans.
Collapse
Affiliation(s)
- M M Santos
- CIMAR/CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Av. General Norton de Matos s/n, 4450-208 Porto, Portugal; FCUP - Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal.
| | - R Ruivo
- CIMAR/CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Av. General Norton de Matos s/n, 4450-208 Porto, Portugal
| | - A Capitão
- CIMAR/CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Av. General Norton de Matos s/n, 4450-208 Porto, Portugal; FCUP - Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal
| | - E Fonseca
- CIMAR/CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Av. General Norton de Matos s/n, 4450-208 Porto, Portugal; FCUP - Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal
| | - L F C Castro
- CIMAR/CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Av. General Norton de Matos s/n, 4450-208 Porto, Portugal; FCUP - Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal.
| |
Collapse
|
84
|
Schumann I, Kenny N, Hui J, Hering L, Mayer G. Halloween genes in panarthropods and the evolution of the early moulting pathway in Ecdysozoa. ROYAL SOCIETY OPEN SCIENCE 2018; 5:180888. [PMID: 30839709 PMCID: PMC6170570 DOI: 10.1098/rsos.180888] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 08/17/2018] [Indexed: 05/15/2023]
Abstract
Moulting is a characteristic feature of Ecdysozoa-the clade of moulting animals that includes the hyperdiverse arthropods and less speciose groups, such as onychophorans, tardigrades and nematodes. Moulting has been best analysed in arthropods, specifically in insects and crustaceans, in which a complex neuroendocrine system acts at the genomic level and initiates the transcription of genes responsible for moulting. The key moulting hormones, ecdysone and 20-hydroxyecdysone, are subsequently synthesized from cholesterol ingested with food. Their biosynthesis is regulated by the Rieske-domain protein Neverland and cytochrome P450 enzymes encoded by the so-called 'Halloween' genes. Ecdysone is then released into the haemolymph and modified into 20-hydroxyecdysone, which binds to the nuclear receptor EcR/USP and initiates transcription of the Early genes. As little is known about the moulting pathway of other ecdysozoans, we examined the occurrence of genes involved in ecdysteroid biosynthesis and the early moulting cascade across ecdysozoan subgroups. Genomic and transcriptomic searches revealed no Halloween genes in cycloneuralians, whereas only shadow (CYP315A1) is present in onychophorans and tardigrades, suggesting that the Halloween genes evolved stepwise in panarthropods. These findings imply that the genes which were responsible for the ecdysteroid biosynthesis in the last common ancestor of Ecdysozoa are currently unknown.
Collapse
Affiliation(s)
- Isabell Schumann
- Department of Zoology, Institute of Biology, University of Kassel, Kassel, Germany
- Molecular Evolution and Animal Systematics, Institute of Biology, University of Leipzig, Leipzig, Germany
| | - Nathan Kenny
- School of Life Sciences, Simon F.S. Li Marine Science Laboratory, Center of Soybean Research, State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong, People's Republic of China
| | - Jerome Hui
- School of Life Sciences, Simon F.S. Li Marine Science Laboratory, Center of Soybean Research, State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong, People's Republic of China
| | - Lars Hering
- Department of Zoology, Institute of Biology, University of Kassel, Kassel, Germany
| | - Georg Mayer
- Department of Zoology, Institute of Biology, University of Kassel, Kassel, Germany
| |
Collapse
|
85
|
Treffkorn S, Kahnke L, Hering L, Mayer G. Expression of NK cluster genes in the onychophoran Euperipatoides rowelli: implications for the evolution of NK family genes in nephrozoans. EvoDevo 2018; 9:17. [PMID: 30026904 PMCID: PMC6050708 DOI: 10.1186/s13227-018-0105-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 07/06/2018] [Indexed: 02/05/2023] Open
Abstract
Background Understanding the evolution and development of morphological traits of the last common bilaterian ancestor is a major goal of the evo-devo discipline. The reconstruction of this "urbilaterian" is mainly based on comparative studies of common molecular patterning mechanisms in recent model organisms. The NK homeobox genes are key players in many of these molecular pathways, including processes regulating mesoderm, heart and neural development. Shared features seen in the expression patterns of NK genes have been used to determine the ancestral bilaterian characters. However, the commonly used model organisms provide only a limited view on the evolution of these molecular pathways. To further investigate the ancestral roles of NK cluster genes, we analyzed their expression patterns in the onychophoran Euperipatoides rowelli. Results We identified nine transcripts of NK cluster genes in E. rowelli, including single copies of NK1, NK3, NK4, NK5, Msx, Lbx and Tlx, and two copies of NK6. All of these genes except for NK6.1 and NK6.2 are expressed in different mesodermal organs and tissues in embryos of E. rowelli, including the anlagen of somatic musculature and the heart. Furthermore, we found distinct expression patterns of NK3, NK5, NK6, Lbx and Msx in the developing nervous system. The same holds true for the NKL gene NK2.2, which does not belong to the NK cluster but is a related gene playing a role in neural patterning. Surprisingly, NK1, Msx and Lbx are additionally expressed in a segment polarity-like pattern early in development-a feature that has been otherwise reported only from annelids. Conclusion Our results indicate that the NK cluster genes were involved in mesoderm and neural development in the last common ancestor of bilaterians or at least nephrozoans (i.e., bilaterians to the exclusion of xenacoelomorphs). By comparing our data from an onychophoran to those from other bilaterians, we critically review the hypothesis of a complex "urbilaterian" with a segmented body, a pulsatile organ or heart, and a condensed mediolaterally patterned nerve cord.
Collapse
Affiliation(s)
- Sandra Treffkorn
- Department of Zoology, Institute of Biology, University of Kassel, Heinrich-Plett-Str. 40, 34132 Kassel, Germany
| | - Laura Kahnke
- Department of Zoology, Institute of Biology, University of Kassel, Heinrich-Plett-Str. 40, 34132 Kassel, Germany
| | - Lars Hering
- Department of Zoology, Institute of Biology, University of Kassel, Heinrich-Plett-Str. 40, 34132 Kassel, Germany
| | - Georg Mayer
- Department of Zoology, Institute of Biology, University of Kassel, Heinrich-Plett-Str. 40, 34132 Kassel, Germany
| |
Collapse
|
86
|
Scherbaum S, Hellmann N, Fernández R, Pick C, Burmester T. Diversity, evolution, and function of myriapod hemocyanins. BMC Evol Biol 2018; 18:107. [PMID: 29976142 PMCID: PMC6034248 DOI: 10.1186/s12862-018-1221-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2018] [Accepted: 06/24/2018] [Indexed: 11/16/2022] Open
Abstract
Background Hemocyanin transports O2 in the hemolymph of many arthropod species. Such respiratory proteins have long been considered unnecessary in Myriapoda. As a result, the presence of hemocyanin in Myriapoda has long been overlooked. We analyzed transcriptome and genome sequences from all major myriapod taxa – Chilopoda, Diplopoda, Symphyla, and Pauropoda – with the aim of identifying hemocyanin-like proteins. Results We investigated the genomes and transcriptomes of 56 myriapod species and identified 46 novel full-length hemocyanin subunit sequences in 20 species of Chilopoda, Diplopoda, and Symphyla, but not Pauropoda. We found in Cleidogona sp. (Diplopoda, Chordeumatida) a hemocyanin-like sequence with mutated copper-binding centers, which cannot bind O2. An RNA-seq approach showed markedly different hemocyanin mRNA levels from ~ 6 to 25,000 reads per kilobase per million reads. To evaluate the contribution of hemocyanin to O2 transport, we specifically studied the hemocyanin of the centipede Scolopendra dehaani. This species harbors two distinct hemocyanin subunits with low expression levels. We showed cooperative O2 binding in the S. dehaani hemolymph, indicating that hemocyanin supports O2 transport even at low concentration. Further, we demonstrated that hemocyanin is > 1500-fold more highly expressed in the fertilized egg than in the adult. Conclusion Hemocyanin was most likely the respiratory protein in the myriapod stem-lineage, but multiple taxa may have independently lost hemocyanin and thus the ability of efficient O2 transport. In myriapods, hemocyanin is much more widespread than initially appreciated. Some myriapods express hemocyanin only at low levels, which are, nevertheless, sufficient for O2 supply. Notably, also in myriapods, a non-respiratory protein similar to insect storage hexamerins evolved from the hemocyanin. Electronic supplementary material The online version of this article (10.1186/s12862-018-1221-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | - Nadja Hellmann
- Institute for Biophysics, Johannes Gutenberg University of Mainz, D-55099, Mainz, Germany
| | - Rosa Fernández
- Museum of Comparative Zoology & Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford Street, Cambridge, MA, 02138, USA.,Bioinformatics & Genomics Unit, Center for Genomic Regulation, 08004, Barcelona, Spain
| | - Christian Pick
- Institute of Zoology, University of Hamburg, D-20146, Hamburg, Germany
| | | |
Collapse
|
87
|
Qu Z, Bendena WG, Nong W, Siggens KW, Noriega FG, Kai ZP, Zang YY, Koon AC, Chan HYE, Chan TF, Chu KH, Lam HM, Akam M, Tobe SS, Lam Hui JH. MicroRNAs regulate the sesquiterpenoid hormonal pathway in Drosophila and other arthropods. Proc Biol Sci 2018; 284:rspb.2017.1827. [PMID: 29237851 DOI: 10.1098/rspb.2017.1827] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Accepted: 11/14/2017] [Indexed: 12/12/2022] Open
Abstract
Arthropods comprise the majority of all described animal species, and understanding their evolution is a central question in biology. Their developmental processes are under the precise control of distinct hormonal regulators, including the sesquiterpenoids juvenile hormone (JH) and methyl farnesoate. The control of the synthesis and mode of action of these hormones played important roles in the evolution of arthropods and their adaptation to diverse habitats. However, the precise roles of non-coding RNAs, such as microRNAs (miRNAs), controlling arthropod hormonal pathways are unknown. Here, we investigated the miRNA regulation of the expression of the juvenile hormone acid methyltransferase gene (JHAMT), which encodes a rate-determining sesquiterpenoid biosynthetic enzyme. Loss of function of the miRNA bantam in the fly Drosophila melanogaster increased JHAMT expression, while overexpression of the bantam repressed JHAMT expression and resulted in pupal lethality. The male genital organs of the pupae were malformed, and exogenous sesquiterpenoid application partially rescued the genital deformities. The role of the bantam in the regulation of sesquiterpenoid biosynthesis was validated by transcriptomic, qPCR and hormone titre (JHB3 and JH III) analyses. In addition, we found a conserved set of miRNAs that interacted with JHAMT, and the sesquiterpenoid receptor methoprene-tolerant (Met) in different arthropod lineages, including insects (fly, mosquito and beetle), crustaceans (water flea and shrimp), myriapod (centipede) and chelicerate (horseshoe crab). This suggests that these miRNAs might have conserved roles in the post-transcriptional regulation of genes in sesquiterpenoid pathways across the Panarthropoda. Some of the identified lineage-specific miRNAs are potential targets for the development of new strategies in aquaculture and agricultural pest control.
Collapse
Affiliation(s)
- Zhe Qu
- School of Life Sciences, Simon F.S. Li Marine Science Laboratory, Partner State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Sha Tin, Hong Kong
| | | | - Wenyan Nong
- School of Life Sciences, Simon F.S. Li Marine Science Laboratory, Partner State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Sha Tin, Hong Kong
| | | | - Fernando G Noriega
- Department of Biological Sciences and Biomolecular Sciences Institute, Florida International University, Miami, FL 33199, USA
| | - Zhen-Peng Kai
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, People's Republic of China
| | - Yang-Yang Zang
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, People's Republic of China
| | - Alex C Koon
- School of Life Sciences, The Chinese University of Hong Kong, Sha Tin, Hong Kong
| | - Ho Yin Edwin Chan
- School of Life Sciences, The Chinese University of Hong Kong, Sha Tin, Hong Kong
| | - Ting Fung Chan
- School of Life Sciences, The Chinese University of Hong Kong, Sha Tin, Hong Kong
| | - Ka Hou Chu
- School of Life Sciences, The Chinese University of Hong Kong, Sha Tin, Hong Kong
| | - Hon Ming Lam
- School of Life Sciences, The Chinese University of Hong Kong, Sha Tin, Hong Kong
| | - Michael Akam
- Department of Zoology, University of Cambridge, Cambridge, UK
| | - Stephen S Tobe
- Department of Cell and Systems Biology, University of Toronto, Toronto, Canada M5S 3G5
| | - Jerome Ho Lam Hui
- School of Life Sciences, Simon F.S. Li Marine Science Laboratory, Partner State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Sha Tin, Hong Kong
| |
Collapse
|
88
|
Janssen R, Andersson E, Betnér E, Bijl S, Fowler W, Höök L, Leyhr J, Mannelqvist A, Panara V, Smith K, Tiemann S. Embryonic expression patterns and phylogenetic analysis of panarthropod sox genes: insight into nervous system development, segmentation and gonadogenesis. BMC Evol Biol 2018; 18:88. [PMID: 29884143 PMCID: PMC5994082 DOI: 10.1186/s12862-018-1196-z] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 05/18/2018] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Sox (Sry-related high-mobility-group box) genes represent important factors in animal development. Relatively little, however, is known about the embryonic expression patterns and thus possible function(s) of Sox genes during ontogenesis in panarthropods (Arthropoda+Tardigrada+Onychophora). To date, studies have been restricted exclusively to higher insects, including the model system Drosophila melanogaster, with no comprehensive data available for any other arthropod group, or any tardigrade or onychophoran. RESULTS This study provides a phylogenetic analysis of panarthropod Sox genes and presents the first comprehensive analysis of embryonic expression patterns in the flour beetle Tribolium castaneum (Hexapoda), the pill millipede Glomeris marginata (Myriapoda), and the velvet worm, Euperipatoides kanangrensis (Onychophora). 24 Sox genes were identified and investigated: 7 in Euperipatoides, 8 in Glomeris, and 9 in Tribolium. Each species possesses at least one ortholog of each of the five expected Sox gene families, B, C, D, E, and F, many of which are differentially expressed during ontogenesis. CONCLUSION Sox gene expression (and potentially function) is highly conserved in arthropods and their closest relatives, the onychophorans. Sox B, C and D class genes appear to be crucial for nervous system development, while the Sox B genes Dichaete (D) and Sox21b likely play an additional conserved role in panarthropod segmentation. The Sox B gene Sox21a likely has a conserved function in foregut and Malpighian tubule development, at least in Hexapoda. The data further suggest that Sox D and E genes are involved in mesoderm differentiation, and that Sox E genes are involved in gonadal development. The new data expand our knowledge about the expression and implied function of Sox genes to Mandibulata (Myriapoda+Pancrustacea) and Panarthropoda (Arthropoda+Onychophora).
Collapse
Affiliation(s)
- Ralf Janssen
- Uppsala University, Department of Earth Sciences, Palaeobiology, Villavägen 16, 75236 Uppsala, Sweden
| | - Emil Andersson
- Uppsala University, Department of Earth Sciences, Palaeobiology, Villavägen 16, 75236 Uppsala, Sweden
| | - Ellinor Betnér
- Uppsala University, Department of Earth Sciences, Palaeobiology, Villavägen 16, 75236 Uppsala, Sweden
| | - Sifra Bijl
- Uppsala University, Department of Earth Sciences, Palaeobiology, Villavägen 16, 75236 Uppsala, Sweden
| | - Will Fowler
- Uppsala University, Department of Earth Sciences, Palaeobiology, Villavägen 16, 75236 Uppsala, Sweden
| | - Lars Höök
- Uppsala University, Department of Earth Sciences, Palaeobiology, Villavägen 16, 75236 Uppsala, Sweden
| | - Jake Leyhr
- Uppsala University, Department of Earth Sciences, Palaeobiology, Villavägen 16, 75236 Uppsala, Sweden
| | - Alexander Mannelqvist
- Uppsala University, Department of Earth Sciences, Palaeobiology, Villavägen 16, 75236 Uppsala, Sweden
| | - Virginia Panara
- Uppsala University, Department of Earth Sciences, Palaeobiology, Villavägen 16, 75236 Uppsala, Sweden
| | - Kate Smith
- Uppsala University, Department of Earth Sciences, Palaeobiology, Villavägen 16, 75236 Uppsala, Sweden
| | - Sydney Tiemann
- Uppsala University, Department of Earth Sciences, Palaeobiology, Villavägen 16, 75236 Uppsala, Sweden
| |
Collapse
|
89
|
A foreleg transcriptome for Ixodes scapularis ticks: Candidates for chemoreceptors and binding proteins that might be expressed in the sensory Haller's organ. Ticks Tick Borne Dis 2018; 9:1317-1327. [PMID: 29886186 DOI: 10.1016/j.ttbdis.2018.05.013] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Revised: 05/24/2018] [Accepted: 05/25/2018] [Indexed: 01/02/2023]
Abstract
Little is known about the molecular basis for the olfactory capabilities of the sensory Haller's organ on the forelegs of ticks. We first expanded the known repertoire of Ionotropic Receptors (IRs), a variant lineage of the ionotropic glutamate receptors, encoded by the black-legged Ixodes scapularis genome from 15 to 125. We then undertook a transcriptome study of fore- and hind-legs of this tick in an effort to identify candidate chemoreceptors differentially expressed in forelegs as likely to be involved in Haller's organ functions. We primarily identified members of the IR family, specifically Ir25a and Ir93a, as highly and differentially expressed in forelegs. Several other IRs, as well as a few members of the gustatory receptor family, were expressed at low levels in forelegs and might contribute to the sensory function of Haller's organ. In addition, we identified eight small families of secreted proteins, with sets of conserved cysteines, which might function as binding proteins. The genes encoding these Microplusin-Like proteins and two previously described Odorant Binding Protein-Like proteins share a common exon-intron structure, suggesting that they all evolved from a common ancestor and represent an independent origin of binding proteins with potential roles comparable to the ChemoSensory Proteins and Odorant Binding Proteins of insects. We also found two Niemann-Pick Type C2 proteins with foreleg-biased expression, however we were unable to detect foreleg-biased expression of a G-Protein-Coupled pathway previously proposed to mediate olfaction in the tick Haller's organ.
Collapse
|
90
|
Abstract
One central goal of genome biology is to understand how the usage of the genome differs between organisms. Our knowledge of genome composition, needed for downstream inferences, is critically dependent on gene annotations, yet problems associated with gene annotation and assembly errors are usually ignored in comparative genomics. Here, we analyze the genomes of 68 species across 12 animal phyla and some single-cell eukaryotes for general trends in genome composition and transcription, taking into account problems of gene annotation. We show that, regardless of genome size, the ratio of introns to intergenic sequence is comparable across essentially all animals, with nearly all deviations dominated by increased intergenic sequence. Genomes of model organisms have ratios much closer to 1:1, suggesting that the majority of published genomes of nonmodel organisms are underannotated and consequently omit substantial numbers of genes, with likely negative impact on evolutionary interpretations. Finally, our results also indicate that most animals transcribe half or more of their genomes arguing against differences in genome usage between animal groups, and also suggesting that the transcribed portion is more dependent on genome size than previously thought.
Collapse
Affiliation(s)
- Warren R Francis
- Department of Earth and Environmental Sciences, Paleontology and Geobiology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Gert Wörheide
- Department of Earth and Environmental Sciences, Paleontology and Geobiology, Ludwig-Maximilians-Universität München, Munich, Germany.,GeoBio-Center, Ludwig-Maximilians-Universität München, Munich, Germany.,Bavarian State Collection for Paleontology and Geology, Munich, Germany
| |
Collapse
|
91
|
Proteomic analysis of chemosensory organs in the honey bee parasite Varroa destructor: A comprehensive examination of the potential carriers for semiochemicals. J Proteomics 2018; 181:131-141. [PMID: 29653265 DOI: 10.1016/j.jprot.2018.04.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 03/21/2018] [Accepted: 04/09/2018] [Indexed: 01/21/2023]
Abstract
We have performed a proteomic analysis on chemosensory organs of Varroa destructor, the honey bee mite, in order to identify putative soluble carriers for pheromones and other olfactory cues emitted by the host. In particular, we have analysed forelegs, mouthparts (palps, chelicera and hypostome) and the second pair of legs (as control tissue) in reproductive and phoretic stages of the Varroa life cycle. We identified 958 Varroa proteins, most of them common to the different organs and stages. Sequence analysis shows that four proteins can be assigned to the odorant-binding protein (OBP)-like class, which bear some similarity to insect OBPs, but so far have only been reported in some Chelicerata. In addition, we have detected the presence of two proteins belonging to the Niemann-Pick family, type C2 (NPC2), which have also been suggested as semiochemical carriers. Biological significance: The mite Varroa destructor is the major parasite of the honey bee and is responsible for great economical losses. The biochemical tools used by Varroa to detect semiochemicals produced by the host are still largely unknown. This work contributes to understand the molecular basis of olfaction in Varroa and, more generally, how detection of semiochemicals has evolved in terrestrial non-hexapod Arthropoda. Moreover, the identification of molecular carriers involved in olfaction can contribute to the development of control strategies for this important parasite.
Collapse
|
92
|
Bulla I, Aliaga B, Lacal V, Bulla J, Grunau C, Chaparro C. Notos - a galaxy tool to analyze CpN observed expected ratios for inferring DNA methylation types. BMC Bioinformatics 2018; 19:105. [PMID: 29587630 PMCID: PMC5870242 DOI: 10.1186/s12859-018-2115-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2017] [Accepted: 03/13/2018] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND DNA methylation patterns store epigenetic information in the vast majority of eukaryotic species. The relatively high costs and technical challenges associated with the detection of DNA methylation however have created a bias in the number of methylation studies towards model organisms. Consequently, it remains challenging to infer kingdom-wide general rules about the functions and evolutionary conservation of DNA methylation. Methylated cytosine is often found in specific CpN dinucleotides, and the frequency distributions of, for instance, CpG observed/expected (CpG o/e) ratios have been used to infer DNA methylation types based on higher mutability of methylated CpG. RESULTS Predominantly model-based approaches essentially founded on mixtures of Gaussian distributions are currently used to investigate questions related to the number and position of modes of CpG o/e ratios. These approaches require the selection of an appropriate criterion for determining the best model and will fail if empirical distributions are complex or even merely moderately skewed. We use a kernel density estimation (KDE) based technique for robust and precise characterization of complex CpN o/e distributions without a priori assumptions about the underlying distributions. CONCLUSIONS We show that KDE delivers robust descriptions of CpN o/e distributions. For straightforward processing, we have developed a Galaxy tool, called Notos and available at the ToolShed, that calculates these ratios of input FASTA files and fits a density to their empirical distribution. Based on the estimated density the number and shape of modes of the distribution is determined, providing a rational for the prediction of the number and the types of different methylation classes. Notos is written in R and Perl.
Collapse
Affiliation(s)
- Ingo Bulla
- Institut für Mathematik und Informatik, Universität Greifswald, Walther-Rathenau-Str. 47, Greifswald, 17487 Germany
- Theoretical Biology and Biophysics, Group T-6, Los Alamos National Laboratory, New Mexico, Los Alamos USA
| | - Benoît Aliaga
- Univ. Perpignan Via Domitia, IHPE UMR 5244, CNRS, IFREMER, Univ. Montpellier, 58 Avenue Paul Alduy, Perpignan, 66860 France
| | - Virginia Lacal
- Department of Mathematics, University of Bergen, P.O. Box 7803, Bergen, 5020 Norway
| | - Jan Bulla
- Department of Mathematics, University of Bergen, P.O. Box 7803, Bergen, 5020 Norway
| | - Christoph Grunau
- Univ. Perpignan Via Domitia, IHPE UMR 5244, CNRS, IFREMER, Univ. Montpellier, 58 Avenue Paul Alduy, Perpignan, 66860 France
| | - Cristian Chaparro
- Univ. Perpignan Via Domitia, IHPE UMR 5244, CNRS, IFREMER, Univ. Montpellier, 58 Avenue Paul Alduy, Perpignan, 66860 France
| |
Collapse
|
93
|
Cooption of an appendage-patterning gene cassette in the head segmentation of arachnids. Proc Natl Acad Sci U S A 2018; 115:E3491-E3500. [PMID: 29581309 DOI: 10.1073/pnas.1720193115] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The jointed appendages of arthropods have facilitated the spectacular diversity and success of this phylum. Key to the regulation of appendage outgrowth is the Krüppel-like factor (KLF)/specificity protein (Sp) family of zinc finger transcription factors. In the fruit fly, Drosophila melanogaster, the Sp6-9 homolog is activated by Wnt-1/wingless (wg) and establishes ventral appendage (leg) fate. Subsequently, Sp6-9 maintains expression of the axial patterning gene Distal-less (Dll), which promotes limb outgrowth. Intriguingly, in spiders, Dll has been reported to have a derived role as a segmentation gap gene, but the evolutionary origin and regulation of this function are not understood because functional investigations of the appendage-patterning regulatory network are restricted to insects. We tested the evolutionary conservation of the ancestral appendage-patterning network of arthropods with a functional approach in the spider. RNAi-mediated knockdown of the spider Sp6-9 ortholog resulted in diminution or loss of Dll expression and truncation of appendages, as well as loss of the two body segments specified by the early Dll function. In reciprocal experiments, Dll is shown not to be required for Sp6-9 expression. Knockdown of arrow (Wnt-1 coreceptor) disrupted segmentation and appendage development but did not affect the early Sp6-9 expression domain. Ectopic appendages generated in the spider "abdomen" by knockdown of the Hox gene Antennapedia-1 (Antp-1) expressed Sp6-9 comparably to wild-type walking legs. Our results support (i) the evolutionary conservation of an appendage-patterning regulatory network that includes canonical Wnt signaling, Sp6-9, and Dll and (ii) the cooption of the Sp6-9/Dll regulatory cassette in arachnid head segmentation.
Collapse
|
94
|
Hemimetabolous genomes reveal molecular basis of termite eusociality. Nat Ecol Evol 2018; 2:557-566. [PMID: 29403074 PMCID: PMC6482461 DOI: 10.1038/s41559-017-0459-1] [Citation(s) in RCA: 177] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Accepted: 12/19/2017] [Indexed: 11/25/2022]
Abstract
Around 150 million years ago, eusocial termites evolved from within the cockroaches, 50 million years before eusocial Hymenoptera, such as bees and ants, appeared. Here, we report the 2-Gb genome of the German cockroach, Blattella germanica, and the 1.3-Gb genome of the drywood termite Cryptotermes secundus. We show evolutionary signatures of termite eusociality by comparing the genomes and transcriptomes of three termites and the cockroach against the background of 16 other eusocial and non-eusocial insects. Dramatic adaptive changes in genes underlying the production and perception of pheromones confirm the importance of chemical communication in the termites. These are accompanied by major changes in gene regulation and the molecular evolution of caste determination. Many of these results parallel molecular mechanisms of eusocial evolution in Hymenoptera. However, the specific solutions are remarkably different, thus revealing a striking case of convergence in one of the major evolutionary transitions in biological complexity.
Collapse
|
95
|
Smith CR, Morandin C, Noureddine M, Pant S. Conserved roles of Osiris genes in insect development, polymorphism and protection. J Evol Biol 2018; 31:516-529. [PMID: 29322640 DOI: 10.1111/jeb.13238] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 12/18/2017] [Accepted: 12/20/2017] [Indexed: 12/22/2022]
Abstract
Much of the variation among insects is derived from the different ways that chitin has been moulded to form rigid structures, both internal and external. In this study, we identify a highly conserved expression pattern in an insect-only gene family, the Osiris genes, that is essential for development, but also plays a significant role in phenotypic plasticity and in immunity/toxicity responses. The majority of Osiris genes exist in a highly syntenic cluster, and the cluster itself appears to have arisen very early in the evolution of insects. We used developmental gene expression in the fruit fly, Drosophila melanogaster, the bumble bee, Bombus terrestris, the harvester ant, Pogonomyrmex barbatus, and the wood ant, Formica exsecta, to compare patterns of Osiris gene expression both during development and between alternate caste phenotypes in the polymorphic social insects. Developmental gene expression of Osiris genes is highly conserved across species and correlated with gene location and evolutionary history. The social insect castes are highly divergent in pupal Osiris gene expression. Sets of co-expressed genes that include Osiris genes are enriched in gene ontology terms related to chitin/cuticle and peptidase activity. Osiris genes are essential for cuticle formation in both embryos and pupae, and genes co-expressed with Osiris genes affect wing development. Additionally, Osiris genes and those co-expressed seem to play a conserved role in insect toxicology defences and digestion. Given their role in development, plasticity, and protection, we propose that the Osiris genes play a central role in insect adaptive evolution.
Collapse
Affiliation(s)
- C R Smith
- Department of Biology, Earlham College, Richmond, IN, USA
| | - C Morandin
- Centre of Excellence in Biological Interactions, Department of Biosciences, University of Helsinki, Helsinki, Finland
| | - M Noureddine
- Department of Biology, Earlham College, Richmond, IN, USA
| | - S Pant
- Department of Biology, Earlham College, Richmond, IN, USA
| |
Collapse
|
96
|
Richards S, Childers A, Childers C. Editorial overview: Insect genomics: Arthropod genomic resources for the 21st century: It only counts if it's in the database! CURRENT OPINION IN INSECT SCIENCE 2018; 25:iv-vii. [PMID: 29602370 DOI: 10.1016/j.cois.2018.02.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Affiliation(s)
- Stephen Richards
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, United States
| | - Anna Childers
- USDA-ARS, Bee Research Laboratory, Beltsville, MD, United States
| | - Christopher Childers
- USDA-ARS, National Agricultural Library, Knowledge Services Division, United States
| |
Collapse
|
97
|
Fernández R, Edgecombe GD, Giribet G. Phylogenomics illuminates the backbone of the Myriapoda Tree of Life and reconciles morphological and molecular phylogenies. Sci Rep 2018; 8:83. [PMID: 29311682 PMCID: PMC5758774 DOI: 10.1038/s41598-017-18562-w] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 12/14/2017] [Indexed: 11/30/2022] Open
Abstract
The interrelationships of the four classes of Myriapoda have been an unresolved question in arthropod phylogenetics and an example of conflict between morphology and molecules. Morphology and development provide compelling support for Diplopoda (millipedes) and Pauropoda being closest relatives, and moderate support for Symphyla being more closely related to the diplopod-pauropod group than any of them are to Chilopoda (centipedes). In contrast, several molecular datasets have contradicted the Diplopoda-Pauropoda grouping (named Dignatha), often recovering a Symphyla-Pauropoda group (named Edafopoda). Here we present the first transcriptomic data including a pauropod and both families of symphylans, allowing myriapod interrelationships to be inferred from phylogenomic data from representatives of all main lineages. Phylogenomic analyses consistently recovered Dignatha with strong support. Taxon removal experiments identified outgroup choice as a critical factor affecting myriapod interrelationships. Diversification of millipedes in the Ordovician and centipedes in the Silurian closely approximates fossil evidence whereas the deeper nodes of the myriapod tree date to various depths in the Cambrian-Early Ordovician, roughly coinciding with recent estimates of terrestrialisation in other arthropod lineages, including hexapods and arachnids.
Collapse
Affiliation(s)
- Rosa Fernández
- Museum of Comparative Zoology & Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford St., 02138, Cambridge, MA, USA.
- Bioinformatics & Genomics, Centre for Genomic Regulation, Carrer del Dr. Aiguader 88, 08003, Barcelona, Spain.
| | - Gregory D Edgecombe
- Department of Earth Sciences, The Natural History Museum, Cromwell Road, London, SW7 5BD, UK
| | - Gonzalo Giribet
- Museum of Comparative Zoology & Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford St., 02138, Cambridge, MA, USA
| |
Collapse
|
98
|
Abstract
This article presents an overview of the development of techniques for analyzing cuticular proteins (CPs), their transcripts, and their genes over the past 50 years based primarily on experience in the laboratory of J.H. Willis. It emphasizes changes in the kind of data that can be gathered and how such data provided insights into the molecular underpinnings of insect metamorphosis and cuticle structure. It describes the techniques that allowed visualization of the location of CPs at both the anatomical and intracuticular levels and measurement of the appearance and deployment of transcripts from CP genes as well as what was learned from genomic and transcriptomic data. Most of the early work was done with the cecropia silkmoth, Hyalophora cecropia, and later work was with Anopheles gambiae.
Collapse
Affiliation(s)
- Judith H Willis
- Department of Cellular Biology, University of Georgia, Athens, Georgia 30602;
| |
Collapse
|
99
|
Garstang MG, Ferrier DEK. Amphioxus SYCP1: a case of retrogene replacement and co-option of regulatory elements adjacent to the ParaHox cluster. Dev Genes Evol 2018; 228:13-30. [PMID: 29297095 PMCID: PMC5803294 DOI: 10.1007/s00427-017-0600-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 12/08/2017] [Indexed: 01/26/2023]
Abstract
Retrogenes are formed when an mRNA is reverse-transcribed and reinserted into the genome in a location unrelated to the original locus. If this retrocopy inserts into a transcriptionally favourable locus and is able to carry out its original function, it can, in rare cases, lead to retrogene replacement. This involves the original, often multi-exonic, parental copy being lost whilst the newer single-exon retrogene copy 'replaces' the role of the ancestral parent gene. One example of this is amphioxus SYCP1, a gene that encodes a protein used in synaptonemal complex formation during meiosis and which offers the opportunity to examine how a retrogene evolves after the retrogene replacement event. SYCP1 genes exist as large multi-exonic genes in most animals. AmphiSYCP1, however, contains a single coding exon of ~ 3200 bp and has inserted next to the ParaHox cluster of amphioxus, whilst the multi-exonic ancestral parental copy has been lost. Here, we show that AmphiSYCP1 has not only replaced its parental copy, but also has evolved additional regulatory function by co-opting a bidirectional promoter from the nearby AmphiCHIC gene. AmphiSYCP1 has also evolved a de novo, multi-exonic 5'untranslated region that displays distinct regulatory states, in the form of two different isoforms, and has evolved novel expression patterns during amphioxus embryogenesis in addition to its ancestral role in meiosis. The absence of ParaHox-like expression of AmphiSYCP1, despite its proximity to the ParaHox cluster, also suggests that this gene is not influenced by any potential pan-cluster regulatory mechanisms, which are seemingly restricted to only the ParaHox genes themselves.
Collapse
Affiliation(s)
- Myles G Garstang
- The Scottish Oceans Institute, Gatty Marine Laboratory, University of St Andrews, East Sands, St Andrews, Fife, KY16 8LB, UK.,School of Biological Sciences, University of Essex, Wivenhoe, Colchester, Essex, CO4 3SQ, UK
| | - David E K Ferrier
- The Scottish Oceans Institute, Gatty Marine Laboratory, University of St Andrews, East Sands, St Andrews, Fife, KY16 8LB, UK.
| |
Collapse
|
100
|
Alonso J, Martinez M. Insights into the molecular evolution of peptidase inhibitors in arthropods. PLoS One 2017; 12:e0187643. [PMID: 29108008 PMCID: PMC5673224 DOI: 10.1371/journal.pone.0187643] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 10/23/2017] [Indexed: 11/19/2022] Open
Abstract
Peptidase inhibitors are key proteins involved in the control of peptidases. In arthropods, peptidase inhibitors modulate the activity of peptidases involved in endogenous physiological processes and peptidases of the organisms with which they interact. Exploring available arthropod genomic sequences is a powerful way to obtain the repertoire of peptidase inhibitors in every arthropod species and to understand the evolutionary mechanisms involved in the diversification of this kind of proteins. A genomic comparative analysis of peptidase inhibitors in species belonging to different arthropod taxonomic groups was performed. The results point out: i) species or clade-specific presence is shown for several families of peptidase inhibitors; ii) multidomain peptidase inhibitors are commonly found in many peptidase inhibitor families; iii) several families have a wide range of members in different arthropod species; iv) several peptidase inhibitor families show species-specific (or clade-specific) gene family expansions; v) functional divergence may be assumed for particular clades; vi) passive expansions may be used by natural selection to fix adaptations. In conclusion, conservation and divergence of duplicated genes and the potential recruitment as peptidase inhibitors of proteins from other families are the main mechanisms used by arthropods to fix diversity. This diversity would be associated to the control of target peptidases and, as consequence, to adapt to specific environments.
Collapse
Affiliation(s)
- Joaquin Alonso
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)—Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Campus Montegancedo UPM, Pozuelo de Alarcón (Madrid), Spain
| | - Manuel Martinez
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)—Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Campus Montegancedo UPM, Pozuelo de Alarcón (Madrid), Spain
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, UPM, Madrid, Spain
| |
Collapse
|