51
|
Orendáčová M, Kvašňák E. Effects of Transcranial Alternating Current Stimulation and Neurofeedback on Alpha (EEG) Dynamics: A Review. Front Hum Neurosci 2021; 15:628229. [PMID: 34305549 PMCID: PMC8297546 DOI: 10.3389/fnhum.2021.628229] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 06/03/2021] [Indexed: 12/14/2022] Open
Abstract
Transcranial alternating current stimulation (tACS) and neurofeedback (NFB) are two different types of non-invasive neuromodulation techniques, which can modulate brain activity and improve brain functioning. In this review, we compared the current state of knowledge related to the mechanisms of tACS and NFB and their effects on electroencephalogram (EEG) activity (online period/stimulation period) and on aftereffects (offline period/post/stimulation period), including the duration of their persistence and potential behavioral benefits. Since alpha bandwidth has been broadly studied in NFB and in tACS research, the studies of NFB and tACS in modulating alpha bandwidth were selected for comparing the online and offline effects of these two neuromodulation techniques. The factors responsible for variability in the responsiveness of the modulated EEG activity by tACS and NFB were analyzed and compared too. Based on the current literature related to tACS and NFB, it can be concluded that tACS and NFB differ a lot in the mechanisms responsible for their effects on an online EEG activity but they possibly share the common universal mechanisms responsible for the induction of aftereffects in the targeted stimulated EEG band, namely Hebbian and homeostatic plasticity. Many studies of both neuromodulation techniques report the aftereffects connected to the behavioral benefits. The duration of persistence of aftereffects for NFB and tACS is comparable. In relation to the factors influencing responsiveness to tACS and NFB, significantly more types of factors were analyzed in the NFB studies compared to the tACS studies. Several common factors for both tACS and NFB have been already investigated. Based on these outcomes, we propose several new research directions regarding tACS and NFB.
Collapse
Affiliation(s)
- Mária Orendáčová
- Department of Medical Biophysics and Medical Informatics, Third Faculty of Medicine, Charles University in Prague, Prague, Czechia
| | | |
Collapse
|
52
|
Thompson L, Khuc J, Saccani MS, Zokaei N, Cappelletti M. Gamma oscillations modulate working memory recall precision. Exp Brain Res 2021; 239:2711-2724. [PMID: 34223958 PMCID: PMC8448714 DOI: 10.1007/s00221-021-06051-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 01/25/2021] [Indexed: 12/13/2022]
Abstract
Working memory (WM)—the ability to keep information in mind for short periods of time—is linked to attention and inhibitory abilities, i.e., the capacity to ignore task-irrelevant information. These abilities have been associated with brain oscillations, especially parietal gamma and alpha bands, but it is yet unknown whether these oscillations also modulate attention and inhibitory abilities. To test this, we compared parietal gamma-transcranial alternating current stimulation (tACS) to alpha-tACS and to a non-stimulation condition (Sham) in 51 young participants. Stimulation was coupled with a WM task probing memory-based attention and inhibitory abilities by means of probabilistic retrospective cues, including informative (valid), uninformative (invalid) and neutral. Our results show that relative to alpha and sham stimulation, parietal gamma-tACS significantly increased working memory recall precision. Additional post hoc analyses also revealed strong individual variability before and following stimulation; low-baseline performers showed no significant changes in performance following both gamma and alpha-tACS relative to sham. In contrast, in high-baseline performers gamma- (but not alpha) tACS selectively and significantly improved misbinding-feature errors as well as memory precision, particularly in uninformative (invalid) cues which rely more strongly on attentional abilities. We concluded that parietal gamma oscillations, therefore, modulate working memory recall processes, although baseline performance may further influence the effect of stimulation.
Collapse
Affiliation(s)
- Lyall Thompson
- Department of Psychology, Goldsmiths, University of London, Lewisham Way, London, SE14 6NW, UK
| | - Janine Khuc
- Department of Psychology, Goldsmiths, University of London, Lewisham Way, London, SE14 6NW, UK
| | - Maria Silvia Saccani
- Department of Psychology, Goldsmiths, University of London, Lewisham Way, London, SE14 6NW, UK
| | - Nahid Zokaei
- Department of Experimental Psychology, South Parks Road, Oxford, OX1 3UD, UK.,Department of Psychiatry, Oxford Centre for Human Brain Activity, Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, OX3 7JX, UK
| | - Marinella Cappelletti
- Department of Psychology, Goldsmiths, University of London, Lewisham Way, London, SE14 6NW, UK. .,Institute of Cognitive Neuroscience, University College London, 17 Queen Square, London, WC1N 3AR, UK.
| |
Collapse
|
53
|
Salamanca-Giron RF, Raffin E, Zandvliet SB, Seeber M, Michel CM, Sauseng P, Huxlin KR, Hummel FC. Enhancing visual motion discrimination by desynchronizing bifocal oscillatory activity. Neuroimage 2021; 240:118299. [PMID: 34171500 DOI: 10.1016/j.neuroimage.2021.118299] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 06/11/2021] [Accepted: 06/20/2021] [Indexed: 11/17/2022] Open
Abstract
Visual motion discrimination involves reciprocal interactions in the alpha band between the primary visual cortex (V1) and mediotemporal areas (V5/MT). We investigated whether modulating alpha phase synchronization using individualized multisite transcranial alternating current stimulation (tACS) over V5 and V1 regions would improve motion discrimination. We tested 3 groups of healthy subjects with the following conditions: (1) individualized In-Phase V1alpha-V5alpha tACS (0° lag), (2) individualized Anti-Phase V1alpha-V5alpha tACS (180° lag) and (3) sham tACS. Motion discrimination and EEG activity were recorded before, during and after tACS. Performance significantly improved in the Anti-Phase group compared to the In-Phase group 10 and 30 min after stimulation. This result was explained by decreases in bottom-up alpha-V1 gamma-V5 phase-amplitude coupling. One possible explanation of these results is that Anti-Phase V1alpha-V5alpha tACS might impose an optimal phase lag between stimulation sites due to the inherent speed of wave propagation, hereby supporting optimized neuronal communication.
Collapse
Affiliation(s)
- Roberto F Salamanca-Giron
- Defitech Chair in Clinical Neuroengineering, Center for Neuroprosthetics and Brain Mind Institute, Swiss Federal Institute of Technology (EPFL), Campus Biotech, Room H4.3.132.084, Chemin des Mines 9, Geneva, Switzerland; Defitech Chair in Clinical Neuroengineering, Center for Neuroprosthetics and Brain Mind Institute, Clinique Romande de Readaptation (CRR), EPFL Valais, Sion, Switzerland
| | - Estelle Raffin
- Defitech Chair in Clinical Neuroengineering, Center for Neuroprosthetics and Brain Mind Institute, Swiss Federal Institute of Technology (EPFL), Campus Biotech, Room H4.3.132.084, Chemin des Mines 9, Geneva, Switzerland; Defitech Chair in Clinical Neuroengineering, Center for Neuroprosthetics and Brain Mind Institute, Clinique Romande de Readaptation (CRR), EPFL Valais, Sion, Switzerland
| | - Sarah B Zandvliet
- Defitech Chair in Clinical Neuroengineering, Center for Neuroprosthetics and Brain Mind Institute, Swiss Federal Institute of Technology (EPFL), Campus Biotech, Room H4.3.132.084, Chemin des Mines 9, Geneva, Switzerland; Defitech Chair in Clinical Neuroengineering, Center for Neuroprosthetics and Brain Mind Institute, Clinique Romande de Readaptation (CRR), EPFL Valais, Sion, Switzerland
| | - Martin Seeber
- Functional Brain Mapping Lab, Department of Fundamental Neurosciences, University of Geneva, Campus Biotech, Chemin des Mines 9, 1202, Geneva, Switzerland
| | - Christoph M Michel
- Functional Brain Mapping Lab, Department of Fundamental Neurosciences, University of Geneva, Campus Biotech, Chemin des Mines 9, 1202, Geneva, Switzerland; Lemanic Biomedical Imaging Centre (CIBM), Lausanne, Geneva, Switzerland
| | - Paul Sauseng
- Department of Psychology, LMU Munich, Leopoldstr. 13, Munich 80802, Germany
| | - Krystel R Huxlin
- The Flaum Eye Institute and Center for Visual Science, University of Rochester, Rochester, NY, USA
| | - Friedhelm C Hummel
- Defitech Chair in Clinical Neuroengineering, Center for Neuroprosthetics and Brain Mind Institute, Swiss Federal Institute of Technology (EPFL), Campus Biotech, Room H4.3.132.084, Chemin des Mines 9, Geneva, Switzerland; Defitech Chair in Clinical Neuroengineering, Center for Neuroprosthetics and Brain Mind Institute, Clinique Romande de Readaptation (CRR), EPFL Valais, Sion, Switzerland; Clinical Neuroscience, University of Geneva Medical School, Geneva, Switzerland.
| |
Collapse
|
54
|
Wu L, Liu T, Wang J. Improving the Effect of Transcranial Alternating Current Stimulation (tACS): A Systematic Review. Front Hum Neurosci 2021; 15:652393. [PMID: 34163340 PMCID: PMC8215166 DOI: 10.3389/fnhum.2021.652393] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 04/26/2021] [Indexed: 11/15/2022] Open
Abstract
With the development of electrical stimulation technology, traditional transcranial alternating current stimulation (tACS) technology has been found to have the drawback of not targeting a specific area accurately. Studies have shown that optimizing the number and position of electrodes during electrical stimulation has a very good effect on enhancing brain stimulation accuracy. At present, an increasing number of laboratories have begun to optimize tACS. However, there has been no study summarizing the optimization methods of tACS. Determining whether different optimization methods are effective and the optimization approach could provide information that could guide future tACS research. We describe the results of recent research on tACS optimization and integrate the optimization approaches of tACS in recent research. Optimization approaches can be classified into two groups: high-definition electrical stimulation and interference modulation electrical stimulation. The optimization methods can be divided into five categories: high-definition tACS, phase-shifted tACS, amplitude-modulated tACS, the temporally interfering (TI) method, and the intersectional short pulse (ISP) method. Finally, we summarize the latest research on hardware useful for tACS improvement and outline future directions.
Collapse
Affiliation(s)
- Linyan Wu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Health and Rehabilitation Science, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China.,National Engineering Research Center of Health Care and Medical Devices, Guangzhou, China.,The Key Laboratory of Neuro-informatics & Rehabilitation Engineering of Ministry of Civil Affairs, Xi'an, China
| | - Tian Liu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Health and Rehabilitation Science, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China.,National Engineering Research Center of Health Care and Medical Devices, Guangzhou, China.,The Key Laboratory of Neuro-informatics & Rehabilitation Engineering of Ministry of Civil Affairs, Xi'an, China
| | - Jue Wang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Health and Rehabilitation Science, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China.,National Engineering Research Center of Health Care and Medical Devices, Guangzhou, China.,The Key Laboratory of Neuro-informatics & Rehabilitation Engineering of Ministry of Civil Affairs, Xi'an, China
| |
Collapse
|
55
|
Holzmann R, Koppehele-Gossel J, Voss U, Klimke A. Investigating Nuisance Effects Induced in EEG During tACS Application. Front Hum Neurosci 2021; 15:637080. [PMID: 34122026 PMCID: PMC8193977 DOI: 10.3389/fnhum.2021.637080] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 03/17/2021] [Indexed: 11/13/2022] Open
Abstract
Transcranial alternating-current stimulation (tACS) in the frequency range of 1-100 Hz has come to be used routinely in electroencephalogram (EEG) studies of brain function through entrainment of neuronal oscillations. It turned out, however, to be highly non-trivial to remove the strong stimulation signal, including its harmonic and non-harmonic distortions, as well as various induced higher-order artifacts from the EEG data recorded during the stimulation. In this paper, we discuss some of the problems encountered and present methodological approaches aimed at overcoming them. To illustrate the mechanisms of artifact induction and the proposed removal strategies, we use data obtained with the help of a schematic demonstrator setup as well as human-subject data.
Collapse
Affiliation(s)
- Romain Holzmann
- GSI Helmholtzzentrum für Schwerionenforschung GmbH, Darmstadt, Germany
| | | | - Ursula Voss
- Vitos Hochtaunuskliniken, Friederichsdorf, Germany
- Department of Psychology, J. W. Goethe-Universität, Frankfurt am Main, Germany
| | - Ansgar Klimke
- Vitos Hochtaunuskliniken, Friederichsdorf, Germany
- Department of Psychiatry, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
56
|
Using fast visual rhythmic stimulation to control inter-hemispheric phase offsets in visual areas. Neuropsychologia 2021; 157:107863. [PMID: 33872643 DOI: 10.1016/j.neuropsychologia.2021.107863] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 04/12/2021] [Accepted: 04/12/2021] [Indexed: 11/24/2022]
Abstract
Spike timing dependent plasticity (STDP) is believed to be important for neural communication and plasticity in human episodic memory, but causal evidence is lacking due to technical challenges. Rhythmic sensory stimulation that has been used to investigate causal relations between oscillations and cognition may be able to address this question. The challenge, however, is that the frequency corresponding to the critical time window for STDP is gamma (~40 Hz), yet the application of rhythmic sensory stimulation has been limited primarily to lower frequencies (<30 Hz). It remains unknown whether this method can be applied to precisely control the activation time delay between distant groups of neurons at a millisecond scale. To answer this question and examine the role of STDP in human episodic memory, we simulated the STDP function by controlling the activation time delay between the left and right visual cortices during memory encoding. This was achieved by presenting flickering (37.5 Hz) movie pairs in the left and right visual fields with a phase lag of either 0, 90, 180 or 270°. Participants were asked to memorize the two movies within each pair and the association was later tested. Behavioral results revealed no significant difference in memory performance across conditions with different degrees of gamma phase synchrony. Yet importantly, our study showed for the first time, that oscillatory activity can be driven with a precision of 6.67 ms delay between neuronal groups. Our method hereby provides an approach to investigate relations between precise neuronal timing and cognitive functions.
Collapse
|
57
|
Hosseinian T, Yavari F, Biagi MC, Kuo MF, Ruffini G, Nitsche MA, Jamil A. External induction and stabilization of brain oscillations in the human. Brain Stimul 2021; 14:579-587. [PMID: 33781955 PMCID: PMC8144019 DOI: 10.1016/j.brs.2021.03.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 02/18/2021] [Accepted: 03/18/2021] [Indexed: 11/26/2022] Open
Abstract
Background Neural oscillations in the cerebral cortex are associated with a range of cognitive processes and neuropsychiatric disorders. However, non-invasively modulating oscillatory activity remains technically challenging, due to limited strength, duration, or non-synchronization of stimulation waveforms with endogenous rhythms. Objective We hypothesized that applying controllable phase-synchronized repetitive transcranial magnetic stimulation pulses (rTMS) with alternating currents (tACS) may induce and stabilize neuro-oscillatory resting-state activity at targeted frequencies. Methods Using a novel circuit to precisely synchronize rTMS pulses with phase of tACS, we empirically tested whether combined, 10-Hz prefrontal bilateral stimulation could induce and stabilize 10-Hz oscillations in the bilateral prefrontal cortex (PFC). 25 healthy participants took part in a repeated-measures design. Whole-brain resting-state EEG in eyes-open (EO) and eyes-closed (EC) was recorded before (baseline), immediately (1-min), and 15- and 30-min after stimulation. Bilateral, phase-synchronized rTMS aligned to the positive tACS peak was compared with rTMS at tACS trough, with bilateral tACS or rTMS on its own, and to sham. Results 10-Hz resting-state PFC power increased significantly with peak-synchronized rTMS + tACS (EO: 44.64%, EC: 46.30%, p < 0.05) compared to each stimulation protocol on its own, and sham, with effects spanning between prefrontal and parietal regions and sustaining throughout 30-min. No effects were observed with the sham protocol. Moreover, rTMS timed to the negative tACS trough did not induce local or global changes in oscillations. Conclusion Phase-synchronizing rTMS with tACS may be a viable approach for inducing and stabilizing neuro-oscillatory activity, particularly in scenarios where endogenous oscillatory tone is attenuated, such as disorders of consciousness or major depression. Non-invasively inducing and stabilizing neural oscillations remains challenging. We develop a controllable phase-synchronized circuit to combine rTMS and tACS. This circuit was tested for inducing 10 Hz oscillations in healthy prefrontal cortex. 10 Hz rTMS synchronized to the positive 10 Hz tACS peak induced stable after-effects. Phase-synchronized stimulation is a viable approach for oscillatory neuromodulation.
Collapse
Affiliation(s)
- Tiam Hosseinian
- Dept. Psychology and Neurosciences, Leibniz Research Centre for Working Environment and Human Factors. Dortmund, Germany
| | - Fatemeh Yavari
- Dept. Psychology and Neurosciences, Leibniz Research Centre for Working Environment and Human Factors. Dortmund, Germany
| | | | - Min-Fang Kuo
- Dept. Psychology and Neurosciences, Leibniz Research Centre for Working Environment and Human Factors. Dortmund, Germany
| | | | - Michael A Nitsche
- Dept. Psychology and Neurosciences, Leibniz Research Centre for Working Environment and Human Factors. Dortmund, Germany; Dept. Neurology, University Medical Hospital Bergmannsheil, Bochum, Germany.
| | - Asif Jamil
- Dept. Psychology and Neurosciences, Leibniz Research Centre for Working Environment and Human Factors. Dortmund, Germany; Laboratory for Neuropsychiatry & Neuromodulation, Harvard Medical School/Massachusetts General Hospital, Boston, MA, USA.
| |
Collapse
|
58
|
Ghiani A, Maniglia M, Battaglini L, Melcher D, Ronconi L. Binding Mechanisms in Visual Perception and Their Link With Neural Oscillations: A Review of Evidence From tACS. Front Psychol 2021; 12:643677. [PMID: 33828509 PMCID: PMC8019716 DOI: 10.3389/fpsyg.2021.643677] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 02/22/2021] [Indexed: 12/14/2022] Open
Abstract
Neurophysiological studies in humans employing magneto- (MEG) and electro- (EEG) encephalography increasingly suggest that oscillatory rhythmic activity of the brain may be a core mechanism for binding sensory information across space, time, and object features to generate a unified perceptual representation. To distinguish whether oscillatory activity is causally related to binding processes or whether, on the contrary, it is a mere epiphenomenon, one possibility is to employ neuromodulatory techniques such as transcranial alternating current stimulation (tACS). tACS has seen a rising interest due to its ability to modulate brain oscillations in a frequency-dependent manner. In the present review, we critically summarize current tACS evidence for a causal role of oscillatory activity in spatial, temporal, and feature binding in the context of visual perception. For temporal binding, the emerging picture supports a causal link with the power and the frequency of occipital alpha rhythms (8-12 Hz); however, there is no consistent evidence on the causal role of the phase of occipital tACS. For feature binding, the only study available showed a modulation by occipital alpha tACS. The majority of studies that successfully modulated oscillatory activity and behavioral performance in spatial binding targeted parietal areas, with the main rhythms causally linked being the theta (~7 Hz) and beta (~18 Hz) frequency bands. On the other hand, spatio-temporal binding has been directly modulated by parieto-occipital gamma (~40-60 Hz) and alpha (10 Hz) tACS, suggesting a potential role of cross-frequency coupling when binding across space and time. Nonetheless, negative or partial results have also been observed, suggesting methodological limitations that should be addressed in future research. Overall, the emerging picture seems to support a causal role of brain oscillations in binding processes and, consequently, a certain degree of plasticity for shaping binding mechanisms in visual perception, which, if proved to have long lasting effects, can find applications in different clinical populations.
Collapse
Affiliation(s)
- Andrea Ghiani
- Department of General Psychology, University of Padua, Padua, Italy
| | - Marcello Maniglia
- Department of Psychology, University of California, Riverside, Riverside, CA, United States
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Luca Battaglini
- Department of General Psychology, University of Padua, Padua, Italy
- Neuro Vis.U.S. Laboratory, University of Padua, Padua, Italy
- Department of Physics and Astronomy “Galileo Galilei”, University of Padua, Padua, Italy
| | - David Melcher
- Center for Mind/Brain Sciences and Department of Psychology and Cognitive Science, University of Trento, Trento, Italy
- Psychology Program, Division of Science, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Luca Ronconi
- School of Psychology, Vita-Salute San Raffaele University, Milan, Italy
- Division of Neuroscience, Istituto di Ricovero e Cura a Carattere Scientifico, San Raffaele Hospital, Milan, Italy
| |
Collapse
|
59
|
Saito K, Otsuru N, Yokota H, Inukai Y, Miyaguchi S, Kojima S, Onishi H. α-tACS over the somatosensory cortex enhances tactile spatial discrimination in healthy subjects with low alpha activity. Brain Behav 2021; 11:e02019. [PMID: 33405361 PMCID: PMC7994706 DOI: 10.1002/brb3.2019] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 10/28/2020] [Accepted: 12/17/2020] [Indexed: 12/15/2022] Open
Abstract
INTRODUCTION Spontaneous oscillations in the somatosensory cortex, especially of the alpha (8 - 14 Hz) and gamma (60 - 80 Hz) frequencies, affect tactile perception; moreover, these oscillations can be selectively modulated by frequency-matched transcranial alternating current stimulation (tACS) on the basis of ongoing oscillatory brain activity. To examine whether tACS can actually improve tactile perception via alpha and gamma modulation, we measured the effects of 10-Hz and 70-Hz tACS (α- and γ-tACS) on the left somatosensory cortex on right-finger tactile spatial orientation discrimination, and the associations between performance changes and individual alpha and gamma activities. METHODS Fifteen neurologically healthy subjects were recruited into this study. Electroencephalography (EEG) was performed before the first day, to assess the normal alpha- and gamma-activity levels. A grating orientation discrimination task was performed before and during 10-Hz and 70-Hz tACS. RESULTS The 10-Hz tACS protocol decreased the grating orientation discrimination threshold, primarily in subjects with low alpha event-related synchronization (ERS). In contrast, the 70-Hz tACS had no effect on the grating orientation discrimination threshold. CONCLUSIONS This study showed that 10-Hz tACS can improve tactile orientation discrimination in subjects with low alpha activity. Alpha-frequency tACS may help identify the contributions of these oscillations to other neurophysiological and pathological processes.
Collapse
Affiliation(s)
- Kei Saito
- Department of Physical Therapy, Niigata University of Health and Welfare, Niigata, Japan.,Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan
| | - Naofumi Otsuru
- Department of Physical Therapy, Niigata University of Health and Welfare, Niigata, Japan.,Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan
| | - Hirotake Yokota
- Department of Physical Therapy, Niigata University of Health and Welfare, Niigata, Japan.,Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan
| | - Yasuto Inukai
- Department of Physical Therapy, Niigata University of Health and Welfare, Niigata, Japan.,Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan
| | - Shota Miyaguchi
- Department of Physical Therapy, Niigata University of Health and Welfare, Niigata, Japan.,Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan
| | - Sho Kojima
- Department of Physical Therapy, Niigata University of Health and Welfare, Niigata, Japan.,Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan
| | - Hideaki Onishi
- Department of Physical Therapy, Niigata University of Health and Welfare, Niigata, Japan.,Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan
| |
Collapse
|
60
|
Online and offline effects of transcranial alternating current stimulation of the primary motor cortex. Sci Rep 2021; 11:3854. [PMID: 33594133 PMCID: PMC7887242 DOI: 10.1038/s41598-021-83449-w] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 01/05/2021] [Indexed: 01/31/2023] Open
Abstract
Transcranial alternating current stimulation (tACS) is a non-invasive brain stimulation technique that allows interaction with endogenous cortical oscillatory rhythms by means of external sinusoidal potentials. The physiological mechanisms underlying tACS effects are still under debate. Whereas online (e.g., ongoing) tACS over the motor cortex induces robust state-, phase- and frequency-dependent effects on cortical excitability, the offline effects (i.e. after-effects) of tACS are less clear. Here, we explored online and offline effects of tACS in two single-blind, sham-controlled experiments. In both experiments we used neuronavigated transcranial magnetic stimulation (TMS) of the primary motor cortex (M1) as a probe to index changes of cortical excitability and delivered M1 tACS at 10 Hz (alpha), 20 Hz (beta) and sham (30 s of low-frequency transcranial random noise stimulation; tRNS). Corticospinal excitability was measured by single pulse TMS-induced motor evoked potentials (MEPs). tACS was delivered online in Experiment 1 and offline in Experiment 2. In Experiment 1, the increase of MEPs size was maximal with the 20 Hz stimulation, however in Experiment 2 neither the 10 Hz nor the 20 Hz stimulation induced tACS offline effects. These findings support the idea that tACS affects cortical excitability only during online application, at least when delivered on the scalp overlying M1, thereby contributing to the development of effective protocols that can be applied to clinical populations.
Collapse
|
61
|
Preisig BC, Riecke L, Sjerps MJ, Kösem A, Kop BR, Bramson B, Hagoort P, Hervais-Adelman A. Selective modulation of interhemispheric connectivity by transcranial alternating current stimulation influences binaural integration. Proc Natl Acad Sci U S A 2021; 118:e2015488118. [PMID: 33568530 PMCID: PMC7896308 DOI: 10.1073/pnas.2015488118] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Brain connectivity plays a major role in the encoding, transfer, and integration of sensory information. Interregional synchronization of neural oscillations in the γ-frequency band has been suggested as a key mechanism underlying perceptual integration. In a recent study, we found evidence for this hypothesis showing that the modulation of interhemispheric oscillatory synchrony by means of bihemispheric high-density transcranial alternating current stimulation (HD-TACS) affects binaural integration of dichotic acoustic features. Here, we aimed to establish a direct link between oscillatory synchrony, effective brain connectivity, and binaural integration. We experimentally manipulated oscillatory synchrony (using bihemispheric γ-TACS with different interhemispheric phase lags) and assessed the effect on effective brain connectivity and binaural integration (as measured with functional MRI and a dichotic listening task, respectively). We found that TACS reduced intrahemispheric connectivity within the auditory cortices and antiphase (interhemispheric phase lag 180°) TACS modulated connectivity between the two auditory cortices. Importantly, the changes in intra- and interhemispheric connectivity induced by TACS were correlated with changes in perceptual integration. Our results indicate that γ-band synchronization between the two auditory cortices plays a functional role in binaural integration, supporting the proposed role of interregional oscillatory synchrony in perceptual integration.
Collapse
Affiliation(s)
- Basil C Preisig
- Donders Institute for Brain, Cognition, and Behaviour, Radboud University, 6500 HB Nijmegen, The Netherlands;
- Max Planck Institute for Psycholinguistics, 6525 XD Nijmegen, The Netherlands
- Department of Psychology, Neurolinguistics, University of Zurich, 8050 Zurich, Switzerland
| | - Lars Riecke
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, 6229 GT Maastricht, The Netherlands
| | - Matthias J Sjerps
- Donders Institute for Brain, Cognition, and Behaviour, Radboud University, 6500 HB Nijmegen, The Netherlands
- Max Planck Institute for Psycholinguistics, 6525 XD Nijmegen, The Netherlands
| | - Anne Kösem
- Donders Institute for Brain, Cognition, and Behaviour, Radboud University, 6500 HB Nijmegen, The Netherlands
- Max Planck Institute for Psycholinguistics, 6525 XD Nijmegen, The Netherlands
- Lyon Neuroscience Research Center, Cognition Computation and Neurophysiology Team, Université Claude Bernard Lyon 1, 69500 Bron, France
| | - Benjamin R Kop
- Donders Institute for Brain, Cognition, and Behaviour, Radboud University, 6500 HB Nijmegen, The Netherlands
| | - Bob Bramson
- Donders Institute for Brain, Cognition, and Behaviour, Radboud University, 6500 HB Nijmegen, The Netherlands
| | - Peter Hagoort
- Donders Institute for Brain, Cognition, and Behaviour, Radboud University, 6500 HB Nijmegen, The Netherlands
- Max Planck Institute for Psycholinguistics, 6525 XD Nijmegen, The Netherlands
| | - Alexis Hervais-Adelman
- Department of Psychology, Neurolinguistics, University of Zurich, 8050 Zurich, Switzerland
- Neuroscience Center Zurich, University of Zurich and Eidgenössische Technische Hochschule Zurich, 8057 Zurich, Switzerland
| |
Collapse
|
62
|
Sanches C, Stengel C, Godard J, Mertz J, Teichmann M, Migliaccio R, Valero-Cabré A. Past, Present, and Future of Non-invasive Brain Stimulation Approaches to Treat Cognitive Impairment in Neurodegenerative Diseases: Time for a Comprehensive Critical Review. Front Aging Neurosci 2021; 12:578339. [PMID: 33551785 PMCID: PMC7854576 DOI: 10.3389/fnagi.2020.578339] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 10/07/2020] [Indexed: 12/14/2022] Open
Abstract
Low birth rates and increasing life expectancy experienced by developed societies have placed an unprecedented pressure on governments and the health system to deal effectively with the human, social and financial burden associated to aging-related diseases. At present, ∼24 million people worldwide suffer from cognitive neurodegenerative diseases, a prevalence that doubles every five years. Pharmacological therapies and cognitive training/rehabilitation have generated temporary hope and, occasionally, proof of mild relief. Nonetheless, these approaches are yet to demonstrate a meaningful therapeutic impact and changes in prognosis. We here review evidence gathered for nearly a decade on non-invasive brain stimulation (NIBS), a less known therapeutic strategy aiming to limit cognitive decline associated with neurodegenerative conditions. Transcranial Magnetic Stimulation and Transcranial Direct Current Stimulation, two of the most popular NIBS technologies, use electrical fields generated non-invasively in the brain to long-lastingly enhance the excitability/activity of key brain regions contributing to relevant cognitive processes. The current comprehensive critical review presents proof-of-concept evidence and meaningful cognitive outcomes of NIBS in eight of the most prevalent neurodegenerative pathologies affecting cognition: Alzheimer's Disease, Parkinson's Disease, Dementia with Lewy Bodies, Primary Progressive Aphasias (PPA), behavioral variant of Frontotemporal Dementia, Corticobasal Syndrome, Progressive Supranuclear Palsy, and Posterior Cortical Atrophy. We analyzed a total of 70 internationally published studies: 33 focusing on Alzheimer's disease, 19 on PPA and 18 on the remaining neurodegenerative pathologies. The therapeutic benefit and clinical significance of NIBS remains inconclusive, in particular given the lack of a sufficient number of double-blind placebo-controlled randomized clinical trials using multiday stimulation regimes, the heterogeneity of the protocols, and adequate behavioral and neuroimaging response biomarkers, able to show lasting effects and an impact on prognosis. The field remains promising but, to make further progress, research efforts need to take in account the latest evidence of the anatomical and neurophysiological features underlying cognitive deficits in these patient populations. Moreover, as the development of in vivo biomarkers are ongoing, allowing for an early diagnosis of these neuro-cognitive conditions, one could consider a scenario in which NIBS treatment will be personalized and made part of a cognitive rehabilitation program, or useful as a potential adjunct to drug therapies since the earliest stages of suh diseases. Research should also integrate novel knowledge on the mechanisms and constraints guiding the impact of electrical and magnetic fields on cerebral tissues and brain activity, and incorporate the principles of information-based neurostimulation.
Collapse
Affiliation(s)
- Clara Sanches
- Cerebral Dynamics, Plasticity and Rehabilitation Group, FRONTLAB Team, CNRS UMR 7225, INSERM U 1127, Institut du Cerveau, Sorbonne Universités, Paris, France
| | - Chloé Stengel
- Cerebral Dynamics, Plasticity and Rehabilitation Group, FRONTLAB Team, CNRS UMR 7225, INSERM U 1127, Institut du Cerveau, Sorbonne Universités, Paris, France
| | - Juliette Godard
- Cerebral Dynamics, Plasticity and Rehabilitation Group, FRONTLAB Team, CNRS UMR 7225, INSERM U 1127, Institut du Cerveau, Sorbonne Universités, Paris, France
| | - Justine Mertz
- Cerebral Dynamics, Plasticity and Rehabilitation Group, FRONTLAB Team, CNRS UMR 7225, INSERM U 1127, Institut du Cerveau, Sorbonne Universités, Paris, France
| | - Marc Teichmann
- Cerebral Dynamics, Plasticity and Rehabilitation Group, FRONTLAB Team, CNRS UMR 7225, INSERM U 1127, Institut du Cerveau, Sorbonne Universités, Paris, France
- National Reference Center for Rare or Early Onset Dementias, Department of Neurology, Institute of Memory and Alzheimer’s Disease, Pitié-Salpêtrière Hospital, Assistance Publique -Hôpitaux de Paris, Paris, France
| | - Raffaella Migliaccio
- Cerebral Dynamics, Plasticity and Rehabilitation Group, FRONTLAB Team, CNRS UMR 7225, INSERM U 1127, Institut du Cerveau, Sorbonne Universités, Paris, France
- National Reference Center for Rare or Early Onset Dementias, Department of Neurology, Institute of Memory and Alzheimer’s Disease, Pitié-Salpêtrière Hospital, Assistance Publique -Hôpitaux de Paris, Paris, France
| | - Antoni Valero-Cabré
- Cerebral Dynamics, Plasticity and Rehabilitation Group, FRONTLAB Team, CNRS UMR 7225, INSERM U 1127, Institut du Cerveau, Sorbonne Universités, Paris, France
- Laboratory for Cerebral Dynamics Plasticity & Rehabilitation, Boston University School of Medicine, Boston, MA, United States
- Cognitive Neuroscience and Information Technology Research Program, Open University of Catalonia, Barcelona, Spain
| |
Collapse
|
63
|
Trofimov AO, Kopylov AA, Martynov DS, Zorkova AV, Trofimova K, Cheremuhin PN, Bragin DE. The Changes in Brain Oxygenation During Transcranial Alternating Current Stimulation as Consequences of Traumatic Brain Injury: A Near-Infrared Spectroscopy Study. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1269:235-239. [PMID: 33966223 PMCID: PMC9126087 DOI: 10.1007/978-3-030-48238-1_37] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The aim was to evaluate the changes in brain tissue oxygenation, assessed by near-infrared spectroscopy (NIRS), during transcranial alternating current stimulation (tACS) in patients with mild and moderate traumatic brain injury (TBI). Nineteen patients with diffuse, blunt, non-severe TBI (mean age 32.7 ± 11.4 years; 4 women and 15 men; Glasgow Coma Score before tACS 14.1 ± 0.5) were treated by 10 Hz in-phase tACS applied for 30 minutes to the left and right lateral prefrontal cortex at 21 days after TBI. Regional cerebral tissue oxygen saturation (SctO2) in the frontal lobes was measured simultaneously by the cerebral oximeter. Significance was preset to P < 0.05. The SctO2 values before tACS were not different between hemispheres ~65%. After 15 minutes of tACS, a significant (p < 0.05) decrease in regional SctO2 was observed with the minimum at the eighth minute of 53.4 ± 3.2% and 53.4 ± 3.2% in the left and right hemispheres, respectively. At the end of the stimulation (30 minutes), the hemispheric differences in cerebral oxygen saturation became statistically insignificant again (p > 0.05). Therefore, tACS causes a significant decrease in SctO2, probably, due to neuronal activation. Our data indicate that tACS may need to be supplemented with oxygen therapy. Further research is required.
Collapse
Affiliation(s)
- Alex O Trofimov
- Department of Neurosurgery, Privolzhsky Research Medical University, Nizhny Novgorod, Russia
- Department of Neurosurgery, Regional Hospital named after Semashko, Nizhny Novgorod, Russia
| | - Arthem A Kopylov
- Department of Neurosurgery, Privolzhsky Research Medical University, Nizhny Novgorod, Russia
| | - Dmitry S Martynov
- Nizhny Novgorod State Technical University named after R.E. Alekseev, Nizhny Novgorod, Russia
| | - Anna V Zorkova
- Department of Neurosurgery, Privolzhsky Research Medical University, Nizhny Novgorod, Russia
| | - Ksenia Trofimova
- Department of Neurosurgery, Privolzhsky Research Medical University, Nizhny Novgorod, Russia
| | - Peter N Cheremuhin
- Department of Neurosurgery, Regional Hospital named after Semashko, Nizhny Novgorod, Russia
| | - Denis E Bragin
- Lovelace Biomedical Research Institute, Albuquerque, NM, USA
- University of New Mexico School of Medicine, Departments of Neurology and Neurosurgery, Albuquerque, NM, USA
| |
Collapse
|
64
|
Roelofs CL, Krepel N, Corlier J, Carpenter LL, Fitzgerald PB, Daskalakis ZJ, Tendolkar I, Wilson A, Downar J, Bailey NW, Blumberger DM, Vila-Rodriguez F, Leuchter AF, Arns M. Individual alpha frequency proximity associated with repetitive transcranial magnetic stimulation outcome: An independent replication study from the ICON-DB consortium. Clin Neurophysiol 2020; 132:643-649. [PMID: 33243617 DOI: 10.1016/j.clinph.2020.10.017] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 09/28/2020] [Accepted: 10/01/2020] [Indexed: 12/17/2022]
Abstract
OBJECTIVE The aim of the current study was to attempt to replicate the finding that the individual alpha frequency (IAF) as well as the absolute difference between IAF and 10 Hz stimulation frequency (IAF-prox) is related to treatment outcome. METHODS Correlations were performed to investigate the relationship between IAF-prox and percentage symptom improvement in a sample of 153 patients with major depressive disorder treated with 10 Hz (N = 59) to the left dorsolateral prefrontal cortex (DLPFC) or 1 Hz (N = 94) to the right DLPFC repetitive Transcranial Magnetic Stimulation (rTMS). RESULTS There was a significant negative correlation between IAF-prox and the percentage of symptom improvement only for the 10 Hz group. Curve fitting models revealed that there was a quadratic association between IAF and treatment response in the 10 Hz group, with a peak at 10 Hz IAF. CONCLUSION The main result of Corlier and colleagues was replicated, and the findings suggest that the distance between 10 Hz stimulation frequency and the IAF may influence clinical outcome in a non-linear manner. SIGNIFICANCE rTMS is often administered at a frequency of 10 Hz, which is the center of the EEG alpha frequency band. The results can make a significant contribution to optimizing the clinical application of rTMS.
Collapse
Affiliation(s)
- Charlotte L Roelofs
- Research Institute Brainclinics, Brainclinics Foundation, Nijmegen, the Netherlands
| | - Noralie Krepel
- Research Institute Brainclinics, Brainclinics Foundation, Nijmegen, the Netherlands; Dept. of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, the Netherlands
| | - Juliana Corlier
- TMS Clinical and Research Program, Neuromodulation Division, Semel Institute for Neuroscience and Human Behavior at UCLA, Dept. of Psychiatry & Biobehavioral Sciences, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Linda L Carpenter
- Butler Hospital Mood Disorders Research Program and Neuromodulation Research Facility, Dept. of Psychiatry and Human Behavior Alpert Medical School of Brown University, Providence, RI, USA
| | - Paul B Fitzgerald
- Epworth Centre for Innovation in Mental Health, Epworth HealthCare and Monash University Department of Psychiatry, Camberwell, VIC, Australia
| | - Zafiris J Daskalakis
- Dept. of Psychiatry, University of Toronto, Toronto, ON, Canada; Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Indira Tendolkar
- Donders Institute for Brain, Cognition and Behavior, Dept. of Psychiatry, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Andrew Wilson
- TMS Clinical and Research Program, Neuromodulation Division, Semel Institute for Neuroscience and Human Behavior at UCLA, Dept. of Psychiatry & Biobehavioral Sciences, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Jonathan Downar
- Dept. of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Neil W Bailey
- Monash Alfred Psychiatry Research Centre, Central Clinical School, Monash University and Alfred Hospital, Melbourne, Australia, Epworth Centre for Innovation in Mental Health, Epworth HealthCare, VIC, Australia
| | - Daniel M Blumberger
- Dept. of Psychiatry, University of Toronto, Toronto, ON, Canada; Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Fidel Vila-Rodriguez
- Non-Invasive Neurostimulation Therapies Laboratory, Dept. Psychiatry, The University of British Columbia, Vancouver, BC, Canada
| | - Andrew F Leuchter
- TMS Clinical and Research Program, Neuromodulation Division, Semel Institute for Neuroscience and Human Behavior at UCLA, Dept. of Psychiatry & Biobehavioral Sciences, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Martijn Arns
- Research Institute Brainclinics, Brainclinics Foundation, Nijmegen, the Netherlands; Dept. of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, the Netherlands; Amsterdam UMC, University of Amsterdam, Department of Psychiatry, Location AMC, Amsterdam Neuroscience, Amsterdam, the Netherlands.
| |
Collapse
|
65
|
Reduction of somatosensory functional connectivity by transcranial alternating current stimulation at endogenous mu-frequency. Neuroimage 2020; 221:117175. [DOI: 10.1016/j.neuroimage.2020.117175] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 06/19/2020] [Accepted: 07/14/2020] [Indexed: 12/19/2022] Open
|
66
|
van der Plas M, Wang D, Brittain JS, Hanslmayr S. Investigating the role of phase-synchrony during encoding of episodic memories using electrical stimulation. Cortex 2020; 133:37-47. [PMID: 33099074 DOI: 10.1016/j.cortex.2020.09.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 06/03/2020] [Accepted: 09/15/2020] [Indexed: 01/15/2023]
Abstract
The multi-sensory nature of episodic memories indicates that communication between a multitude of brain areas is required for their effective creation and recollection. Previous studies have suggested that the effectiveness of memory processes depends on theta synchronization (4 Hz) of sensory areas relevant to the memory. This study aimed to manipulate theta synchronization between different sensory areas in order to further test this hypothesis. We intend to entrain visual cortex with 4 Hz alternating current stimulation (tACS), while simultaneously entraining auditory cortex with 4 Hz amplitude-modulated sounds. By entraining these different sensory areas, which pertain to learned audio-visual memory associations, we expect to find that when theta is synchronized across the different sensory areas, the memory performance would be enhanced compared to when theta is not synchronized across the sensory areas. We found no evidence for such an effect in this study. It is unclear whether this is due to an inability of 4 Hz tACS to entrain the visual cortex reliably, or whether sensory entrainment is not the underlying mechanism required for episodic memory.
Collapse
Affiliation(s)
- Mircea van der Plas
- School of Psychology, University of Birmingham, Edgbaston, Birmingham, United Kingdom; Centre for Human Brain Health, University of Birmingham, Edgbaston, Birmingham, United Kingdom; Centre for Cognitive Neuroimaging, University of Glasgow, Glasgow, United Kingdom
| | - Danying Wang
- School of Psychology, University of Birmingham, Edgbaston, Birmingham, United Kingdom; Centre for Human Brain Health, University of Birmingham, Edgbaston, Birmingham, United Kingdom; Centre for Cognitive Neuroimaging, University of Glasgow, Glasgow, United Kingdom
| | - John-Stuart Brittain
- School of Psychology, University of Birmingham, Edgbaston, Birmingham, United Kingdom; Centre for Human Brain Health, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - Simon Hanslmayr
- School of Psychology, University of Birmingham, Edgbaston, Birmingham, United Kingdom; Centre for Human Brain Health, University of Birmingham, Edgbaston, Birmingham, United Kingdom; Centre for Cognitive Neuroimaging, University of Glasgow, Glasgow, United Kingdom.
| |
Collapse
|
67
|
Abstract
Impaired cognition is common in many neuropsychiatric disorders and severely compromises quality of life. Synchronous electrophysiological rhythms represent a core mechanism for sculpting communication dynamics among large-scale brain networks that underpin cognition and its breakdown in neuropsychiatric disorders. Here, we review an emerging neuromodulation technology called transcranial alternating current stimulation that has shown remarkable early results in rapidly improving various domains of human cognition by modulating properties of rhythmic network synchronization. Future noninvasive neuromodulation research holds promise for potentially rescuing network activity patterns and improving cognition, setting groundwork for the development of drug-free, circuit-based therapeutics for people with cognitive brain disorders.
Collapse
Affiliation(s)
- Shrey Grover
- Department of Psychological & Brain Sciences, Boston University, Boston, Massachusetts 02215, USA; , ,
| | - John A Nguyen
- Department of Psychological & Brain Sciences, Boston University, Boston, Massachusetts 02215, USA; , ,
| | - Robert M G Reinhart
- Department of Psychological & Brain Sciences, Boston University, Boston, Massachusetts 02215, USA; , , .,Center for Systems Neuroscience, Boston University, Boston, Massachusetts 02215, USA.,Cognitive Neuroimaging Center, Boston University, Boston, Massachusetts 02215, USA.,Center for Research in Sensory Communication & Emerging Neural Technology, Boston University, Boston, Massachusetts 02215, USA
| |
Collapse
|
68
|
Madrid J, Benninger DH. Non-invasive brain stimulation for Parkinson's disease: Clinical evidence, latest concepts and future goals: A systematic review. J Neurosci Methods 2020; 347:108957. [PMID: 33017643 DOI: 10.1016/j.jneumeth.2020.108957] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 08/27/2020] [Accepted: 09/18/2020] [Indexed: 12/16/2022]
Abstract
Parkinson's disease (PD) is becoming a major public-health issue in an aging population. Available approaches to treat advanced PD still have limitations; new therapies are needed. The non-invasive brain stimulation (NIBS) may offer a complementary approach to treat advanced PD by personalized stimulation. Although NIBS is not as effective as the gold-standard levodopa, recent randomized controlled trials show promising outcomes in the treatment of PD symptoms. Nevertheless, only a few NIBS-stimulation paradigms have shown to improve PD's symptoms. Current clinical recommendations based on the level of evidence are reported in Table 1 through Table 3. Furthermore, novel technological advances hold promise and may soon enable the non-invasive stimulation of deeper brain structures for longer periods.
Collapse
Affiliation(s)
- Julian Madrid
- Service of Neurology, Department of Clinical Neurosciences, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland.
| | - David H Benninger
- Service of Neurology, Department of Clinical Neurosciences, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland.
| |
Collapse
|
69
|
Wischnewski M, Engelhardt M, Salehinejad MA, Schutter DJLG, Kuo MF, Nitsche MA. NMDA Receptor-Mediated Motor Cortex Plasticity After 20 Hz Transcranial Alternating Current Stimulation. Cereb Cortex 2020; 29:2924-2931. [PMID: 29992259 DOI: 10.1093/cercor/bhy160] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 05/08/2018] [Accepted: 06/14/2018] [Indexed: 12/12/2022] Open
Abstract
Transcranial alternating current stimulation (tACS) has been shown to modulate neural oscillations and excitability levels in the primary motor cortex (M1). These effects can last for more than an hour and an involvement of N-methyl-d-aspartate receptor (NMDAR) mediated synaptic plasticity has been suggested. However, to date the cortical mechanisms underlying tACS after-effects have not been explored. Here, we applied 20 Hz beta tACS to M1 while participants received either the NMDAR antagonist dextromethorphan or a placebo and the effects on cortical beta oscillations and excitability were explored. When a placebo medication was administered, beta tACS was found to increase cortical excitability and beta oscillations for at least 60 min, whereas when dextromethorphan was administered, these effects were completely abolished. These results provide the first direct evidence that tACS can induce NMDAR-mediated plasticity in the motor cortex, which contributes to our understanding of tACS-induced influences on human motor cortex physiology.
Collapse
Affiliation(s)
- M Wischnewski
- Donders Centre for Cognition, Donders Institute, Radboud University, Nijmegen, The Netherlands.,Leibniz Research Centre for Working Environment and Human Factors, Dortmund, Germany
| | - M Engelhardt
- Leibniz Research Centre for Working Environment and Human Factors, Dortmund, Germany
| | - M A Salehinejad
- Leibniz Research Centre for Working Environment and Human Factors, Dortmund, Germany
| | - D J L G Schutter
- Donders Centre for Cognition, Donders Institute, Radboud University, Nijmegen, The Netherlands
| | - M-F Kuo
- Leibniz Research Centre for Working Environment and Human Factors, Dortmund, Germany
| | - M A Nitsche
- Leibniz Research Centre for Working Environment and Human Factors, Dortmund, Germany.,Department of Neurology, University Medical Hospital Bergmannsheil, Bochum, Germany
| |
Collapse
|
70
|
Miyaguchi S, Inukai Y, Takahashi R, Miyashita M, Matsumoto Y, Otsuru N, Onishi H. Effects of stimulating the supplementary motor area with a transcranial alternating current for bimanual movement performance. Behav Brain Res 2020; 393:112801. [PMID: 32652107 DOI: 10.1016/j.bbr.2020.112801] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 06/20/2020] [Accepted: 07/06/2020] [Indexed: 11/27/2022]
Abstract
Transcranial alternating current stimulation (tACS) can regulate the frequency of neuronal activity in the cerebral cortex. Beta (β) activity in the supplementary motor area (SMA) is involved in motor planning and maintenance while gamma (γ) activity is involved in updating motor plans. We investigated the effect of tACS in the β- and γ-bands (β-tACS and γ- tACS) applied to the SMA on bimanual movement performance. This study included 32 right-handed healthy participants performing a Purdue Pegboard Test (PPT) during the administration of either β-tACS (20 Hz), γ-tACS (80 Hz), or sham stimulation over the SMA. Each participant performed nine PPT trials during each stimulation condition. The linear approximation of the number of parts and their differences for the 9 trials performed by each participant was calculated. A significant positive correlation was found between the difference from linear approximation for the β-tACS condition and the intercept of the linear approximation (p = 0.007, Pearson's r = 0.464), and significant negative correlation was found for the γ-tACS condition (p = 0.012, Pearson's r = -0.438). In the low-performance subgroup, the mean values of the difference from linear approximation under the γ-tACS condition was significantly larger than that under the β-tACS condition (p = 0.048). These results were opposite for the high-performance subgroup (p = 0.002) and sham group (p = 0.014). We demonstrated that the effect of tACS over the SMA depended on the stimulus frequency and the participant's motor performance and may modulate the maintenance and updating of motor plans.
Collapse
Affiliation(s)
- Shota Miyaguchi
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Japan.
| | - Yasuto Inukai
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Japan
| | - Ryo Takahashi
- Department of Physical Therapy, Niigata University of Health and Welfare, Japan
| | - Mai Miyashita
- Department of Physical Therapy, Niigata University of Health and Welfare, Japan
| | - Yuya Matsumoto
- Department of Physical Therapy, Niigata University of Health and Welfare, Japan
| | - Naofumi Otsuru
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Japan
| | - Hideaki Onishi
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Japan
| |
Collapse
|
71
|
Johnson L, Alekseichuk I, Krieg J, Doyle A, Yu Y, Vitek J, Johnson M, Opitz A. Dose-dependent effects of transcranial alternating current stimulation on spike timing in awake nonhuman primates. SCIENCE ADVANCES 2020; 6:eaaz2747. [PMID: 32917605 PMCID: PMC7467690 DOI: 10.1126/sciadv.aaz2747] [Citation(s) in RCA: 111] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 07/16/2020] [Indexed: 05/07/2023]
Abstract
Weak extracellular electric fields can influence spike timing in neural networks. Approaches to noninvasively impose these fields on the brain have high therapeutic potential in neurology and psychiatry. Transcranial alternating current stimulation (TACS) is hypothesized to affect spike timing and cause neural entrainment. However, the conditions under which these effects occur in vivo are unknown. Here, we recorded single-unit activity in the neocortex in awake nonhuman primates during TACS and found dose-dependent neural entrainment to the stimulation waveform. Cluster analysis of changes in interspike intervals identified two main types of neural responses to TACS-increased burstiness and phase entrainment. Our results uncover key mechanisms of TACS and show that the stimulation affects spike timing in the awake primate brain at intensities feasible in humans. Thus, novel TACS protocols tailored to ongoing brain activity may be a tool to normalize spike timing in maladaptive brain networks and neurological disease.
Collapse
Affiliation(s)
- Luke Johnson
- Department of Neurology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Ivan Alekseichuk
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| | - Jordan Krieg
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| | - Alex Doyle
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA
| | - Ying Yu
- Department of Neurology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Jerrold Vitek
- Department of Neurology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Matthew Johnson
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| | - Alexander Opitz
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN 55455, USA.
| |
Collapse
|
72
|
Battaglini L, Mena F, Ghiani A, Casco C, Melcher D, Ronconi L. The Effect of Alpha tACS on the Temporal Resolution of Visual Perception. Front Psychol 2020; 11:1765. [PMID: 32849045 PMCID: PMC7412991 DOI: 10.3389/fpsyg.2020.01765] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 06/26/2020] [Indexed: 01/03/2023] Open
Abstract
We experience the world around us as a smooth and continuous flow. However, there is growing evidence that the stream of sensory inputs is not elaborated in an analog way but is instead organized in discrete or quasi-discrete temporal processing windows. These discrete windows are suggested to depend on rhythmic neural activity in the alpha (and theta) frequency bands, which in turn reflect changes in neural activity within, and coupling between, cortical areas. In the present study, we investigated a possible causal link between oscillatory brain activity in the alpha range (8-12 Hz) and the temporal resolution of visual perception, which determines whether sequential stimuli are perceived as distinct entities or combined into a single representation. To this aim, we employed a two-flash fusion task while participants received focal transcranial alternating current stimulation (tACS) in extra-striate visual regions including V5/MT of the right hemisphere. Our findings show that 10-Hz tACS, as opposed to a placebo (sham tACS), reduces the temporal resolution of perception, inducing participants to integrate the two stimuli into a unique percept more often. This pattern was observed only in the contralateral visual hemifield, providing further support for a specific effect of alpha tACS. The present findings corroborate the idea of a causal link between temporal windows of integration/segregation and oscillatory alpha activity in V5/MT and extra-striate visual regions. They also stimulate future research on possible ways to shape the temporal resolution of human vision in an individualized manner.
Collapse
Affiliation(s)
- Luca Battaglini
- Department of General Psychology, University of Padua, Padua, Italy.,Neuro.Vis. U.S. Laboratory, University of Padua, Padua, Italy
| | - Federica Mena
- Department of General Psychology, University of Padua, Padua, Italy
| | - Andrea Ghiani
- Department of General Psychology, University of Padua, Padua, Italy
| | - Clara Casco
- Department of General Psychology, University of Padua, Padua, Italy.,Neuro.Vis. U.S. Laboratory, University of Padua, Padua, Italy
| | - David Melcher
- Center for Mind/Brain Sciences, Department of Psychology and Cognitive Science, University of Trento, Rovereto, Italy
| | - Luca Ronconi
- School of Psychology, Vita-Salute San Raffaele University, Milan, Italy.,Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
73
|
Kayarian FB, Jannati A, Rotenberg A, Santarnecchi E. Targeting Gamma-Related Pathophysiology in Autism Spectrum Disorder Using Transcranial Electrical Stimulation: Opportunities and Challenges. Autism Res 2020; 13:1051-1071. [PMID: 32468731 PMCID: PMC7387209 DOI: 10.1002/aur.2312] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 04/15/2020] [Accepted: 04/22/2020] [Indexed: 12/12/2022]
Abstract
A range of scalp electroencephalogram (EEG) abnormalities correlates with the core symptoms of autism spectrum disorder (ASD). Among these are alterations of brain oscillations in the gamma-frequency EEG band in adults and children with ASD, whose origin has been linked to dysfunctions of inhibitory interneuron signaling. While therapeutic interventions aimed to modulate gamma oscillations are being tested for neuropsychiatric disorders such as schizophrenia, Alzheimer's disease, and frontotemporal dementia, the prospects for therapeutic gamma modulation in ASD have not been extensively studied. Accordingly, we discuss gamma-related alterations in the setting of ASD pathophysiology, as well as potential interventions that can enhance gamma oscillations in patients with ASD. Ultimately, we argue that transcranial electrical stimulation modalities capable of entraining gamma oscillations, and thereby potentially modulating inhibitory interneuron circuitry, are promising methods to study and mitigate gamma alterations in ASD. Autism Res 2020, 13: 1051-1071. © 2020 International Society for Autism Research, Wiley Periodicals, Inc. LAY SUMMARY: Brain functions are mediated by various oscillatory waves of neuronal activity, ranging in amplitude and frequency. In certain neuropsychiatric disorders, such as schizophrenia and Alzheimer's disease, reduced high-frequency oscillations in the "gamma" band have been observed, and therapeutic interventions to enhance such activity are being explored. Here, we review and comment on evidence of reduced gamma activity in ASD, arguing that modalities used in other disorders may benefit individuals with ASD as well.
Collapse
Affiliation(s)
- Fae B. Kayarian
- Berenson-Allen Center for Noninvasive Brain Stimulation and Division of Cognitive Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Ali Jannati
- Berenson-Allen Center for Noninvasive Brain Stimulation and Division of Cognitive Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
- Neuromodulation Program and Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Alexander Rotenberg
- Berenson-Allen Center for Noninvasive Brain Stimulation and Division of Cognitive Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
- Neuromodulation Program and Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
- F.M. Kirby Neurobiology Center, Department of Neurology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Emiliano Santarnecchi
- Berenson-Allen Center for Noninvasive Brain Stimulation and Division of Cognitive Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
74
|
Fröhlich F, Lustenberger C. Neuromodulation of sleep rhythms in schizophrenia: Towards the rational design of non-invasive brain stimulation. Schizophr Res 2020; 221:71-80. [PMID: 32354662 PMCID: PMC7316586 DOI: 10.1016/j.schres.2020.04.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 04/01/2020] [Accepted: 04/03/2020] [Indexed: 02/01/2023]
Abstract
Brain function critically depends on oscillatory synchronization of neuronal populations both during wake and sleep. Originally, neural oscillations have been discounted as an epiphenomenon. More recently, specific deficits in the structure of brain oscillations have been linked to psychiatric diseases. For example, schizophrenia is hallmarked by abnormalities in different brain oscillations. Key sleep rhythms during NEM sleep such as sleep spindles, which are implicated in memory consolidation and are related to cognitive functions, are strongly diminished in these patients compared to healthy controls. To date, it remains unclear whether these reductions in sleep oscillations are causal for the functional impairments observed in schizophrenia. The application of non-invasive brain stimulation permits the causal examination of brain network dynamics and will help to establish the causal association of sleep oscillations and symptoms of schizophrenia. To accomplish this, stimulation paradigms that selectively engage specific network targets such as sleep spindles or slow waves are needed. We propose that the successful development and application of these non-invasive brain stimulation approaches will require rational design that takes network dynamics and neuroanatomical information into account. The purpose of this article is to prepare the grounds for the next steps towards such rational design of non-invasive stimulation, with a special focus on electrical and auditory stimulation. First, we briefly summarize the deficits in network dynamics during sleep in schizophrenia. Then, we discuss today's and tomorrow's non-invasive brain stimulation modalities to engage these network targets.
Collapse
Affiliation(s)
- Flavio Fröhlich
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Carolina Center for Neurostimulation, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Department of Neurology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| | - Caroline Lustenberger
- Neural Control of Movement Lab, Institute of Movement Sciences and Sport, Department of Health Sciences and Technology, ETH Zurich, 8092 Zurich, Switzerland.
| |
Collapse
|
75
|
Bergmann TO, Hartwigsen G. Inferring Causality from Noninvasive Brain Stimulation in Cognitive Neuroscience. J Cogn Neurosci 2020; 33:195-225. [PMID: 32530381 DOI: 10.1162/jocn_a_01591] [Citation(s) in RCA: 107] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Noninvasive brain stimulation (NIBS) techniques, such as transcranial magnetic stimulation or transcranial direct and alternating current stimulation, are advocated as measures to enable causal inference in cognitive neuroscience experiments. Transcending the limitations of purely correlative neuroimaging measures and experimental sensory stimulation, they allow to experimentally manipulate brain activity and study its consequences for perception, cognition, and eventually, behavior. Although this is true in principle, particular caution is advised when interpreting brain stimulation experiments in a causal manner. Research hypotheses are often oversimplified, disregarding the underlying (implicitly assumed) complex chain of causation, namely, that the stimulation technique has to generate an electric field in the brain tissue, which then evokes or modulates neuronal activity both locally in the target region and in connected remote sites of the network, which in consequence affects the cognitive function of interest and eventually results in a change of the behavioral measure. Importantly, every link in this causal chain of effects can be confounded by several factors that have to be experimentally eliminated or controlled to attribute the observed results to their assumed cause. This is complicated by the fact that many of the mediating and confounding variables are not directly observable and dose-response relationships are often nonlinear. We will walk the reader through the chain of causation for a generic cognitive neuroscience NIBS study, discuss possible confounds, and advise appropriate control conditions. If crucial assumptions are explicitly tested (where possible) and confounds are experimentally well controlled, NIBS can indeed reveal cause-effect relationships in cognitive neuroscience studies.
Collapse
Affiliation(s)
| | - Gesa Hartwigsen
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| |
Collapse
|
76
|
Modulation of gamma oscillations as a possible therapeutic tool for neuropsychiatric diseases: A review and perspective. Int J Psychophysiol 2020; 152:15-25. [DOI: 10.1016/j.ijpsycho.2020.03.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 03/04/2020] [Accepted: 03/25/2020] [Indexed: 12/31/2022]
|
77
|
Bland NS, Mattingley JB, Sale MV. Gamma coherence mediates interhemispheric integration during multiple object tracking. J Neurophysiol 2020; 123:1630-1644. [PMID: 32186427 DOI: 10.1152/jn.00755.2019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Our ability to track the paths of multiple visual objects moving between the hemifields requires effective integration of information between the two cerebral hemispheres. Coherent neural oscillations in the gamma band (35-70 Hz) are hypothesized to drive this information transfer. Here we manipulated the need for interhemispheric integration using a novel multiple object tracking (MOT) task in which stimuli either moved between the two visual hemifields, requiring interhemispheric integration, or moved within separate visual hemifields. We used electroencephalography (EEG) to measure interhemispheric coherence during the task. Human observers (21 women; 20 men) were poorer at tracking objects between versus within hemifields, reflecting a cost of interhemispheric integration. Critically, gamma coherence was greater in trials requiring interhemispheric integration, particularly between sensors over parieto-occipital areas. In approximately half of the participants, the observed cost of integration was associated with a failure of the cerebral hemispheres to become coherent in the gamma band. Moreover, individual differences in this integration cost correlated with endogenous gamma coherence at these same sensors, although with generally opposing relationships for the real and imaginary part of coherence. The real part (capturing synchronization with a near-zero phase lag) benefited between-hemifield tracking; imaginary coherence was detrimental. Finally, instantaneous phase coherence over the tracking period uniquely predicted between-hemifield tracking performance, suggesting that effective integration benefits from sustained interhemispheric synchronization. Our results show that gamma coherence mediates interhemispheric integration during MOT and add to a growing body of work demonstrating that coherence drives communication across cortically distributed neural networks.NEW & NOTEWORTHY Using a multiple object tracking paradigm, we were able to manipulate the need for interhemispheric integration on a per-trial basis, while also having an objective measure of integration efficacy (i.e., tracking performance). We show that tracking performance reflects a cost of integration, which correlates with individual differences in interhemispheric EEG coherence. Gamma coherence appears to uniquely benefit between-hemifield tracking, predicting performance both across participants and across trials.
Collapse
Affiliation(s)
- Nicholas S Bland
- School of Health and Rehabilitation Sciences, University of Queensland, Brisbane, Queensland, Australia.,Queensland Brain Institute, University of Queensland, Brisbane, Queensland, Australia
| | - Jason B Mattingley
- Queensland Brain Institute, University of Queensland, Brisbane, Queensland, Australia.,School of Psychology, University of Queensland, Brisbane, Queensland, Australia
| | - Martin V Sale
- School of Health and Rehabilitation Sciences, University of Queensland, Brisbane, Queensland, Australia.,Queensland Brain Institute, University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
78
|
Xing Y, Wei P, Wang C, Shan Y, Yu Y, Qiao Y, Xie B, Shi X, Zhu Z, Lu J, Zhao G, Jia J, Tang Y. TRanscranial AlterNating current Stimulation FOR patients with Mild Alzheimer's Disease (TRANSFORM-AD study): Protocol for a randomized controlled clinical trial. ALZHEIMERS & DEMENTIA-TRANSLATIONAL RESEARCH & CLINICAL INTERVENTIONS 2020; 6:e12005. [PMID: 32313830 PMCID: PMC7158579 DOI: 10.1002/trc2.12005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 12/26/2019] [Indexed: 12/20/2022]
Abstract
Introduction Recently, transcranial alternating current stimulation (tACS), which can interact with ongoing neuronal activity, has emerged as a potentially effective and promising treatment for Alzheimer's disease (AD), and the 40 Hz gamma frequency was suggested as a suitable stimulation frequency for AD. Methods The TRANSFORM‐AD study is a double‐blind, randomized‐controlled trial that will include 40 individuals with mild AD. Eligible patients need to have amyloid β (Aβ) loads examined by Pittsburgh compound B (PiB) positron emission tomography (PET) or decreased Aβ level in cerebrospinal fluid. Participants will be randomized into either a 40 Hz tACS group or a sham stimulation group. Both groups will undergo 30 one‐hour sessions across 3 weeks (21 days). The outcome measures will be assessed at baseline, at the end of the intervention, and 3 months after the first session. The primary outcome is global cognitive function, assessed by the 11‐item cognitive subscale of the Alzheimer's Disease Assessment Scale (ADAS‐Cog), and the secondary outcomes include changes in other neuropsychological assessments and in PiB‐PET, structural magnetic resonance imaging (MRI), resting electroencephalography (EEG), and simultaneous EEG–functional MRI (EEG‐fMRI) results. Results The trial is currently ongoing, and it is anticipated that recruitment will be completed in June 2021. Discussion This trial will evaluate the efficacy and safety of 40 Hz tACS in patients with AD, and further explore the potential mechanisms by analyzing amyloid deposits using PiB‐PET, brain volume and white matter integrity by structural MRI, and neural activity by EEG and EEG‐fMRI.
Collapse
Affiliation(s)
- Yi Xing
- Innovation Center for Neurological Disorders Department of Neurology, Xuanwu Hospital Capital Medical University National Clinical Research Center for Geriatric Diseases Beijing China.,Key Laboratory of Neurodegenerative Diseases Ministry of Education of the People's Republic of China Beijing China
| | - Penghu Wei
- Department of Neurosurgery Xuanwu Hospital Capital Medical University Beijing China
| | - Changming Wang
- Department of Neurosurgery Xuanwu Hospital Capital Medical University Beijing China
| | - Yi Shan
- Department of Radiology Xuanwu Hospital Capital Medical University Beijing China
| | - Yueying Yu
- Innovation Center for Neurological Disorders Department of Neurology, Xuanwu Hospital Capital Medical University National Clinical Research Center for Geriatric Diseases Beijing China.,Key Laboratory of Neurodegenerative Diseases Ministry of Education of the People's Republic of China Beijing China
| | - Yuchen Qiao
- Innovation Center for Neurological Disorders Department of Neurology, Xuanwu Hospital Capital Medical University National Clinical Research Center for Geriatric Diseases Beijing China.,Key Laboratory of Neurodegenerative Diseases Ministry of Education of the People's Republic of China Beijing China
| | - Beijia Xie
- Innovation Center for Neurological Disorders Department of Neurology, Xuanwu Hospital Capital Medical University National Clinical Research Center for Geriatric Diseases Beijing China.,Key Laboratory of Neurodegenerative Diseases Ministry of Education of the People's Republic of China Beijing China
| | - Xinrui Shi
- Innovation Center for Neurological Disorders Department of Neurology, Xuanwu Hospital Capital Medical University National Clinical Research Center for Geriatric Diseases Beijing China.,Key Laboratory of Neurodegenerative Diseases Ministry of Education of the People's Republic of China Beijing China
| | - Zhongfang Zhu
- Innovation Center for Neurological Disorders Department of Neurology, Xuanwu Hospital Capital Medical University National Clinical Research Center for Geriatric Diseases Beijing China
| | - Jie Lu
- Department of Radiology Xuanwu Hospital Capital Medical University Beijing China
| | - Guoguang Zhao
- Department of Neurosurgery Xuanwu Hospital Capital Medical University Beijing China
| | - Jianping Jia
- Innovation Center for Neurological Disorders Department of Neurology, Xuanwu Hospital Capital Medical University National Clinical Research Center for Geriatric Diseases Beijing China.,Key Laboratory of Neurodegenerative Diseases Ministry of Education of the People's Republic of China Beijing China
| | - Yi Tang
- Innovation Center for Neurological Disorders Department of Neurology, Xuanwu Hospital Capital Medical University National Clinical Research Center for Geriatric Diseases Beijing China.,Key Laboratory of Neurodegenerative Diseases Ministry of Education of the People's Republic of China Beijing China
| |
Collapse
|
79
|
Sabel BA, Thut G, Haueisen J, Henrich-Noack P, Herrmann CS, Hunold A, Kammer T, Matteo B, Sergeeva EG, Waleszczyk W, Antal A. Vision modulation, plasticity and restoration using non-invasive brain stimulation – An IFCN-sponsored review. Clin Neurophysiol 2020; 131:887-911. [DOI: 10.1016/j.clinph.2020.01.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 12/18/2019] [Accepted: 01/02/2020] [Indexed: 12/11/2022]
|
80
|
Lafleur LP, Klees-Themens G, Chouinard-Leclaire C, Larochelle-Brunet F, Tremblay S, Lepage JF, Théoret H. Neurophysiological aftereffects of 10 Hz and 20 Hz transcranial alternating current stimulation over bilateral sensorimotor cortex. Brain Res 2020; 1727:146542. [PMID: 31712086 DOI: 10.1016/j.brainres.2019.146542] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Revised: 11/04/2019] [Accepted: 11/05/2019] [Indexed: 12/28/2022]
Abstract
Alpha (8-12 Hz) and beta (13-30 Hz) oscillations are believed to be involved in motor control. Their modulation with transcranial alternating current stimulation (tACS) has been shown to alter motor behavior and cortical excitability. The aim of the present study was to determine whether tACS applied bilaterally over sensorimotor cortex at 10 Hz and 20 Hz modulates interhemispheric interactions and corticospinal excitability. Thirty healthy volunteers participated in a randomized, cross-over, sham-controlled, double-blind protocol. Sham and active tACS (10 Hz, 20 Hz, 1 mA) were applied for 20 min over bilateral sensorimotor areas. The physiological effects of tACS on corticospinal excitability and interhemispheric inhibition were assessed with transcranial magnetic stimulation. Physiological mirror movements were assessed to measure the overflow of motor activity to the contralateral M1 during voluntary muscle contraction. Bilateral 10 Hz tACS reduced corticospinal excitability. There was no significant effect of tACS on physiological mirror movements and interhemispheric inhibition. Ten Hz tACS was associated with response patterns consistent with corticospinal inhibition in 57% of participants. The present results indicate that application of tACS at the alpha frequency can induce aftereffects in sensorimotor cortex of healthy individuals.
Collapse
Affiliation(s)
- Louis-Philippe Lafleur
- Department of psychologie, Université de Montréal, Montréal, Canada; Centre de recherche du Centre Hospitalier Universitaire Sainte-Justine, Montréal, Canada
| | | | | | | | - Sara Tremblay
- Department of Psychology, Carleton University, Ottawa, Canada
| | - Jean-Francois Lepage
- Département de Pédiatrie, Médecine nucléaire et radiobiologie, Centre de recherche du CHU Sherbrooke, Sherbrooke, Canada
| | - Hugo Théoret
- Department of psychologie, Université de Montréal, Montréal, Canada; Centre de recherche du Centre Hospitalier Universitaire Sainte-Justine, Montréal, Canada.
| |
Collapse
|
81
|
Wischnewski M, Joergensen ML, Compen B, Schutter DJLG. Frontal Beta Transcranial Alternating Current Stimulation Improves Reversal Learning. Cereb Cortex 2020; 30:3286-3295. [PMID: 31898728 PMCID: PMC7197207 DOI: 10.1093/cercor/bhz309] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Electroencephalogram (EEG) studies suggest an association between beta (13-30 Hz) power and reversal learning performance. In search for direct evidence concerning the involvement of beta oscillations in reversal learning, transcranial alternating current stimulation (tACS) was applied in a double-blind, sham-controlled and between-subjects design. Exogenous oscillatory currents were administered bilaterally to the frontal cortex at 20 Hz with an intensity of 1 mA peak-to-peak and the effects on reward-punishment based reversal learning were evaluated in hundred-and-eight healthy volunteers. Pre- and post-tACS resting state EEG recordings were analyzed. Results showed that beta-tACS improved rule implementation during reversal learning and decreases left and right resting-state frontal theta/beta EEG ratios following tACS. Our findings provide the first behavioral and electrophysiological evidence for exogenous 20 Hz oscillatory electric field potentials administered over to the frontal cortex to improve reversal learning.
Collapse
Affiliation(s)
- Miles Wischnewski
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, Nijmegen, 6537 RD, The Netherlands
| | - Mie L Joergensen
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, Nijmegen, 6537 RD, The Netherlands
| | - Boukje Compen
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, Nijmegen, 6537 RD, The Netherlands
| | - Dennis J L G Schutter
- Helmholtz Institute, Experimental Psychology, Utrecht University, Utrecht, 3584 CS, The Netherlands
| |
Collapse
|
82
|
Kar K, Ito T, Cole MW, Krekelberg B. Transcranial alternating current stimulation attenuates BOLD adaptation and increases functional connectivity. J Neurophysiol 2020; 123:428-438. [PMID: 31825706 PMCID: PMC6985864 DOI: 10.1152/jn.00376.2019] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 12/09/2019] [Accepted: 12/09/2019] [Indexed: 11/22/2022] Open
Abstract
Transcranial alternating current stimulation (tACS) is used as a noninvasive tool for cognitive enhancement and clinical applications. The physiological effects of tACS, however, are complex and poorly understood. Most studies of tACS focus on its ability to entrain brain oscillations, but our behavioral results in humans and extracellular recordings in nonhuman primates support the view that tACS at 10 Hz also affects brain function by reducing sensory adaptation. Our primary goal in the present study is to test this hypothesis using blood oxygen level-dependent (BOLD) imaging in human subjects. Using concurrent functional magnetic resonance imaging (fMRI) and tACS, and a motion adaptation paradigm developed to quantify BOLD adaptation, we show that tACS significantly attenuates adaptation in the human motion area (hMT+). In addition, an exploratory analysis shows that tACS increases functional connectivity of the stimulated hMT+ with the rest of the brain and the dorsal attention network in particular. Based on field estimates from individualized head models, we relate these changes to the strength of tACS-induced electric fields. Specifically, we report that functional connectivity (between hMT+ and any other region of interest) increases in proportion to the field strength in the region of interest. These findings add support for the claim that weak 10-Hz currents applied to the scalp modulate both local and global measures of brain activity.NEW & NOTEWORTHY Concurrent transcranial alternating current stimulation (tACS) and functional MRI show that tACS affects the human brain by attenuating adaptation and increasing functional connectivity in a dose-dependent manner. This work is important for our basic understanding of what tACS does, but also for therapeutic applications, which need insight into the full range of ways in which tACS affects the brain.
Collapse
Affiliation(s)
- Kohitij Kar
- Center for Molecular and Behavioral Neuroscience, Rutgers University-Newark, Newark, New Jersey
| | - Takuya Ito
- Center for Molecular and Behavioral Neuroscience, Rutgers University-Newark, Newark, New Jersey
| | - Michael W Cole
- Center for Molecular and Behavioral Neuroscience, Rutgers University-Newark, Newark, New Jersey
| | - Bart Krekelberg
- Center for Molecular and Behavioral Neuroscience, Rutgers University-Newark, Newark, New Jersey
| |
Collapse
|
83
|
Preisig BC, Sjerps MJ, Hervais-Adelman A, Kösem A, Hagoort P, Riecke L. Bilateral Gamma/Delta Transcranial Alternating Current Stimulation Affects Interhemispheric Speech Sound Integration. J Cogn Neurosci 2019; 32:1242-1250. [PMID: 31682569 DOI: 10.1162/jocn_a_01498] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Perceiving speech requires the integration of different speech cues, that is, formants. When the speech signal is split so that different cues are presented to the right and left ear (dichotic listening), comprehension requires the integration of binaural information. Based on prior electrophysiological evidence, we hypothesized that the integration of dichotically presented speech cues is enabled by interhemispheric phase synchronization between primary and secondary auditory cortex in the gamma frequency band. We tested this hypothesis by applying transcranial alternating current stimulation (TACS) bilaterally above the superior temporal lobe to induce or disrupt interhemispheric gamma-phase coupling. In contrast to initial predictions, we found that gamma TACS applied in-phase above the two hemispheres (interhemispheric lag 0°) perturbs interhemispheric integration of speech cues, possibly because the applied stimulation perturbs an inherent phase lag between the left and right auditory cortex. We also observed this disruptive effect when applying antiphasic delta TACS (interhemispheric lag 180°). We conclude that interhemispheric phase coupling plays a functional role in interhemispheric speech integration. The direction of this effect may depend on the stimulation frequency.
Collapse
Affiliation(s)
- Basil C Preisig
- Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands.,Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands.,University of Zurich
| | - Matthias J Sjerps
- Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands.,Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands
| | | | - Anne Kösem
- Lyon Neuroscience Research Center (CRNL), Lyon, France
| | - Peter Hagoort
- Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands.,Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands
| | | |
Collapse
|
84
|
After-effects of 10 Hz tACS over the prefrontal cortex on phonological word decisions. Brain Stimul 2019; 12:1464-1474. [DOI: 10.1016/j.brs.2019.06.021] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 05/13/2019] [Accepted: 06/18/2019] [Indexed: 11/23/2022] Open
|
85
|
Bland NS, Sale MV. Current challenges: the ups and downs of tACS. Exp Brain Res 2019; 237:3071-3088. [DOI: 10.1007/s00221-019-05666-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 10/09/2019] [Indexed: 02/08/2023]
|
86
|
Synchronization of Sensory Gamma Oscillations Promotes Multisensory Communication. eNeuro 2019; 6:ENEURO.0101-19.2019. [PMID: 31601635 PMCID: PMC6873160 DOI: 10.1523/eneuro.0101-19.2019] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 09/03/2019] [Accepted: 09/16/2019] [Indexed: 01/15/2023] Open
Abstract
Rhythmic neuronal activity in the gamma range is a signature of cortical processing and its synchronization across distant sites has been proposed as a fundamental mechanism of network interactions. While this has been shown within sensory streams, we tested whether cross talk between the senses relies on similar mechanisms. Direct sensory interactions in humans (male and female) were studied with a visual-tactile amplitude matching paradigm. In this task, congruent stimuli are associated with behavioral benefits, which are proposed to be mediated by increased binding between sensory cortices through coherent gamma oscillations. We tested this hypothesis by applying 4-in-1 multi-electrode transcranial alternating current stimulation (tACS) with 40 Hz over visual and somatosensory cortices. In phase stimulation (0°) was expected to strengthen binding and thereby enhance the congruence effect, while anti-phase (180°) stimulation was expected to have opposite effects. Gamma tACS was controlled by alpha (10 Hz) and sham stimulation, as well as by applying tACS unilaterally while visual-tactile stimuli were presented lateralized. Contrary to our expectations, gamma tACS over the relevant hemisphere delayed responses to congruent trials. Additionally, reanalysis of EEG data revealed decoupling of sensory gamma oscillations during congruent trials. We propose that gamma tACS prevented sensory decoupling and thereby limited the congruence effect. Together, our results favor the perspective that processing multisensory congruence involves corticocortical communication rather than feature binding. Furthermore, we found control stimulation over the irrelevant hemisphere to speed responses under alpha stimulation and to delay responses under gamma stimulation, consistent with the idea that contralateral alpha/gamma dynamics regulate cortical excitability.
Collapse
|
87
|
Vernet M, Stengel C, Quentin R, Amengual JL, Valero-Cabré A. Entrainment of local synchrony reveals a causal role for high-beta right frontal oscillations in human visual consciousness. Sci Rep 2019; 9:14510. [PMID: 31601822 PMCID: PMC6787242 DOI: 10.1038/s41598-019-49673-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 08/09/2019] [Indexed: 11/09/2022] Open
Abstract
Prior evidence supports a critical role of oscillatory activity in visual cognition, but are cerebral oscillations simply correlated or causally linked to our ability to consciously acknowledge the presence of a target in our visual field? Here, EEG signals were recorded on humans performing a visual detection task, while they received brief patterns of rhythmic or random transcranial magnetic stimulation (TMS) delivered to the right Frontal Eye Field (FEF) prior to the onset of a lateralized target. TMS entrained oscillations, i.e., increased high-beta power and phase alignment (the latter to a higher extent for rhythmic high-beta patterns than random patterns) while also boosting visual detection sensitivity. Considering post-hoc only those participants in which rhythmic stimulation enhanced visual detection, the magnitude of high-beta entrainment correlated with left visual performance increases. Our study provides evidence in favor of a causal link between high-beta oscillatory activity in the Frontal Eye Field and visual detection. Furthermore, it supports future applications of brain stimulation to manipulate local synchrony and improve or restore impaired visual behaviors.
Collapse
Affiliation(s)
- Marine Vernet
- Institut du Cerveau et de la Moelle Epinière (ICM), CNRS UMR 7225, INSERM U 1127 and Sorbonne Université, Paris, France.
| | - Chloé Stengel
- Institut du Cerveau et de la Moelle Epinière (ICM), CNRS UMR 7225, INSERM U 1127 and Sorbonne Université, Paris, France
| | - Romain Quentin
- Institut du Cerveau et de la Moelle Epinière (ICM), CNRS UMR 7225, INSERM U 1127 and Sorbonne Université, Paris, France
| | - Julià L Amengual
- Institut des Sciences Cognitives Marc Jeannerod, CNRS UMR 5229 and Université Claude Bernard, Lyon, France
| | - Antoni Valero-Cabré
- Institut du Cerveau et de la Moelle Epinière (ICM), CNRS UMR 7225, INSERM U 1127 and Sorbonne Université, Paris, France. .,Laboratory for Cerebral Dynamics Plasticity and Rehabilitation, Boston University, School of Medicine, Boston, MA, USA. .,Cognitive Neuroscience and Information Technology Research Program, Open University of Catalonia (UOC), Barcelona, Spain.
| |
Collapse
|
88
|
Schwab BC, Misselhorn J, Engel AK. Modulation of large-scale cortical coupling by transcranial alternating current stimulation. Brain Stimul 2019; 12:1187-1196. [DOI: 10.1016/j.brs.2019.04.013] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Revised: 04/25/2019] [Accepted: 04/26/2019] [Indexed: 01/03/2023] Open
|
89
|
Sen S, Daimi SN, Watanabe K, Takahashi K, Bhattacharya J, Saha G. Switch or stay? Automatic classification of internal mental states in bistable perception. Cogn Neurodyn 2019; 14:95-113. [PMID: 32015769 PMCID: PMC6973829 DOI: 10.1007/s11571-019-09548-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 06/04/2019] [Accepted: 07/06/2019] [Indexed: 10/31/2022] Open
Abstract
The human brain goes through numerous cognitive states, most of these being hidden or implicit while performing a task, and understanding them is of great practical importance. However, identifying internal mental states is quite challenging as these states are difficult to label, usually short-lived, and generally, overlap with other tasks. One such problem pertains to bistable perception, which we consider to consist of two internal mental states, namely, transition and maintenance. The transition state is short-lived and represents a change in perception while the maintenance state is comparatively longer and represents a stable perception. In this study, we proposed a novel approach for characterizing the duration of transition and maintenance states and classified them from the neuromagnetic brain responses. Participants were presented with various types of ambiguous visual stimuli on which they indicated the moments of perceptual switches, while their magnetoencephalogram (MEG) data were recorded. We extracted different spatio-temporal features based on wavelet transform, and classified transition and maintenance states on a trial-by-trial basis. We obtained a classification accuracy of 79.58% and 78.40% using SVM and ANN classifiers, respectively. Next, we investigated the temporal fluctuations of these internal mental representations as captured by our classifier model and found that the accuracy showed a decreasing trend as the maintenance state was moved towards the next transition state. Further, to identify the neural sources corresponding to these internal mental states, we performed source analysis on MEG signals. We observed the involvement of sources from the parietal lobe, occipital lobe, and cerebellum in distinguishing transition and maintenance states. Cross-conditional classification analysis established generalization potential of wavelet features. Altogether, this study presents an automatic classification of endogenous mental states involved in bistable perception by establishing brain-behavior relationships at the single-trial level.
Collapse
Affiliation(s)
- Susmita Sen
- 1Department of Electronics and Electrical Communication Engineering, Indian Institute of Technology Kharagpur, Kharagpur, 721 302 India
| | - Syed Naser Daimi
- 1Department of Electronics and Electrical Communication Engineering, Indian Institute of Technology Kharagpur, Kharagpur, 721 302 India
| | - Katsumi Watanabe
- 2Department of Intermediate Art and Science, Waseda University, Tokyo, Japan
| | | | | | - Goutam Saha
- 1Department of Electronics and Electrical Communication Engineering, Indian Institute of Technology Kharagpur, Kharagpur, 721 302 India
| |
Collapse
|
90
|
Bikson M, Esmaeilpour Z, Adair D, Kronberg G, Tyler WJ, Antal A, Datta A, Sabel BA, Nitsche MA, Loo C, Edwards D, Ekhtiari H, Knotkova H, Woods AJ, Hampstead BM, Badran BW, Peterchev AV. Transcranial electrical stimulation nomenclature. Brain Stimul 2019; 12:1349-1366. [PMID: 31358456 DOI: 10.1016/j.brs.2019.07.010] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 06/25/2019] [Accepted: 07/14/2019] [Indexed: 01/03/2023] Open
Abstract
Transcranial electrical stimulation (tES) aims to alter brain function non-invasively by applying current to electrodes on the scalp. Decades of research and technological advancement are associated with a growing diversity of tES methods and the associated nomenclature for describing these methods. Whether intended to produce a specific response so the brain can be studied or lead to a more enduring change in behavior (e.g. for treatment), the motivations for using tES have themselves influenced the evolution of nomenclature, leading to some scientific, clinical, and public confusion. This ambiguity arises from (i) the infinite parameter space available in designing tES methods of application and (ii) varied naming conventions based upon the intended effects and/or methods of application. Here, we compile a cohesive nomenclature for contemporary tES technologies that respects existing and historical norms, while incorporating insight and classifications based on state-of-the-art findings. We consolidate and clarify existing terminology conventions, but do not aim to create new nomenclature. The presented nomenclature aims to balance adopting broad definitions that encourage flexibility and innovation in research approaches, against classification specificity that minimizes ambiguity about protocols but can hinder progress. Constructive research around tES classification, such as transcranial direct current stimulation (tDCS), should allow some variations in protocol but also distinguish from approaches that bear so little resemblance that their safety and efficacy should not be compared directly. The proposed framework includes terms in contemporary use across peer-reviewed publications, including relatively new nomenclature introduced in the past decade, such as transcranial alternating current stimulation (tACS) and transcranial pulsed current stimulation (tPCS), as well as terms with long historical use such as electroconvulsive therapy (ECT). We also define commonly used terms-of-the-trade including electrode, lead, anode, and cathode, whose prior use, in varied contexts, can also be a source of confusion. This comprehensive clarification of nomenclature and associated preliminary proposals for standardized terminology can support the development of consensus on efficacy, safety, and regulatory standards.
Collapse
Affiliation(s)
- Marom Bikson
- Department of Biomedical Engineering, The City College of the City University of New York, New York, NY, USA.
| | - Zeinab Esmaeilpour
- Department of Biomedical Engineering, The City College of the City University of New York, New York, NY, USA.
| | - Devin Adair
- Department of Biomedical Engineering, The City College of the City University of New York, New York, NY, USA
| | - Greg Kronberg
- Department of Biomedical Engineering, The City College of the City University of New York, New York, NY, USA
| | - William J Tyler
- Arizona State University, School of Biological and Health Systems Engineering, Tempe, AZ, USA
| | - Andrea Antal
- Department of Clinical Neurophysiology, University Medical Center Goettingen, Goettingen, Germany; Institute of Medical Psychology, Medical Faculty, Otto-v.-Guericke University of Magdeburg, Magdeburg, Germany
| | | | - Bernhard A Sabel
- Institute of Medical Psychology, Medical Faculty, Otto-v.-Guericke University of Magdeburg, Magdeburg, Germany
| | - Michael A Nitsche
- Leibniz Research Centre for Working Environment ant Human Factors, Dept. Psychology and Neurosciences, Dortmund, Germany; University Medical Hospital Bergmannsheil, Dept. Neurology, Bochum, Germany
| | - Colleen Loo
- School of Psychiatry & Black Dog Institute, University of New South Wales, Sydney, Australia
| | - Dylan Edwards
- Moss Rehabilitation Research Institute, Philadelphia, PA, USA; Edith Cowan University, Joondalup, Australia
| | | | - Helena Knotkova
- MJHS Institute for Innovation in Palliative Care, New York, NY, USA; Department of Family and Social Medicine, Albert Einstein College of Medicine, The Bronx, NY, USA
| | - Adam J Woods
- Center for Cognitive Aging and Memory, McKnight Brain Institute, Department of Clinical and Health Psychology, University of Florida, Gainesville, FL, USA
| | - Benjamin M Hampstead
- Mental Health Service, VA Ann Arbor Healthcare System, Ann Arbor, MI, USA; Neuropsychology Section, Department of Psychiatry, University of Michigan, Ann Arbor, MI, USA
| | - Bashar W Badran
- Department of Psychiatry, Medical University of South Carolina, Charleston, SC, USA
| | - Angel V Peterchev
- Department of Psychiatry & Behavioral Sciences, Department of Biomedical Engineering, Department of Electrical & Computer Engineering, Department of Neurosurgery, Duke University, Durham, NC, USA
| |
Collapse
|
91
|
Minami T, Shinkai T, Nakauchi S. Hemifield Crossings during Multiple Object Tracking Affect Task Performance and Steady-State Visual Evoked Potentials. Neuroscience 2019; 409:162-168. [PMID: 31034975 DOI: 10.1016/j.neuroscience.2019.04.038] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 04/16/2019] [Accepted: 04/16/2019] [Indexed: 10/26/2022]
Abstract
The ability to track multiple objects is important for daily life activities such as driving, but it is subject to some restrictions. One limitation concerns the hemifields in which objects move. A previous study showed that when subjects were restricted to the use of one hemifield, both the maximum number of tracked objects and the tracking accuracy were lower than when they were permitted to use both hemifields. However, daily life involves many tracked objects moving between hemifields. In this study, we investigated the effects of such hemifield crossings on behavioral performance (Behavioral experiment) and on the amplitudes and phase synchronization of steady-state visual evoked potentials (SSVEPs) (SSVEP experiment) by comparing the Within condition, in which tracked objects moved within their respective hemifields, and the Crossover condition, in which tracked objects moved between hemifields. In the Behavioral experiment, tracking performance was worse under the Crossover condition than under the Within condition. In the SSVEP experiment, SSVEP amplitudes for target and distractor frequencies differed under the Within condition but did not differ under the Crossover condition. However, phase synchronization between the left and right hemifields exhibited the opposite trend. This study provides evidence that attention to objects moving between hemifields is suppressed relative to attention to objects moving within hemifields and that Crossover tracking diminishes attentional modulation at an early sensory processing level while modulating interhemispheric functional connectivity.
Collapse
Affiliation(s)
- Tetsuto Minami
- Electronics-Inspired Interdisciplinary Research Institute, Toyohashi University of Technology, 1-1 Hibarigaoka Tempaku, Toyohashi, Aichi 441-8580, Japan.
| | - Takahiro Shinkai
- Department of Computer Science and Engineering, Toyohashi University of Technology, 1-1 Hibarigaoka Tempaku, Toyohashi, Aichi 441-8580, Japan
| | - Shigeki Nakauchi
- Department of Computer Science and Engineering, Toyohashi University of Technology, 1-1 Hibarigaoka Tempaku, Toyohashi, Aichi 441-8580, Japan
| |
Collapse
|
92
|
Banerjee S, Grover S, Sridharan D. Unraveling Causal Mechanisms of Top-Down and Bottom-Up Visuospatial Attention with Non-invasive Brain Stimulation. J Indian Inst Sci 2019; 97:451-475. [PMID: 31231154 PMCID: PMC6588534 DOI: 10.1007/s41745-017-0046-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 09/29/2017] [Indexed: 12/22/2022]
Abstract
Attention is a process of selection that allows us to intelligently navigate the abundance of information in our world. Attention can be either directed voluntarily based on internal goals-"top-down" or goal-directed attention-or captured automatically, by salient stimuli-"bottom-up" or stimulus-driven attention. Do these two modes of attention control arise from same or different brain circuits? Do they share similar or distinct neural mechanisms? In this review, we explore this dichotomy between the neural bases of top-down and bottom-up attention control, with a special emphasis on insights gained from non-invasive neurostimulation techniques, specifically, transcranial magnetic stimulation (TMS). TMS enables spatially focal and temporally precise manipulation of brain activity. We explore a significant literature devoted to investigating the role of fronto-parietal brain regions in top-down and bottom-up attention with TMS, and highlight key areas of convergence and debate. We also discuss recent advances in combinatorial paradigms that combine TMS with other imaging modalities, such as functional magnetic resonance imaging or electroencephalography. These paradigms are beginning to bridge essential gaps in our understanding of the neural pathways by which TMS affects behavior, and will prove invaluable for unraveling mechanisms of attention control, both in health and in disease.
Collapse
Affiliation(s)
- Sanjna Banerjee
- Centre for Neuroscience, Indian Institute of Science, Bangalore, 560012 India
| | - Shrey Grover
- Centre for Neuroscience, Indian Institute of Science, Bangalore, 560012 India
| | - Devarajan Sridharan
- Centre for Neuroscience, Indian Institute of Science, Bangalore, 560012 India
| |
Collapse
|
93
|
Alekseichuk I, Falchier AY, Linn G, Xu T, Milham MP, Schroeder CE, Opitz A. Electric field dynamics in the brain during multi-electrode transcranial electric stimulation. Nat Commun 2019; 10:2573. [PMID: 31189931 PMCID: PMC6561925 DOI: 10.1038/s41467-019-10581-7] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 05/20/2019] [Indexed: 11/29/2022] Open
Abstract
Neural oscillations play a crucial role in communication between remote brain areas. Transcranial electric stimulation with alternating currents (TACS) can manipulate these brain oscillations in a non-invasive manner. Recently, TACS using multiple electrodes with phase shifted stimulation currents were developed to alter long-range connectivity. Typically, an increase in coordination between two areas is assumed when they experience an in-phase stimulation and a disorganization through an anti-phase stimulation. However, the underlying biophysics of multi-electrode TACS has not been studied in detail. Here, we leverage direct invasive recordings from two non-human primates during multi-electrode TACS to characterize electric field magnitude and phase as a function of the phase of stimulation currents. Further, we report a novel "traveling wave" stimulation where the location of the electric field maximum changes over the stimulation cycle. Our results provide a mechanistic understanding of the biophysics of multi-electrode TACS and enable future developments of novel stimulation protocols.
Collapse
Affiliation(s)
- Ivan Alekseichuk
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, 55455, MN, USA
| | - Arnaud Y Falchier
- Center for Biomedical Imaging and Neuromodulation, Nathan Kline Institute for Psychiatric Research, Orangeburg, 10962, NY, USA
| | - Gary Linn
- Center for Biomedical Imaging and Neuromodulation, Nathan Kline Institute for Psychiatric Research, Orangeburg, 10962, NY, USA
| | - Ting Xu
- Center for the Developing Brain, Child Mind Institute, New York, 10022, NY, USA
| | - Michael P Milham
- Center for Biomedical Imaging and Neuromodulation, Nathan Kline Institute for Psychiatric Research, Orangeburg, 10962, NY, USA
- Center for the Developing Brain, Child Mind Institute, New York, 10022, NY, USA
| | - Charles E Schroeder
- Center for Biomedical Imaging and Neuromodulation, Nathan Kline Institute for Psychiatric Research, Orangeburg, 10962, NY, USA
- Departments of Neurological Surgery and Psychiatry, Columbia University College of Physicians and Surgeons, New York, 10032, NY, USA
| | - Alexander Opitz
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, 55455, MN, USA.
| |
Collapse
|
94
|
Hanslmayr S, Axmacher N, Inman CS. Modulating Human Memory via Entrainment of Brain Oscillations. Trends Neurosci 2019; 42:485-499. [PMID: 31178076 DOI: 10.1016/j.tins.2019.04.004] [Citation(s) in RCA: 127] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 04/01/2019] [Accepted: 04/25/2019] [Indexed: 12/30/2022]
Abstract
In the human brain, oscillations occur during neural processes that are relevant for memory. This has been demonstrated by a plethora of studies relating memory processes to specific oscillatory signatures. Several recent studies have gone beyond such correlative approaches and provided evidence supporting the idea that modulating oscillations via frequency-specific entrainment can alter memory functions. Such causal evidence is important because it allows distinguishing mechanisms directly related to memory from mere epiphenomenal oscillatory signatures of memory. This review provides an overview of stimulation studies using different approaches to entrain brain oscillations for modulating human memory. We argue that these studies demonstrate a causal link between brain oscillations and memory, speaking against an epiphenomenal perspective of brain oscillations.
Collapse
Affiliation(s)
- Simon Hanslmayr
- Centre for Human Brain Health, School of Psychology, University of Birmingham, Birmingham, UK.
| | - Nikolai Axmacher
- Department of Neuropsychology, Institute of Cognitive Neuroscience, Faculty of Psychology, Ruhr University Bochum, Bochum, Germany
| | - Cory S Inman
- Department of Neurosurgery, Emory University, 1365 Clifton Road North East, Atlanta, GA 30322, USA
| |
Collapse
|
95
|
10 Hz transcranial alternating current stimulation over posterior parietal cortex facilitates tactile temporal order judgment. Behav Brain Res 2019; 368:111899. [PMID: 30978408 DOI: 10.1016/j.bbr.2019.111899] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 04/04/2019] [Accepted: 04/08/2019] [Indexed: 01/10/2023]
Abstract
The temporal order judgment (TOJ) task has been widely used to investigate spatial attentional bias and the sensitivity of temporal discrimination during the processing of bilateral tactile information. Previous studies have shown that TOJ is impaired in patients who are suffering from chronic pain, stroke, and Parkinson's disease. In addition, studies have indicated that the posterior parietal cortex (PPC) is involved in the TOJ task. However, the neural basis of the TOJ task has not been fully elucidated. To investigate the causal relationship between cortical oscillation and certain behaviors, transcranial alternating current stimulation (tACS) has been used. tACS can entrain an oscillation in the cortex to the applying frequency. In previous studies, increased alpha-band (around 10 Hz) oscillation in the PPC is associated with attentional inhibition of the contralateral side. Therefore, we hypothesized that 10 Hz tACS over PPC would inhibit tactile processing in the contralateral side, leading to ipsilateral spatial attentional bias and impaired temporal discrimination. However, we found that 10 Hz tACS over either side of the PPC facilitated temporal discrimination, with 10 Hz tACS over the right PPC leading to a rightward shift of attentional bias. These findings indicated that 10 Hz tACS over the PPC has a facilitative effect in the processing of bilateral tactile information, and may be useful for modulating or treating spatial bias or temporal discrimination during the integration of bilateral stimulation, at least in the somatosensory domain.
Collapse
|
96
|
Reinhart RMG, Nguyen JA. Working memory revived in older adults by synchronizing rhythmic brain circuits. Nat Neurosci 2019; 22:820-827. [PMID: 30962628 PMCID: PMC6486414 DOI: 10.1038/s41593-019-0371-x] [Citation(s) in RCA: 316] [Impact Index Per Article: 63.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 02/21/2019] [Indexed: 12/22/2022]
Abstract
Understanding normal brain aging and developing methods to maintain or improve cognition in older adults are major goals of fundamental and translational neuroscience. Here we show a core feature of cognitive decline-working-memory deficits-emerges from disconnected local and long-range circuits instantiated by theta-gamma phase-amplitude coupling in temporal cortex and theta phase synchronization across frontotemporal cortex. We developed a noninvasive stimulation procedure for modulating long-range theta interactions in adults aged 60-76 years. After 25 min of stimulation, frequency-tuned to individual brain network dynamics, we observed a preferential increase in neural synchronization patterns and the return of sender-receiver relationships of information flow within and between frontotemporal regions. The end result was rapid improvement in working-memory performance that outlasted a 50 min post-stimulation period. The results provide insight into the physiological foundations of age-related cognitive impairment and contribute to groundwork for future non-pharmacological interventions targeting aspects of cognitive decline.
Collapse
Affiliation(s)
- Robert M G Reinhart
- Department of Psychological & Brain Sciences, Center for Systems Neuroscience, Cognitive Neuroimaging Center, Center for Research in Sensory Communication & Emerging Neural Technology, Boston University, Boston, MA, USA.
| | - John A Nguyen
- Department of Psychological & Brain Sciences, Center for Systems Neuroscience, Cognitive Neuroimaging Center, Center for Research in Sensory Communication & Emerging Neural Technology, Boston University, Boston, MA, USA
| |
Collapse
|
97
|
Santarnecchi E, Sprugnoli G, Bricolo E, Costantini G, Liew SL, Musaeus CS, Salvi C, Pascual-Leone A, Rossi A, Rossi S. Gamma tACS over the temporal lobe increases the occurrence of Eureka! moments. Sci Rep 2019; 9:5778. [PMID: 30962465 PMCID: PMC6453961 DOI: 10.1038/s41598-019-42192-z] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 03/22/2019] [Indexed: 01/05/2023] Open
Abstract
The solution to a problem might manifest itself as a burst of unexpected, unpredictable clarity. Such Eureka! events, or Insight moments, are among the most fascinating mysteries of human cognition, whose neurophysiological substrate seems to include a role for oscillatory activity within the α and γ bands in the right parietal and temporal brain regions. We tested this hypothesis on thirty-one healthy participants using transcranial Alternating Current Stimulation (tACS) to externally amplify α (10 Hz) and γ (40 Hz) activity in the right parietal and temporal lobes, respectively. During γ-tACS over the right temporal lobe, we observed an increase in accuracy on a verbal insight task. Furthermore, electroencephalography (EEG) data revealed an increase in γ spectral power over bilateral temporal lobes after stimulation. Additionally, resting-state functional MRI data acquired before the stimulation session suggested a correlation between behavioral response to right temporal lobe tACS and functional connectivity of bilateral temporal lobes, in line with the bilateral increase in γ band revealed by EEG. Overall, results suggest the possibility of enhancing the probability of generating Eureka! moments in humans by means of frequency-specific noninvasive brain stimulation.
Collapse
Affiliation(s)
- Emiliano Santarnecchi
- Berenson-Allen Center for Non-Invasive Brain Stimulation, Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA. .,Brain Investigation & Neuromodulation Laboratory (Si-BIN Lab), Department of Medicine, Surgery and Neuroscience, Unit of Neurology and Clinical Neurophysiology, University of Siena, Siena, Italy.
| | - Giulia Sprugnoli
- Brain Investigation & Neuromodulation Laboratory (Si-BIN Lab), Department of Medicine, Surgery and Neuroscience, Unit of Neurology and Clinical Neurophysiology, University of Siena, Siena, Italy
| | - Emanuela Bricolo
- Psychology Department, University of Milano-Bicocca, Milan, Italy.,Milan Center for Neuroscience, Milan, Italy
| | | | - Sook-Lei Liew
- Chan Division of Occupational Science and Occupational Therapy, University of Southern California, Los Angeles, CA, USA
| | - Christian S Musaeus
- Department of Neurology, Danish Dementia Research Centre (DDRC), Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Carola Salvi
- Northwestern University, Psychology department, Evanston, IL, USA.,Rehabilitation Institute of Chicago, Chicago, IL, USA
| | - Alvaro Pascual-Leone
- Berenson-Allen Center for Non-Invasive Brain Stimulation, Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Alessandro Rossi
- Brain Investigation & Neuromodulation Laboratory (Si-BIN Lab), Department of Medicine, Surgery and Neuroscience, Unit of Neurology and Clinical Neurophysiology, University of Siena, Siena, Italy.,Human Physiology Section, Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
| | - Simone Rossi
- Brain Investigation & Neuromodulation Laboratory (Si-BIN Lab), Department of Medicine, Surgery and Neuroscience, Unit of Neurology and Clinical Neurophysiology, University of Siena, Siena, Italy.,Human Physiology Section, Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
| |
Collapse
|
98
|
Meier J, Nolte G, Schneider TR, Engel AK, Leicht G, Mulert C. Intrinsic 40Hz-phase asymmetries predict tACS effects during conscious auditory perception. PLoS One 2019; 14:e0213996. [PMID: 30943251 PMCID: PMC6447177 DOI: 10.1371/journal.pone.0213996] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 03/05/2019] [Indexed: 12/31/2022] Open
Abstract
Synchronized oscillatory gamma-band activity (30-100Hz) has been suggested to constitute a key mechanism to dynamically orchestrate sensory information integration across multiple spatio-temporal scales. We here tested whether interhemispheric functional connectivity and ensuing auditory perception can selectively be modulated by high-density transcranial alternating current stimulation (HD-tACS). For this purpose, we applied multi-site HD-tACS at 40Hz bilaterally with a phase lag of 180° and recorded a 64-channel EEG to study the oscillatory phase dynamics at the source-space level during a dichotic listening (DL) task in twenty-six healthy participants. In this study, we revealed an oscillatory phase signature at 40Hz which reflects different temporal profiles of the phase asymmetries during left and right ear percept. Here we report that 180°-tACS did not affect the right ear advantage during DL at group level. However, a follow-up analysis revealed that the intrinsic phase asymmetries during sham-tACS determined the directionality of the behavioral modulations: While a shift to left ear percept was associated with augmented interhemispheric asymmetry (closer to 180°), a shift to right ear processing was elicited in subjects with lower asymmetry (closer to 0°). Crucially, the modulation of the interhemispheric network dynamics depended on the deviation of the tACS-induced phase-lag from the intrinsic phase asymmetry. Our characterization of the oscillatory network trends is giving rise to the importance of phase-specific gamma-band coupling during ambiguous auditory perception, and emphasizes the necessity to address the inter-individual variability of phase asymmetries in future studies by tailored stimulation protocols.
Collapse
Affiliation(s)
- Jan Meier
- Department of Psychiatry and Psychotherapy, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- * E-mail:
| | - Guido Nolte
- Department of Neurophysiology and Pathophysiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Till R. Schneider
- Department of Neurophysiology and Pathophysiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Andreas K. Engel
- Department of Neurophysiology and Pathophysiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Gregor Leicht
- Department of Psychiatry and Psychotherapy, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christoph Mulert
- Department of Psychiatry and Psychotherapy, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Centre for Psychiatry and Psychotherapy, Justus-Liebig-University Giessen, Giessen, Germany
| |
Collapse
|
99
|
Wittenberg MA, Morr M, Schnitzler A, Lange J. 10 Hz tACS Over Somatosensory Cortex Does Not Modulate Supra-Threshold Tactile Temporal Discrimination in Humans. Front Neurosci 2019; 13:311. [PMID: 31001078 PMCID: PMC6456678 DOI: 10.3389/fnins.2019.00311] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 03/19/2019] [Indexed: 12/23/2022] Open
Abstract
Perception of physical identical stimuli can differ over time depending on the brain state. One marker of this brain state can be neuronal oscillations in the alpha band (8–12 Hz). A previous study showed that the power of prestimulus alpha oscillations in the contralateral somatosensory area negatively correlate with the ability to temporally discriminate between two subsequent tactile suprathreshold stimuli. That is, with high alpha power subjects were impaired in discriminating two stimuli and more frequently reported to perceive only one stimulus. While this previous study found correlative evidence for a role of alpha oscillations on tactile temporal discrimination, here, we aimed to study the causal influence of alpha power on tactile temporal discrimination by using transcranial alternating current stimulation (tACS). We hypothesized that tACS in the alpha frequency should entrain alpha oscillations and thus modulate alpha power. This modulated alpha power should alter temporal discrimination ability compared to a control frequency or sham. To this end, 17 subjects received one or two electrical stimuli to their left index finger with different stimulus onset asynchronies (SOAs). They reported whether they perceived one or two stimuli. Subjects performed the paradigm before (pre), during (peri), and 25 min after tACS (post). tACS was applied to the contralateral somatosensory-parietal area with either 10, 5 Hz or sham on three different days. We found no significant difference in discrimination abilities between 10 Hz tACS and the control conditions, independent of SOAs. In addition to choosing all SOAs as the independent variable, we chose individually different SOAs, for which we expected the strongest effects of tACS. Again, we found no significant effects of 10 Hz tACS on temporal discrimination abilities. We discuss potential reasons for the inability to modulate tactile temporal discrimination abilities with tACS.
Collapse
Affiliation(s)
- Marc A Wittenberg
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Mitjan Morr
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany.,Division of Medical Psychology, University of Bonn, Bonn, Germany
| | - Alfons Schnitzler
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Joachim Lange
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
100
|
Berntsen MB, Cooper NR, Hughes G, Romei V. Prefrontal transcranial alternating current stimulation improves motor sequence reproduction. Behav Brain Res 2019; 361:39-49. [PMID: 30578806 DOI: 10.1016/j.bbr.2018.12.035] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 12/01/2018] [Accepted: 12/18/2018] [Indexed: 11/18/2022]
Abstract
Cortical activity in frontal, parietal, and motor regions during sequence observation correlates with performance on sequence reproduction. Increased cortical activity observed during observation has therefore been suggested to represent increased learning. Causal relationships have been demonstrated between M1 and motor sequence reproduction and between parietal cortex and bimanual learning. However, similar effects have not been reported for frontal regions despite a number of reports implicating its involvement in encoding of motor sequences. Investigating causal relations between cortical activity and reproduction of motor sequences in parietal, frontal and primary motor regions can disentangle whether specific regions during simple observation can be selectively ascribed to encoding or reproduction or both. We designed a sensorimotor paradigm that included a strong motor sequence component, and tested the impact of individually adjusted transcranial alternating current stimulation (IAF-tACS) to prefrontal, parietal, and primary motor regions on electroencephalographic motor rhythms (alpha and beta bandwidths) during motor sequence observation and the ability to reproduce the observed sequences. Independently of the stimulated region, IAF-tACS led to a reduction in suppression in the lower beta-range relative to sham. Prefrontal IAF-tACS however, led to significant improvement in motor sequence reproduction, pinpointing the crucial role of prefrontal regions in motor sequence reproduction.
Collapse
Affiliation(s)
- Monica B Berntsen
- Centre for Brain Science, Department of Psychology, University of Essex, CO4 3SQ, United Kingdom.
| | - Nicholas R Cooper
- Centre for Brain Science, Department of Psychology, University of Essex, CO4 3SQ, United Kingdom.
| | - Gethin Hughes
- Centre for Brain Science, Department of Psychology, University of Essex, CO4 3SQ, United Kingdom
| | - Vincenzo Romei
- Centre for Brain Science, Department of Psychology, University of Essex, CO4 3SQ, United Kingdom; Dipartimento di Psicologia and Centro Studi e Ricerche in Neuroscienze Cognitive, Campus di Cesena, Universitá di Bologna, 47521 Cesena, Italy
| |
Collapse
|